JP2015042082A - Heating cooker - Google Patents

Heating cooker Download PDF

Info

Publication number
JP2015042082A
JP2015042082A JP2013172417A JP2013172417A JP2015042082A JP 2015042082 A JP2015042082 A JP 2015042082A JP 2013172417 A JP2013172417 A JP 2013172417A JP 2013172417 A JP2013172417 A JP 2013172417A JP 2015042082 A JP2015042082 A JP 2015042082A
Authority
JP
Japan
Prior art keywords
path
voltage
switch
battery
main power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013172417A
Other languages
Japanese (ja)
Other versions
JP6549346B2 (en
JP2015042082A5 (en
Inventor
達也 宮本
Tatsuya Miyamoto
達也 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Paloma Co Ltd
Original Assignee
Paloma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Paloma Co Ltd filed Critical Paloma Co Ltd
Priority to JP2013172417A priority Critical patent/JP6549346B2/en
Publication of JP2015042082A publication Critical patent/JP2015042082A/en
Publication of JP2015042082A5 publication Critical patent/JP2015042082A5/ja
Application granted granted Critical
Publication of JP6549346B2 publication Critical patent/JP6549346B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heating cooker mainly powered by a battery which is configured to normally operate a drive system while extending a battery life.SOLUTION: In a heating cooker 1, when a voltage of a battery 12 detected by a voltage detection section is equal to or higher than a predetermined threshold, a first switch SW1 is turned to a nonconducting state and a second switch SW2 is turned to a conducting state to supply a driving current depending on an output voltage from a step-down circuit 18 to a load to be driven via a second conduction path L2. In a predetermined low voltage condition in which the voltage of the battery 12 detected by the voltage detection section is lower than the threshold, on the other hand, the first switch SW1 is turned to a conducting state and the second switch SW2 is turned to a nonconducting state to supply a driving current from a main power path La to the load to be driven via a first conduction path L1.

Description

本発明は、加熱調理器に関するものである。   The present invention relates to a heating cooker.

ガスコンロなどの加熱調理器では、乾電池等を主電源とする構成が多く、例えば特許文献1の技術では、電池からの電力供給を受ける電源回路20によって定電圧VR2等を生成し、マイクロコンピュータ16などの各種部品に駆動電力を供給している。   Many cooking devices such as gas stoves use a dry battery as a main power source. For example, in the technique of Patent Document 1, a constant voltage VR2 or the like is generated by a power supply circuit 20 that receives power supplied from a battery, and the microcomputer 16 or the like. The drive power is supplied to various parts.

特開平6−337115号公報JP-A-6-337115

しかしながら、特許文献1のような従来例では、電源回路20で生成された電源電圧VR2のみをマイクロコンピュータ16や電磁弁駆動回路19などの駆動系の動作電圧とするため、電源回路20からの出力電圧VR2が一定レベルを超えている期間しか駆動系の動作を維持することができないという問題がある。即ち、主電源たる電池での出力電圧が上記一定レベルを超えていても、電源回路20にて上記一定レベル(駆動系を動作可能なレベル)を超える動作電圧を安定的に生成できない限り、駆動系を正常に動作させることができなくなってしまうのである。このような構成では、電源回路20からの出力電圧が一定レベルを超えなくなった時点で、電池での出力電圧がある程度のレベルであっても電池交換を行わなければならないため、電池寿命が短くなりやすく、電池の交換サイクルが早くならざるを得ない。   However, in the conventional example such as Patent Document 1, since only the power supply voltage VR2 generated by the power supply circuit 20 is used as the operating voltage of the drive system such as the microcomputer 16 or the solenoid valve drive circuit 19, the output from the power supply circuit 20 There is a problem that the operation of the drive system can be maintained only during a period in which the voltage VR2 exceeds a certain level. In other words, even if the output voltage of the battery as the main power source exceeds the certain level, driving is possible as long as the operation voltage exceeding the certain level (a level at which the drive system can be operated) cannot be stably generated by the power supply circuit 20. The system cannot be operated normally. In such a configuration, when the output voltage from the power supply circuit 20 does not exceed a certain level, the battery must be replaced even if the output voltage at the battery is at a certain level. Easy, battery replacement cycle must be faster.

本発明は、上述した課題を解決するためになされたものであり、電池を主電源とする加熱調理器において、電池寿命を延ばしつつ駆動系を正常に動作させることが可能な構成を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides a configuration capable of operating a drive system normally while extending battery life in a heating cooker using a battery as a main power source. With the goal.

本発明は、電池と、
駆動対象負荷と、
前記電池に接続される主電力路と、
前記主電力路に接続され、前記主電力路と前記駆動対象負荷との間の通電経路となる第1通電路と、
前記第1通電路とは異なる通電経路として構成され、前記主電力路と前記駆動対象負荷との間の通電経路となる第2通電路と、
前記第2通電路に設けられ、前記主電力路側からの入力電圧を降圧して出力する降圧回路と、
前記第1通電路を通電状態と非通電状態とに切り替える第1スイッチと、
前記第2通電路を通電状態と非通電状態とに切り替える第2スイッチと、
前記電池の電圧を検出する電圧検出部と、
前記電圧検出部によって検出された前記電池の電圧が所定の閾値以上である場合に、前記第1スイッチを非導通状態に切り替え且つ前記第2スイッチを導通状態に切り替えることで、前記第2通電路を介して、前記降圧回路からの出力電圧に応じた駆動電流を前記駆動対象負荷に供給し、前記電圧検出部によって検出された前記電池の電圧が前記閾値未満となる所定の低電圧状態となった場合に、前記第1スイッチを導通状態に切り替え且つ前記第2スイッチを非導通状態に切り替えることで、前記第1通電路を介して、前記主電力路からの駆動電流を前記駆動対象負荷に供給する制御部と、
を有することを特徴とする。
The present invention provides a battery,
Drive target load, and
A main power path connected to the battery;
A first energization path connected to the main power path and serving as an energization path between the main power path and the drive target load;
A second energization path that is configured as an energization path different from the first energization path and serves as an energization path between the main power path and the drive target load;
A step-down circuit provided in the second energization path and stepping down and outputting an input voltage from the main power path side;
A first switch for switching the first energization path between an energized state and a non-energized state;
A second switch for switching the second energization path between an energized state and a non-energized state;
A voltage detector for detecting the voltage of the battery;
When the voltage of the battery detected by the voltage detection unit is equal to or higher than a predetermined threshold, the second current path is switched by switching the first switch to a non-conductive state and the second switch to a conductive state. Through which the drive current corresponding to the output voltage from the step-down circuit is supplied to the load to be driven, and the battery voltage detected by the voltage detection unit is in a predetermined low voltage state that is less than the threshold. When the first switch is switched to the conductive state and the second switch is switched to the non-conductive state, the drive current from the main power path is supplied to the drive target load via the first current path. A controller to supply;
It is characterized by having.

