JP2015041474A - Negative electrode, power storage device, and vehicle - Google Patents

Negative electrode, power storage device, and vehicle Download PDF

Info

Publication number
JP2015041474A
JP2015041474A JP2013171463A JP2013171463A JP2015041474A JP 2015041474 A JP2015041474 A JP 2015041474A JP 2013171463 A JP2013171463 A JP 2013171463A JP 2013171463 A JP2013171463 A JP 2013171463A JP 2015041474 A JP2015041474 A JP 2015041474A
Authority
JP
Japan
Prior art keywords
active material
metal foil
negative electrode
material particles
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013171463A
Other languages
Japanese (ja)
Other versions
JP5821913B2 (en
Inventor
雄一 平川
Yuichi Hirakawa
雄一 平川
雅巳 冨岡
Masami Tomioka
雅巳 冨岡
木下 恭一
Kyoichi Kinoshita
恭一 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2013171463A priority Critical patent/JP5821913B2/en
Priority to PCT/JP2014/069279 priority patent/WO2015025663A1/en
Publication of JP2015041474A publication Critical patent/JP2015041474A/en
Application granted granted Critical
Publication of JP5821913B2 publication Critical patent/JP5821913B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a negative electrode which enables the suppression of delamination of an active material layer and a metal foil; and to provide a power storage device and a vehicle.SOLUTION: A negative electrode sheet 22 comprises: a metal foil 26; and an active material layer 27 including active material particles 27a and formed on a surface 26c of the metal foil 26. In a formation region where the active material layer 27 is formed, concave portions 26d are formed in the surface 26c of the metal foil 26. The active material particles 27a are partially located in the concave portions 26d. Of the active material particles 27a, which are partially located in the concave portions 26d, the average distance between centers C1 and C2 of the adjacent active material particles 27a is 70-98% of the average particle diameter.

Description

本発明は、負極電極、負極電極を含む蓄電装置、及び蓄電装置を搭載した車両に関する。   The present invention relates to a negative electrode, a power storage device including the negative electrode, and a vehicle equipped with the power storage device.

従来から、車両などに搭載される蓄電装置としては、リチウムイオン二次電池やニッケル水素二次電池などがよく知られている。例えば、リチウムイオン二次電池では、活物質粒子を含む活物質層を金属箔の表面に形成した電極シート(電極)を積層、或いは捲回した電極組立体をケースに収容した構成とされている。   Conventionally, lithium-ion secondary batteries and nickel-hydrogen secondary batteries are well known as power storage devices mounted on vehicles and the like. For example, in a lithium ion secondary battery, an electrode assembly (electrode) in which an active material layer containing active material particles is formed on the surface of a metal foil is stacked or wound, and the electrode assembly is housed in a case. .

このようなリチウムイオン二次電池の中には、活物質粒子を含むペースト(活物質合剤)を金属箔に塗布して乾燥させた後にプレス加工を施し、金属箔に対する活物質層の剥離強度(密着強度)を高めたものが提案されている(例えば特許文献1)。特許文献1では、乾燥工程において、溶媒の高温蒸気を供給してペーストに含まれるバインダの溶融を促進し、これによりバインダによる活物質層と金属箔との結着を強固にして剥離強度を向上させている。   In such a lithium ion secondary battery, a paste containing active material particles (active material mixture) is applied to a metal foil, dried and then pressed, and the peel strength of the active material layer on the metal foil The thing which improved (adhesion intensity | strength) is proposed (for example, patent document 1). In Patent Document 1, in the drying process, high temperature steam of a solvent is supplied to promote melting of the binder contained in the paste, thereby strengthening the binding between the active material layer and the metal foil by the binder and improving the peel strength. I am letting.

特開2008−103098号公報JP 2008-103098 A

ところで二次電池などの蓄電装置は、車両に搭載されるなどして振動が繰り返し与えられたり、充放電に伴って活物質層が繰り返し膨張及び収縮したりすることに起因して、活物質層が金属箔から剥離する虞がある。活物質層と金属箔とが剥離した場合には、電気容量が低下するなど、蓄電装置としての性能が低下する原因になる場合があり、活物質層と金属箔とが剥離することをさらに抑制することが期待されている。   By the way, a power storage device such as a secondary battery is repeatedly applied with vibration by being mounted on a vehicle or the active material layer is repeatedly expanded and contracted with charge / discharge. May peel from the metal foil. If the active material layer and the metal foil are peeled off, it may cause a decline in the performance as a power storage device, such as a decrease in electric capacity, and further suppress the peeling of the active material layer and the metal foil. Is expected to be.

本発明は、上記従来技術に存在する問題点に着目してなされたものであり、その目的は、活物質層と金属箔とが剥離することを抑制できる負極電極、蓄電装置、及び車両を提供することにある。   The present invention has been made paying attention to the problems existing in the above-described prior art, and its purpose is to provide a negative electrode, a power storage device, and a vehicle that can suppress the separation of the active material layer and the metal foil. There is to do.

上記課題を解決する負極電極は、負極用の活物質粒子を含む活物質層を金属箔の表面に形成した負極電極であって、前記活物質層が形成された形成領域において前記金属箔の表面には凹部が形成され、前記凹部に前記活物質粒子における少なくとも一部が存在し、前記凹部に少なくとも一部が存在する活物質粒子のうち、隣り合う活物質粒子の中心間の平均距離は平均粒子径の70%以上98%以下であることを要旨とする。   A negative electrode that solves the above problem is a negative electrode in which an active material layer containing active material particles for a negative electrode is formed on a surface of a metal foil, and the surface of the metal foil in a formation region where the active material layer is formed Is formed with a recess, at least a part of the active material particles is present in the recess, and among the active material particles having at least a part of the recess, an average distance between centers of adjacent active material particles is an average. The gist is that it is 70% or more and 98% or less of the particle diameter.

この構成によれば、金属箔の表面には凹部が形成され、この凹部に活物質粒子における少なくとも一部が存在していることから、活物質層が金属箔から剥離することを抑制できる。そして、凹部に少なくとも一部が存在する活物質粒子のうち、隣り合う活物質粒子の中心間の平均距離は平均粒子径の70%以上であることから、70%未満である場合と比較して、活物質粒子同士が充電に伴う膨張に起因して相互に干渉して応力が発生することを抑制し、活物質層が金属箔から剥離することを抑制できる。また、上記隣り合う活物質粒子の中心間の平均距離は平均粒子径の98%以下であることから、98%を超える場合と比較して、凹部に少なくとも一部が存在する活物質粒子の間隔を小さくして活物質層と金属箔との密着性を高め、これにより充放電に伴って活物質層が金属箔から剥離することを抑制できる。したがって、活物質層と金属箔とが剥離することを抑制できる。   According to this configuration, a recess is formed on the surface of the metal foil, and at least a part of the active material particles is present in the recess, so that the active material layer can be prevented from peeling from the metal foil. And among the active material particles in which at least a part is present in the recess, the average distance between the centers of the adjacent active material particles is 70% or more of the average particle diameter, so that it is less than 70%. In addition, the active material particles can be prevented from interfering with each other due to the expansion caused by charging, and the generation of stress, and the active material layer can be prevented from peeling from the metal foil. Moreover, since the average distance between the centers of the adjacent active material particles is 98% or less of the average particle diameter, the distance between the active material particles having at least a part of the recesses as compared with the case where it exceeds 98%. The adhesion between the active material layer and the metal foil can be improved by reducing the thickness of the active material layer, thereby preventing the active material layer from being peeled off from the metal foil along with charge / discharge. Therefore, it can suppress that an active material layer and metal foil peel.

上記負極電極について、前記凹部に少なくとも一部が存在する活物質粒子のうち、粒子径が前記平均粒子径以上である活物質粒子は、当該活物質粒子の粒子径の50%以下の深さまで前記凹部にめり込んで存在することが好ましい。   Regarding the negative electrode, among the active material particles having at least a portion in the concave portion, the active material particles having a particle diameter equal to or larger than the average particle diameter are up to a depth of 50% or less of the particle diameter of the active material particles. It is preferable to be indented into the recess.

粒子径が平均粒子径以上である活物質粒子が、その粒子径の50%を超えて凹部に存在している場合には、金属箔の変形によって皺などが生じる。しかしながら、この構成によれば、粒子径が平均粒子径以上である活物質粒子は、当該活物質粒子の粒子径の50%以下の深さまで前記凹部に存在していることから、金属箔に皺などが生じることを好適に抑制できる。   When the active material particles having a particle diameter equal to or larger than the average particle diameter are present in the recess exceeding 50% of the particle diameter, wrinkles and the like are generated due to deformation of the metal foil. However, according to this configuration, the active material particles having a particle diameter equal to or larger than the average particle diameter are present in the concave portion to a depth of 50% or less of the particle diameter of the active material particles. It can suppress suitably that etc. arise.

上記負極電極について、前記金属箔の表面において前記活物質層が形成されていない非形成領域には、前記金属箔と同一金属からなる補助金属箔が接合されていることが好ましい。   About the said negative electrode, it is preferable that the auxiliary | assistant metal foil which consists of the same metal as the said metal foil is joined to the non-formation area | region in which the said active material layer is not formed in the surface of the said metal foil.

この構成によれば、活物質層が形成されていない非形成領域に補助金属箔が接合されていることから、例えばプレスにより活物質層の形成領域を加圧することで、凹部を形成しつつ当該凹部に活物質粒子の少なくとも一部を存在させる場合に、金属箔に皺などが生じることを抑制できる。   According to this configuration, since the auxiliary metal foil is bonded to the non-formation region where the active material layer is not formed, the formation region of the active material layer is pressurized by, for example, pressing, so that the concave portion is formed. When at least a part of the active material particles is present in the concave portion, it is possible to suppress the formation of wrinkles or the like in the metal foil.

