JP2015044133A - Dissolved gas increasing device in fine bubble generator - Google Patents

Dissolved gas increasing device in fine bubble generator Download PDF

Info

Publication number
JP2015044133A
JP2015044133A JP2013175249A JP2013175249A JP2015044133A JP 2015044133 A JP2015044133 A JP 2015044133A JP 2013175249 A JP2013175249 A JP 2013175249A JP 2013175249 A JP2013175249 A JP 2013175249A JP 2015044133 A JP2015044133 A JP 2015044133A
Authority
JP
Japan
Prior art keywords
fine bubble
tube
bubble generator
increasing
dissolved gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013175249A
Other languages
Japanese (ja)
Inventor
義範 中本
Yoshinori Nakamoto
義範 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tech Corp Co Ltd
Original Assignee
Tech Corp Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tech Corp Co Ltd filed Critical Tech Corp Co Ltd
Priority to JP2013175249A priority Critical patent/JP2015044133A/en
Publication of JP2015044133A publication Critical patent/JP2015044133A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Accessories For Mixers (AREA)

Abstract

PROBLEM TO BE SOLVED: To develop and provide a dissolved gas increasing method in a fine bubble generating device capable of increasing the dissolved quantity of a gas and dissolving much gas by producing the same through a special device, and to develop/provide an apparatus therefor.SOLUTION: Provided is a dissolved gas increasing device in the existing fine bubble generator, characterized by providing an increasing device (4) including a tube (3) thinner than a communication pipe (2) in the outside and/or inside of said fine bubble generator (X) for communicating said fine bubble generator and a water tank main body (Y) and made of a coil tube prepared by winding said tube plural times into a coil shape.

Description

この発明は、微細気泡発生装置における溶存気体の増加装置に関するものである。   The present invention relates to an apparatus for increasing dissolved gas in a fine bubble generator.

従来、微細気泡発生装置は、急激な圧力変化(キャビテーション)現象により、多くの微細気泡を流体内に発生させるものであった。   Conventionally, the fine bubble generating device generates a large number of fine bubbles in a fluid by a sudden pressure change (cavitation) phenomenon.

そして、近年、微細気泡(マイクロバブル)を含んだ気液混合流体は、水中にさまざまなガスを微細気泡とし、水中に供給できる技術として、閉鎖性水域の貧酸素水塊の解消、排水処理における微生物の活性化手段、水耕栽培等における植物の成長促進、養魚場での魚類の成長等、物質表面の汚れ物質の除去等、種々の産業において用いられている。   In recent years, gas-liquid mixed fluids containing microbubbles have been developed as a technology that can supply various gases into water and supply them to the water. It is used in various industries such as microorganism activation means, promotion of plant growth in hydroponic cultivation, etc., growth of fish on fish farms, removal of contaminants on the surface of substances, and the like.

そのため、気体の溶解量を増加させることにより上記の目的を達成することが求められる。また、微細気泡発生装置は、多種存在している。その一例としては、例えば、特許文献1のように。   Therefore, it is required to achieve the above object by increasing the amount of gas dissolved. There are various types of microbubble generators. For example, as in Patent Document 1.

特許第4563496号公報Japanese Patent No. 4556396

しかしながら、この技術では、円筒内部の外周接線方向に気体と液体の混合体を、ポンプを用いて高速旋回流を発生させ、その高速旋回時に摩擦を生じさせ、ナノバブルにまで微細化させるものであるが、一方、高速旋回によるポンプ熱や管の摩擦熱による温度上昇により、気体の溶解量の増加は期待できないことが判明した。   However, in this technique, a mixture of gas and liquid is generated in the outer circumferential tangential direction inside the cylinder by using a pump to generate a high-speed swirling flow, and at the time of the high-speed swirling, friction is generated and the nanobubbles are refined. On the other hand, it was found that the amount of dissolved gas could not be expected to increase due to the temperature rise due to the pump heat due to high-speed rotation and the frictional heat of the pipe.

そこで、この発明の課題は、既存の微細気泡発生装置を基に、気体の溶解量を増加させることができる特殊な装置を介して生成することにより、さらに多くの気体を溶解させることのできる微細気泡発生装置における溶存気体の増加装置を開発・提供することにある。   Therefore, the problem of the present invention is that a fine gas capable of dissolving even more gas can be generated by using a special device capable of increasing the amount of gas dissolved based on an existing fine bubble generating device. The object is to develop and provide a device for increasing dissolved gas in a bubble generator.