請求項1の発明では、電圧検出部によって検出された電池の電圧が所定の閾値以上である場合に、第1スイッチを非導通状態に切り替え且つ第2スイッチを導通状態に切り替えることで、第2通電路を介して、降圧回路からの出力電圧に応じた駆動電流を駆動対象負荷に供給し、電圧検出部によって検出された電池の電圧が閾値未満となる所定の低電圧状態となった場合に、第1スイッチを導通状態に切り替え且つ第2スイッチを非導通状態に切り替えることで、第1通電路を介して、主電力路からの駆動電流を駆動対象負荷に供給するように、制御部によって制御がなされる。
この構成では、電池電圧が相対的に高く、降圧回路からの出力電圧を高く維持しやすい場合には、電池電圧よりも低く抑えた駆動電圧(降圧回路からの出力電圧)によって駆動対象負荷を動作させるため、電力消費を抑えつつも、駆動対象負荷を安定的に動作させ易くなる。一方、この構成では、電池電圧が相対的に低くなり、降圧回路からの出力電圧を高く維持しにくくなった場合には、主電力路からの駆動電流を、降圧回路を介さずに駆動対象負荷に供給するように切り替えるため、電池電圧がある程度低くなった場合でも、駆動対象負荷へ印加する電圧が当該駆動対象負荷を駆動し得るレベルで維持される間は電池を使い続けることができる。このような特徴を有するため、電池を主電源とする加熱調理器において、電池寿命を延ばしつつ駆動系を正常に動作させることが可能となる。
According to the first aspect of the present invention, when the battery voltage detected by the voltage detection unit is equal to or higher than a predetermined threshold, the second switch is switched to the non-conductive state and the second switch is switched to the conductive state. When a drive current corresponding to the output voltage from the step-down circuit is supplied to the drive target load via the energization path, and the battery voltage detected by the voltage detection unit is in a predetermined low voltage state that is less than the threshold value. By switching the first switch to the conductive state and switching the second switch to the non-conductive state, the control unit supplies the drive current from the main power path to the drive target load via the first current path. Control is made.
In this configuration, when the battery voltage is relatively high and the output voltage from the step-down circuit can be easily maintained high, the drive target load is operated with the drive voltage (output voltage from the step-down circuit) kept lower than the battery voltage. Therefore, it becomes easy to operate the drive target load stably while suppressing power consumption. On the other hand, in this configuration, when the battery voltage becomes relatively low and the output voltage from the step-down circuit becomes difficult to maintain high, the drive current from the main power path is not driven through the step-down circuit. Therefore, even when the battery voltage is lowered to some extent, the battery can be continuously used as long as the voltage applied to the drive target load is maintained at a level capable of driving the drive target load. Since it has such a feature, in a cooking device using a battery as a main power source, it is possible to operate the drive system normally while extending the battery life.

請求項2の発明では、制御部は、第1スイッチを導通状態に切り替え且つ第2スイッチを非導通状態に切り替えた場合、その後に電圧検出部によって検出される電池の電圧が閾値以上となった場合でも、第1スイッチを導通状態に切り替え且つ第2スイッチを非導通状態に切り替える制御を継続する構成となっている。
この構成によれば、電池電圧が閾値付近で変動する場合にスイッチの切り替えが頻繁に繰り返される事態を回避することができる。
In the invention of claim 2, when the control unit switches the first switch to the conductive state and switches the second switch to the non-conductive state, the battery voltage detected by the voltage detection unit thereafter becomes equal to or higher than the threshold value. Even in this case, the control for switching the first switch to the conductive state and the second switch to the non-conductive state is continued.
According to this configuration, it is possible to avoid a situation in which switching of the switch is frequently repeated when the battery voltage fluctuates in the vicinity of the threshold value.

請求項3の発明は、複数のガスバーナと、複数のガスバーナへのガス供給の元となる共通のガス供給路と、共通のガス供給路から分岐して各ガスバーナに続く複数の分岐路と、を備えており、降圧回路及び主電力路から駆動電流が供給される駆動対象負荷として、複数の分岐路にそれぞれ設けられ、駆動軸の回転角度に応じて分岐路の開度を設定する複数のモータと、少なくとも共通のガス供給路に配置され、当該共通のガス供給路の開閉を切り替える元電磁弁と、が設けられている。
このように複数のモータ及び元電磁弁が設けられる構成は電力消費が大きくなりやすく、電池寿命がより問題になるため、このような構成のものに対して本発明の特徴を適用すればより一層有用である。また、この構成では、電池電圧が相対的に低くなった場合、複数のモータ及び元電磁弁に対する駆動電圧の供給元を一斉に切り替えることができ、電池寿命を延ばしつつこれら全ての駆動部を安定的に動作させ得る構成を、複雑な構成や制御を伴うことなく実現できる。
The invention of claim 3 includes a plurality of gas burners, a common gas supply path that is a source of gas supply to the plurality of gas burners, and a plurality of branch paths that branch from the common gas supply path and follow each gas burner. A plurality of motors that are provided in a plurality of branch paths as drive target loads to which drive current is supplied from the step-down circuit and the main power path, and set the opening degree of the branch paths according to the rotation angle of the drive shaft And an original solenoid valve that is disposed at least in the common gas supply path and switches between opening and closing of the common gas supply path.
Since the configuration in which a plurality of motors and original solenoid valves are provided in this manner tends to increase power consumption and the battery life becomes more problematic, if the features of the present invention are applied to such a configuration, the characteristics of the present invention are further increased. Useful. In addition, with this configuration, when the battery voltage becomes relatively low, it is possible to simultaneously switch the supply source of the drive voltage to the plurality of motors and the original solenoid valve, and to stabilize all these drive units while extending the battery life Can be realized without complicated configuration and control.

図1は、第1実施形態に係る加熱調理器を概略的に例示する斜視図である。FIG. 1 is a perspective view schematically illustrating the heating cooker according to the first embodiment. 図2は、図1の加熱調理器における各ガスバーナへのガス供給路等を概念的に示す説明図である。FIG. 2 is an explanatory view conceptually showing a gas supply path to each gas burner in the cooking device of FIG. 図3は、図1の加熱調理器の電気的構成を概略的に例示するブロック図である。FIG. 3 is a block diagram schematically illustrating an electrical configuration of the cooking device of FIG. 図4は、図1の加熱調理器で用いられる電源回路等を概略的に例示する回路図である。FIG. 4 is a circuit diagram schematically illustrating a power supply circuit and the like used in the cooking device of FIG.

[第1実施形態]
以下、本発明を具現化した第1実施形態について、図面を参照して説明する。
(加熱調理器の全体構成)
図1に示す加熱調理器1は、調理鍋等の調理器具を加熱可能なビルトインコンロとして構成されている。この加熱調理器1は、加熱調理器本体1aの上面を構成する天板2(トッププレート)から露出するように、右こんろ部4a、左こんろ部4b、が夫々設けられ、その左右のこんろ部4a,4bの間で後方寄りに小こんろ部4cが設けられている。そして、天板2の下方において加熱調理器本体1aの内部中央付近にはグリル3が設けられている。なお、グリル3は、被調理物を収納してグリルバーナ(ガスバーナ54:図2)で加熱調理するグリル庫(図示略)を備えており、このグリル庫は、加熱調理器本体1aの前面部に設けられたグリル扉3bによって開閉可能とされている。
[First embodiment]
Hereinafter, a first embodiment embodying the present invention will be described with reference to the drawings.
(Overall configuration of cooking device)
The heating cooker 1 shown in FIG. 1 is configured as a built-in stove that can heat cooking utensils such as cooking pots. The cooking device 1 is provided with a right cooking unit 4a and a left cooking unit 4b so as to be exposed from a top plate 2 (top plate) constituting the upper surface of the cooking device body 1a. A small stove portion 4c is provided between the stove portions 4a and 4b and closer to the rear. A grill 3 is provided below the top plate 2 near the center of the inside of the heating cooker body 1a. The grill 3 is provided with a grill cabinet (not shown) for storing the food to be cooked and cooking with a grill burner (gas burner 54: FIG. 2), and this grill cabinet is provided on the front surface of the heating cooker body 1a. The grill door 3b provided can be opened and closed.