上記負極電極について、前記金属箔は銅からなることが好ましい。この構成によれば、負極電極において活物質層が銅からなる金属箔から剥離することを抑制できる。
上記課題を解決する蓄電装置は、活物質粒子を含む活物質層を金属箔の表面に形成した電極を、シート状をなすセパレータを間に挟んだ状態で積層又は捲回してなり、前記電極が層状の構造をなす電極組立体を有する蓄電装置において、前記電極には、上記負極電極を含むことを要旨とする。
In the negative electrode, the metal foil is preferably made of copper. According to this structure, it can suppress that an active material layer peels from the metal foil which consists of copper in a negative electrode.
A power storage device that solves the above-mentioned problem is obtained by laminating or winding an electrode in which an active material layer containing active material particles is formed on the surface of a metal foil with a sheet-like separator interposed therebetween, In a power storage device having an electrode assembly having a layered structure, the electrode includes the negative electrode.

この構成によれば、電極組立体を構成する負極電極の金属箔から活物質層が剥離することを抑制できる結果、電極組立体を有する蓄電装置としての耐久性を向上させることができる。   According to this configuration, it is possible to prevent the active material layer from peeling from the metal foil of the negative electrode constituting the electrode assembly. As a result, it is possible to improve the durability of the power storage device having the electrode assembly.

上記課題を解決する車両は、上記蓄電装置を搭載したことを要旨とする。この構成によれば、負極電極の金属箔から活物質層が剥離することを抑制し、蓄電装置としての耐久性を向上できる。したがって、車両において蓄電装置の交換サイクルが短くなることを抑制できる。   The gist of a vehicle for solving the above problems is that the power storage device is mounted. According to this structure, it can suppress that an active material layer peels from the metal foil of a negative electrode, and can improve the durability as an electrical storage apparatus. Therefore, it is possible to suppress a reduction in the replacement cycle of the power storage device in the vehicle.

本発明によれば、活物質層と金属箔とが剥離することを抑制できる。   According to this invention, it can suppress that an active material layer and metal foil peel.

二次電池を模式的に示す斜視図。The perspective view which shows a secondary battery typically. 分解した電極組立体を模式的に示す斜視図。The perspective view which shows typically the decomposed | disassembled electrode assembly. 負極シートの断面を走査型電子顕微鏡で観察した状態を示す模式図。The schematic diagram which shows the state which observed the cross section of the negative electrode sheet with the scanning electron microscope. 平均粒子間距離と剥離強度との関係を示すグラフ。The graph which shows the relationship between the distance between average particle | grains, and peeling strength. 平均粒子間距離と放電容量維持率が80%になる迄の充放電のサイクル数との関係を示すグラフ。The graph which shows the relationship between the distance between average particle | grains, and the cycle number of charging / discharging until a discharge capacity maintenance factor will be 80%. 別の実施形態における電極シートの模式図。The schematic diagram of the electrode sheet in another embodiment. 別の実施形態における二次電池を模式的に示す斜視図。The perspective view which shows typically the secondary battery in another embodiment. 別の実施形態における分解した電極組立体を模式的に示す斜視図。The perspective view which shows typically the electrode assembly which decomposed | disassembled in another embodiment.

以下、負極電極、及び二次電池の一実施形態を図1〜図5にしたがって説明する。
図1に示すように、例えば産業車両や乗用車両などの車両に搭載される蓄電装置としての二次電池10は、全体として扁平な略直方体状のケース11を有する。ケース11は、有底筒状の本体部材12と、本体部材12の開口部12aを密閉する平板状の蓋部材13とを有する。本体部材12、及び蓋部材13は、何れも例えばステンレスやアルミニウムなどの金属製である。蓋部材13には、正極端子15、及び負極端子16が固定され、外部に向かって突出されている。
Hereinafter, an embodiment of a negative electrode and a secondary battery will be described with reference to FIGS.
As shown in FIG. 1, for example, a secondary battery 10 serving as a power storage device mounted on a vehicle such as an industrial vehicle or a passenger vehicle has a case 11 having a substantially rectangular parallelepiped shape as a whole. The case 11 has a bottomed cylindrical main body member 12 and a flat lid member 13 that seals the opening 12 a of the main body member 12. Both the main body member 12 and the lid member 13 are made of metal such as stainless steel or aluminum. A positive electrode terminal 15 and a negative electrode terminal 16 are fixed to the lid member 13 and protrude outward.

ケース11には、例えばリチウムイオン二次電池や、ニッケル水素二次電池というように、二次電池10の種類に応じた電解液が充填されている。電解液としては、例えばプロピレンカーボネート(PC)、エチレンカーボネート(EC)、及びジメチルカーボネート(DMC)などから選ばれる1種以上の非水電解液を用いることができる。また、溶解させる電解質としては、LiPF、LiBF、及びLiAsFなどの有機溶媒に可溶なアルカリ金属塩を用いることができる。 The case 11 is filled with an electrolyte according to the type of the secondary battery 10 such as a lithium ion secondary battery or a nickel hydride secondary battery. As the electrolytic solution, for example, one or more nonaqueous electrolytic solutions selected from propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), and the like can be used. As the electrolyte to be dissolved, an alkali metal salt that is soluble in an organic solvent such as LiPF 6 , LiBF 4 , and LiAsF 6 can be used.

また、ケース11には、図示しない絶縁袋に覆われた電極組立体25が収容されている。電極組立体25は、正極電極としての正極シート21、負極電極としての負極シート22、及び正極シート21と負極シート22との間を絶縁するセパレータ23を有する。電極組立体25は、正極シート21、及び負極シート22を、間にセパレータ23を介在させた状態で交互に層状に重なるように積層された積層型の電極組立体である。セパレータ23は、例えばポリエチレンやポリプロピレンなどの絶縁性を有する樹脂材料製であり、微細な空孔構造を有する矩形の多孔性シートである。   The case 11 houses an electrode assembly 25 covered with an insulating bag (not shown). The electrode assembly 25 includes a positive electrode sheet 21 as a positive electrode, a negative electrode sheet 22 as a negative electrode, and a separator 23 that insulates between the positive electrode sheet 21 and the negative electrode sheet 22. The electrode assembly 25 is a stacked electrode assembly in which the positive electrode sheet 21 and the negative electrode sheet 22 are stacked so as to alternately overlap each other with a separator 23 interposed therebetween. The separator 23 is made of an insulating resin material such as polyethylene or polypropylene, and is a rectangular porous sheet having a fine pore structure.

また、図2に示すように、正極シート21及び負極シート22は、矩形シート状の金属箔26を備えている。金属箔26の厚さは、例えば10μm以上50μm以下であり、好ましくは15μm以上25μm以下である。金属箔26は、例えばリチウムイオン二次電池や、ニッケル水素二次電池というように、二次電池10の種類に応じた金属製である。金属箔26に用いられる金属は、正極シート21と、負極シート22とでも異なる。本実施形態において、正極シート21の金属箔26はアルミニウム製であり、負極シート22の金属箔26は銅製である。   Further, as shown in FIG. 2, the positive electrode sheet 21 and the negative electrode sheet 22 include a rectangular sheet-like metal foil 26. The thickness of the metal foil 26 is, for example, 10 μm or more and 50 μm or less, and preferably 15 μm or more and 25 μm or less. The metal foil 26 is made of metal according to the type of the secondary battery 10 such as a lithium ion secondary battery or a nickel hydride secondary battery. The metal used for the metal foil 26 is different between the positive electrode sheet 21 and the negative electrode sheet 22. In the present embodiment, the metal foil 26 of the positive electrode sheet 21 is made of aluminum, and the metal foil 26 of the negative electrode sheet 22 is made of copper.

各金属箔26の表面26cには、各金属箔26の縁部26aに沿って延在する非形成領域26bを除き、全面に活物質層27が形成されている。非形成領域26bは、活物質層27が形成されていない領域となる。活物質層27については、後に詳細に説明する。   On the surface 26 c of each metal foil 26, an active material layer 27 is formed on the entire surface except for the non-formation region 26 b extending along the edge 26 a of each metal foil 26. The non-formation region 26b is a region where the active material layer 27 is not formed. The active material layer 27 will be described in detail later.

各正極シート21の縁部26aには、非形成領域26bの一部である正極集電タブ21aが突出している。また、各負極シート22の縁部26aには、非形成領域26bの一部である負極集電タブ22aが突出している。   A positive electrode current collecting tab 21 a that is a part of the non-formation region 26 b protrudes from the edge portion 26 a of each positive electrode sheet 21. Moreover, the negative electrode current collection tab 22a which is a part of the non-formation area | region 26b protrudes in the edge part 26a of each negative electrode sheet 22. FIG.

そして、図1に示すように、電極組立体25の縁部25aには、複数の正極集電タブ21aが層状に重なった正極集電タブ群28が突設されている。また、電極組立体25の縁部25aには、正極集電タブ群28とは異なる部分に、複数の負極集電タブ22aが層状に重なる負極集電タブ群29が突設されている。そして、正極集電タブ群28(正極集電タブ21a)と、前述した正極端子15とは、電気的に接続されている。また、負極集電タブ群29(負極集電タブ22a)と、負極端子16とは、電気的に接続されている。   As shown in FIG. 1, a positive electrode current collecting tab group 28 in which a plurality of positive electrode current collecting tabs 21 a are layered is projected from an edge portion 25 a of the electrode assembly 25. In addition, a negative electrode current collection tab group 29 in which a plurality of negative electrode current collection tabs 22 a overlap each other is formed on the edge 25 a of the electrode assembly 25 at a portion different from the positive electrode current collection tab group 28. And the positive electrode current collection tab group 28 (positive electrode current collection tab 21a) and the positive electrode terminal 15 mentioned above are electrically connected. Moreover, the negative electrode current collection tab group 29 (negative electrode current collection tab 22a) and the negative electrode terminal 16 are electrically connected.