そこで、この発明は、上記の課題を解決すべく、鋭意研究を重ねた結果、既存の微細気泡発生装置を使用し、該微細気泡発生装置の外部、あるいは内部に該装置に特殊な装置を設け、該装置を介して生成することにより溶存気体を大幅に増加させる微細気泡発生装置における溶存気体の増加装置を開発・提供するものである。   Therefore, as a result of intensive research to solve the above-mentioned problems, the present invention uses an existing microbubble generator, and a special device is provided outside or inside the microbubble generator. The present invention is to develop and provide an apparatus for increasing dissolved gas in a microbubble generator that greatly increases dissolved gas by being generated through the apparatus.

この発明によると、増加装置を構成する細い径のチューブを複数回コイル状に巻回することにより、チューブ内圧力が上昇し、ヘンリーの法則に従い気体の溶解量を増加させることができ、添加気体の消耗を減らすことができる。また、溶解しなかった目視可能な微細気泡は溶存気体の計測装置の測定に影響を及ぼすため、可能な限りに水上に浮上・消失することが望ましい。この発明においてはコイル状のチューブ内を高速に微細気泡含有液体を通過させる際に、液体と気泡との比重差から遠心分離効果が得られ、液体は遠心方向に、気体は向心方向に集積され肥大化し連通管、あるいはコイルチューブの先端から微細気泡発生装置内に放出されると即座に水上に浮上し消失するため、計測装置を使用する際にも効率的である。   According to this invention, by winding a thin-diameter tube constituting the increasing device into a coil shape a plurality of times, the pressure in the tube rises, and the amount of dissolved gas can be increased according to Henry's law. Consumption can be reduced. Moreover, since the visible fine bubbles that have not been dissolved affect the measurement of the dissolved gas measuring device, it is desirable to float and disappear on the water as much as possible. In this invention, when a microbubble-containing liquid is allowed to pass through a coiled tube at high speed, a centrifugal separation effect is obtained from the difference in specific gravity between the liquid and bubbles, and the liquid is collected in the centrifugal direction and the gas is collected in the centripetal direction. When it is enlarged and released from the tip of the communication tube or coil tube into the microbubble generator, it immediately floats on the water and disappears. Therefore, it is also efficient when using a measuring device.

さらに、増加装置(4)に冷却装置を設けることにより、循環系における温度上昇を抑えるだけでなく、増加装置(4)内の水温が下がることにより、さらに多くの気体を溶解することができる等の極めて有益なる効果を奏する。   Furthermore, by providing a cooling device in the increase device (4), not only can the temperature rise in the circulation system be suppressed, but more water can be dissolved by lowering the water temperature in the increase device (4). Has an extremely beneficial effect.

また、増加装置を設けることにより、微細気泡発生装置本体の小型化が可能となり、それに伴い、イニシャルコストが削減できる効果を奏する。   In addition, by providing the increase device, it is possible to reduce the size of the main body of the fine bubble generating device, and accordingly, the initial cost can be reduced.

この発明の一実施例を示す説明図である。It is explanatory drawing which shows one Example of this invention. この発明の他の実施例を示す説明図である。It is explanatory drawing which shows the other Example of this invention. この発明に使用する増加装置の一実施例を示す説明図である。It is explanatory drawing which shows one Example of the increase apparatus used for this invention. この発明に使用する増加装置の一部欠截断面図である。It is a partially broken sectional view of the increase device used for this invention.

以下、本発明について詳細に説明する。この発明は、既存の微細気泡発生装置において、該微細気泡発生装置の外部、あるいは内部に、該微細気泡発生装置と水槽本体とを連通する連通管よりも細径のチューブであって、該チューブを複数回コイル状に巻回したコイルチューブからなる増加装置を設けた微細気泡発生装置における溶存気体の増加装置である。なお、本発明においては、以下の記述に限定されるものではなく、本発明の要旨を逸脱しない範囲においては適宜変更可能である。   Hereinafter, the present invention will be described in detail. The present invention relates to an existing microbubble generator, which is a tube having a diameter smaller than a communication pipe communicating the microbubble generator and the water tank main body outside or inside the microbubble generator. It is the increase apparatus of the dissolved gas in the fine bubble generator provided with the increase apparatus which consists of a coil tube which wound a coil in multiple times. It should be noted that the present invention is not limited to the following description, and can be appropriately changed without departing from the gist of the present invention.