図1に示す右こんろ部4a、左こんろ部4b、小こんろ部4c、グリル3には、図2に示すガスバーナ51,52,53,54がそれぞれ設けられている。そして、ガス供給路としては、複数のガスバーナ51,52,53,54への共通のガス経路となる共通供給路60(以下、ガス供給路60ともいう)と、共通供給路60から各ガスバーナ51,52,53,54に向けてそれぞれ分岐する複数の分岐供給路(以下、分岐路ともいう)61,62,63,64とが設けられている。そして、共通供給路60には、この共通供給路を開閉する元電磁弁N1が設けられ、各々の分岐供給路61,62,63,64には、火力調整弁と、開閉弁とが設けられている。   Gas burners 51, 52, 53, and 54 shown in FIG. 2 are respectively provided on the right and left stove parts 4a, 4b, 4c, and grill 3 shown in FIG. As the gas supply path, a common supply path 60 (hereinafter also referred to as a gas supply path 60) serving as a common gas path to the plurality of gas burners 51, 52, 53, 54, and each gas burner 51 from the common supply path 60. , 52, 53, 54 are provided with a plurality of branch supply paths (hereinafter also referred to as branch paths) 61, 62, 63, 64. The common supply path 60 is provided with an original electromagnetic valve N1 that opens and closes the common supply path, and each branch supply path 61, 62, 63, 64 is provided with a thermal power adjustment valve and an opening / closing valve. ing.

図2のように、例えば、ガスバーナ51への分岐供給路61には、この分岐供給路61を開閉可能な安全弁51gと、分岐供給路61を開閉可能な閉止弁51fと、ガスバーナ51へのガス供給量を調整可能な火力調整弁51eとが設けられている。これら安全弁51g、閉止弁51f、火力調整弁51eは、図3に示すステッピングモータM1によって駆動されるようになっており、ステッピングモータM1の回転角度が第1角度範囲になったときに安全弁51gが開放し、モータM1の回転角度が第2角度範囲になったときに閉止弁51fが開放し、ステッピングモータM1の回転角度が第3角度範囲のときに回転角度に応じて火力調整弁51eの開度が設定されるようになっている。つまり、ステッピングモータM1の回転角度を制御することで、安全弁51g、閉止弁51fの開閉、及び火力調整弁51eの開度を制御できるようになっている。   As shown in FIG. 2, for example, a branch supply path 61 to the gas burner 51 includes a safety valve 51 g that can open and close the branch supply path 61, a shut-off valve 51 f that can open and close the branch supply path 61, and gas to the gas burner 51. A thermal power adjustment valve 51e capable of adjusting the supply amount is provided. The safety valve 51g, the closing valve 51f, and the heating power adjustment valve 51e are driven by the stepping motor M1 shown in FIG. 3, and when the rotation angle of the stepping motor M1 falls within the first angle range, the safety valve 51g When the rotation angle of the motor M1 falls within the second angle range, the closing valve 51f opens, and when the rotation angle of the stepping motor M1 falls within the third angle range, the heating power adjustment valve 51e opens according to the rotation angle. The degree is set. That is, by controlling the rotation angle of the stepping motor M1, the opening / closing of the safety valve 51g, the closing valve 51f, and the opening degree of the heating power adjustment valve 51e can be controlled.

また、図2のように、ガスバーナ52への分岐供給路62にも、分岐供給路61と同様の安全弁52g,閉止弁52f、火力調整弁52eが設けられ、ガスバーナ53への分岐供給路63にも、分岐供給路61と同様の安全弁53g,閉止弁53f、火力調整弁53eが設けられている。なお、分岐供給路62での安全弁52g,閉止弁52f、火力調整弁52eの制御は、分岐供給路61と同様であり、ステッピングモータM2(図3)の回転角度を制御することで、安全弁52g、閉止弁52fの開閉、及び火力調整弁52eの開度を制御できるようになっている。また、分岐供給路63での、安全弁53g,閉止弁53f、火力調整弁53eの制御も分岐供給路61と同様であり、ステッピングモータM3(図3)の回転角度を制御することで、安全弁53g、閉止弁53fの開閉、及び火力調整弁53eの開度を制御できるようになっている。   As shown in FIG. 2, the branch supply path 62 to the gas burner 52 is also provided with a safety valve 52 g, a closing valve 52 f, and a heating power adjustment valve 52 e similar to the branch supply path 61, and the branch supply path 63 to the gas burner 53 is provided. Also, a safety valve 53g, a closing valve 53f, and a thermal power adjustment valve 53e similar to the branch supply path 61 are provided. The control of the safety valve 52g, the closing valve 52f, and the heating power adjustment valve 52e in the branch supply path 62 is the same as that of the branch supply path 61, and the safety valve 52g is controlled by controlling the rotation angle of the stepping motor M2 (FIG. 3). The opening / closing of the shut-off valve 52f and the opening degree of the heating power adjusting valve 52e can be controlled. Further, the control of the safety valve 53g, the closing valve 53f, and the heating power adjustment valve 53e in the branch supply path 63 is the same as that of the branch supply path 61, and the safety valve 53g is controlled by controlling the rotation angle of the stepping motor M3 (FIG. 3). The opening and closing of the shut-off valve 53f and the opening degree of the thermal power adjustment valve 53e can be controlled.

また、図2のように、グリル3のガスバーナ54への分岐供給路64には、この分岐供給路64を開閉可能な安全弁54fと、ガスバーナ54へのガス供給量を調整可能な火力調整弁54eとが設けられている。これら安全弁54f、火力調整弁54eは、図3に示すステッピングモータM4によって駆動されるようになっており、ステッピングモータM4の回転角度が第1の所定角度範囲になったときに安全弁54fが開放し、ステッピングモータM4の回転角度が第2の所定角度範囲になったときに回転角度に応じて火力調整弁54eの開度が設定されるようになっている。なお、図2の例では、ステッピングモータM4の制御によって開閉する火力調整弁54eを例示したが、火力調整弁54eに代えて、下バーナ54bへの供給路65bを開閉する電磁弁と、上バーナ54aへの供給路65aを開閉する電磁弁とを設け、これら電磁弁の開閉を、ステッピングモータM4とは別の駆動源によって制御するようにしてもよい。この場合、上バーナ54aへの供給路65aの電磁弁を迂回するように供給路65aと並列のバイパス路を設け、供給路65aの電磁弁が閉じているときにはバイパス路によって上バーナ54aにガスを供給し、供給路65aの電磁弁が開いているときには供給路65aとバイパス路の両方によって上バーナ54aにガスを供給するように上バーナ54aの火力を調整してもよい。下バーナ54b側も同様であり、下バーナ54bへの供給路65bの電磁弁を迂回するように供給路65bと並列のバイパス路を設け、供給路65bの電磁弁が閉じているときにはバイパス路によって下バーナ54bにガスを供給し、供給路65bの電磁弁が開いているときには供給路65bとバイパス路の両方によって下バーナ54bにガスを供給するように下バーナ54bの火力を調整してもよい。また、元電磁弁N1は、例えば公知の電磁弁として構成され、マイクロコンピュータ10からの制御信号に応じて開状態と閉状態に切り替えられるようになっている。   As shown in FIG. 2, a branch supply path 64 to the gas burner 54 of the grill 3 includes a safety valve 54f that can open and close the branch supply path 64, and a thermal power adjustment valve 54e that can adjust the gas supply amount to the gas burner 54. And are provided. The safety valve 54f and the thermal power adjustment valve 54e are driven by a stepping motor M4 shown in FIG. 3, and the safety valve 54f is opened when the rotation angle of the stepping motor M4 falls within the first predetermined angle range. When the rotation angle of the stepping motor M4 falls within the second predetermined angle range, the opening degree of the thermal power adjustment valve 54e is set according to the rotation angle. In the example of FIG. 2, the heating power adjustment valve 54e that opens and closes by the control of the stepping motor M4 is illustrated. However, instead of the heating power adjustment valve 54e, an electromagnetic valve that opens and closes the supply path 65b to the lower burner 54b, An electromagnetic valve that opens and closes the supply path 65a to 54a may be provided, and the opening and closing of these electromagnetic valves may be controlled by a drive source other than the stepping motor M4. In this case, a bypass path parallel to the supply path 65a is provided so as to bypass the solenoid valve of the supply path 65a to the upper burner 54a, and when the solenoid valve of the supply path 65a is closed, gas is supplied to the upper burner 54a by the bypass path. The heating power of the upper burner 54a may be adjusted so that gas is supplied to the upper burner 54a by both the supply path 65a and the bypass path when the solenoid valve of the supply path 65a is open. The same applies to the lower burner 54b side, and a bypass path parallel to the supply path 65b is provided so as to bypass the electromagnetic valve of the supply path 65b to the lower burner 54b, and when the electromagnetic valve of the supply path 65b is closed, When the gas is supplied to the lower burner 54b and the solenoid valve of the supply passage 65b is open, the heating power of the lower burner 54b may be adjusted so that the gas is supplied to the lower burner 54b by both the supply passage 65b and the bypass passage. . The original solenoid valve N1 is configured as a known solenoid valve, for example, and can be switched between an open state and a closed state in accordance with a control signal from the microcomputer 10.