次に、正極シート21及び負極シート22において、金属箔26の表面26cに形成された活物質層27について詳しく説明する。各金属箔26の表面26cに形成された活物質層27は、活物質粒子、バインダ、及び導電剤(導電助剤)を含んでいる。なお、導電剤はバインダに分散されている。   Next, the active material layer 27 formed on the surface 26c of the metal foil 26 in the positive electrode sheet 21 and the negative electrode sheet 22 will be described in detail. The active material layer 27 formed on the surface 26c of each metal foil 26 includes active material particles, a binder, and a conductive agent (conductive aid). The conductive agent is dispersed in the binder.

正極シート21の活物質層27に用いられる正極用の活物質は、例えばLiCoO、LiMnO、及びLiNi1/3Mn1/3Co1/3などである。正極シート21の活物質層27に用いられるバインダは、例えばポリビニリデンフルオライド(PVDF)やポリテトラフルオロエチレン(PTFE)などである。正極シート21の活物質層27に用いられる導電剤は、例えばアセチレンブラック(AC)や、ケッチェンブラック(KB)などである。 Examples of the positive electrode active material used for the active material layer 27 of the positive electrode sheet 21 include LiCoO 2 , Li 2 MnO 2 , and LiNi 1/3 Mn 1/3 Co 1/3 O 2 . The binder used for the active material layer 27 of the positive electrode sheet 21 is, for example, polyvinylidene fluoride (PVDF) or polytetrafluoroethylene (PTFE). The conductive agent used for the active material layer 27 of the positive electrode sheet 21 is, for example, acetylene black (AC) or ketjen black (KB).

また、負極シート22の活物質層27に用いられる負極用の活物質は、例えばSiO(0.1≦n≦2)の組成式で示される酸化ケイ素であり、SiO(二酸化ケイ素)や、SiO(一酸化ケイ素)などである。負極シート22の活物質層27に用いられるバインダは、例えばPVDFやPTFEなどである。また、負極シート22の活物質層27に用いられる導電剤は、例えばACや、KBなどである。 Moreover, the active material for negative electrodes used for the active material layer 27 of the negative electrode sheet 22 is, for example, silicon oxide represented by a composition formula of SiO n (0.1 ≦ n ≦ 2), such as SiO 2 (silicon dioxide) or , SiO (silicon monoxide) and the like. The binder used for the active material layer 27 of the negative electrode sheet 22 is, for example, PVDF or PTFE. The conductive agent used for the active material layer 27 of the negative electrode sheet 22 is, for example, AC or KB.

次に、図3にしたがって、負極シート22の活物質層27について詳しく説明する。
負極シート22の金属箔26の表面26cに形成された活物質層27において、活物質粒子27a同士は、バインダ27bによって相互に結着されている。活物質粒子27aの平均粒子径は、例えば2μm以上10μm以下であり、好ましくは4μm以上8μm以下である。なお本明細書における「平均粒子径」は、レーザ回折・散乱法によって求めた粒度分布における積算値50%での粒子径を意味する。また、活物質粒子27aにおける個々の「粒子径」は、走査型電子顕微鏡(SEM)にて観察される粒子径を意味する。
Next, the active material layer 27 of the negative electrode sheet 22 will be described in detail with reference to FIG.
In the active material layer 27 formed on the surface 26c of the metal foil 26 of the negative electrode sheet 22, the active material particles 27a are bound to each other by a binder 27b. The average particle diameter of the active material particles 27a is, for example, 2 μm or more and 10 μm or less, and preferably 4 μm or more and 8 μm or less. The “average particle size” in this specification means the particle size at an integrated value of 50% in the particle size distribution obtained by the laser diffraction / scattering method. Further, each “particle diameter” in the active material particles 27a means a particle diameter observed with a scanning electron microscope (SEM).

そして、負極シート22の活物質層27の形成領域27cにおいて、金属箔26の表面26cの凹部26dには、活物質粒子27aの一部が存在している。即ち、活物質層27の形成領域27cにおいて、活物質粒子27aのうち金属箔26の表面26cに近接する粒子の一部は、表面26cの凹部26dに存在するように埋没されている。更に換言すれば、金属箔26において表面26cを含む表面部には、活物質粒子27aの少なくとも一部分がめり込んでいる(埋め込まれている)とともに、当該活物質粒子27aの他の部分が金属箔26の表面26cから突出している。そして、金属箔26にめり込む活物質粒子27aは、その表面が凹部26dの側面及び底面に接触又は近接している。   In the formation region 27 c of the active material layer 27 of the negative electrode sheet 22, some of the active material particles 27 a exist in the recesses 26 d on the surface 26 c of the metal foil 26. That is, in the formation region 27c of the active material layer 27, a part of the particles of the active material particles 27a adjacent to the surface 26c of the metal foil 26 is buried so as to exist in the recess 26d of the surface 26c. In other words, at least a part of the active material particles 27 a is embedded (embedded) in the surface portion including the surface 26 c in the metal foil 26, and the other part of the active material particles 27 a is the metal foil 26. It protrudes from the surface 26c. Then, the surface of the active material particles 27a embedded in the metal foil 26 is in contact with or close to the side surface and the bottom surface of the recess 26d.

金属箔26の凹部26dに一部が存在している活物質粒子27aのうち、隣り合う活物質粒子27aの中心C1から中心C2までの距離Lの平均(中心間の平均距離)は、活物質層27に含まれる活物質粒子27aの平均粒子径を100%とすると、好ましくは70%以上98%以下の距離、より好ましくは72%以上95%以下の距離とされている。   Of the active material particles 27a partially present in the recesses 26d of the metal foil 26, the average of the distances L (the average distance between the centers) from the center C1 to the center C2 of the adjacent active material particles 27a is the active material. When the average particle diameter of the active material particles 27a contained in the layer 27 is 100%, the distance is preferably 70% or more and 98% or less, more preferably 72% or more and 95% or less.

以下の説明では、平均粒子径に対して中心C1から中心C2までの距離Lの平均(中心間の平均距離)が占める割合を単に「平均粒子間距離」と示す。また、本明細書において「活物質粒子27aの中心」とは、走査型電子顕微鏡にて観察した際において、金属箔26の面方向に沿った方向、及び金属箔26の面方向と直交する方向における中央を意味するものとする。   In the following description, the ratio of the average of the distance L from the center C1 to the center C2 (average distance between centers) with respect to the average particle diameter is simply indicated as “average interparticle distance”. Further, in this specification, “the center of the active material particle 27a” means a direction along the surface direction of the metal foil 26 and a direction orthogonal to the surface direction of the metal foil 26 when observed with a scanning electron microscope. Means the center of

負極シート22の密度(電極密度)は、平均粒子間距離が98%の場合に例えば1.07g/cmとなり、平均粒子間距離が70%の場合に例えば1.08g/cmとなる。なお、負極シート22の密度(電極密度)は、平均粒子間距離が72%の場合に例えば1.25g/cmとなり、平均粒子間距離が95%の場合に例えば1.09g/cmとなる。また、負極シート22の活物質層27において、金属箔26の表面26cの凹部26dにその一部が存在している活物質粒子27aのうち、粒子径が平均粒子径以上である活物質粒子27aは、当該活物質粒子27aの粒子径の50%以下の深さまで金属箔26の凹部26dに存在している。即ち、粒子径が平均粒子径以上である活物質粒子27aは、その粒子径の50%を超えて金属箔26に埋め込まれていない。なお、本実施形態の正極シート21では、活物質層27の形成領域27cにおいて、活物質粒子27aが金属箔26の表面26cにめり込んでいない。 The density (electrode density) of the negative electrode sheet 22 is, for example, 1.07 g / cm 3 when the average interparticle distance is 98%, and is, for example, 1.08 g / cm 3 when the average interparticle distance is 70%. The density (electrode density) of the negative electrode sheet 22 is, for example, 1.25 g / cm 3 when the average interparticle distance is 72%, and is, for example, 1.09 g / cm 3 when the average interparticle distance is 95%. Become. In the active material layer 27 of the negative electrode sheet 22, the active material particles 27 a having a particle diameter equal to or larger than the average particle diameter among the active material particles 27 a partially present in the recesses 26 d of the surface 26 c of the metal foil 26. Is present in the recess 26d of the metal foil 26 to a depth of 50% or less of the particle diameter of the active material particles 27a. That is, the active material particles 27a having a particle diameter equal to or larger than the average particle diameter do not exceed 50% of the particle diameter and are not embedded in the metal foil 26. In the positive electrode sheet 21 of the present embodiment, the active material particles 27 a are not recessed into the surface 26 c of the metal foil 26 in the formation region 27 c of the active material layer 27.

次に、正極シート21及び負極シート22を含む二次電池10の製造方法について説明する。
まず、活物質粒子27a、導電剤、バインダ27b、及び溶媒としてN−メチルピロリドン(NMP)などを混合し、ペースト状の活物質合剤を得る調製工程を行う。次に、調製工程で得られたペースト状の活物質合剤を、上記調製工程とは別の工程で得られた帯状(長尺のシート状)の金属箔26の表面(両面)26cに対して均一な厚さ(例えば厚さ18μmの銅箔を含めて70μm以上80μm以下)で塗布し、活物質層27を形成する塗布工程を行う。また塗布工程では、金属箔26における幅方向の一辺(縁部)において、長さ方向の全体にわたり一定幅で活物質合剤を塗布しない非形成領域26bを形成する。
Next, a method for manufacturing the secondary battery 10 including the positive electrode sheet 21 and the negative electrode sheet 22 will be described.
First, active material particles 27a, a conductive agent, a binder 27b, and N-methylpyrrolidone (NMP) as a solvent are mixed to prepare a paste-like active material mixture. Next, the paste-like active material mixture obtained in the preparation step is applied to the surface (both sides) 26c of the strip-like (long sheet-like) metal foil 26 obtained in a step different from the preparation step. And applying a uniform thickness (for example, 70 μm or more and 80 μm or less including a copper foil having a thickness of 18 μm) to form an active material layer 27. In the coating step, a non-formation region 26b is formed on one side (edge) in the width direction of the metal foil 26 where the active material mixture is not applied with a constant width over the entire length direction.

