JP2015040850A - Vehicle stop determination apparatus - Google Patents

Vehicle stop determination apparatus Download PDF

Info

Publication number
JP2015040850A
JP2015040850A JP2013173841A JP2013173841A JP2015040850A JP 2015040850 A JP2015040850 A JP 2015040850A JP 2013173841 A JP2013173841 A JP 2013173841A JP 2013173841 A JP2013173841 A JP 2013173841A JP 2015040850 A JP2015040850 A JP 2015040850A
Authority
JP
Japan
Prior art keywords
vehicle
determination
value
stop determination
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013173841A
Other languages
Japanese (ja)
Inventor
裕貴 権藤
Yuki Gondo
裕貴 権藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP2013173841A priority Critical patent/JP2015040850A/en
Publication of JP2015040850A publication Critical patent/JP2015040850A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

PROBLEM TO BE SOLVED: To propose a vehicle stop determination apparatus for determining a vehicle stop reliably even in the case of incorporating an appliance that cannot obtain vehicular information such as a signal of a vehicle speed sensor in a vehicle that has large variation of vibration even when the vehicle is stopped and makes it possible to secure a space for installing an acceleration sensor.SOLUTION: A vehicle stop determination apparatus 1 includes: a three-axis acceleration sensor 12, disposed in a vehicle 2, for measuring acceleration in three different directions; a high-frequency pass filter 22 for attenuating a lower frequency component lower than a predetermined cut-off frequency for a measurement value of the three-axis acceleration sensor 12; and a determination process part 23 for determining whether the vehicle 2 is stopped, on the basis of a comparison between a frequency component of the measurement value that has passed through the high-frequency pass filter 22 and a determination threshold Vth.

Description

本発明は、停車判定装置に関する。   The present invention relates to a stop determination device.

ナビゲーションシステムや車車間通信システムなどから得られる電子情報を利用して運転支援を行う車載機器では、車両が停車しているのか、走行しているのかを表す情報(以下、単に「停車情報」と言う。)が求められる場合がある。停車情報は、例えば、車両が停車している時にのみ車載機器の操作を許可したり、車両の停車中に発生しやすいGPS(Global Positioning System、全地球測位システム)の測位誤差を補正したりといった場合に求められる。   In an in-vehicle device that provides driving support using electronic information obtained from a navigation system or an inter-vehicle communication system, information indicating whether the vehicle is stopped or traveling (hereinafter simply referred to as “stop information”). May be required). Stop information is, for example, allowing operation of in-vehicle devices only when the vehicle is stopped, or correcting GPS (Global Positioning System, global positioning system) positioning errors that are likely to occur while the vehicle is stopped. Required in case.

ところで、通常、停車判定は、車両に標準的に装備される車速センサの信号を車載機器へ入力することで実現できる。   By the way, usually, the stoppage determination can be realized by inputting a signal of a vehicle speed sensor that is normally equipped in the vehicle to the in-vehicle device.

しかしながら、PND(Portable Navigation Device、Personal Navigation Device)のような小型のカーナビゲーション装置や、簡易的な車車間通信システムのように、車速センサに代表される各種の車両側情報の信号を受け付けるインタフェースを備えていない簡易な車載機器もある。また、例えば廉価な車両のように、機械式の車速センサを採用している車両は、車速センサの検知結果を電気信号として車載機器へ入力することができない場合がある。   However, an interface for receiving various vehicle side information signals typified by a vehicle speed sensor, such as a small car navigation device such as PND (Portable Navigation Device, Personal Navigation Device) and a simple inter-vehicle communication system. There are some simple in-vehicle devices that are not equipped. Further, for example, a vehicle that employs a mechanical vehicle speed sensor, such as an inexpensive vehicle, may not be able to input the detection result of the vehicle speed sensor as an electrical signal to an in-vehicle device.

そこで、車速センサからの信号を必要とせず、加速度センサの測定結果に基づいて車両が停車しているか否かを判断する停車判定装置が知られている。   Therefore, there is known a stop determination device that does not require a signal from a vehicle speed sensor and determines whether or not the vehicle is stopped based on a measurement result of an acceleration sensor.

この従来の停車判定装置は、車両が停車している状態(以下、単に「停車状態」という。)における加速度のばらつき度合い(つまりは分散)と、車両が走行している状態(以下、単に「走行状態」という。)における加速度のばらつき度合い(つまりは分散)との2つのばらつき度合いが異なることから、一定期間の加速度標本値を統計的に処理して加速度標本値の分散を算出し、この分散が所定の閾値を超えているか否かによって車両が停車していることを判断する(例えば、特許文献1参照)。   This conventional stoppage determination device has a degree of acceleration variation (that is, dispersion) in a state where the vehicle is stopped (hereinafter simply referred to as “stopped state”) and a state in which the vehicle is traveling (hereinafter simply referred to as “ Since the two variations of the acceleration variation (that is, the variance) in the “running state”) are different, the acceleration sample values for a certain period are statistically processed to calculate the variance of the acceleration sample values. It is determined that the vehicle is stopped depending on whether or not the variance exceeds a predetermined threshold (see, for example, Patent Document 1).

特開2011−33604号公報JP 2011-33604 A

例えば自動二輪車のようなエンジンの振動が比較的大きい車両の場合、エンジンのアイドル中の振動によって、停車中であっても加速度標本の分散が大きい。つまり、アイドル中のエンジンの振動が大きい車両に従来の停車判定装置を適用する場合、実際には停車状態であるにもかかわらず走行状態と誤判定される虞がある。   For example, in the case of a vehicle with relatively large engine vibration such as a motorcycle, the dispersion of acceleration samples is large even when the vehicle is stopped due to vibration during idling of the engine. That is, when the conventional stop determination device is applied to a vehicle with a large engine vibration during idling, it may be erroneously determined as a running state even though it is actually in a stop state.

また、従来の停車判定装置は、車両の前後方向の加速度を測定しなければならず、加速度センサの測定軸を車両の前後方向へ指向させる必要がある。このことは、例えば、自動二輪車のように設置空間を確保することが難しい車両では、そもそも加速度センサの搭載が困難であったり、車体に新たなステーを設けて加速度センサを設置するため費用や重量が増加したり、ステーによって美観が損なわれたりする。   Moreover, the conventional stop determination device must measure the acceleration in the longitudinal direction of the vehicle, and needs to point the measurement axis of the acceleration sensor in the longitudinal direction of the vehicle. This is because, for example, in vehicles where it is difficult to secure an installation space such as a motorcycle, it is difficult to install an acceleration sensor in the first place, or a new stay is installed on the vehicle body to install the acceleration sensor. Or the aesthetics will be damaged by the stay.