また、本構成では、図3のように、各モータM1〜M4を駆動するためのモータ駆動回路41〜44がそれぞれ設けられている。これらモータ駆動回路41〜44はいずれも、後述する電源回路14で生成された駆動電圧V3が印加されるようになっており、いずれも、マイクロコンピュータ10からの駆動信号に応じて対応するモータを駆動するように動作する。また、元電磁弁N1を駆動する電磁弁駆動回路45が設けられ、この電磁弁駆動回路45も、後述する電源回路14で生成された駆動電圧V3が印加されるようになっており、マイクロコンピュータ10からの開放指示信号に応じて元電磁弁N1を開放するように駆動し、マイクロコンピュータ10からの閉塞指示信号に応じて元電磁弁N1を閉塞するように駆動する。なお、本構成では、各ステッピングモータM1〜M4、元電磁弁N1、及びこれらを駆動する駆動回路41〜45が駆動対象負荷の一例に相当する。   In this configuration, as shown in FIG. 3, motor drive circuits 41 to 44 for driving the motors M1 to M4 are provided. Each of these motor drive circuits 41 to 44 is adapted to be applied with a drive voltage V3 generated by a power supply circuit 14 to be described later, and any of the motor drive circuits 41 to 44 has a motor corresponding to the drive signal from the microcomputer 10. Operates to drive. In addition, an electromagnetic valve driving circuit 45 for driving the original electromagnetic valve N1 is provided, and this electromagnetic valve driving circuit 45 is also applied with a driving voltage V3 generated by a power supply circuit 14 to be described later. 10 is driven to open the original electromagnetic valve N1 in response to the opening instruction signal from 10, and is driven to close the original electromagnetic valve N1 in response to the closing instruction signal from the microcomputer 10. In this configuration, each of the stepping motors M1 to M4, the original solenoid valve N1, and the drive circuits 41 to 45 that drive these correspond to an example of a drive target load.

また、右こんろ部4a、左こんろ部4b、小こんろ部4c、グリル3にそれぞれ対応するように4つの回転操作部6が設けられている。第1の回転操作部6a、第2の回転操作部6b、第3の回転操作部6cは、右側の前面パネル7aから露出するように設けられている。尚、実際の各こんろ部との位置関係と一致するよう、右こんろ部4aに対応する回転操作部6aが右側に、左こんろ部6bに対応する回転操作部6bが左側に、小こんろ部4cに対応する回転操作部6cが回転操作部6a,6bの間に配置されている。また、グリル3に対応する第4の回転操作部6dは、左側の前面パネル7bから露出するように設けられている。   Further, four rotation operation portions 6 are provided so as to correspond to the right stove portion 4a, the left stove portion 4b, the small stove portion 4c, and the grill 3, respectively. The first rotation operation unit 6a, the second rotation operation unit 6b, and the third rotation operation unit 6c are provided so as to be exposed from the right front panel 7a. It should be noted that the rotation operation unit 6a corresponding to the right cooking unit 4a is on the right side, and the rotation operation unit 6b corresponding to the left kitchen unit 6b is on the left side so as to match the actual positional relationship with each cooking unit. A rotation operation unit 6c corresponding to the stove unit 4c is disposed between the rotation operation units 6a and 6b. The fourth rotation operation unit 6d corresponding to the grill 3 is provided so as to be exposed from the left front panel 7b.

第1の回転操作部6aは、右こんろ部4aの点火、消火、火力調整を行うものであり、押圧操作可能に構成され、且つ回転操作可能に構成されている。例えば、消火時には、図1の実線のように、円筒状に構成された回転操作部6aの前面部が後方に退避するようになっている。そして、この状態から前面部を押圧することで、右こんろ部4aの点火がなされ、二点鎖線6’で示すように前面部が消火時よりも前方位置になるように回転操作部6aが突出するようになっている。また、このような突出状態のときに回転操作部6aを一方の回転方向に回転させることで、対応する右こんろ部4aの火力を増大することができ、逆に、回転操作部6aを他方の回転方向に回転させることで、対応する右こんろ部4aの火力を減少することができるようになっている。また、二点鎖線6’で示す突出状態のときに前面部を押圧すると、実線で示す退避状態に戻り、このときには右こんろ部4aの消火がなされる。   The first rotation operation unit 6a performs ignition, extinguishing, and heating power adjustment of the right cooking unit 4a, is configured to be capable of pressing operation, and is configured to be capable of rotation operation. For example, at the time of fire extinguishing, as shown by the solid line in FIG. 1, the front surface portion of the rotary operation portion 6 a configured in a cylindrical shape is retracted backward. Then, by pressing the front surface portion from this state, the right cooking portion 4a is ignited, and as shown by the two-dot chain line 6 ′, the rotation operation portion 6a is moved forward from the time of extinguishing the fire. It is designed to protrude. Moreover, by rotating the rotation operation part 6a in one rotation direction in such a protruding state, the heating power of the corresponding right cooking unit 4a can be increased, and conversely, the rotation operation part 6a is changed to the other By rotating in the direction of rotation, it is possible to reduce the heating power of the corresponding right cooking unit 4a. Further, when the front portion is pressed in the protruding state indicated by the two-dot chain line 6 ′, the retracted state indicated by the solid line is restored, and at this time, the right cooking portion 4 a is extinguished.

なお、回転操作部6bは、左こんろ部4bの点火、消火、火力調整を行い、回転操作部6cは、小こんろ部4cの点火、消火、火力調整を行い、回転操作部6dは、グリル3の点火、消火、火力調整を行うものである。これらは対象が異なるだけ、基本的な構造、機能は回転操作部6aと同様である。また、回転操作部6a,6b,6c,6dにそれぞれ対応するようにスイッチ部30a,30b,30c,3dが設けられている。これらスイッチ部30は、対応する回転操作部6が退避位置(消火位置)のときにマイクロコンピュータ10にオフ信号を与え、対応する回転操作部6が突出位置(点火位置)のときにマイクロコンピュータ10にオン信号を与えるように構成されている。   The rotation operation unit 6b performs ignition, extinguishing, and heating power adjustment of the left cooking unit 4b, the rotation operation unit 6c performs ignition, extinguishing, and heating power adjustment of the small cooking unit 4c, and the rotation operation unit 6d includes Ignition, extinguishing, and heating power adjustment of the grill 3 are performed. These are different in object, but the basic structure and function are the same as those of the rotation operation unit 6a. In addition, switch units 30a, 30b, 30c, and 3d are provided so as to correspond to the rotation operation units 6a, 6b, 6c, and 6d, respectively. These switch sections 30 give an off signal to the microcomputer 10 when the corresponding rotation operation section 6 is at the retracted position (fire extinguishing position), and the microcomputer 10 when the corresponding rotation operation section 6 is at the protruding position (ignition position). Is configured to give an ON signal.