先ず、この発明の一実施例を図1に基づいて詳述すると、既存の微細気泡発生装置において、該微細気泡発生装置(X)の吐出口(1)側と、水槽本体(Y)に連通する連通管(2)の途中に、該連通管(2)の内径よりも細い径のチューブ(3)を介在させ、且つ、該チューブ(3)を複数回コイル状に巻回したコイルチューブからなる増加装置(4)を設け、該装置に冷却手段(Z)を設けたことを特徴とする微細気泡発生装置における溶存気体の増加装置から構成される。   First, one embodiment of the present invention will be described in detail with reference to FIG. 1. In an existing fine bubble generator, the fine bubble generator (X) communicates with the discharge port (1) side and the water tank body (Y). A tube (3) having a diameter smaller than the inner diameter of the communication pipe (2) is interposed in the middle of the communication pipe (2), and the tube (3) is wound in a coil shape a plurality of times. An increasing device (4) is provided, and the device is provided with a cooling means (Z).

尚、前記増加装置(4)に設ける冷却手段(Z)の一例としては、ファン等を利用して送風冷却したり、他の媒体と熱交換を利用して冷却する等のあらゆる手段をいう。   In addition, as an example of the cooling means (Z) provided in the increase device (4), it refers to all means such as air cooling using a fan or the like, or cooling using heat exchange with other media.

先ず、この発明の他の実施例を図2に基づいて詳述すると、既存の微細気泡発生装置において、該微細気泡発生装置(X)内に位置する気液噴出口(Xa)に、微細気泡発生装置(X)の吐出口(1)側と、水槽本体(Y)に連通する連通管(2)の途中に、該連通管(2)の内径よりも細い径のチューブ(3)を複数回コイル状に巻回したコイルチューブからなる増加装置(4)の一端を接続し、他端は該微細気泡発生装置(X)内に開放して設けたことを特徴とする微細気泡発生装置における溶存気体の増加装置から構成されるものである。   First, another embodiment of the present invention will be described in detail with reference to FIG. 2. In an existing fine bubble generator, fine bubbles are introduced into a gas-liquid jet port (Xa) located in the fine bubble generator (X). A plurality of tubes (3) having a diameter smaller than the inner diameter of the communication pipe (2) are arranged in the middle of the communication pipe (2) communicating with the discharge port (1) side of the generator (X) and the water tank body (Y). In the fine bubble generator characterized by connecting one end of the increase device (4) which consists of the coil tube wound in the shape of a turn coil, and opening the other end in the fine bubble generator (X) It consists of a device for increasing dissolved gas.

尚、図において、(5)は、この発明を稼働させるためのポンプであり、(6)は、水槽から微細気泡発生装置(X)に流体(例えば、水)を導入するためのケーシングへの流体導入口である。   In the figure, (5) is a pump for operating the present invention, and (6) is a casing for introducing a fluid (for example, water) from the water tank to the microbubble generator (X). Fluid inlet.

次に、この発明の使用方法を詳述すると、既存の微細気泡発生装置(X)とは、本願出願人である株式会社テックコーポレーションが製造・販売している微細気泡発生装置(MN−20)を使用するものである。   Next, the usage method of the present invention will be described in detail. The existing microbubble generator (X) is a microbubble generator (MN-20) manufactured and sold by Tech Corporation, the applicant of the present application. Is to use.

また、使用水は水道水であり、該水道水を水槽本体(Y)に20リットル充填するものであり、水温は27.5°度で溶存酸素濃度は4.2ppm(飽和溶存酸素量7.81ppm)、供給空気量は、0.15リットル/分である。   Further, the water used is tap water, and 20 liters of the tap water is filled in the tank body (Y). The water temperature is 27.5 ° and the dissolved oxygen concentration is 4.2 ppm (saturated dissolved oxygen amount is 7. 81 ppm), the supply air amount is 0.15 liters / minute.

そして、微細気泡発生装置(X)の運転時間は、3分間である。   The operation time of the fine bubble generator (X) is 3 minutes.

運転後、実施結果を測定する際には上記微細気泡発生装置(X)の運転を停止して目視出来る微細気泡が完全に浮上するまで待機して、計測器(溶存酸素濃度計)が気泡の影響を受けないよう配慮する必要がある。   After the operation, when measuring the results of the operation, the operation of the microbubble generator (X) is stopped and waits until the microbubbles that can be visually observed rise completely, and the measuring instrument (dissolved oxygen concentration meter) Care must be taken not to be affected.