続けて、活物質層27を形成した金属箔26を、乾燥器(乾燥炉)に通過させ、活物質層27に含まれる溶媒を除去する乾燥工程を行う。次に、乾燥後の金属箔26をロールプレス機に通過させることにより、活物質層27を圧縮するとともに、高密度化及び平滑化させるプレス工程を行う。ロールプレス機は、相互に平行に配置された一対の円柱状をなすローラ間に形成される隙間に、表面26cに活物質層27を形成した金属箔26を通過させることにより、活物質層27を圧縮(プレス)する。   Subsequently, the metal foil 26 on which the active material layer 27 is formed is passed through a drier (drying furnace), and a drying process for removing the solvent contained in the active material layer 27 is performed. Next, by pressing the dried metal foil 26 through a roll press, the active material layer 27 is compressed, and a pressing step for densifying and smoothing is performed. The roll press machine passes the metal foil 26 having the active material layer 27 formed on the surface 26c through a gap formed between a pair of cylindrical rollers arranged in parallel to each other, whereby the active material layer 27 Is compressed (pressed).

正極シート21を製造する場合、このプレス工程では、ロールプレス機のローラ間で付与される線圧を、活物質層27に含まれる活物質粒子27aが金属箔26の表面26cにめり込まない線圧に設定して行われる。このプレス工程を経て、帯状(長尺のシート状)の正極シート21が得られる。   In the case of manufacturing the positive electrode sheet 21, in this pressing step, the active material particles 27 a included in the active material layer 27 do not sink into the surface 26 c of the metal foil 26 due to the linear pressure applied between the rollers of the roll press machine. This is done by setting the linear pressure. Through this pressing step, a belt-like (long sheet-like) positive electrode sheet 21 is obtained.

一方、負極シート22を製造する場合、プレス工程では、ロールプレス機のローラ間で付与される線圧を、活物質層27に含まれる活物質粒子27aが金属箔26の表面26c(表面部)にめり込む線圧に設定して行われる。また、プレス工程では、平均粒子間距離が活物質層27に含まれる活物質粒子27aの平均粒子径の好ましくは70%以上98%以下、より好ましくは72%以上95%以下の距離となる線圧に設定される。さらに、プレス工程では、負極シート22の活物質層27において、金属箔26の表面26cの凹部26dに一部が存在している活物質粒子27aのうち、粒子径が平均粒子径以上である活物質粒子27aが、当該活物質粒子27aの粒子径の50%以下の深さまで金属箔26にめり込む線圧に設定される。即ち、負極シート22の活物質粒子27aは、金属箔26の表面に凹部26dを形成させ、さらに(同時に)その凹部26dに一部が存在するようにめり込む。そして、このプレス工程を経て、帯状(長尺シート状)の負極シート22が得られる。   On the other hand, when the negative electrode sheet 22 is manufactured, in the pressing process, the active material particles 27a included in the active material layer 27 are applied to the surface 26c (surface portion) of the metal foil 26 by the linear pressure applied between the rollers of the roll press machine. This is done by setting the line pressure to sink. In the pressing step, the average particle distance is a line that is preferably 70% to 98%, more preferably 72% to 95% of the average particle diameter of the active material particles 27a included in the active material layer 27. Set to pressure. Further, in the pressing step, the active material layer 27 of the negative electrode sheet 22 has an active material particle 27a partially existing in the recess 26d of the surface 26c of the metal foil 26, and the active material particle 27a has an active particle size equal to or larger than the average particle size. The material particle 27a is set to a linear pressure that sinks into the metal foil 26 to a depth of 50% or less of the particle diameter of the active material particle 27a. That is, the active material particles 27a of the negative electrode sheet 22 are formed so that a concave portion 26d is formed on the surface of the metal foil 26, and further (simultaneously) the concave portion 26d is partly present. Then, through this pressing step, a strip-like (long sheet-like) negative electrode sheet 22 is obtained.

次に、帯状(長尺シート状)の正極シート21、及び負極シート22をそれぞれ打ち抜き加工することにより、矩形(略矩形)の正極シート21、及び負極シート22を形成する。次に、間にセパレータ23を挟んだ状態で、正極シート21及び負極シート22を積層して電極組立体25を形成する。これにより電極組立体25が完成される。   Next, the rectangular (substantially rectangular) positive electrode sheet 21 and the negative electrode sheet 22 are formed by stamping the belt-like (long sheet-like) positive electrode sheet 21 and the negative electrode sheet 22 respectively. Next, the electrode assembly 25 is formed by laminating the positive electrode sheet 21 and the negative electrode sheet 22 with the separator 23 interposed therebetween. Thereby, the electrode assembly 25 is completed.

続けて、電極組立体25の正極集電タブ群28(正極集電タブ21a)と、正極端子15とを接合して電気的に接続するとともに、負極集電タブ群29(負極集電タブ22a)と、負極端子16とを接合して電気的に接続する。続けて、電極組立体25を前記絶縁袋で覆った状態で本体部材12に収納するとともに、この本体部材12に対して、正極端子15及び負極端子16を上面から突出させつつ蓋部材13を組み付ける。そして、最終的に電解質(電解液)を充填して二次電池10が完成される。
<実施例>
以下に実施例を挙げ、前記実施形態をさらに具体的に説明するが、本発明はこれらに限定されるものではない。
(負極シートの製作)
市販の活物質粒子であるSiO粉末(シグマ・アルドリッチ・ジャパン株式会社製、平均粒子径=5μm,タップ密度=3.2g/cm)、KB、ポリアミドイミド樹脂(溶剤組成:NMP/キシレン=4/1、硬化残分30.0%、硬化残分中のシリカ:2%(割合は全て重量比)、粘度8700mPa・s/25℃)、及びNMPを混合し、ペースト状の活物質合剤を得た。活物質粒子、KB、及びバインダ(固形分)の配合比は、質量比で80.75:4.25:15であった。
Subsequently, the positive electrode current collecting tab group 28 (positive electrode current collecting tab 21a) of the electrode assembly 25 and the positive electrode terminal 15 are joined and electrically connected, and the negative electrode current collecting tab group 29 (negative electrode current collecting tab 22a). ) And the negative electrode terminal 16 are joined and electrically connected. Subsequently, the electrode assembly 25 is housed in the main body member 12 while being covered with the insulating bag, and the lid member 13 is assembled to the main body member 12 while the positive electrode terminal 15 and the negative electrode terminal 16 protrude from the upper surface. . Then, the secondary battery 10 is completed by finally filling the electrolyte (electrolytic solution).
<Example>
Examples are given below to describe the above embodiments more specifically, but the present invention is not limited to these examples.
(Production of negative electrode sheet)
SiO powder (manufactured by Sigma-Aldrich Japan, average particle size = 5 μm, tap density = 3.2 g / cm 3 ), KB, polyamideimide resin (solvent composition: NMP / xylene = 4), which are commercially available active material particles / 1, Cured residue 30.0%, Silica in cured residue: 2% (all ratios are weight ratios, viscosity 8700 mPa · s / 25 ° C.) and NMP are mixed, and paste-like active material mixture Got. The compounding ratio of the active material particles, KB, and binder (solid content) was 80.75: 4.25: 15 in terms of mass ratio.

次に、得られたペースト状の活物質合剤を、帯状の銅箔の表面(両面)に対し塗布するとともに整形し、活物質合剤の目付量を7mg/cm(厚さ18μmの銅箔を含めた厚さ76μm)とした。 Next, the obtained paste-like active material mixture was applied to the surface (both sides) of the strip-shaped copper foil and shaped, and the basis weight of the active material mixture was 7 mg / cm 2 (thickness 18 μm copper) The thickness including the foil was 76 μm).

次に、活物質合剤を塗布した銅箔を乾燥器に通過させ、溶媒を除去して乾燥させた。続けて、乾燥後の銅箔をロールプレス機に通過させ、乾燥させた活物質層を圧縮し、活物質層の厚さを15μmとした。このとき、ロールプレス機のローラ間で付与される線圧を調節することにより、平均粒子間距離を異ならせた負極シートをそれぞれ得た。
(走査型電子顕微鏡による観察)
得られた負極シートを集束イオンビーム加工観察装置(日本電子社製,JEM−9310FIB)で切断するとともに、その断面を走査型電子顕微鏡(日立ハイテクノロジー社製,S−4800)により観察した。その結果、制作した全ての負極シートについて、銅箔の表面に活物質粒子がめり込んでいること(銅箔の表面に凹部が形成され、当該凹部に活物質粒子の少なくとも一部が存在すること)が観察された。
(目視による観察)
また、製作した全ての負極シートについて、活物質層の形成領域(形成領域27c)と、非形成領域(非形成領域26b)との境界部において、銅箔に皺やクラックが発生しているか否かを観察した。
Next, the copper foil coated with the active material mixture was passed through a dryer to remove the solvent and dry. Subsequently, the dried copper foil was passed through a roll press, the dried active material layer was compressed, and the thickness of the active material layer was 15 μm. At this time, negative electrode sheets with different average inter-particle distances were obtained by adjusting the linear pressure applied between the rollers of the roll press machine.
(Observation with a scanning electron microscope)
The obtained negative electrode sheet was cut with a focused ion beam processing and observation apparatus (JEM-9310FIB, manufactured by JEOL Ltd.), and the cross section was observed with a scanning electron microscope (Hitachi High Technology Co., Ltd., S-4800). As a result, for all the produced negative electrode sheets, the active material particles are indented on the surface of the copper foil (recesses are formed on the surface of the copper foil, and at least part of the active material particles are present in the recesses). Was observed.
(Visual observation)
Moreover, about all the manufactured negative electrode sheets, whether the copper foil is wrinkled and cracked in the boundary part of the formation area (formation area | region 27c) of an active material layer, and a non-formation area | region (non-formation area | region 26b). Was observed.