(電源回路の構成)
次に、電源回路の構成について図4等を参照して説明する。なお、図4では、複数の駆動回路41〜45の内の駆動回路41のみを示し、回路構成を概略的に示しているが、実際は、図3のように、電源回路14で生成される電圧V3が各駆動回路41〜45のいずれにも供給されるようになっている。
(Configuration of power supply circuit)
Next, the configuration of the power supply circuit will be described with reference to FIG. 4 shows only the drive circuit 41 of the plurality of drive circuits 41 to 45 and schematically shows the circuit configuration, but in actuality, the voltage generated by the power supply circuit 14 as shown in FIG. V3 is supplied to any one of the drive circuits 41 to 45.

本構成では、主電源として乾電池などからなる電池12が設けられている。そして、電池12の正側の電極には主電力路Laが接続され、電池12の負側の電極はグランドに接続されており、主電力路Laには、電源回路14の昇圧回路22が接続されている。昇圧回路22は、公知の昇圧回路によって構成されており、電池12からの出力電圧V1をこれより高い電圧V2に昇圧し、この出力電圧V2を、例えばマイクロコンピュータ10などの動作電原として供給している。つまり、マイクロコンピュータ10に入力される電源電位は、電池12の正側の電極の電位よりも高い電位となっている。   In this configuration, a battery 12 made of a dry battery or the like is provided as a main power source. The main power path La is connected to the positive electrode of the battery 12, the negative electrode of the battery 12 is connected to the ground, and the booster circuit 22 of the power supply circuit 14 is connected to the main power path La. Has been. The booster circuit 22 is configured by a known booster circuit, boosts the output voltage V1 from the battery 12 to a higher voltage V2, and supplies the output voltage V2 as an operating power source for the microcomputer 10, for example. ing. That is, the power supply potential input to the microcomputer 10 is higher than the potential of the positive electrode of the battery 12.

また、電池12に接続される主電力路Laには、スイッチSW1とスイッチSW2とが並列に接続されている。具体的には、主電力路Laから接続部A1を起点として2つの導電路(第1通電路L1及び第2通電路L2)が分岐している。そして、第1通電路L1(接続部A1と接続部A2の間の第1の経路)を通電状態と非通電状態とに切り替えるようにスイッチSW1が配置されている。この第1通電路L1は、主電力路Laと電源ラインLbの間に接続され、主電力路Laと駆動対象負荷との間の通電経路となる部分である。また、第2通電路L2(接続部A1と接続部A2の間の第2の経路)を通電状態と非通電状態とに切り替えるようにスイッチSW2が配置されている。第2通電路L2は、主電力路Laと電源ラインLbの間において第1通電路L1とは異なる通電経路として構成され、主電力路Laと駆動対象負荷との間の通電経路となる部分である。なお、電源ラインLbは、スイッチSW1の下流側(低電位側)及び降圧回路18の下流側(降圧電圧出力側)に配置される部分であり、各駆動回路41〜45に供給する電源電圧V3が印加される導電路である。   A switch SW1 and a switch SW2 are connected in parallel to the main power path La connected to the battery 12. Specifically, two conductive paths (a first energization path L1 and a second energization path L2) branch from the main power path La with the connection portion A1 as a starting point. And switch SW1 is arrange | positioned so that the 1st electricity supply path L1 (1st path | route between the connection part A1 and the connection part A2) may be switched to an energized state and a non-energized state. The first energization path L1 is a portion that is connected between the main power path La and the power supply line Lb and serves as an energization path between the main power path La and the drive target load. In addition, the switch SW2 is arranged so as to switch the second energization path L2 (second path between the connection part A1 and the connection part A2) between the energized state and the non-energized state. The second energization path L2 is configured as an energization path different from the first energization path L1 between the main power path La and the power supply line Lb, and is a portion that becomes an energization path between the main power path La and the drive target load. is there. The power supply line Lb is a portion arranged on the downstream side (low potential side) of the switch SW1 and the downstream side (step-down voltage output side) of the step-down circuit 18, and the power supply voltage V3 supplied to each of the drive circuits 41 to 45. Is a conductive path to which is applied.

スイッチSW1とスイッチSW2は、例えばPチャネル型のMOSFETとして構成されており、図4の例では、スイッチSW1とスイッチSW2の各ゲートがマイクロコンピュータの各端子にそれぞれ接続され、各ソースが主電力路Laに接続されている。また、スイッチSW1のソースは電源ラインLbに接続され、スイッチSW2のソースは降圧回路18に接続される。そして、マイクロコンピュータ10に設けられた各端子から各ゲートに対してHレベル信号又はLレベル信号が出力される構成となっている。例えば、スイッチSW1は、ゲートに対してマイクロコンピュータ10からオン信号が与えられたときにオン動作し、このオン動作中は主電力路Laと電源ラインLbとを導通させるように第1通電路L1を導通状態とする。スイッチSW2も同様であり、ゲートに対してマイクロコンピュータ10からオン信号が与えられたときにオン動作し、このオン動作中は主電力路Laと、電源ラインLbとを導通させるように第2通電路L2を導通状態とする。   The switches SW1 and SW2 are configured as, for example, P-channel MOSFETs. In the example of FIG. 4, the gates of the switches SW1 and SW2 are connected to the terminals of the microcomputer, and the sources are connected to the main power path. Connected to La. The source of the switch SW1 is connected to the power supply line Lb, and the source of the switch SW2 is connected to the step-down circuit 18. An H level signal or an L level signal is output from each terminal provided in the microcomputer 10 to each gate. For example, the switch SW1 is turned on when an ON signal is given to the gate from the microcomputer 10, and during this ON operation, the first current path L1 is set so that the main power path La and the power line Lb are conducted. Is made conductive. Similarly, the switch SW2 is turned on when an on signal is given to the gate from the microcomputer 10, and during this on operation, the second power line La and the power supply line Lb are made conductive. The electric circuit L2 is set in a conductive state.

降圧回路18は、コイルLと、ダイオードDと、切替制御部18aとを用いた公知の降圧回路として構成されており、第2通電路L2(具体的には、スイッチSW2と接続部A2の間)に設けられ、主電力路Laを介して印加される入力電圧を、主電力路Laの電位よりも低い電位に降圧して出力するように構成されている。具体的には、スイッチSW2がオン状態のときにスイッチSW2のドレイン側の入力電圧を降圧し、所定電位(例えば、2.2V)の出力電圧を電源ラインLbに印加するように構成されている。なお、図4に示す降圧回路18は、あくまで一例であり、スイッチSW2のドレイン側の電圧を入力電圧として降圧し得る公知の降圧回路であれば様々な構成を適用できる。   The step-down circuit 18 is configured as a known step-down circuit using a coil L, a diode D, and a switching control unit 18a. The step-down circuit 18 has a second current path L2 (specifically, between the switch SW2 and the connection unit A2). The input voltage applied via the main power path La is stepped down to a potential lower than the potential of the main power path La and output. Specifically, when the switch SW2 is in an on state, the input voltage on the drain side of the switch SW2 is stepped down and an output voltage of a predetermined potential (eg, 2.2 V) is applied to the power supply line Lb. . Note that the step-down circuit 18 shown in FIG. 4 is merely an example, and various configurations can be applied as long as it is a known step-down circuit that can step down the voltage on the drain side of the switch SW2 as an input voltage.