そこで、本発明は、停車時であっても振動のばらつきが大きく、しかも加速度センサの設置空間を確保することが難しい車両に、車速センサの信号などの車両側情報を取得できない機器を搭載する場合であっても、停車判断をより確実に行う停車判定装置を提案する。   Therefore, the present invention provides a case where a device that cannot acquire vehicle-side information such as a signal of a vehicle speed sensor is mounted on a vehicle in which variation in vibration is large even when the vehicle is stopped and it is difficult to secure an installation space for an acceleration sensor. Even so, a stop determination device that makes a stop determination more reliably is proposed.

前記の課題を解決するため本発明に係る停車判定装置は、車両に設けられてそれぞれ異なる三方向の加速度を測定する三軸加速度センサと、前記三軸加速度センサの測定値について予め定める遮断周波数より低い周波数の成分を逓減させる高域通過フィルタと、前記高域通過フィルタを通過した前記測定値の周波数成分と判定閾値との比較から前記車両が停車しているか否かを判定する判定処理部と、を備える。   In order to solve the above problems, a stop determination device according to the present invention includes a triaxial acceleration sensor that is provided in a vehicle and measures accelerations in three different directions, and a cutoff frequency that is determined in advance for measurement values of the triaxial acceleration sensor. A high-pass filter that gradually reduces a low-frequency component, and a determination processing unit that determines whether the vehicle is stopped based on a comparison between a frequency component of the measurement value that has passed through the high-pass filter and a determination threshold value; .

本発明によれば、停車時であっても振動のばらつきが大きく、しかも加速度センサの設置空間を確保することが難しい車両に、車速センサの信号などの車両側情報を取得できない機器を搭載する場合であっても、停車判断をより確実に行う停車判定装置を提供できる。   According to the present invention, when a device that cannot acquire vehicle-side information such as a signal from a vehicle speed sensor is mounted on a vehicle in which vibration variation is large even when the vehicle is stopped and it is difficult to secure an installation space for an acceleration sensor. Even so, it is possible to provide a stop determination device that makes a stop determination more reliably.

本発明の実施形態に係る停車判定装置が適用される車両を示す側面図。The side view which shows the vehicle with which the stop determination apparatus which concerns on embodiment of this invention is applied. 本発明の実施形態に係る停車判定装置を示すブロック図。The block diagram which shows the stop determination apparatus which concerns on embodiment of this invention. 本実施形態に係る停車判定装置が行う停車判定処理を示すフローチャート。The flowchart which shows the stop determination process which the stop determination apparatus which concerns on this embodiment performs. 本実施形態に係る停車判定装置が行う判定閾値更新処理を示すフローチャート。The flowchart which shows the determination threshold value update process which the stop determination apparatus which concerns on this embodiment performs. 本実施形態に係る停車判定装置が行う判定閾値更新処理を示すフローチャート。The flowchart which shows the determination threshold value update process which the stop determination apparatus which concerns on this embodiment performs. 本実施形態に係る停車判定装置が行う判定閾値更新処理の他の例を示す概念図。The conceptual diagram which shows the other example of the determination threshold value update process which the stop determination apparatus which concerns on this embodiment performs. 本実施形態に係る停車判定装置が行う判定閾値更新処理の他の例を示すフローチャート。The flowchart which shows the other example of the determination threshold value update process which the stop determination apparatus which concerns on this embodiment performs. 本実施形態に係る停車判定装置が行う判定閾値更新処理の他の例を示すフローチャート。The flowchart which shows the other example of the determination threshold value update process which the stop determination apparatus which concerns on this embodiment performs. 本実施形態に係る停車判定装置が行う停車判定処理を示すフローチャート。The flowchart which shows the stop determination process which the stop determination apparatus which concerns on this embodiment performs.

以下、本発明に係る停車判定装置の実施の形態について、図1から図9を参照して説明する。   Hereinafter, embodiments of a stop determination device according to the present invention will be described with reference to FIGS. 1 to 9.

図1は、本発明の実施形態に係る停車判定装置が適用される車両を示す側面図である。   FIG. 1 is a side view showing a vehicle to which a stop determination device according to an embodiment of the present invention is applied.

図1に示すように、本実施形態に係る停車判定装置1が適用される車両2は、所謂自動二輪車である。車両2は、前後方向に延びる車体3と、車体3の前方に配置される操舵輪としての前輪5と、車体3に前輪5を操舵可能に支えるステアリング機構6と、車体3の後方に配置される駆動輪としての後輪7と、車体3に後輪7を上下方向へ揺動可能に支えるとともに一体化されたエンジン8を有するパワーユニット9と、を備える。   As shown in FIG. 1, the vehicle 2 to which the stop determination device 1 according to this embodiment is applied is a so-called motorcycle. The vehicle 2 is disposed behind the vehicle body 3, a vehicle body 3 extending in the front-rear direction, a front wheel 5 as a steering wheel disposed in front of the vehicle body 3, a steering mechanism 6 that supports the front wheel 5 on the vehicle body 3 so as to be steerable. And a power unit 9 having an engine 8 that is integrated with the rear wheel 7 so as to be swingable in the vertical direction on the vehicle body 3.

なお、車両2は、スクータ型の自動二輪車に限られず、他のタイプの自動二輪車であっても良い。   The vehicle 2 is not limited to a scooter type motorcycle, and may be another type of motorcycle.

停車判定装置1は、車両2のいずれかであってエンジン8の振動が伝わる箇所、例えば、車体3の前端部に取り付けられている。停車判定装置1は、車両2から電源、例えば直流12Vの電源を供給されて駆動する。   The stop determination device 1 is attached to a part of the vehicle 2 where the vibration of the engine 8 is transmitted, for example, the front end portion of the vehicle body 3. The stop determination device 1 is driven by being supplied with power from the vehicle 2, for example, DC 12V.

ところで、停車判定装置1は、小型のカーナビゲーション装置や、簡易的な車車間通信システムのように、車速センサに代表される各種の車両側情報の信号を受け付けるインタフェースを備えていない簡易な車載機器11に停車情報を提供するものであり、車載機器11の機能の一部でもある。   By the way, the stop determination device 1 is a simple vehicle-mounted device that does not include an interface for receiving various vehicle-side information signals represented by a vehicle speed sensor, such as a small car navigation device or a simple inter-vehicle communication system. 11 is provided with stop information and is a part of the function of the in-vehicle device 11.

図2は、本発明の実施形態に係る停車判定装置を示すブロック図である。   FIG. 2 is a block diagram showing the stop determination device according to the embodiment of the present invention.