その結果、銅箔の表面にめり込んでいる活物質粒子のうち、粒子径が平均粒子径以上である活物質粒子が、当該活物質粒子の粒子径の50%以下の深さまで銅箔にめり込んでいる(銅箔に形成した凹部に存在している)試料については、前記境界部において、銅箔に皺やクラックが生じていなかった。   As a result, among the active material particles embedded in the surface of the copper foil, the active material particles having a particle diameter equal to or larger than the average particle diameter are embedded in the copper foil to a depth of 50% or less of the particle diameter of the active material particles. For the samples (existing in the recesses formed in the copper foil), no wrinkles or cracks occurred in the copper foil at the boundary.

一方、銅箔の表面にめり込んでいる活物質粒子のうち、粒子径が平均粒子径以上である活物質粒子が、当該活物質粒子の粒子径の50%を超える深さまで銅箔にめり込んでいる(銅箔に形成した凹部に存在している)試料については、前記境界部において、銅箔に皺などが生じていた。   On the other hand, among the active material particles embedded in the surface of the copper foil, the active material particles having a particle diameter equal to or larger than the average particle diameter are embedded in the copper foil to a depth exceeding 50% of the particle diameter of the active material particles. About the sample (it exists in the recessed part formed in copper foil), the wrinkle etc. had arisen in copper foil in the said boundary part.

これは、活物質粒子の粒子径の50%を超える深さまで活物質粒子をめり込ませる場合には、ロールプレス機のローラと弱く接触する活物質層の非形成領域と、当該非形成領域よりも強くローラと接する活物質層の形成領域との間で、銅箔の延伸量が異なる結果、前記境界部における銅箔に皺などが生じるものと考えられる。   In the case where the active material particles are sunk to a depth exceeding 50% of the particle diameter of the active material particles, the non-formation region of the active material layer that weakly contacts the roller of the roll press machine, and the non-formation region It is considered that wrinkles and the like occur in the copper foil at the boundary portion as a result of the difference in the amount of copper foil stretched between the active material layer forming region that is in contact with the roller more strongly.

したがって、負極シートの活物質層において、銅箔の表面にめり込んでいる活物質粒子のうち、粒子径が平均粒子径以上である活物質粒子については、当該活物質粒子の粒子径の50%を超えない深さまで銅箔にめり込ませることが好ましいことが確認された。
(剥離強度の測定)
剥離強度は、粘着テープ・粘着シート試験方法を用いて測定した。まず、製作した帯状の負極シートをそれぞれ打ち抜き加工することにより、長さ80mm、幅25mmの帯状である試料をそれぞれ製作した。また剥離強度の測定方法では、スライド移動可能に支持された長方形の試験台の上に、市販の強力両面テープ(3M社製,YHB Y−4945)を用い、試験台と試料の長手方向を一致させた状態で試料を貼り付けるとともに、試験台における試料の貼り付け面と直交する方向へ移動可能に支持された固定具に、試料における長手方向の端部を固定する。
Therefore, among the active material particles embedded in the surface of the copper foil in the active material layer of the negative electrode sheet, for the active material particles having a particle size equal to or larger than the average particle size, 50% of the particle size of the active material particles is reduced. It was confirmed that it was preferable to squeeze into the copper foil to a depth not exceeding.
(Measurement of peel strength)
The peel strength was measured using an adhesive tape / adhesive sheet test method. First, the manufactured strip-shaped negative electrode sheets were each punched to prepare strip-shaped samples each having a length of 80 mm and a width of 25 mm. Also, in the peel strength measurement method, a commercially available strong double-sided tape (3M, YHB Y-4945) is used on a rectangular test table supported so as to be slidable, and the longitudinal direction of the test table matches the sample. In this state, the sample is affixed, and the end of the sample in the longitudinal direction is fixed to a fixture that is supported so as to be movable in a direction perpendicular to the sample affixing surface on the test bench.

そして、前記固定具に連結された荷重測定器(ミネビベア社製,LTS−200N−S20)を試料から離間する方向へ20mm/minの定速で移動させつつ、試験台から試料を剥離させる際の荷重を測定する。そして、測定された荷重のうち、剥離が開始された位置から10mm〜30mmの間における幅1cmあたりの荷重の平均値を剥離強度とした。   And, when moving the load measuring instrument (Minebibear, LTS-200N-S20) connected to the fixture at a constant speed of 20 mm / min in a direction away from the sample, the sample is peeled off from the test table. Measure the load. And the average value of the load per 1 cm in width between 10 mm-30 mm from the position where peeling started among the measured loads was made into peeling strength.

平均粒子間距離を異ならせた負極シートの各試料について、剥離強度の測定結果を表1及び図4のグラフに示す。   Table 1 and the graph of FIG. 4 show the measurement results of peel strength for each sample of the negative electrode sheet with different average interparticle distances.

表1及び図4に示すように、平均粒子間距離が60%未満である場合には、平均粒子間距離が60%以上である場合と比較して、剥離強度が低下することが確認された。これは、活物質粒子間に存在するバインダ量が少なく、活物質粒子と銅箔とを接着する強度が却って低下してしまうためと考えられる。また、平均粒子間距離が60%以上98%以下である場合においては、良好な剥離強度が発揮されることが確認された。 As shown in Table 1 and FIG. 4, when the average interparticle distance was less than 60%, it was confirmed that the peel strength was reduced as compared with the case where the average interparticle distance was 60% or more. . This is presumably because the amount of the binder existing between the active material particles is small, and the strength of bonding the active material particles and the copper foil is lowered instead. It was also confirmed that good peel strength was exhibited when the average interparticle distance was 60% or more and 98% or less.

以上のことから、平均粒子間距離を60%以上98%以下とした場合には、バインダによる接着と、銅箔に対する活物質粒子のアンカー効果とによって、活物質層と銅箔との剥離強度を好適に向上できることが確認された。なお、二次電池10をフォークリフトなどの産業車両に搭載することを考慮した場合には、平均粒子間距離を75%以上とし、2.67N/cmの剥離強度を確保することが好ましい。
(リチウムイオン二次電池の製作)
上記の手順で作製した各負極シートを評価極として用い、リチウムイオン二次電池(ハーフセル)を作製した。対極は、金属リチウム箔(厚さ500μm)とした。対極をφ13mm、評価極をφ11mmに打ち抜きし、セパレータ(ヘキストセラニーズ社製ガラスフィルターおよびcelgard2400)を両者の間に挟み込んで電極組立体とした。この電極組立体を電池ケース(宝泉株式会社製、CR2032コインセル)に収容した。また、電池ケースには、エチレンカーボネートとジエチルカーボネートとを1:1(体積比)で混合した混合溶媒にLiPFを1Mの濃度で溶解した非水電解質を注入した。そして電池ケースを密閉して、リチウム二次電池の各試料を得た。
(サイクル特性の評価)
サイクル特性を評価するために、各試料に対して充放電試験を行った。充放電試験では、25℃の温度環境のもと、まず金属Li基準で放電終止電圧0.01Vまで0.05mAの定電流で充電を行った後、充電終止電圧2Vまで0.05mAの定電流で放電を行った。初回の充放電試験後の最初の充放電試験を1サイクル目とし、5サイクル目まで同様の充放電を繰り返し行った。引き続き、6〜10サイクル目は0.1mA、11〜15サイクル目までは0.2mA、16サイクル目以降は0.05mAとして充放電を繰り返し行った。充放電の終止電圧は、いずれのサイクルも0.01〜2Vであった。
From the above, when the average interparticle distance is 60% or more and 98% or less, the peel strength between the active material layer and the copper foil is increased by the adhesion by the binder and the anchor effect of the active material particles to the copper foil. It was confirmed that it can be suitably improved. In consideration of mounting the secondary battery 10 on an industrial vehicle such as a forklift, it is preferable that the average interparticle distance is 75% or more and a peel strength of 2.67 N / cm is secured.
(Production of lithium ion secondary battery)
A lithium ion secondary battery (half cell) was produced using each negative electrode sheet produced by the above procedure as an evaluation electrode. The counter electrode was a metal lithium foil (thickness 500 μm). The counter electrode was punched to φ13 mm, the evaluation electrode was punched to φ11 mm, and a separator (Hoechst Celanese glass filter and celgard 2400) was sandwiched between them to form an electrode assembly. This electrode assembly was accommodated in a battery case (manufactured by Hosen Co., Ltd., CR2032 coin cell). In addition, a non-aqueous electrolyte in which LiPF 6 was dissolved at a concentration of 1 M was injected into the battery case in a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a ratio of 1: 1 (volume ratio). And the battery case was sealed, and each sample of the lithium secondary battery was obtained.
(Evaluation of cycle characteristics)
In order to evaluate the cycle characteristics, a charge / discharge test was performed on each sample. In the charge / discharge test, under a temperature environment of 25 ° C., the battery was first charged with a constant current of 0.05 mA to a discharge end voltage of 0.01 V on the basis of metal Li, and then a constant current of 0.05 mA to a charge end voltage of 2 V. A discharge was performed. The first charge / discharge test after the first charge / discharge test was taken as the first cycle, and the same charge / discharge was repeated until the fifth cycle. Subsequently, charging / discharging was repeatedly performed at 0.1 mA for the 6th to 10th cycles, 0.2 mA for the 11th to 15th cycles and 0.05 mA for the 16th and subsequent cycles. The end voltage of charge / discharge was 0.01 to 2 V in any cycle.