本構成では、電源回路14は、電源スイッチ(図4では図示略)がオン状態となったときに動作し、マイクロコンピュータ10によって制御されるようになっており、電源スイッチのオン直後(電源投入直後)は、例えばスイッチSW2をオン状態とし、スイッチSW1をオフ状態とするように動作するようになっている。また、マイクロコンピュータ10は、電池12の電圧を検出する電圧検出部として機能しており、電源スイッチのオン直後(電源投入直後)に継続的に電池電圧を検出するようになっている。更に、マイクロコンピュータ10は、制御部として機能し、電池12の電圧V1が所定閾値(例えば2.8V)以上であるか否かを判定し、電池12の電圧V1が所定の閾値以上である場合には、第1スイッチSW1を非導通状態に切り替え且つ第2スイッチSW2を導通状態に切り替えることで、第2通電路L2を介して、降圧回路18からの出力電圧に応じた駆動電流を上述の駆動対象負荷に供給する。つまり、電池12の電圧V1が所定の閾値以上である場合、第1スイッチSW1がオフ状態となり、第2スイッチがオン状態となるため、電池12からの出力電圧V1と同程度の電圧が降圧回路18に入力され、降圧された所定電位(例えば、2.2V)の電圧が電源ラインLbに出力されることになる。この場合、降圧回路18からの出力電圧がモータM1〜M4及び元電磁弁N1を駆動する各駆動回路41〜45への供給電圧V3となり、この供給電圧V3に基づいて生成される駆動電流が各駆動対象負荷へ供給されることになる。なお、マイクロコンピュータ10による電池電圧の検出方法は、電池電圧V1を公知の電圧検出方法で直接検出してもよく、昇圧回路22によって昇圧された電圧V2を検出することで電池電圧を間接的に把握してもよい(この場合、電圧V2がある閾値以上であるか否かを判断することで、電圧V1が所定閾値以上であるか否かを判断すればよい)。また、電池12の電圧V1を判定するための閾値(例えば2.8Vの値)は、図示しないメモリに記憶されていてもよく、第1スイッチSW1と第2スイッチSW2の切り替えを実行するためのプログラム(マイクロコンピュータ10によって実行されるプログラム)に閾値が書き込まれ、このプログラムが図示しないメモリに記憶されていてもよい。   In this configuration, the power supply circuit 14 operates when a power switch (not shown in FIG. 4) is turned on and is controlled by the microcomputer 10, and immediately after the power switch is turned on (power-on). Immediately after that, for example, the switch SW2 is turned on and the switch SW1 is turned off. Further, the microcomputer 10 functions as a voltage detection unit that detects the voltage of the battery 12, and continuously detects the battery voltage immediately after the power switch is turned on (immediately after the power is turned on). Further, the microcomputer 10 functions as a control unit, determines whether or not the voltage V1 of the battery 12 is equal to or higher than a predetermined threshold (for example, 2.8V), and the voltage V1 of the battery 12 is equal to or higher than the predetermined threshold. The first switch SW1 is switched to the non-conductive state and the second switch SW2 is switched to the conductive state, so that the drive current corresponding to the output voltage from the step-down circuit 18 can be supplied via the second current path L2. Supply to the target load. That is, when the voltage V1 of the battery 12 is equal to or higher than a predetermined threshold value, the first switch SW1 is turned off and the second switch is turned on, so that a voltage equivalent to the output voltage V1 from the battery 12 is a step-down circuit. The voltage of a predetermined potential (for example, 2.2 V) that is input to 18 and reduced is output to the power supply line Lb. In this case, the output voltage from the step-down circuit 18 becomes the supply voltage V3 to the drive circuits 41 to 45 that drive the motors M1 to M4 and the original solenoid valve N1, and the drive current generated based on the supply voltage V3 is It is supplied to the drive target load. Note that the battery voltage detection method by the microcomputer 10 may directly detect the battery voltage V1 by a known voltage detection method, or indirectly detect the battery voltage by detecting the voltage V2 boosted by the booster circuit 22. (In this case, it may be determined whether or not the voltage V1 is equal to or higher than a predetermined threshold by determining whether or not the voltage V2 is equal to or higher than a certain threshold). Further, a threshold value (for example, a value of 2.8V) for determining the voltage V1 of the battery 12 may be stored in a memory (not shown), and for switching between the first switch SW1 and the second switch SW2. A threshold value may be written in a program (a program executed by the microcomputer 10), and this program may be stored in a memory (not shown).

一方、マイクロコンピュータ10は、電池12の電圧V1が所定閾値(例えば2.8V)未満となる低電圧状態となった場合、第1スイッチSW1を導通状態に切り替え且つ第2スイッチSW2を非導通状態に切り替えることで、第1通電路L1を介して、主電力路La側からの駆動電流を駆動対象負荷に供給する。つまり、電池12の電圧V1が所定の閾値未満である場合、第1スイッチSW1がオン状態となり、第2スイッチがオフ状態となるため、主電力路Laと電源ラインLbとがスイッチSW1を介して導通する。従って、電池12からの出力電圧V1と同程度の電圧が電源ラインLbに印加され、モータM1〜M4及び元電磁弁N1を駆動する駆動回路41〜45への供給電圧V3となる。そして、この供給電圧V3に基づいて生成される駆動電流が各駆動対象負荷へ供給されることになる。   On the other hand, the microcomputer 10 switches the first switch SW1 to the conducting state and the second switch SW2 to the non-conducting state when the voltage V1 of the battery 12 is in a low voltage state where the voltage V1 is less than a predetermined threshold (for example, 2.8V). By switching to, the drive current from the main power path La side is supplied to the drive target load via the first energization path L1. That is, when the voltage V1 of the battery 12 is less than the predetermined threshold value, the first switch SW1 is turned on and the second switch is turned off, so that the main power path La and the power supply line Lb are connected via the switch SW1. Conduct. Therefore, a voltage equivalent to the output voltage V1 from the battery 12 is applied to the power supply line Lb, and becomes the supply voltage V3 to the drive circuits 41 to 45 that drive the motors M1 to M4 and the original solenoid valve N1. A drive current generated based on the supply voltage V3 is supplied to each drive target load.

この構成では、電池12の電圧が相対的に高く、降圧回路18からの出力電圧を高く維持しやすい場合には、電池12の電圧よりも低く抑えた駆動電圧(降圧回路18からの出力電圧)によって駆動対象負荷を動作させるため、電力消費を抑えつつも、駆動対象負荷を安定的に動作させ易くなる。一方、電池12の電圧が相対的に低くなり、降圧回路18からの出力電圧を高く維持しにくくなった場合には、主電力路Laからの駆動電流を、降圧回路18を介さずに駆動対象負荷に供給するように切り替えるため、電池12の電圧がある程度低くなった場合でも、駆動対象負荷へ印加する電圧V3が当該駆動対象負荷を駆動し得るレベルで維持される間は電池12を使い続けることができる。このような特徴を有するため、電池12を主電源とする加熱調理器1において、電池12の寿命を延ばしつつ駆動系を正常に動作させることが可能となる。   In this configuration, when the voltage of the battery 12 is relatively high and the output voltage from the step-down circuit 18 can be easily maintained high, the drive voltage (the output voltage from the step-down circuit 18) suppressed to be lower than the voltage of the battery 12. Since the drive target load is operated by the above, it becomes easy to stably operate the drive target load while suppressing power consumption. On the other hand, when the voltage of the battery 12 becomes relatively low and it becomes difficult to maintain the output voltage from the step-down circuit 18 high, the drive current from the main power path La is driven without passing through the step-down circuit 18. Even when the voltage of the battery 12 is lowered to some extent, the battery 12 is continuously used as long as the voltage V3 applied to the drive target load is maintained at a level capable of driving the drive target load. be able to. Since it has such a feature, in the cooking device 1 using the battery 12 as a main power source, the drive system can be normally operated while extending the life of the battery 12.