図2に示すように、本実施形態に係る停車判定装置1は、車両2に設けられてそれぞれ異なる三方向の加速度を測定する三軸加速度センサ12と、三軸加速度センサ12から加速度測定値を受け取り車両2が停車しているか否かを判定する制御部13と、三軸加速度センサ12および制御部13へ電源を供給する電源回路15と、制御部13から車両2が停車しているか否かの判定結果を取り出す出力ポート16と、を備える。   As shown in FIG. 2, the stop determination device 1 according to this embodiment includes a triaxial acceleration sensor 12 that is provided in the vehicle 2 and measures accelerations in three different directions, and an acceleration measurement value from the triaxial acceleration sensor 12. The control unit 13 that determines whether or not the receiving vehicle 2 is stopped, the power supply circuit 15 that supplies power to the triaxial acceleration sensor 12 and the control unit 13, and whether or not the vehicle 2 is stopped from the control unit 13 And an output port 16 for extracting the determination result.

なお、停車判定装置1を車載機器11の機能の一部、例えばPNDの機能の一部として組み込む場合には、制御部13および電源回路15は、PNDの他の機能との間で共有できる。また、車両2が停車しているか否かの判定結果を制御部13の内部でPNDの他の機能へ提供できるため、出力ポート16が不要になる。   In addition, when incorporating the stop determination apparatus 1 as a part of function of the vehicle equipment 11, for example, a part of PND function, the control unit 13 and the power supply circuit 15 can be shared with other functions of the PND. Moreover, since the determination result as to whether or not the vehicle 2 is stopped can be provided to other functions of the PND inside the control unit 13, the output port 16 is not necessary.

さらに、停車判定装置1を組み込む車載機器11の例として、PNDの他に、車車間通信システム、路車間通信システム、携帯電話、スマートフォンがある。これらの機器に停車判定装置1を組み込む場合には、機器が元来備えているCPUや加速度センサ、電源回路等を停車判定装置1に利用することができる。   Furthermore, examples of the in-vehicle device 11 incorporating the stop determination device 1 include a vehicle-to-vehicle communication system, a road-to-vehicle communication system, a mobile phone, and a smartphone in addition to PND. When the stop determination device 1 is incorporated in these devices, the CPU, the acceleration sensor, the power supply circuit, and the like that are originally provided in the device can be used for the stop determination device 1.

三軸加速度センサ12は、異なる三方向、例えば直交する三方向の加速度を測定し、それぞれの値を制御部13へ出力する。三方向それぞれの加速度の測定値を、Ax(n)、Ay(n)、Az(n)と表す。nはサンプル数、例えばn=1〜100個である。   The triaxial acceleration sensor 12 measures acceleration in three different directions, for example, three orthogonal directions, and outputs each value to the control unit 13. The measured values of acceleration in each of the three directions are represented as Ax (n), Ay (n), and Az (n). n is the number of samples, for example, n = 1 to 100.

制御部13は、マイクロプロセッサ(図示省略)、マイクロプロセッサが実行する各種演算プログラム、パラメータなどを記憶する記憶装置(図示省略)を備える。また、制御部13は、三軸加速度センサ12から加速度測定値Ax(n)、Ay(n)、Az(n)を取得する加速度検出部21と、三軸加速度センサ12の測定値について予め定める遮断周波数より低い周波数の成分を逓減させる高域通過フィルタ22と、高域通過フィルタ22を通過した測定値の周波数成分と判定閾値Vthとの比較から車両2が停車しているか否かを判定する判定処理部23と、搭載される車両2に応じて判定閾値Vthを学習して更新する判定閾値学習部25と、を備える。   The control unit 13 includes a microprocessor (not shown), a storage device (not shown) that stores various arithmetic programs executed by the microprocessor, parameters, and the like. The control unit 13 determines in advance the acceleration detection unit 21 that acquires the acceleration measurement values Ax (n), Ay (n), and Az (n) from the triaxial acceleration sensor 12 and the measurement values of the triaxial acceleration sensor 12. It is determined whether or not the vehicle 2 is stopped based on a comparison between the high-pass filter 22 that gradually decreases the frequency component lower than the cutoff frequency, and the frequency component of the measurement value that has passed through the high-pass filter 22 and the determination threshold value Vth. A determination processing unit 23 and a determination threshold learning unit 25 that learns and updates the determination threshold Vth according to the vehicle 2 mounted are provided.

高域通過フィルタ22の遮断周波数は、エンジン8のアイドル時の一次振動周波数に所定の値を加算した値に設定されている。三方向それぞれの加速度について高域通過フィルタ22を通過した測定値の周波数成分を、Ahx(n)、Ahy(n)、Ahz(n)と表す。   The cutoff frequency of the high-pass filter 22 is set to a value obtained by adding a predetermined value to the primary vibration frequency when the engine 8 is idle. The frequency components of the measured values that have passed through the high-pass filter 22 for the accelerations in the three directions are represented as Ahx (n), Ahy (n), and Ahz (n).

電源回路15は、車両2から供給される電源、例えば直流12Vを変換して三軸加速度センサ12や制御部13に適合させる。   The power supply circuit 15 converts power supplied from the vehicle 2, for example, DC 12 V, and adapts it to the triaxial acceleration sensor 12 and the control unit 13.

次に、本実施形態に係る停車判定装置1が行う停車判定処理について詳細に説明する。   Next, the stop determination process performed by the stop determination device 1 according to the present embodiment will be described in detail.

図3は、本実施形態に係る停車判定装置が行う停車判定処理を示すフローチャートである。   FIG. 3 is a flowchart showing a stop determination process performed by the stop determination device according to the present embodiment.

図3に示すように、本実施形態に係る停車判定装置1は、先ず、三軸加速度センサ12から加速度検出部21へ三方向それぞれの加速度測定値Ax(n)、Ay(n)、Az(n)を受け取り(ステップS1)、高域通過フィルタ22に加速度測定値Ax(n)、Ay(n)、Az(n)を順次に通過させてフィルタ処理後の値Ahx(n)、Ahy(n)、Ahz(n)を一時的に制御部13のメモリへ記憶する(ステップS2からステップS4)。このステップS1からステップS4は、実行周期Ts、例えばTs=3ミリ秒ごとに行われる。   As shown in FIG. 3, the stop determination device 1 according to the present embodiment firstly measures acceleration values Ax (n), Ay (n), Az (in three directions) from the triaxial acceleration sensor 12 to the acceleration detection unit 21. n) is received (step S1), and the acceleration measurement values Ax (n), Ay (n), Az (n) are sequentially passed through the high-pass filter 22 and the filtered values Ahx (n), Ahy ( n), Ahz (n) is temporarily stored in the memory of the control unit 13 (from step S2 to step S4). Steps S1 to S4 are performed every execution cycle Ts, for example, every Ts = 3 milliseconds.