各サイクルで、電圧に対する活物質単位質量当たりの放電容量および充電容量を測定した。そして、各サイクルにおける放電容量維持率を算出した。なお、放電容量維持率は、Nサイクル目の放電容量を初回の放電容量で除した値の百分率((Nサイクル目の放電容量)/(1サイクル目の放電容量)×100)で求められる値である(Nは整数値)。   In each cycle, the discharge capacity and the charge capacity per unit mass of the active material with respect to the voltage were measured. And the discharge capacity maintenance factor in each cycle was computed. The discharge capacity retention ratio is a value obtained by dividing the N-th cycle discharge capacity by the initial discharge capacity ((N-cycle discharge capacity) / (first-cycle discharge capacity) × 100). (N is an integer value).

平均粒子間距離を異ならせた負極シートを用いて製作したリチウムイオン二次電池の各試料について、放電容量維持率が80%となる迄のサイクル数を測定した結果を図5に示す。   FIG. 5 shows the results of measuring the number of cycles until the discharge capacity retention rate reaches 80% for each sample of the lithium ion secondary battery manufactured using negative electrode sheets with different average interparticle distances.

図5に示すように、平均粒子間距離が70%以上98%以下である場合には、優れたサイクル特性を示すことが確認された。また、平均粒子間距離72%以上95%以下である場合には、特に優れたサイクル特性を示すことが確認された。   As shown in FIG. 5, it was confirmed that excellent cycle characteristics were exhibited when the average interparticle distance was 70% or more and 98% or less. Further, it was confirmed that particularly excellent cycle characteristics were exhibited when the average interparticle distance was 72% or more and 95% or less.

ここで、平均粒子間距離が70%未満である場合には、充電に伴う活物質粒子の膨張によって、凹部に一部が存在する活物質粒子同士が干渉して応力が発生し、活物質層が銅箔から剥離することに起因してサイクル特性が低下すると考えられる。   Here, when the average inter-particle distance is less than 70%, the active material particles partially existing in the recesses interfere with each other due to the expansion of the active material particles due to charging, and stress is generated. It is considered that the cycle characteristics deteriorate due to the peeling of copper from the copper foil.

一方、平均粒子間距離が98%を超える場合には、98%以下である場合と比較して、凹部に一部が存在する活物質粒子同士の離間距離が大きい、即ち凹部に一部が存在する活物質粒子の数が少ないため、充放電に伴って活物質層が銅箔から剥離し易く、これに起因してサイクル特性が低下すると考えられる。   On the other hand, when the average inter-particle distance exceeds 98%, the distance between the active material particles partially existing in the recesses is larger than that in the case where the average particle distance is 98% or less. Since the number of active material particles to be reduced is small, the active material layer is easily peeled off from the copper foil with charge and discharge, and it is considered that the cycle characteristics are deteriorated due to this.

また、平均粒子間距離を70%未満の距離とした場合には、活物質粒子同士が近接することから、活物質層に対する電解質の含浸に時間がかかる。したがって、二次電池10の製造時間を短縮する観点からは、正極シートにおける平均粒子間距離を70%以上とすることが好ましいといえる。   Further, when the average interparticle distance is less than 70%, the active material particles are close to each other, so that it takes time to impregnate the active material layer with the electrolyte. Therefore, from the viewpoint of shortening the manufacturing time of the secondary battery 10, it can be said that the average interparticle distance in the positive electrode sheet is preferably 70% or more.

したがって、本実施形態によれば、以下のような効果を得ることができる。
(1)負極シート22において、金属箔26の凹部26dには活物質粒子27aの一部が存在していることから、金属箔26に対する活物質粒子27aのアンカー効果により活物質層27が金属箔26から剥離することを抑制できる。そして、凹部26dに一部が存在している活物質粒子27aのうち、隣り合う活物質粒子27aの平均粒子間距離が70%以上である場合には、70%未満である場合と比較して、活物質粒子27a同士が充電に伴う膨張に起因して相互に干渉することを抑制し、活物質層27が金属箔26から剥離することを抑制できる。また、活物質粒子27aの平均粒子間距離が98%以下である場合には、98%を超える場合と比較して、活物質粒子27aの間隔を小さくしてアンカー効果を高め、これにより充放電に伴って活物質層27が金属箔26から剥離することを抑制できる。したがって、活物質層27と金属箔26とが剥離することを抑制できる。
Therefore, according to the present embodiment, the following effects can be obtained.
(1) In the negative electrode sheet 22, a part of the active material particles 27 a exists in the recesses 26 d of the metal foil 26, so that the active material layer 27 is made of the metal foil by the anchor effect of the active material particles 27 a with respect to the metal foil 26. It can suppress that it peels from 26. And among the active material particles 27a partially present in the recesses 26d, when the average inter-particle distance between the adjacent active material particles 27a is 70% or more, it is less than 70%. Further, it is possible to suppress the active material particles 27a from interfering with each other due to expansion caused by charging, and to prevent the active material layer 27 from peeling from the metal foil 26. Further, when the average interparticle distance of the active material particles 27a is 98% or less, compared with the case where it exceeds 98%, the distance between the active material particles 27a is reduced to enhance the anchor effect, thereby charging and discharging. Accordingly, the active material layer 27 can be prevented from peeling from the metal foil 26. Therefore, it can suppress that the active material layer 27 and the metal foil 26 peel.

(2)粒子径が平均粒子径以上である活物質粒子27aが、その粒子径の50%を超えて金属箔26の凹部26dに存在している場合には、金属箔26の変形によって皺などが生じる。しかしながら、本実施形態によれば、粒子径が平均粒子径以上である活物質粒子27aは、当該活物質粒子27aの粒子径の50%以下の深さまで凹部26dに存在していることから、金属箔26に皺などが生じることを好適に抑制できる。   (2) When the active material particles 27 a having a particle diameter equal to or larger than the average particle diameter are present in the concave portion 26 d of the metal foil 26 exceeding 50% of the particle diameter, wrinkles or the like are caused by deformation of the metal foil 26. Occurs. However, according to the present embodiment, the active material particles 27a having a particle diameter equal to or larger than the average particle diameter are present in the recess 26d to a depth of 50% or less of the particle diameter of the active material particles 27a. It can suppress suitably that a wrinkle etc. arise in foil 26.

(3)負極シート22の金属箔26を銅箔とした場合、活物質層27が銅製の金属箔26から剥離することを抑制できる。
(4)電極組立体25では、間にセパレータ23を挟んだ状態で正極シート21及び負極シート22を積層してなり、正極シート21及び負極シート22が層状をなしている。このため、正極シート21及び負極シート22が層状の構造をなす電極組立体25において、負極シート22の金属箔26から活物質層27が剥離してしまうことを抑制できる。
(3) When the metal foil 26 of the negative electrode sheet 22 is a copper foil, the active material layer 27 can be prevented from peeling from the copper metal foil 26.
(4) In the electrode assembly 25, the positive electrode sheet 21 and the negative electrode sheet 22 are laminated with the separator 23 interposed therebetween, and the positive electrode sheet 21 and the negative electrode sheet 22 are layered. For this reason, in the electrode assembly 25 in which the positive electrode sheet 21 and the negative electrode sheet 22 have a layered structure, it is possible to suppress the active material layer 27 from being separated from the metal foil 26 of the negative electrode sheet 22.

(5)そして、電極組立体25を構成する負極シート22の金属箔26から活物質層27が剥離することを抑制できる結果、電極組立体25を有する二次電池10としての耐久性を向上させることができる。   (5) As a result of preventing the active material layer 27 from peeling from the metal foil 26 of the negative electrode sheet 22 constituting the electrode assembly 25, the durability of the secondary battery 10 having the electrode assembly 25 is improved. be able to.

(6)負極シート22において、凹部26dに一部が存在している活物質粒子27aのうち、隣り合う活物質粒子27aの平均粒子間距離を72%以上とすることで、さらに二次電池10としてのサイクル特性を向上できる。   (6) In the negative electrode sheet 22, among the active material particles 27 a partially existing in the recess 26 d, the average inter-particle distance between the adjacent active material particles 27 a is set to 72% or more, thereby further increasing the secondary battery 10. As a result, the cycle characteristics can be improved.

(7)負極シート22において、凹部26dに一部が存在している活物質粒子27aのうち、隣り合う活物質粒子27aの平均粒子間距離を95%以下とすることで、さらに二次電池10としてのサイクル特性を向上できる。   (7) In the negative electrode sheet 22, among the active material particles 27 a partially present in the recesses 26 d, the average inter-particle distance between the adjacent active material particles 27 a is set to 95% or less to further increase the secondary battery 10. As a result, the cycle characteristics can be improved.

(8)負極シート22において、凹部26dに一部が存在している活物質粒子27aのうち、隣り合う活物質粒子27aの平均粒子間距離を75%以上とすることで、活物質層27に電解質(電解液)を含浸させるのに要する時間が長くなることを抑制できる。   (8) In the negative electrode sheet 22, among the active material particles 27a partially present in the recesses 26d, the average inter-particle distance between the adjacent active material particles 27a is 75% or more, so that the active material layer 27 It can suppress that time required to impregnate electrolyte (electrolyte solution) becomes long.

(9)負極シート22において、凹部26dに一部が存在している活物質粒子27aのうち、隣り合う活物質粒子27aの平均粒子間距離を75%以上とすることで、産業車両への搭載時など、大きな振動が二次電池10に加わる条件下でも活物質層27が金属箔26から剥離することを抑制できる。   (9) In the negative electrode sheet 22, among the active material particles 27a partially present in the recesses 26d, the average distance between adjacent active material particles 27a is 75% or more, so that the negative electrode sheet 22 is mounted on an industrial vehicle. It is possible to prevent the active material layer 27 from being peeled off from the metal foil 26 even under conditions in which large vibrations are applied to the secondary battery 10 such as at times.