また、本構成では、制御部に相当するマイクロコンピュータ10は、電池12の電圧の低下により、一旦、第1スイッチSW1を導通状態に切り替え且つ第2スイッチSW2を非導通状態に切り替えた場合、その後に電池12の電圧が閾値以上となった場合でも、第1スイッチSW1を導通状態に切り替え且つ第2スイッチSW2を非導通状態に切り替える制御を継続する構成となっている。この構成によれば、電池12の電圧が閾値付近で変動する場合にスイッチの切り替えが頻繁に繰り返される事態を回避することができる。   Further, in this configuration, the microcomputer 10 corresponding to the control unit temporarily switches the first switch SW1 to the conductive state and the second switch SW2 to the nonconductive state due to a decrease in the voltage of the battery 12, and thereafter Even when the voltage of the battery 12 becomes equal to or higher than the threshold value, the control for switching the first switch SW1 to the conductive state and switching the second switch SW2 to the non-conductive state is continued. According to this configuration, it is possible to avoid a situation in which switching of the switch is frequently repeated when the voltage of the battery 12 fluctuates in the vicinity of the threshold value.

また、本構成に係る加熱調理器1は、図2のように、複数のガスバーナ51,52,53,54と、複数のガスバーナ51,52,53,54へのガス供給の元となる共通のガス供給路60と、共通のガス供給路60から分岐して各ガスバーナ51,52,53,54に続く複数の分岐路61,62,63,64とを備えている。そして、降圧回路18及び主電力路Laから駆動電流が供給される駆動対象負荷としては、複数の分岐路61,62,63,64にそれぞれ設けられ、駆動軸の回転角度に応じて分岐路61,62,63,64の開度(具体的には、火力調整弁51e,52e,53e,54eのそれぞれの開度)を設定する複数のモータM1,M2,M3,M4と、共通のガス供給路60に配置され、共通のガス供給路60の開閉を切り替える元電磁弁N1とが設けられている。このように複数のモータM1,M2,M3,M4及び元電磁弁N1が設けられる構成は電力消費が大きくなりやすく、電池12の寿命がより問題になるため、このような構成のものに対して本発明の特徴を適用すればより一層有用である。また、この構成では、電池12の電圧が相対的に低くなった場合、複数のモータM1,M2,M3,M4及び元電磁弁N1に対する駆動電圧の供給元を一斉に切り替えることができるため、電池12の寿命を延ばしつつこれら全ての駆動部を安定的に動作させ得る構成を、複雑な構成や制御を伴うことなく実現できる。   Moreover, the heating cooker 1 which concerns on this structure is a common source which supplies the gas to several gas burners 51, 52, 53, 54 and several gas burners 51, 52, 53, 54 like FIG. A gas supply path 60 and a plurality of branch paths 61, 62, 63, 64 branched from the common gas supply path 60 and continuing to the gas burners 51, 52, 53, 54 are provided. The drive target loads to which the drive current is supplied from the step-down circuit 18 and the main power path La are provided in the plurality of branch paths 61, 62, 63, 64, respectively, and the branch path 61 according to the rotation angle of the drive shaft. , 62, 63, 64, specifically, a plurality of motors M1, M2, M3, M4 for setting the opening degrees (specifically, the respective opening degrees of the thermal power control valves 51e, 52e, 53e, 54e) and a common gas supply An original solenoid valve N1 that is disposed in the path 60 and switches between opening and closing of the common gas supply path 60 is provided. Since the configuration in which the plurality of motors M1, M2, M3, and M4 and the original solenoid valve N1 are provided in this manner tends to increase power consumption and the life of the battery 12 becomes more problematic, It is even more useful if the features of the present invention are applied. Further, in this configuration, when the voltage of the battery 12 becomes relatively low, the supply sources of the drive voltages for the plurality of motors M1, M2, M3, and M4 and the original solenoid valve N1 can be switched at the same time. Thus, it is possible to realize a configuration capable of stably operating all of these drive units while extending the life of the twelve without complicated configuration or control.

また、本構成のように複数のガスバーナ51,52,53,54が設けられた構成では、複数の駆動源(複数のモータM1,M2,M3,M4や元電磁弁N1)が同時期に動作することが想定され、複数の駆動源が一斉に動作することに起因する短期的な電圧変動も想定される。このような構成では、降圧回路18によって安定供給できないレベルまで電池電圧V1が突発的に低下することも想定され、このように電圧が低下した時に電池寿命と判断するような方法では、電池をより長く使用することが難しくなる。これに対し、本構成では、電池電圧が突発的に所定閾値(例えば、2.8V)以下に低下しても、ある程度の低レベルで維持されている間は電池を使用し続けることができるため、突発的な電圧変動にも有利な構成となる。なお、マイクロコンピュータ10は、電池電圧V1が上記所定閾値(例えば2.8V)よりも低い第2閾値(例えば2.3V)未満となった場合に、上述の駆動対象負荷の動作を禁止(例えば、スイッチSW1、SW2をいずれもオフにして、駆動対象負荷への動作電圧V3の供給を停止)し、機器自体を使用禁止にすると良い。この場合、電池電圧V1が上記第2閾値未満となった場合に、報知動作(例えばブザー音の発音)や表示部でのエラーコードの表示などを行うと良い。   Further, in the configuration in which a plurality of gas burners 51, 52, 53, and 54 are provided as in this configuration, a plurality of drive sources (a plurality of motors M1, M2, M3, and M4 and the original solenoid valve N1) operate at the same time. Therefore, short-term voltage fluctuations caused by the simultaneous operation of a plurality of drive sources are also assumed. In such a configuration, it is also assumed that the battery voltage V1 suddenly decreases to a level that cannot be stably supplied by the step-down circuit 18. In such a method that determines the battery life when the voltage decreases, the battery is more It becomes difficult to use for a long time. In contrast, in this configuration, even if the battery voltage suddenly drops below a predetermined threshold (for example, 2.8 V), the battery can continue to be used while being maintained at a certain low level. Thus, the configuration is advantageous against sudden voltage fluctuations. The microcomputer 10 prohibits the operation of the drive target load described above (for example, when the battery voltage V1 becomes less than the second threshold value (for example, 2.3 V) lower than the predetermined threshold value (for example, 2.8 V) (for example, The switches SW1 and SW2 are both turned off, and the supply of the operating voltage V3 to the drive target load is stopped), and the use of the device itself is prohibited. In this case, when the battery voltage V1 is less than the second threshold value, it is preferable to perform a notification operation (for example, a buzzer sound) or display an error code on the display unit.

1…加熱調理器
10…マイクロコンピュータ(制御部、電圧検出部)
12…電池
18…降圧回路
51,52,53,54…ガスバーナ
60…共通のガス供給路
61,62,63,64…分岐路
La…主電力路
L1…第1通電路
L2…第2通電路
M1,M2,M3,M4…モータ(駆動対象負荷)
N1…電磁弁(駆動対象負荷)
N1…元電磁弁(駆動対象負荷)
SW1…第1スイッチ
SW2…第2スイッチ
DESCRIPTION OF SYMBOLS 1 ... Cooking device 10 ... Microcomputer (a control part, a voltage detection part)
DESCRIPTION OF SYMBOLS 12 ... Battery 18 ... Step-down circuit 51, 52, 53, 54 ... Gas burner 60 ... Common gas supply path 61, 62, 63, 64 ... Branch path La ... Main electric power path L1 ... 1st electricity supply path L2 ... 2nd electricity supply path M1, M2, M3, M4 ... Motor (drive target load)
N1 ... Solenoid valve (load to be driven)
N1 ... Former solenoid valve (load to be driven)
SW1 ... 1st switch SW2 ... 2nd switch

Claims (3)