次いで、停車判定装置1は、制御部13のメモリから判定処理部23へフィルタ処理後の値Ahx(n)、Ahy(n)、Ahz(n)を読み込んで、所定の時間間隔ごとに三方向それぞれの2乗値の平均値の平方根(RMS:Root Mean Square)Vix、Viy、Vizを計算し(ステップS11からステップS13)、さらに三方向の計算値Vix、Viy、Vizの算術平均Viを求め(ステップS14)、算術平均Viと判定閾値Vthとを比較して車両2が停車しているか否かを判定する(ステップS16)。このとき、停車判定装置1は、判定閾値学習部25で判定閾値Vthを学習して更新する処理をステップS16の前に行う(ステップS15)。このステップS11からステップS16は、実行周期Tsよりも長い実行周期T1、例えばT1=100ミリ秒ごとに行われる。   Next, the stop determination device 1 reads the filtered values Ahx (n), Ahy (n), Ahz (n) from the memory of the control unit 13 to the determination processing unit 23, and performs three directions at predetermined time intervals. Root mean square (RMS) Vix, Viy, and Viz are calculated (step S11 to step S13), and the arithmetic average Vi of the three-way calculated values Vix, Viy, and Viz is obtained. (Step S14), the arithmetic average Vi is compared with the determination threshold value Vth to determine whether or not the vehicle 2 is stopped (Step S16). At this time, the stop determination device 1 learns and updates the determination threshold Vth by the determination threshold learning unit 25 before step S16 (step S15). Steps S11 to S16 are performed every execution cycle T1, which is longer than the execution cycle Ts, for example, T1 = 100 milliseconds.

ステップS1からステップS16の各処理について詳細を説明する。   Details of each processing from step S1 to step S16 will be described.

先ず、ステップS1において、加速度検出部21は、三軸加速度センサ12が測定した三方向の加速度測定値Ax(n)、Ay(n)、Az(n)をサンプル時間Ts毎に取得する。サンプル時間Tsは、エンジン8の二次振動の周波数成分を測定可能な値に設定されている。例えば、測定したいエンジン回転数の最大値Rmax回毎分(rpm:revolution per minute、または回転毎分(rotation per minute))に対するサンプリング時間Tsは、[数1]の条件式で表される。
[数1]
サンプリング時間Ts ≦ 1÷(最大値Rmax÷60×2×2)
First, in step S <b> 1, the acceleration detection unit 21 acquires three-direction acceleration measurement values Ax (n), Ay (n), and Az (n) measured by the three-axis acceleration sensor 12 for each sample time Ts. The sample time Ts is set to a value that can measure the frequency component of the secondary vibration of the engine 8. For example, the sampling time Ts with respect to the maximum value Rmax of the engine speed to be measured (rpm: revolution per minute, or rotation per minute) is expressed by the conditional expression of [Equation 1].
[Equation 1]
Sampling time Ts ≦ 1 ÷ (maximum value Rmax ÷ 60 × 2 × 2)

測定したいエンジン回転数、つまりエンジン8のアイドル時のエンジン回転数は、一般的なエンジン8において、最大値Rmax=5000回毎分で十分である。この場合、サンプリング時間Tsは、[数2]の条件式で求められる。
[数2]
サンプリング時間Ts ≦ 1÷(5000÷60×2×2)=0.003=3ミリ秒
As for the engine speed to be measured, that is, the engine speed when the engine 8 is idle, the maximum value Rmax = 5000 times per minute is sufficient for the general engine 8. In this case, the sampling time Ts is obtained by the conditional expression [Equation 2].
[Equation 2]
Sampling time Ts ≦ 1 ÷ (5000 ÷ 60 × 2 × 2) = 0.003 = 3 milliseconds

ステップS2からステップS4において、高域通過フィルタ22は、加速度測定値Ax(n)、Ay(n)、Az(n)から重力加速度、車両の加減速や姿勢変化にともなう加速度、アイドリング時のエンジン一次振動など、遮断周波数以下の周波数成分を遮断して、エンジン回転数上昇時のエンジン振動を主とする遮断周波数以上の周波数成分を抽出する。フィルタ処理後の値Ahx(n)、Ahy(n)、Ahz(n)は、メモリ空間にそれぞれ設けられたバッファに格納される。バッファは、フィルタ処理後の値Ahx(n)、Ahy(n)、Ahz(n)を実行周期T1分、蓄積する。   In steps S2 to S4, the high-pass filter 22 determines the acceleration from the acceleration measurement values Ax (n), Ay (n), and Az (n), the acceleration due to acceleration / deceleration of the vehicle and the attitude change, and the engine during idling. A frequency component equal to or lower than the cutoff frequency, such as primary vibration, is cut off, and a frequency component higher than the cutoff frequency mainly including engine vibration when the engine speed increases is extracted. The values Ahx (n), Ahy (n), and Ahz (n) after the filtering process are stored in buffers provided in the memory space. The buffer accumulates the filtered values Ahx (n), Ahy (n), and Ahz (n) for the execution period T1.

ステップS11からステップS13において、判定処理部23は、フィルタ処理後の値Ahx(n)、Ahy(n)、Ahz(n)の二乗値の平均を計算し、その平方根をとることで、その大きさ(振幅)を算出する。この三方向それぞれの加速度振動の大きさを、Vix、Viy、Vizと表す。加速度振動の大きさVix、Viy、VizとAhx(n)、Ahy(n)、Ahz(n)との関係を[数3]から[数5]に示す。

Figure 2015040850
Figure 2015040850
Figure 2015040850
In step S11 to step S13, the determination processing unit 23 calculates the average of the square values of the values Ahx (n), Ahy (n), and Ahz (n) after the filter processing, and takes the square root to obtain the magnitude. The thickness (amplitude) is calculated. The magnitude of the acceleration vibration in each of the three directions is expressed as Vix, Viy, Viz. The relationship between acceleration vibration magnitudes Vix, Viy, Viz and Ahx (n), Ahy (n), Ahz (n) is shown in [Expression 3] to [Expression 5].
Figure 2015040850
Figure 2015040850
Figure 2015040850

ステップS14において、判定処理部23は、[数6]の式に示すように、三方向それぞれの加速度振動の大きさVix、Viy、Vizの算術平均Viを計算する。算術平均Viは、三軸加速度センサ12が設置された箇所におけるエンジン振動の大きさを総合的に示す指標Viである。
[数6]
算術平均Vi(指標Vi) = (Vix+Viy+Viz)÷3
In step S <b> 14, the determination processing unit 23 calculates the arithmetic average Vi of the magnitudes Vix, Viy, and Viz of acceleration vibrations in the three directions, as shown in the equation [Equation 6]. The arithmetic average Vi is an index Vi that comprehensively indicates the magnitude of engine vibration at a location where the triaxial acceleration sensor 12 is installed.
[Equation 6]
Arithmetic mean Vi (index Vi) = (Vix + Viy + Viz) ÷ 3

一般に、エンジン振動は、周波数(つまり、エンジン回転数)と振動の大きさとの間に正の相関関係を示す。しかしながら、車両2のいずれかの箇所で観測する場合には、エンジン振動は、車両2側の共振点や非共振などの振動特性の影響を受けてしまう。この車両2側の振動特性の影響は、エンジン振動を測定する方向によっても異なる。つまり、車両2のいずれかの箇所に設置される三軸加速度センサ12の測定結果は、エンジン振動をエンジン8で直接的に測定する場合に比べて、三方向それぞれに周波数と振動の大きさとの相関関係の強弱が異なってしまい、周波数特性も異なってしまう。   In general, engine vibration shows a positive correlation between frequency (that is, engine speed) and magnitude of vibration. However, when observing at any location of the vehicle 2, the engine vibration is affected by vibration characteristics such as a resonance point or non-resonance on the vehicle 2 side. The influence of the vibration characteristics on the vehicle 2 side also varies depending on the direction in which engine vibration is measured. That is, the measurement result of the triaxial acceleration sensor 12 installed in any part of the vehicle 2 indicates that the frequency and the magnitude of vibration are different in each of the three directions compared to the case where the engine vibration is directly measured by the engine 8. Correlation strength is different and frequency characteristics are also different.

そこで、本発明の発明者は、三軸加速度センサ12の三方向を平均した指標Viを採用することによって、車体3側の振動特性の影響を相殺し、周波数と振動の大きさとの相関関係を安定化させて、エンジン8で直接的に観測される相関関係に近づけられることを実験的に確認した。つまり、本実施形態の停車判定装置1は、車体3側の振動特性に影響を受ける三軸加速度センサ12の測定結果を、算術平均Viで評価することによって、停車判定の判定精度を向上させる。   Therefore, the inventor of the present invention uses an index Vi that averages the three directions of the three-axis acceleration sensor 12 to cancel the influence of the vibration characteristics on the vehicle body 3 side, and to show the correlation between the frequency and the magnitude of vibration. It was experimentally confirmed that the correlation was stabilized and the correlation closely observed with the engine 8 can be obtained. That is, the stop determination device 1 of the present embodiment improves the determination accuracy of the stop determination by evaluating the measurement result of the triaxial acceleration sensor 12 affected by the vibration characteristics on the vehicle body 3 side by the arithmetic average Vi.

ステップS15において、判定閾値学習部25は、その時点までに取得した算術平均Viの時系列情報から判定閾値Vthを学習して更新する。判定閾値Vthの学習方法を2通り説明する。   In step S15, the determination threshold value learning unit 25 learns and updates the determination threshold value Vth from the time series information of the arithmetic average Vi acquired up to that point. Two methods of learning the determination threshold value Vth will be described.

図4および図5は、本実施形態に係る停車判定装置が行う判定閾値更新処理を示すフローチャートである。   4 and 5 are flowcharts showing determination threshold update processing performed by the stop determination device according to the present embodiment.

図4および図5に示すように、本実施形態に係る停車判定装置1の判定閾値学習部25は、判定処理部23で停車の判定が成立している際に、三方向それぞれの加速度振動の大きさVix、Viy、Vizの算術平均Vi、つまり指標Viよりも若干大きい値が判定閾値Vthよりも小さければ、判定閾値Vthをこの指標Viより若干大きい値に更新する。   As shown in FIG. 4 and FIG. 5, the determination threshold value learning unit 25 of the stop determination device 1 according to the present embodiment is configured to detect acceleration vibration in each of the three directions when the determination processing unit 23 determines that the vehicle stops. If the arithmetic average Vi of the magnitudes Vix, Viy, Viz, that is, a value slightly larger than the index Vi is smaller than the determination threshold Vth, the determination threshold Vth is updated to a value slightly larger than the index Vi.

具体的には、判定閾値学習部25は、判定閾値Vthの初期値を取り得る最大値に設定しておく。そして、判定閾値学習部25は、停車判定、つまりステップS16が成立中か否かを判断する(ステップS21)。停車判定が成立している場合(ステップS21 True)、判定閾値学習部25は、更新時間Trの期間中(図5 ステップS31からステップS40)、指標Viの最大値Vimaxを一時的に記憶する(ステップS22、S23)。   Specifically, the determination threshold value learning unit 25 sets the maximum value that can take the initial value of the determination threshold value Vth. Then, the determination threshold value learning unit 25 determines whether or not the vehicle is stopped, that is, whether or not step S16 is established (step S21). When the stop determination is established (step S21 True), the determination threshold value learning unit 25 temporarily stores the maximum value Vimax of the indicator Vi during the update time Tr (FIG. 5, step S31 to step S40) ( Steps S22 and S23).

ステップS11からステップS16の実行周期T1が経過した後に(ステップS24、S25)、停車判定結果を安定化させるために最大値Vimaxを若干大きい値に補正して補正値Vimax’を求める(ステップS26)。最大値Vimaxと補正値Vimax’との関係は、[数7]の通りである。[数7]は、指標Viより若干大きい値を算出する計算式を表している。
[数7]
補正値Vimax’=a×最大値Vimax+b
なお、定数a、bは、例えば、1≦a≦1.2、0.1×Viidle≦b≦0.2×Viidleの範囲に設定される。ここで、Viidleは、アイドリング時の指標Viの平均値である。
After the execution cycle T1 from step S11 to step S16 has elapsed (steps S24 and S25), the maximum value Vimax is corrected to a slightly larger value to stabilize the stoppage determination result (step S26). . The relationship between the maximum value Vimax and the correction value Vimax ′ is as [Equation 7]. [Expression 7] represents a calculation formula for calculating a value slightly larger than the index Vi.
[Equation 7]
Correction value Vimax ′ = a × maximum value Vimax + b
The constants a and b are set in a range of 1 ≦ a ≦ 1.2 and 0.1 × Viid ≦≦≦ 0.2 × Vidle, for example. Here, Vidle is an average value of the index Vi during idling.

補正値Vimax’が現在の判定閾値Vthよりも小さい場合には、判定閾値Vthを補正値Vimax’で更新する(ステップS27、S28)。停車状態における指標Viが最も小さくなる特性があるため、判定閾値Vthは、最終的に停車状態における指標Viを補正した値Vi’に収束し、これを判定閾値Vthに採用することで停車判定が可能になる。   If the correction value Vimax 'is smaller than the current determination threshold value Vth, the determination threshold value Vth is updated with the correction value Vimax' (steps S27 and S28). Since there is a characteristic that the indicator Vi becomes the smallest in the stop state, the determination threshold Vth finally converges to a value Vi ′ obtained by correcting the indicator Vi in the stop state, and the stop determination is made by adopting this as the determination threshold Vth. It becomes possible.

判定閾値更新処理が完了したか否かの判定(ステップS30)は、判定閾値Vthが更新される都度(ステップS31からステップS33)、現在の判定閾値Vthで停車判定が成立している時間、具体的にはカウンタタイマ1を計数し(ステップS34 True、ステップS35)、停車判定が成立していない時間、具体的にはカウンタタイマ2を計数し(ステップS34 False、ステップS36)、その両方があらかじめ設定した更新完了判定閾カウント値Tthを超えたときに(ステップS37、S38)、その更新を完了する(ステップS39)。更新完了判定閾カウント値Tthは、例えば、更新完了判定閾期間を30秒とすると、実行周期T1、例えばT1=100ミリ秒からTth=300となる。   The determination whether or not the determination threshold update process is completed (step S30) is the time when the stop determination is established at the current determination threshold Vth each time the determination threshold Vth is updated (step S31 to step S33), specifically Specifically, the counter timer 1 is counted (step S34 True, step S35), the time when the stop determination is not established, specifically the counter timer 2 is counted (step S34 False, step S36), When the set update completion determination threshold count value Tth is exceeded (steps S37 and S38), the update is completed (step S39). For example, when the update completion determination threshold period is 30 seconds, the update completion determination threshold count value Tth is changed from an execution cycle T1, for example, T1 = 100 milliseconds to Tth = 300.

図6は、本実施形態に係る停車判定装置が行う判定閾値更新処理の他の例を示す概念図である。   FIG. 6 is a conceptual diagram illustrating another example of the determination threshold update process performed by the stop determination device according to the present embodiment.

図7および図8は、本実施形態に係る停車判定装置が行う判定閾値更新処理の他の例を示すフローチャートである。   7 and 8 are flowcharts illustrating another example of the determination threshold value update process performed by the stop determination device according to the present embodiment.

図6から図8に示すように、本実施形態に係る停車判定装置1の判定閾値学習部25は、三方向それぞれの加速度振動の大きさVix、Viy、Vizの算術平均Vi、つまり指標Viについて、大きさ別に出現頻度を計数し、車両2が停車している際に出現頻度が高まる大きさの区分と、車両2が走行している際に出現頻度が高まる大きさの区分との間で統計的に判定閾値Vthを求めて更新する。   As shown in FIGS. 6 to 8, the determination threshold value learning unit 25 of the stop determination device 1 according to the present embodiment uses the arithmetic average Vi of the magnitudes Vix, Viy, and Viz of acceleration vibrations in the three directions, that is, the index Vi. The frequency of appearance is counted for each size, and between the size of the size where the frequency of appearance increases when the vehicle 2 is stopped and the size of the size where the frequency of appearance increases when the vehicle 2 is traveling. The determination threshold value Vth is statistically obtained and updated.

具体的には、判定閾値学習部25は、指標Viをその大きさ別に出現頻度を計数する。この計数結果は、図6に示すように、横軸を指標Viの大きさとし、縦軸を出現頻度とするヒストグラムを描く。車両2が停車と走行とを繰り返すうち、ヒストグラムには、2つの峰、つまり一方は停車状態における指標Viを中心とする峰と、他方は走行状態における指標Viを中心とする峰とが現れる。これらヒストグラム上の2つの峰の谷の位置を特定し、谷の位置における指標Viの大きさで判定閾値Vthを更新する。
谷の位置を特定するアルゴリズムには、例えば、画像処理において2値化処理の閾値選定法として一般に知られているkittlerの方法がある。
Specifically, the determination threshold value learning unit 25 counts the appearance frequency of the index Vi for each size. As shown in FIG. 6, this counting result draws a histogram in which the horizontal axis is the size of the index Vi and the vertical axis is the appearance frequency. As the vehicle 2 repeats stopping and running, two peaks appear in the histogram, one peak centering on the indicator Vi in the stopped state and the other peak centering on the indicator Vi in the running state. The positions of the valleys of the two peaks on these histograms are specified, and the determination threshold Vth is updated with the size of the index Vi at the valley positions.
As an algorithm for specifying the position of the valley, for example, there is a kittler method generally known as a threshold selection method for binarization processing in image processing.

kittlerの方法は、ヒストグラムから統計的な手法によって最適な閾値を求める。kittlerの方法は、閾値候補kを変えていった場合に、[数8]から[数15]で計算されるE(k)を最小にする閾値候補kを算出する。この閾値候補kを判定閾値Vthとして更新する。   The kittler method obtains an optimum threshold value from a histogram by a statistical method. The kittler method calculates a threshold candidate k that minimizes E (k) calculated from [Equation 8] to [Equation 15] when the threshold candidate k is changed. This threshold candidate k is updated as the determination threshold Vth.

Figure 2015040850
ただし、[数8]中の各項は以下の通り。
Figure 2015040850
Figure 2015040850
Figure 2015040850
Figure 2015040850
Figure 2015040850
Figure 2015040850
Figure 2015040850
pi:ある指標Viの大きさiにおけるヒストグラムの頻度値niを正規化した値。
σ0(k):ある閾値候補kの時の閾値候補k以下の区間における指標Viの大きさiの分散。
σ1(k):ある閾値候補kの時の閾値候補k以上の区間における指標Viの大きさiの分散。
Figure 2015040850
However, each item in [Equation 8] is as follows.
Figure 2015040850
Figure 2015040850
Figure 2015040850
Figure 2015040850
Figure 2015040850
Figure 2015040850
Figure 2015040850
pi: A value obtained by normalizing the histogram frequency value ni for the size i of a certain index Vi.
σ 0 (k): Variance of the size i of the index Vi in a section equal to or less than the threshold candidate k at the time of a certain threshold candidate k.
σ1 (k): variance of the size i of the index Vi in a section equal to or greater than the threshold candidate k at the time of a certain threshold candidate k.

判定閾値更新処理が完了したか否かの判定(ステップS59)は、ヒストグラム上で閾値候補k未満と閾値候補k以上の2つの区間でそれぞれの最大頻度と閾値候補kでの頻度との差を計算し(ステップS65)、その両者が予め定めた更新完了判定閾差Hth、例えば50を超えたときに(ステップS66、S67)、その更新を完了する(ステップS68)。   The determination of whether or not the determination threshold update process has been completed (step S59) is based on the difference between the maximum frequency and the frequency at the threshold candidate k in the two sections below the threshold candidate k and above the threshold candidate k on the histogram. When the calculation is completed (step S65) and both of them exceed a predetermined update completion determination threshold difference Hth, for example, 50 (steps S66 and S67), the update is completed (step S68).

図9は、本実施形態に係る停車判定装置が行う停車判定処理を示すフローチャートである。   FIG. 9 is a flowchart showing stop determination processing performed by the stop determination device according to the present embodiment.

図9に示すように、本実施形態に係る停車判定装置1の判定処理部23は、ステップS16において、指標Viが最新の判定閾値Vthを停車判定期間Tonの間、継続して下回った場合に、車両2が停車状態であることを判定する(ステップS71からステップS77)。他方、指標Viが最新の判定閾値Vthを走行判定期間Toffの間、継続して上回った場合に車両2が停車状態でないこと、翻って走行状態であることを判定する(ステップS78からステップS83)。   As illustrated in FIG. 9, the determination processing unit 23 of the stop determination device 1 according to the present embodiment determines that the index Vi continuously falls below the latest determination threshold Vth during the stop determination period Ton in step S16. Then, it is determined that the vehicle 2 is in a stopped state (from step S71 to step S77). On the other hand, when the index Vi continuously exceeds the latest determination threshold value Vth during the travel determination period Toff, it is determined that the vehicle 2 is not in a stopped state and is in a travel state (steps S78 to S83). .

なお、三軸加速度センサ12、高域通過フィルタ22、判定処理部23および判定閾値学習部25は、処理の一部または全部をデジタル回路で実装することも可能であり、アナログ回路で実装することも可能である。例えば、Ahx(n)、Ahy(n)、Ahz(n)の2乗値の平均値の平方根計算までをアナログ回路で実装し、処理結果をCPUのアナログ入力ポートに入力し、その後の処理をCPU内でデジタル処理するといったことが可能である。   The three-axis acceleration sensor 12, the high-pass filter 22, the determination processing unit 23, and the determination threshold learning unit 25 can be partly or entirely implemented with a digital circuit, and can be implemented with an analog circuit. Is also possible. For example, an analog circuit implements up to the square root calculation of the mean value of the square values of Ahx (n), Ahy (n), and Ahz (n), and inputs the processing result to the analog input port of the CPU. It is possible to perform digital processing in the CPU.

本実施形態に係る停車判定装置1は、重力加速度や、車両2の加減速、姿勢変化による加速度を高域通過フィルタ22によって除去できるため、エンジン振動を検出できる箇所であれば、車両2のいずれの箇所であっても設置できる。   The stop determination device 1 according to the present embodiment can remove gravity acceleration, acceleration / deceleration of the vehicle 2 and acceleration due to posture change by the high-pass filter 22, so any vehicle 2 can be used as long as it can detect engine vibration. Can be installed even in

また、本実施形態に係る停車判定装置1は、三軸加速度センサ12が測定する三方向の加速度から車両2が停車しているか否かを判定するため、ある一方向の振動特性による誤判定を起こしにくく、判定精度を高められ、しかも設置の方向性も自由度が高い。   Moreover, since the stop determination apparatus 1 according to the present embodiment determines whether or not the vehicle 2 is stopped from the three-direction acceleration measured by the three-axis acceleration sensor 12, an erroneous determination based on a certain one-way vibration characteristic is performed. It is difficult to wake up, the accuracy of judgment is improved, and the directionality of installation is also highly flexible.

さらに、本実施形態に係る停車判定装置1は、算術平均Viで停車判定を行うことによって、車両2の車種、停車判定装置1の設置箇所、設置の向き(三軸加速度センサ12の測定軸の方向)、エンジン8と停車判定装置1の設置箇所間の伝達特性などによって様々に変化する加速度測定値Ax(n)、Ay(n)、Az(n)や、フィルタ処理後の値Ahx(n)、Ahy(n)、Ahz(n)、三方向それぞれの加速度振動の大きさVix、Viy、Vizの周波数特性の変動を相殺し、誤判定を防止する。   Furthermore, the stop determination device 1 according to the present embodiment performs stop determination with the arithmetic average Vi, thereby determining the vehicle type of the vehicle 2, the installation location of the stop determination device 1, the installation direction (the measurement axis of the triaxial acceleration sensor 12). Direction), acceleration measurement values Ax (n), Ay (n), Az (n), and values Ahx (n) after the filtering process, which vary depending on the transmission characteristics between the engine 8 and the stop determination device 1. ), Ahy (n), Ahz (n), and fluctuations in the frequency characteristics of the acceleration vibration magnitudes Vix, Viy, Viz in the three directions, respectively, to prevent erroneous determination.

さらにまた、本実施形態に係る停車判定装置1は、判定閾値Vthを学習し、更新するため、車両2の車種や、停車判定装置1の設置箇所が変わっても、適切な判定閾値Vthを適用して停車判定を行うことができる。特に、停車判定装置1は、判定閾値Vthを自己学習するため、車両2の車種や、停車判定装置1の設置箇所ごとに事前実験を行い適切な判定閾値Vthを求めたり、初期設定等のマニュアル操作をしたりすることなく、停車判定装置1を設置した後に、しばらく走行と停車とを繰り返すだけで、高精度な停車判定を有効に行うことができる。   Furthermore, since the stop determination device 1 according to the present embodiment learns and updates the determination threshold Vth, the appropriate determination threshold Vth is applied even if the vehicle type of the vehicle 2 or the installation location of the stop determination device 1 changes. Thus, stop determination can be made. In particular, since the stop determination device 1 self-learns the determination threshold value Vth, a preliminary experiment is performed for each vehicle type of the vehicle 2 or each installation location of the stop determination device 1, and an appropriate determination threshold value Vth is obtained. After the stop determination device 1 is installed without performing any operation, it is possible to effectively perform stop determination with high accuracy simply by repeating running and stopping for a while.

また、本実施形態に係る停車判定装置1は、エンジン8のアイドル時の一次振動周波数に所定の値を加算した遮断周波数が適用される高域通過フィルタ22を通過したフィルター処理後の値Ahx(n)、Ahy(n)、Ahz(n)と判定閾値Vthとの比較から車両2が停車しているか否かを判定するため、アイドル時のエンジン一次振動による影響を抑制して、アイドル時とエンジン回転数上昇時(車両2の走行時)との差を鮮明にし、停車判定の精度を向上させる。単気筒エンジンにおいては、アイドル時のエンジン一次振動が比較的大きく、アイドル時とエンジン回転数上昇時との加速度測定値Ax(n)、Ay(n)、Az(n)の差が小さいため、アイドル時のエンジン一次振動による影響を抑制することが、特に有効である。   In addition, the stop determination device 1 according to the present embodiment has a value Ahx (after filtering) that has passed through the high-pass filter 22 to which a cutoff frequency obtained by adding a predetermined value to the primary vibration frequency when the engine 8 is idle is applied. n), Ahy (n), Ahz (n) are compared with the determination threshold value Vth to determine whether or not the vehicle 2 is stopped. The difference from when the engine speed is increased (when the vehicle 2 is traveling) is clarified, and the accuracy of stop determination is improved. In a single-cylinder engine, the engine primary vibration during idling is relatively large, and the difference in acceleration measurement values Ax (n), Ay (n), Az (n) between idling and engine speed increase is small. It is particularly effective to suppress the influence of the engine primary vibration during idling.

したがって、本発明に係る停車判定装置1によれば、停車時であっても振動のばらつきが大きく、しかも加速度センサの設置空間を確保することが難しい車両2に、車速センサの信号などの車両側情報を取得できない車載機器11を搭載する場合であっても、停車判断をより確実に行うことができる。   Therefore, according to the stop determination device 1 according to the present invention, the vehicle 2 has a large variation in vibration even when the vehicle is stopped, and it is difficult to secure an installation space for the acceleration sensor. Even when a vehicle-mounted device 11 that cannot acquire information is installed, it is possible to make a stop determination more reliably.