そして、約1分後に目視出来る微細気泡が完全に浮上したため、溶存濃度を測定した結果、溶存酸素濃度は、6.5ppmであった。従って飽和溶存量に対する溶解率は83%(6.5ppm÷7.8ppm)という数値を得た。   And since the fine bubble which can be visually observed after about 1 minute floated completely, as a result of measuring dissolved concentration, dissolved oxygen concentration was 6.5 ppm. Accordingly, the dissolution rate with respect to the saturated dissolved amount was 83% (6.5 ppm ÷ 7.8 ppm).

因みに、この発明の実施例に対して比較例として、コイル状のチューブを装着しない場合の実施結果を測定すると、目視出来る微細気泡が浮上し終わるまでの時間は約2分30秒であり、飽和溶存量に対する溶解率は65%(5.1ppm÷7.8ppm)という数値であった。   By the way, as a comparative example with respect to the embodiment of the present invention, when measuring the implementation result when the coiled tube is not attached, the time until the visible fine bubbles finish rising is about 2 minutes 30 seconds, and is saturated. The dissolution rate with respect to the dissolved amount was 65% (5.1 ppm / 7.8 ppm).

従って、この発明によると目視可能な微細気泡の浮上速度が2.5倍上昇し、ストークスの法則によると気泡径は1.58倍増加した。また、酸素の溶解効率も20%近く向上した。   Therefore, according to the present invention, the rising speed of the visible fine bubbles increased 2.5 times, and according to Stokes' law, the bubble diameter increased 1.58 times. Also, the oxygen dissolution efficiency was improved by nearly 20%.

また、この発明の増加装置(4)に、例えば,熱交換を利用した冷却装置(Z)を設けることにより、循環系における温度上昇を抑えるだけでなく、水温が下がることにより、さらに多くの気体を溶解させることができる。   Further, by providing the increase device (4) of the present invention with, for example, a cooling device (Z) using heat exchange, not only suppresses the temperature rise in the circulation system, but also reduces the water temperature, thereby increasing more gas. Can be dissolved.

増加装置(4)を構成するコイル状に巻回したチューブ(3)の一例を述べると、内径が、7mm、該チューブ(3)の長さが5mであり、さらに、チューブをコイル状に巻回した径は、15cm程度であることが望ましい。しかし、使用する微細気泡発生装置(X)の容量、ポンプの稼働能力等により異なるが、この発明においては前記数値が最適であった。   An example of the tube (3) wound in a coil shape constituting the increasing device (4) will be described. The inner diameter is 7 mm, the length of the tube (3) is 5 m, and the tube is wound in a coil shape. The rotated diameter is desirably about 15 cm. However, the numerical values are optimum in the present invention, although it varies depending on the capacity of the fine bubble generator (X) to be used, the operating capacity of the pump, and the like.

この発明の微細気泡発生装置における溶存気体の増加方法およびその装置の技術を確立し、実施することにより産業上利用可能性があるものである。   The present invention has industrial applicability by establishing and implementing the method of increasing dissolved gas in the microbubble generator of the present invention and the technology of the apparatus.

1 吐出口
2 連通管
3 コイル状に巻回したチューブ
4 増加装置
5 ポンプ
6 流体導入口
X 微細気泡発生装置
Xa 微細気泡発生装置の気液噴出口
Y 水槽本体
Z 冷却手段
DESCRIPTION OF SYMBOLS 1 Discharge port 2 Communication pipe 3 Coiled tube 4 Increasing device 5 Pump 6 Fluid inlet X Fine bubble generating device Xa Gas-liquid jet port of fine bubble generating device Y Water tank body Z Cooling means

Claims (5)