電池と、
駆動対象負荷と、
前記電池に接続される主電力路と、
前記主電力路に接続され、前記主電力路と前記駆動対象負荷との間の通電経路となる第1通電路と、
前記第1通電路とは異なる通電経路として構成され、前記主電力路と前記駆動対象負荷との間の通電経路となる第2通電路と、
前記第2通電路に設けられ、前記主電力路側からの入力電圧を降圧して出力する降圧回路と、
前記第1通電路を通電状態と非通電状態とに切り替える第1スイッチと、
前記第2通電路を通電状態と非通電状態とに切り替える第2スイッチと、
前記電池の電圧を検出する電圧検出部と、
前記電圧検出部によって検出された前記電池の電圧が所定の閾値以上である場合に、前記第1スイッチを非導通状態に切り替え且つ前記第2スイッチを導通状態に切り替えることで、前記第2通電路を介して、前記降圧回路からの出力電圧に応じた駆動電流を前記駆動対象負荷に供給し、前記電圧検出部によって検出された前記電池の電圧が前記閾値未満となる所定の低電圧状態となった場合に、前記第1スイッチを導通状態に切り替え且つ前記第2スイッチを非導通状態に切り替えることで、前記第1通電路を介して、前記主電力路からの駆動電流を前記駆動対象負荷に供給する制御部と、
を有することを特徴とする加熱調理器。
Battery,
Drive target load, and
A main power path connected to the battery;
A first energization path connected to the main power path and serving as an energization path between the main power path and the drive target load;
A second energization path that is configured as an energization path different from the first energization path and serves as an energization path between the main power path and the drive target load;
A step-down circuit provided in the second energization path and stepping down and outputting an input voltage from the main power path side;
A first switch for switching the first energization path between an energized state and a non-energized state;
A second switch for switching the second energization path between an energized state and a non-energized state;
A voltage detector for detecting the voltage of the battery;
When the voltage of the battery detected by the voltage detection unit is equal to or higher than a predetermined threshold, the second current path is switched by switching the first switch to a non-conductive state and the second switch to a conductive state. Through which the drive current corresponding to the output voltage from the step-down circuit is supplied to the load to be driven, and the battery voltage detected by the voltage detection unit is in a predetermined low voltage state that is less than the threshold. When the first switch is switched to the conductive state and the second switch is switched to the non-conductive state, the drive current from the main power path is supplied to the drive target load via the first current path. A controller to supply;
A cooking device characterized by comprising:
前記制御部は、前記第1スイッチを導通状態に切り替え且つ前記第2スイッチを非導通状態に切り替えた場合、その後に前記電圧検出部によって検出される前記電池の電圧が前記閾値以上となった場合でも、前記第1スイッチを導通状態に切り替え且つ前記第2スイッチを非導通状態に切り替える制御を継続することを特徴とする請求項1に記載の加熱調理器。   When the control unit switches the first switch to a conductive state and switches the second switch to a non-conductive state, the voltage of the battery detected by the voltage detection unit thereafter becomes equal to or higher than the threshold value. However, the control of switching the first switch to the conductive state and switching the second switch to the non-conductive state is continued. 複数のガスバーナと、
複数の前記ガスバーナへのガス供給の元となる共通のガス供給路と、
前記共通のガス供給路から分岐して各ガスバーナに続く複数の分岐路と、
を備え、
前記降圧回路及び前記主電力路から駆動電流が供給される前記駆動対象負荷として、
複数の前記分岐路にそれぞれ設けられ、駆動軸の回転角度に応じて前記分岐路の開度を設定する複数のモータと、
少なくとも前記共通のガス供給路に配置され、当該共通のガス供給路の開閉を切り替える元電磁弁と、
が設けられていることを特徴とする請求項1又は請求項2に記載の加熱調理器。
Multiple gas burners,
A common gas supply path as a source of gas supply to the plurality of gas burners;
A plurality of branch paths branched from the common gas supply path and continuing to each gas burner;
With
As the drive target load to which drive current is supplied from the step-down circuit and the main power path,
A plurality of motors that are respectively provided on the plurality of branch paths and set the opening of the branch paths according to the rotation angle of the drive shaft;
An original solenoid valve that is disposed at least in the common gas supply path and switches between opening and closing the common gas supply path;
The cooking device according to claim 1 or 2, wherein the cooking device is provided.
JP2013172417A 2013-08-22 2013-08-22 Cooker Active JP6549346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013172417A JP6549346B2 (en) 2013-08-22 2013-08-22 Cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013172417A JP6549346B2 (en) 2013-08-22 2013-08-22 Cooker

Publications (3)

Publication Number Publication Date
JP2015042082A true JP2015042082A (en) 2015-03-02
JP2015042082A5 JP2015042082A5 (en) 2016-09-01
JP6549346B2 JP6549346B2 (en) 2019-07-24

Family

ID=52695953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013172417A Active JP6549346B2 (en) 2013-08-22 2013-08-22 Cooker

Country Status (1)

Country Link
JP (1) JP6549346B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05236650A (en) * 1992-02-20 1993-09-10 Asahi Optical Co Ltd Power source
JPH06307631A (en) * 1993-04-21 1994-11-01 Rinnai Corp Combustion device
JPH1194250A (en) * 1997-09-17 1999-04-09 Paloma Ind Ltd Combustion device
JP2002320338A (en) * 2001-01-17 2002-10-31 Nec Corp Adjusting device of voltage supplied from battery
JP2003339195A (en) * 2002-05-22 2003-11-28 Rinnai Corp Controller of stepping motor
JP2006234288A (en) * 2005-02-25 2006-09-07 Rinnai Corp Control method of fire power adjusting device with electromagnetic safety valve

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05236650A (en) * 1992-02-20 1993-09-10 Asahi Optical Co Ltd Power source
JPH06307631A (en) * 1993-04-21 1994-11-01 Rinnai Corp Combustion device
JPH1194250A (en) * 1997-09-17 1999-04-09 Paloma Ind Ltd Combustion device
JP2002320338A (en) * 2001-01-17 2002-10-31 Nec Corp Adjusting device of voltage supplied from battery
JP2003339195A (en) * 2002-05-22 2003-11-28 Rinnai Corp Controller of stepping motor
JP2006234288A (en) * 2005-02-25 2006-09-07 Rinnai Corp Control method of fire power adjusting device with electromagnetic safety valve

Also Published As

Publication number Publication date
JP6549346B2 (en) 2019-07-24

Similar Documents

Publication Publication Date Title
JP4160522B2 (en) Electric valve device
US20160018112A1 (en) Heating element control circuit
JP2009074746A (en) Heating cooking device
JP2011113781A (en) Electronic control device
KR101522998B1 (en) Power source switching apparatus
JP2015042082A (en) Heating cooker
JP2019034139A (en) Battery-operated housework device and operation method for device
US10251216B2 (en) Cooking appliance and control method of the same
GB2336255A (en) Electric cooking appliance energy regulator
US20110046811A1 (en) Temperature controller having phase control and zero-cross cycle control functionality
JP6600239B2 (en) Gas stove
EP3848632B1 (en) Thermoelectric safety device for the absence of a flame in gas combustion systems
JP2014005947A (en) Outdoor machine of air conditioner and method for controlling the same
JP4212568B2 (en) Battery drive control device for heating appliance
JP2016217677A (en) Operation detection circuit and electric cell type cooking stove
JP2015048964A (en) Refrigerator
JP2015209980A (en) Combustion apparatus
JP2015042082A5 (en)
US20080142505A1 (en) Low simmer heating element with mechanical switches
JP2022046883A (en) Heating cooker
JP6156925B2 (en) Cooker
JP4977997B2 (en) Cooker
JP2019143919A (en) Gas cooking stove
JP4214892B2 (en) Surface heating device
US11031200B2 (en) Relay cycle life extender

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150206

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160719

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190627

R150 Certificate of patent or registration of utility model

Ref document number: 6549346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150