実施形態は上記のように限定されるものではなく、例えば以下のように具体化してもよい。
○ 図6に示すように、負極シート22における金属箔26の表面26cにおいて活物質層27が形成されていない非形成領域26bには、金属箔26と同一金属である補助金属箔35が接合されていてもよい。金属箔26と補助金属箔35との接合は、例えば抵抗溶接の一種であるシーム溶接により行うとよい。この場合、補助金属箔35の厚さは、活物質層27と同一厚さ(略同一厚さ)に形成するとよい。これによれば、活物質層27が形成されていない非形成領域26bに補助金属箔35が接合されていることから、例えばプレスにより活物質層27の形成領域27cを加圧することで、凹部26dを形成しつつ当該凹部26dに活物質粒子27aの少なくとも一部(一部分)を存在させる場合に、金属箔26に皺などが生じることを抑制できる。
The embodiment is not limited as described above, and may be embodied as follows, for example.
As shown in FIG. 6, the auxiliary metal foil 35, which is the same metal as the metal foil 26, is joined to the non-formation region 26 b where the active material layer 27 is not formed on the surface 26 c of the metal foil 26 in the negative electrode sheet 22. It may be. The metal foil 26 and the auxiliary metal foil 35 may be joined by, for example, seam welding, which is a type of resistance welding. In this case, the auxiliary metal foil 35 may be formed to have the same thickness (substantially the same thickness) as that of the active material layer 27. According to this, since the auxiliary metal foil 35 is joined to the non-formation region 26b where the active material layer 27 is not formed, the depression 26d is formed by pressurizing the formation region 27c of the active material layer 27 by, for example, pressing. In the case where at least a part (a part) of the active material particles 27a is present in the concave portion 26d while forming the metal foil 26, it is possible to suppress wrinkles and the like from being generated in the metal foil 26.

○ 図6において二点鎖線で示すように、補助金属箔35と金属箔26とは、補助金属箔35及び金属箔26を形成する金属よりも電気抵抗が高い金属からなるシート35aを間に挟んだ状態で接合されていてもよい。これによれば、補助金属箔35と金属箔26とを抵抗溶接しやすくできる。   As shown by a two-dot chain line in FIG. 6, the auxiliary metal foil 35 and the metal foil 26 sandwich a sheet 35 a made of a metal having a higher electric resistance than the metal forming the auxiliary metal foil 35 and the metal foil 26. It may be joined in a state. According to this, resistance welding of the auxiliary metal foil 35 and the metal foil 26 can be facilitated.

○ 図6に示すように、活物質層27は金属箔26の片面にのみ形成されていてもよい。
○ 図7及び図8に示すように、電極組立体25は、正極シート21、負極シート22、及びセパレータ23を帯状(長尺のシート状)に形成するとともに、セパレータ23を間に挟んだ状態で、正極シート21及び負極シート22を渦まき状に捲回し、正極シート21及び負極シート22が層状の構造(積層構造)をなすように形成してもよい。この場合、正極シート21において幅方向の一方の縁部には、正極シート21の長さ方向に沿って延びる非形成領域26bを形成し、当該非形成領域26bを正極集電タブ21aとする。その一方で、負極シート22において幅方向の他方の縁部には、負極シート22の長さ方向に沿って延びる非形成領域26bを形成し、当該非形成領域26bを負極集電タブ22aとする。そして、正極シート21及び負極シート22を捲回することで、電極組立体25の一方の縁部に正極集電タブ21aが層状の構造をなす正極集電タブ群28を形成する一方で、電極組立体25の他方の縁部に負極集電タブ22aが層状の構造をなす負極集電タブ群29を形成するとよい。
As shown in FIG. 6, the active material layer 27 may be formed only on one side of the metal foil 26.
As shown in FIG. 7 and FIG. 8, the electrode assembly 25 is a state in which the positive electrode sheet 21, the negative electrode sheet 22, and the separator 23 are formed in a strip shape (long sheet shape) and the separator 23 is sandwiched therebetween. Thus, the positive electrode sheet 21 and the negative electrode sheet 22 may be wound in a spiral shape so that the positive electrode sheet 21 and the negative electrode sheet 22 have a layered structure (laminated structure). In this case, the non-formation area | region 26b extended along the length direction of the positive electrode sheet 21 is formed in one edge part of the width direction in the positive electrode sheet 21, The said non-formation area | region 26b is used as the positive electrode current collection tab 21a. On the other hand, a non-formation region 26b extending along the length direction of the negative electrode sheet 22 is formed at the other edge in the width direction of the negative electrode sheet 22, and the non-formation region 26b is used as the negative electrode current collecting tab 22a. . Then, by winding the positive electrode sheet 21 and the negative electrode sheet 22, the positive electrode current collecting tab group 28 in which the positive electrode current collecting tab 21a has a layered structure is formed on one edge of the electrode assembly 25, while the electrode A negative electrode current collecting tab group 29 in which the negative electrode current collecting tab 22a forms a layered structure may be formed on the other edge of the assembly 25.

○ 正極シート21、及び負極シート22の形状を変更してもよい。
○ 正極シート21の活物質層27において、活物質粒子27aは金属箔26の凹部26dに一部がめり込んで存在していてもよい。
The shape of the positive electrode sheet 21 and the negative electrode sheet 22 may be changed.
In the active material layer 27 of the positive electrode sheet 21, the active material particles 27 a may partially exist in the recesses 26 d of the metal foil 26.

○ 電極組立体25は、セパレータ23を間に挟んだ状態で正極シート21及び負極シート22を蛇腹状に折り曲げて積層してもよい。
○ 正極シート21に用いる金属箔26は、ニッケルやステンレスなど、異なる金属から形成されていてもよい。同様に負極シート22についても、金属箔26の金属を変更してもよい。
The electrode assembly 25 may be laminated by folding the positive electrode sheet 21 and the negative electrode sheet 22 into a bellows shape with the separator 23 interposed therebetween.
(Circle) the metal foil 26 used for the positive electrode sheet 21 may be formed from different metals, such as nickel and stainless steel. Similarly, for the negative electrode sheet 22, the metal of the metal foil 26 may be changed.

○ 金属箔26の表面26cにおける凹部26dに存在している活物質粒子27aのうち、粒子径が平均粒子径以上である活物質粒子27aは、当該活物質粒子27aの粒子径の50%以上の深さまで凹部26dに存在していてもよい(金属箔26にめり込んでいてもよい)。但し、金属箔26の皺などの発生を抑制する観点からは上記実施形態のように構成することが好ましい。   ○ Of the active material particles 27a existing in the recesses 26d on the surface 26c of the metal foil 26, the active material particles 27a having a particle diameter equal to or larger than the average particle diameter are 50% or more of the particle diameter of the active material particles 27a. It may be present in the recess 26d to the depth (it may be embedded in the metal foil 26). However, from the viewpoint of suppressing generation of wrinkles and the like of the metal foil 26, it is preferable to configure as in the above embodiment.

○ 電極組立体25を構成する正極シート21、及び負極シート22の数は適宜変更してもよい。例えば、正極シート21、及び負極シート22をそれぞれ1つ備えた電極組立体25としてもよい。   The number of the positive electrode sheets 21 and the negative electrode sheets 22 constituting the electrode assembly 25 may be changed as appropriate. For example, the electrode assembly 25 may include one positive electrode sheet 21 and one negative electrode sheet 22.

○ ケース11の形状は、円柱状や、左右方向に扁平な楕円柱状に形成してもよい。
○ 上記実施形態の二次電池10を車両(例えば産業車両や乗用車両など)に搭載し、車両に装備された発電機により充電する一方で、二次電池10から供給する電力によりエアコン用のコンプレッサや、車輪を駆動するための電動モータ、或いはカーナビゲーションシステムなどの電装品を駆動してもよい。これによれば、金属箔26から活物質層27が剥離することを抑制し、二次電池10としての耐久性を向上できる。したがって、車両において二次電池10の交換サイクルが短くなることを抑制できる。
The shape of the case 11 may be formed in a columnar shape or an elliptical column shape that is flat in the left-right direction.
○ The secondary battery 10 of the above embodiment is mounted on a vehicle (for example, an industrial vehicle or a passenger vehicle), and is charged by a generator installed in the vehicle. Alternatively, an electric motor for driving the wheels or an electrical component such as a car navigation system may be driven. According to this, it can suppress that the active material layer 27 peels from the metal foil 26, and can improve the durability as the secondary battery 10. Therefore, it can suppress that the replacement cycle of the secondary battery 10 becomes short in a vehicle.

○ 本発明は、蓄電装置としての電気二重層キャパシタに具体化してもよい。   The present invention may be embodied in an electric double layer capacitor as a power storage device.

C1…中心、C2…中心、10…二次電池(蓄電装置)、21…正極シート、22…負極シート(負極電極)、23…セパレータ、25…電極組立体、26…金属箔、26b…非形成領域、26c…表面、26d…凹部、27…活物質層、27a…活物質粒子、27b…バインダ、27c…形成領域、35…補助金属箔。   C1 ... center, C2 ... center, 10 ... secondary battery (power storage device), 21 ... positive electrode sheet, 22 ... negative electrode sheet (negative electrode), 23 ... separator, 25 ... electrode assembly, 26 ... metal foil, 26b ... non Formation region, 26c ... surface, 26d ... recess, 27 ... active material layer, 27a ... active material particles, 27b ... binder, 27c ... formation region, 35 ... auxiliary metal foil.