既存の微細気泡発生装置において、該微細気泡発生装置(X)の外部および/または内部に、該微細気泡発生装置と水槽本体(Y)とを連通する連通管(2)よりも細径のチューブ(3)であって、該チューブを複数回コイル状に巻回したコイルチューブからなる増加装置(4)を設けたことを特徴とする微細気泡発生装置における溶存気体の増加装置。   In the existing fine bubble generator, a tube smaller in diameter than the communication pipe (2) communicating the fine bubble generator and the water tank body (Y) outside and / or inside the fine bubble generator (X). (3) A device for increasing dissolved gas in a microbubble generator characterized in that an increasing device (4) comprising a coil tube obtained by winding the tube a plurality of times in a coil shape is provided. 既存の微細気泡発生装置において、該微細気泡発生装置(X)の吐出口(1)側と、水槽本体(Y)に連通する連通管(2)の途中に、該連通管(2)の内径よりも細い径のチューブ(3)を介在させ、且つ、該チューブ(3)を複数回コイル状に巻回したコイルチューブからなる増加装置(4)を設け、該装置に冷却手段(Z)を設けたことを特徴とする微細気泡発生装置における溶存気体の増加装置。   In the existing fine bubble generator, the inner diameter of the communication tube (2) is arranged in the middle of the discharge port (1) side of the fine bubble generator (X) and the communication tube (2) communicating with the water tank body (Y). An increasing device (4) comprising a coil tube in which a tube (3) having a smaller diameter is interposed and the tube (3) is wound a plurality of times in a coil shape is provided, and cooling means (Z) is provided in the device. A device for increasing dissolved gas in a microbubble generator characterized by being provided. 既存の微細気泡発生装置において、該微細気泡発生装置(X)内に位置する気液噴出口(Xa)に、微細気泡発生装置(X)の吐出口(1)側と、水槽本体(Y)に連通する連通管(2)の途中に、該連通管(2)の内径よりも細い径のチューブ(3)を複数回コイル状に巻回したコイルチューブからなる増加装置(4)の一端を接続し、他端は該微細気泡発生装置(X)内に開放して設けたことを特徴とする微細気泡発生装置における溶存気体の増加装置から構成されるものである。   In the existing fine bubble generator, the gas-liquid jet port (Xa) located in the fine bubble generator (X) is connected to the discharge port (1) side of the fine bubble generator (X) and the water tank body (Y). One end of an increasing device (4) comprising a coil tube in which a tube (3) having a diameter smaller than the inner diameter of the communication tube (2) is wound a plurality of times in the middle of the communication tube (2) communicating with The other end is constituted by a dissolved gas increasing device in the fine bubble generator characterized in that the other end is provided open in the fine bubble generator (X). 増加装置(4)に、熱交換を利用した冷却手段(Z)を設けることを特徴とする請求項1記載の微細気泡発生装置における溶存気体の増加装置。   The apparatus for increasing dissolved gas in a fine bubble generating device according to claim 1, wherein the increasing device (4) is provided with a cooling means (Z) utilizing heat exchange. 増加装置(4)を構成するコイル状に巻回したチューブ(3)の内径が、7mm程度、該チューブ(3)の長さが5m程度、そしてコイル状に巻回したコイルチューブの径が、15cm程度であることを特徴とする請求項1または2または3または4記載の微細気泡発生装置における溶存気体の増加装置。   The inner diameter of the coil (3) wound in the coil shape constituting the increasing device (4) is about 7 mm, the length of the tube (3) is about 5 m, and the diameter of the coil tube wound in the coil shape is The apparatus for increasing dissolved gas in the fine bubble generating device according to claim 1, 2, 3, or 4, wherein the device is about 15 cm.
JP2013175249A 2013-08-27 2013-08-27 Dissolved gas increasing device in fine bubble generator Pending JP2015044133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013175249A JP2015044133A (en) 2013-08-27 2013-08-27 Dissolved gas increasing device in fine bubble generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013175249A JP2015044133A (en) 2013-08-27 2013-08-27 Dissolved gas increasing device in fine bubble generator

Publications (1)

Publication Number Publication Date
JP2015044133A true JP2015044133A (en) 2015-03-12

Family

ID=52670161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013175249A Pending JP2015044133A (en) 2013-08-27 2013-08-27 Dissolved gas increasing device in fine bubble generator

Country Status (1)

Country Link
JP (1) JP2015044133A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136762A1 (en) * 2015-02-24 2016-09-01 株式会社テックコーポレーション Microbubble generation apparatus
KR20180131664A (en) * 2017-05-30 2018-12-11 서울대학교산학협력단 Nano bubble generator
KR102100074B1 (en) * 2019-05-31 2020-05-15 유영호 Flow channel member for micro and/or nano bubble, integrated flow unit and producing device for micro and/or nano bubble using the same
US20230080236A1 (en) * 2021-09-15 2023-03-16 Saudi Arabian Oil Company Gaseous Bubble System and Method to Measure Gelation Time

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09206638A (en) * 1995-12-01 1997-08-12 Sunstar Eng Inc Method and apparatus for foaming high viscosity material
US6550750B1 (en) * 1997-05-09 2003-04-22 David Kalkstein Apparatus for producing foamable compositions and other compositions
JP2008178780A (en) * 2007-01-24 2008-08-07 Matsushita Electric Works Ltd Microbubble generating apparatus
JP2010051846A (en) * 2008-08-26 2010-03-11 Panasonic Electric Works Co Ltd Gas dissolving apparatus
JP4563496B1 (en) * 2009-10-22 2010-10-13 株式会社H&S Microbubble generator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09206638A (en) * 1995-12-01 1997-08-12 Sunstar Eng Inc Method and apparatus for foaming high viscosity material
US6550750B1 (en) * 1997-05-09 2003-04-22 David Kalkstein Apparatus for producing foamable compositions and other compositions
JP2008178780A (en) * 2007-01-24 2008-08-07 Matsushita Electric Works Ltd Microbubble generating apparatus
JP2010051846A (en) * 2008-08-26 2010-03-11 Panasonic Electric Works Co Ltd Gas dissolving apparatus
JP4563496B1 (en) * 2009-10-22 2010-10-13 株式会社H&S Microbubble generator

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136762A1 (en) * 2015-02-24 2016-09-01 株式会社テックコーポレーション Microbubble generation apparatus
JP2016155081A (en) * 2015-02-24 2016-09-01 株式会社テックコーポレーション Fine bubble generator and fine bubble generation method
KR20180131664A (en) * 2017-05-30 2018-12-11 서울대학교산학협력단 Nano bubble generator
KR102110856B1 (en) * 2017-05-30 2020-05-15 서울대학교산학협력단 Nano bubble generator
KR102100074B1 (en) * 2019-05-31 2020-05-15 유영호 Flow channel member for micro and/or nano bubble, integrated flow unit and producing device for micro and/or nano bubble using the same
WO2020242040A1 (en) * 2019-05-31 2020-12-03 유영호 Flow path member for generating nano-bubbles, and integrated flow path unit and nano-bubble generator using same
CN112512675A (en) * 2019-05-31 2021-03-16 刘泳豪 Flow channel pipe for generating nano bubbles, integrated flow channel unit using same and nano bubble generator
TWI757744B (en) * 2019-05-31 2022-03-11 劉泳豪 Channel tube for nanobubble generation, accumulation unit and nanobubble generator using the channel tube
CN112512675B (en) * 2019-05-31 2023-01-17 刘泳豪 Flow channel pipe for generating nano bubbles, integrated flow channel unit using same and nano bubble generator
AU2020283215B2 (en) * 2019-05-31 2023-04-06 Young Ho Yoo Flow path member for generating nano-bubbles, and integrated flow path unit and nano-bubble generator using same
EP3978105A4 (en) * 2019-05-31 2023-07-05 Young Ho Yoo Flow path member for generating nano-bubbles, and integrated flow path unit and nano-bubble generator using same
US20230080236A1 (en) * 2021-09-15 2023-03-16 Saudi Arabian Oil Company Gaseous Bubble System and Method to Measure Gelation Time

Similar Documents

Publication Publication Date Title
CN103041723B (en) Micro-bubble generation device
JP2015044133A (en) Dissolved gas increasing device in fine bubble generator
CN206701176U (en) A kind of micro-nano air bubble apparatus of ultrasonic wave
WO2016119087A1 (en) Gas-liquid mixing device
KR101379239B1 (en) Nano bubble generating system
WO2006019107A1 (en) Method of generating micro air bubble in liquid and air bubble generating apparatus
JP2016155081A (en) Fine bubble generator and fine bubble generation method
JP2022523264A (en) Gas injection system to optimize nanobubble formation in disinfectant solution
CA2928247C (en) Microbubble generating device and contaminated water purifying system provided with microbubble generating device
CN104828884B (en) Multilayer nested cavitator capable of forming large-range cavitation
WO2008007631A1 (en) Fine bubble generating unit
CN102688709A (en) High-speed cyclic gas-liquid mixed micro-nano foam generating device
JP2010535627A5 (en)
JP2022514448A (en) Channel member for nanobubble generation, integrated flow path unit and nanobubble generator using this
JP2008023435A (en) Microbubble generator
JP2018521855A (en) Apparatus and method for generating bubbles in a liquid
CN102963947A (en) Pressurized dissolved micro-bubble generator
RU2611500C1 (en) Installation of hydrodynamic water treatment
KR20120067394A (en) A device for dissolving gas and a apparatus for dissolving oxygen which used it
CN104221989A (en) High-speed water body oxygenation device
JP6108209B2 (en) Fine bubble generation nozzle
JP2012091153A (en) Fine-air-bubble generator
JP2010029774A (en) Fine bubble generating apparatus
RU2576056C2 (en) Mass-transfer apparatus
KR102356082B1 (en) Fluid Supply Pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141225

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20141225

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150908