1 停車判定装置
2 車両
3 車体
5 前輪
6 ステアリング機構
7 後輪
8 エンジン
9 パワーユニット
11 車載機器
12 三軸加速度センサ
13 制御部
15 電源回路
16 出力ポート
21 加速度検出部
22 高域通過フィルタ
23 判定処理部
25 判定閾値学習部
DESCRIPTION OF SYMBOLS 1 Stop determination apparatus 2 Vehicle 3 Car body 5 Front wheel 6 Steering mechanism 7 Rear wheel 8 Engine 9 Power unit 11 In-vehicle equipment 12 Triaxial acceleration sensor 13 Control part 15 Power supply circuit 16 Output port 21 Acceleration detection part 22 High-pass filter 23 Determination processing part 25 determination threshold learning unit

Claims (5)

車両に設けられてそれぞれ異なる三方向の加速度を測定する三軸加速度センサと、
前記三軸加速度センサの測定値について予め定める遮断周波数より低い周波数の成分を逓減させる高域通過フィルタと、
前記高域通過フィルタを通過した前記測定値の周波数成分と判定閾値との比較から前記車両が停車しているか否かを判定する判定処理部と、を備える停車判定装置。
A triaxial acceleration sensor that is provided in the vehicle and measures acceleration in three different directions;
A high-pass filter that gradually decreases a frequency component lower than a predetermined cutoff frequency for the measurement value of the three-axis acceleration sensor;
A stop determination device comprising: a determination processing unit that determines whether or not the vehicle is stopped based on a comparison between a frequency component of the measurement value that has passed through the high-pass filter and a determination threshold value.
前記判定処理部は、前記高域通過フィルタを通過した前記測定値の周波数成分について、所定の時間間隔ごとに三方向それぞれの2乗値の平均値の平方根を計算し、さらに三方向の計算値の算術平均を前記判定閾値と比較する請求項1に記載の停車判定装置。 The determination processing unit calculates a square root of an average value of square values in three directions at predetermined time intervals for the frequency component of the measurement value that has passed through the high-pass filter, and further calculates a value in three directions. The stop determination device according to claim 1, wherein the arithmetic average of the vehicle is compared with the determination threshold value. 前記判定処理部で停車の判定が成立している際に前記算術平均より若干大きい値が前記判定閾値よりも小さければ、前記判定閾値を前記若干大きい値に更新する判定閾値学習部を備える請求項2に記載の停車判定装置。 A determination threshold learning unit that updates the determination threshold to the slightly larger value if a value slightly larger than the arithmetic average is smaller than the determination threshold when the determination processing unit determines that the vehicle is stopped. The stop determination device according to 2. 前記算術平均について、大きさ別に出現頻度を計数し、前記車両が停車している際に出現頻度が高まる大きさの区分と前記車両が走行している際に出現頻度が高まる大きさの区分との間で統計的に前記判定閾値を求めて更新する判定閾値学習部を備える請求項2に記載の停車判定装置。 About the arithmetic average, the frequency of appearance is counted by size, the size of the appearance frequency increases when the vehicle is stopped, and the size of the frequency of increase appearance when the vehicle is traveling The stop determination apparatus according to claim 2, further comprising a determination threshold learning unit that statistically obtains and updates the determination threshold. 前記遮断周波数は、エンジンのアイドリング時の一次振動周波数に所定の値を加算した値である請求項1から4のいずれか1項に記載の停車判定装置。 The stop determination device according to any one of claims 1 to 4, wherein the cutoff frequency is a value obtained by adding a predetermined value to a primary vibration frequency when the engine is idling.
JP2013173841A 2013-08-23 2013-08-23 Vehicle stop determination apparatus Pending JP2015040850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013173841A JP2015040850A (en) 2013-08-23 2013-08-23 Vehicle stop determination apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013173841A JP2015040850A (en) 2013-08-23 2013-08-23 Vehicle stop determination apparatus

Publications (1)

Publication Number Publication Date
JP2015040850A true JP2015040850A (en) 2015-03-02

Family

ID=52695082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013173841A Pending JP2015040850A (en) 2013-08-23 2013-08-23 Vehicle stop determination apparatus

Country Status (1)

Country Link
JP (1) JP2015040850A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114397116A (en) * 2022-01-12 2022-04-26 咸阳黄河轮胎橡胶有限公司 Intelligent identification method for operation state of coal mine engineering vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114397116A (en) * 2022-01-12 2022-04-26 咸阳黄河轮胎橡胶有限公司 Intelligent identification method for operation state of coal mine engineering vehicle
CN114397116B (en) * 2022-01-12 2024-01-26 咸阳黄河轮胎橡胶有限公司 Intelligent recognition method for operation state of coal mine engineering vehicle

Similar Documents

Publication Publication Date Title
CN105109490B (en) Method for judging sharp turn of vehicle based on three-axis acceleration sensor
US10767994B2 (en) Sensor output correction apparatus
CN109000643B (en) Navigation parameter acquisition method, vehicle sharp turning judgment method, system and device
JP4800138B2 (en) Vehicle control apparatus and vehicle equipped with the same
US11565704B2 (en) Road surface condition estimation device
EP3093829B1 (en) Vehicle speed limit display device
JP6142707B2 (en) Vehicle position correction device
US8115616B2 (en) Garage door alert employing a global positioning system
US20190143993A1 (en) Distracted driving determination apparatus, distracted driving determination method, and program
JP5910755B2 (en) Vehicle state determination device, vehicle state determination method, and driving operation diagnosis device
JP2001167397A (en) Driving situation monitoring device for vehicle
US11397280B2 (en) Information processing system, non-transitory storage medium storing program, and information processing method
CN103477380B (en) Driver condition assessment device
CN108806019B (en) Driving record data processing method and device based on acceleration sensor
JP6657753B2 (en) Acceleration correction program, road surface condition evaluation program, acceleration correction method, and acceleration correction device
CN110733571A (en) Device and method for determining driver distraction based on jerk and vehicle system
CN111754815A (en) Control device, server, security system, and control method for control device
JP7120948B2 (en) communication terminal
JP2014038441A (en) Drive recorder
US20210240991A1 (en) Information processing method, information processing device, non-transitory computer-readable recording medium recording information processing program, and information processing system
JP2009266175A (en) Information collection device and system
JP2015040850A (en) Vehicle stop determination apparatus
JP2016013753A (en) Vehicle information notification device
US11358670B2 (en) Straddle-type vehicle information processor and straddle-type vehicle information processing method
CN107430043B (en) Method for detecting wheel imbalance in a vehicle