上記課題を解決する負極電極は、負極用の活物質粒子を含む活物質層を金属箔の表面に形成したリチウムイオン二次電池用負極電極であって、 前記活物質粒子は、SiO (0.1≦n≦2)の組成式で示される酸化ケイ素の粒子であり、前記活物質層が形成された形成領域において前記金属箔の表面には前記活物質粒子における少なくとも一部がめり込むことにより、当該めり込んだ活物質粒子の表面によって画定される凹部が形成され、前記凹部に少なくとも一部が存在する活物質粒子のうち、隣り合う活物質粒子の中心間の平均距離は平均粒子径の70%以上98%以下であり、前記金属箔の表面において前記活物質層が形成されていない非形成領域には、前記金属箔と同一金属からなる補助金属箔が接合されていることを要旨とする。 A negative electrode that solves the above problem is a negative electrode for a lithium ion secondary battery in which an active material layer containing active material particles for a negative electrode is formed on the surface of a metal foil, wherein the active material particles are SiO n (0 .1 ≦ n ≦ 2) is a particle of silicon oxide represented by a composition formula of, wherein the surface of the metal foil in a region where the active material layer is formed, that at least partially sinks in the active material particles Thus, a recess defined by the surface of the recessed active material particle is formed , and among the active material particles at least part of which is present in the recess, the average distance between the centers of adjacent active material particles is the average particle diameter. 70% 98% less der is, the non-formation region in which the no active material layer is formed on the surface of the metal foil, the gist that the auxiliary metal foil made of the metal foil of the same metal are joined When That.

この構成によれば、金属箔の表面には凹部が形成され、この凹部に活物質粒子における少なくとも一部が存在していることから、活物質層が金属箔から剥離することを抑制できる。そして、凹部に少なくとも一部が存在する活物質粒子のうち、隣り合う活物質粒子の中心間の平均距離は平均粒子径の70%以上であることから、70%未満である場合と比較して、活物質粒子同士が充電に伴う膨張に起因して相互に干渉して応力が発生することを抑制し、活物質層が金属箔から剥離することを抑制できる。また、上記隣り合う活物質粒子の中心間の平均距離は平均粒子径の98%以下であることから、98%を超える場合と比較して、凹部に少なくとも一部が存在する活物質粒子の間隔を小さくして活物質層と金属箔との密着性を高め、これにより充放電に伴って活物質層が金属箔から剥離することを抑制できる。したがって、活物質層と金属箔とが剥離することを抑制できる。
また、活物質層が形成されていない非形成領域に補助金属箔が接合されていることから、例えばプレスにより活物質層の形成領域を加圧することで、凹部を形成しつつ当該凹部に活物質粒子の少なくとも一部を存在させる場合に、金属箔に皺などが生じることを抑制できる。
According to this configuration, a recess is formed on the surface of the metal foil, and at least a part of the active material particles is present in the recess, so that the active material layer can be prevented from peeling from the metal foil. And among the active material particles in which at least a part is present in the recess, the average distance between the centers of the adjacent active material particles is 70% or more of the average particle diameter, so that it is less than 70%. In addition, the active material particles can be prevented from interfering with each other due to the expansion caused by charging, and the generation of stress, and the active material layer can be prevented from peeling from the metal foil. Moreover, since the average distance between the centers of the adjacent active material particles is 98% or less of the average particle diameter, the distance between the active material particles having at least a part of the recesses as compared with the case where it exceeds 98%. The adhesion between the active material layer and the metal foil can be improved by reducing the thickness of the active material layer, thereby preventing the active material layer from being peeled off from the metal foil along with charge / discharge. Therefore, it can suppress that an active material layer and metal foil peel.
In addition, since the auxiliary metal foil is joined to the non-formation region where the active material layer is not formed, the active material is formed in the depression while forming the depression by, for example, pressing the formation region of the active material layer with a press. When at least a part of the particles is present, wrinkles and the like can be prevented from occurring in the metal foil.

Claims (6)

負極用の活物質粒子を含む活物質層を金属箔の表面に形成した負極電極であって、
前記活物質層が形成された形成領域において前記金属箔の表面には凹部が形成され、前記凹部に前記活物質粒子における少なくとも一部が存在し、
前記凹部に少なくとも一部が存在する活物質粒子のうち、隣り合う活物質粒子の中心間の平均距離は平均粒子径の70%以上98%以下であることを特徴とする負極電極。
A negative electrode in which an active material layer containing active material particles for a negative electrode is formed on the surface of a metal foil,
In the formation region where the active material layer is formed, a recess is formed on the surface of the metal foil, and at least a part of the active material particles is present in the recess,
Of the active material particles having at least a part in the recess, an average distance between centers of adjacent active material particles is 70% or more and 98% or less of an average particle diameter.
前記凹部に少なくとも一部が存在する活物質粒子のうち、粒子径が前記平均粒子径以上である活物質粒子は、当該活物質粒子の粒子径の50%以下の深さまで前記凹部にめり込んで存在する請求項1に記載の負極電極。   Of the active material particles having at least a portion in the recess, the active material particles having a particle diameter equal to or larger than the average particle diameter are embedded in the recess to a depth of 50% or less of the particle diameter of the active material particle. The negative electrode according to claim 1. 前記金属箔の表面において前記活物質層が形成されていない非形成領域には、前記金属箔と同一金属からなる補助金属箔が接合されている請求項1または2に記載の負極電極。   3. The negative electrode according to claim 1, wherein an auxiliary metal foil made of the same metal as the metal foil is bonded to a non-formation region where the active material layer is not formed on the surface of the metal foil. 前記金属箔は銅からなる請求項1〜3のいずれか1項に記載の負極電極。   The negative electrode according to claim 1, wherein the metal foil is made of copper. 活物質粒子を含む活物質層を金属箔の表面に形成した電極を、シート状をなすセパレータを間に挟んだ状態で積層又は捲回してなり、前記電極が層状の構造をなす電極組立体を有する蓄電装置において、
前記電極には、請求項4に記載の負極電極を含むことを特徴とする蓄電装置。
An electrode assembly in which an electrode having an active material layer containing active material particles formed on the surface of a metal foil is laminated or wound with a sheet-like separator interposed therebetween, and the electrode has a layered structure. In a power storage device having
The power storage device according to claim 4, wherein the electrode includes the negative electrode according to claim 4.
請求項5に記載の蓄電装置を搭載したことを特徴とする車両。   A vehicle comprising the power storage device according to claim 5.
JP2013171463A 2013-08-21 2013-08-21 Negative electrode, lithium ion secondary battery, and vehicle Expired - Fee Related JP5821913B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013171463A JP5821913B2 (en) 2013-08-21 2013-08-21 Negative electrode, lithium ion secondary battery, and vehicle
PCT/JP2014/069279 WO2015025663A1 (en) 2013-08-21 2014-07-22 Negative electrode, electricity storage device and vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013171463A JP5821913B2 (en) 2013-08-21 2013-08-21 Negative electrode, lithium ion secondary battery, and vehicle

Publications (2)

Publication Number Publication Date
JP2015041474A true JP2015041474A (en) 2015-03-02
JP5821913B2 JP5821913B2 (en) 2015-11-24

Family

ID=52483445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013171463A Expired - Fee Related JP5821913B2 (en) 2013-08-21 2013-08-21 Negative electrode, lithium ion secondary battery, and vehicle

Country Status (2)

Country Link
JP (1) JP5821913B2 (en)
WO (1) WO2015025663A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7358804B2 (en) 2019-07-04 2023-10-11 日本ケミコン株式会社 Electrode body, electrolytic capacitor including the electrode body, and method for manufacturing the electrode body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260637A (en) * 2000-09-01 2002-09-13 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery, and its manufacturing method
JP2007059387A (en) * 2005-07-28 2007-03-08 Matsushita Electric Ind Co Ltd Electrode for lithium ion secondary battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3341886B2 (en) * 1998-02-05 2002-11-05 日本電気株式会社 Polarizing electrode, manufacturing method thereof, and electric double layer capacitor using the polarizing electrode
JP5535158B2 (en) * 2010-09-17 2014-07-02 古河電気工業株式会社 Negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing negative electrode for lithium ion secondary battery
JP2012064488A (en) * 2010-09-17 2012-03-29 Dainippon Screen Mfg Co Ltd Apparatus and method for manufacturing electrode, and method for manufacturing battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260637A (en) * 2000-09-01 2002-09-13 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery, and its manufacturing method
JP2007059387A (en) * 2005-07-28 2007-03-08 Matsushita Electric Ind Co Ltd Electrode for lithium ion secondary battery

Also Published As

Publication number Publication date
JP5821913B2 (en) 2015-11-24
WO2015025663A1 (en) 2015-02-26

Similar Documents

Publication Publication Date Title
KR101580731B1 (en) Non-aqueous electrolyte secondary battery
JP5257700B2 (en) Lithium secondary battery
JP5668993B2 (en) Sealed nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2009004181A (en) Electrode for battery
US9997768B2 (en) Lithium ion secondary battery and method for manufacturing lithium ion secondary battery
JP5818078B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP5601361B2 (en) Battery electrode
JP6354991B2 (en) Non-aqueous electrolyte secondary battery
JP2016181409A (en) Power storage element
JP5880964B2 (en) Nonaqueous electrolyte secondary battery
JP2013062089A (en) Lithium ion secondary battery
KR101390548B1 (en) Electropositive plate, battery, and electropositive plate manufacturing method
JP6902206B2 (en) Lithium ion secondary battery
JP5590173B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2012256544A (en) Manufacturing method of electrode for secondary battery
JP2013062139A (en) Evaluation method of electrode
JP2012156061A (en) Secondary battery and manufacturing method thereof
JP6573150B2 (en) Electricity storage element
JP5821913B2 (en) Negative electrode, lithium ion secondary battery, and vehicle
JP5725356B2 (en) Method for manufacturing electrode for secondary battery
JP2022100813A (en) Secondary battery
JP5949485B2 (en) Power storage device having electrolytic solution, secondary battery, and method for manufacturing electrode of power storage device having electrolytic solution
JP5704401B2 (en) Secondary battery electrode and manufacturing method thereof
JP2016072110A (en) Nonaqueous electrolyte secondary battery and battery pack
JP2016219285A (en) Negative electrode for nonaqueous electrolyte secondary battery and method for manufacturing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150921

R151 Written notification of patent or utility model registration

Ref document number: 5821913

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees