JP2015040662A - Method for supplying heat source liquid - Google Patents

Method for supplying heat source liquid Download PDF

Info

Publication number
JP2015040662A
JP2015040662A JP2013172109A JP2013172109A JP2015040662A JP 2015040662 A JP2015040662 A JP 2015040662A JP 2013172109 A JP2013172109 A JP 2013172109A JP 2013172109 A JP2013172109 A JP 2013172109A JP 2015040662 A JP2015040662 A JP 2015040662A
Authority
JP
Japan
Prior art keywords
heat source
source liquid
pipe
flow rate
branch pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013172109A
Other languages
Japanese (ja)
Other versions
JP2015040662A5 (en
JP6239900B2 (en
Inventor
石井 秀一
Shuichi Ishii
秀一 石井
俊一 河村
Shunichi Kawamura
俊一 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2013172109A priority Critical patent/JP6239900B2/en
Publication of JP2015040662A publication Critical patent/JP2015040662A/en
Publication of JP2015040662A5 publication Critical patent/JP2015040662A5/en
Application granted granted Critical
Publication of JP6239900B2 publication Critical patent/JP6239900B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pipe Accessories (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To use pulsation when a heat source liquid such as water or brine is supplied to heat exchangers in an identical multi-load connection type piping system, and thereby pump power is reduced.SOLUTION: A piping system is configured such that a plurality of identically configured heat exchangers A, B are connected in parallel to outgoing pipes 12 and incoming pipes 13 through supply branch pipes 14 and feedback branch pipes 15, and heat source liquid is supplied to each heat exchanger A, B by a pump 11. In the piping system, the plurality of heat exchangers are divided into two groups of Ato Aand Bto Bby half number, and control valves MV are provided to the supply branch pipes 14 of each group. A flow rate of the heat source liquid flowing to the supply branch pipes 14 is periodically changed and pulsation is generated. Also, the periods of pulsation are shifted by half cycle between the groups of Ato Aand Bto B.

Description

本発明は、同一構成の熱交換器を多数並列接続し、各熱交換器に接続されている枝管に水やブラインを均一に供給する配管系(以下、「同一多負荷接続型配管系」という)において、これら液体を循環させる際に使用するポンプの動力を低減する、熱源液体の供給方法に関するものである。   The present invention provides a piping system (hereinafter referred to as “same multi-load connection type piping system”) in which a large number of heat exchangers having the same configuration are connected in parallel and water and brine are uniformly supplied to branch pipes connected to each heat exchanger. In other words, the present invention relates to a heat source liquid supply method for reducing the power of a pump used to circulate these liquids.

同一多負荷接続型配管系では、各枝管に同じ設定流量の定流量弁を設置するダイレクトリターン方式、あるいは供給元となるポンプと各枝管を結ぶ配管長を等しくするリバースリターン方式とがあるが、いずれの方式も循環流量は一定であるものの、配管内の水やブラインは乱流である。   In the same multi-load connection type piping system, there is a direct return method in which a constant flow valve with the same set flow rate is installed in each branch pipe, or a reverse return method in which the pipe length connecting the supply source pump and each branch pipe is equal. Although there is a circulation flow rate in any method, water and brine in the pipe are turbulent.

一方で、流体を同一系の配管によって移送する際に、その流体を周期的に加圧して加減速を繰り返し「脈動」を発生させ、流体の流れを乱流状態から層流状態に近づけ、管内壁と流体との摩擦抵抗係数を低減し、搬送動力を低減することが従来から提案されている(特許文献1、2)。   On the other hand, when the fluid is transferred through the same piping system, the fluid is periodically pressurized and repeatedly accelerated and decelerated to generate “pulsation”, bringing the fluid flow from a turbulent state to a laminar state, Conventionally, it has been proposed to reduce the frictional resistance coefficient between the wall and the fluid and reduce the conveyance power (Patent Documents 1 and 2).

WO2009/044764号公報WO2009 / 044744 特開2012−202681号公報JP 2012-202681 A

しかしながら前記した従来文献においては、1の管路を通じて1の供給元から1の供給先に流体を供給する際の基本原理は開示されているものの、前記した同一多負荷接続型配管系に対して適用する際には、格別開示するところはなかった。したがって、たとえば寒冷地の高速鉄道等で採用されている線路脇に設置されている融雪システムなど、多数の熱交換器(負荷)に対して1の主管から各熱交換器に枝管を通じて熱源水を供給する際に、どのようにして脈動を利用して、ポンプ動力を低減させるかが問題となる。たとえば主管の層流化を図った場合、主管の流量や配管径が場所によって異なっているため、層流化する周期や流速変動幅の適正値は存在しない。一方、各枝管の層流化を図ろうとして、主管の流量を例えば0.5〜1.5倍に脈動させると、リバースリターン方式であれば、枝管自体の層流化は可能となるものの、主管における流量変動が大きいため、主管での圧損は極めて大きくなってしまう。   However, in the above-mentioned conventional document, although the basic principle for supplying fluid from one supply source to one supply destination through one pipeline is disclosed, However, there was no special disclosure. Therefore, for example, a snow melting system installed on the side of a railway line used in high-speed railways in cold districts, etc. For a large number of heat exchangers (loads), heat source water passes from one main pipe to each heat exchanger through branch pipes. The problem is how to use the pulsation to reduce pump power when supplying the pump. For example, when laminarization of the main pipe is attempted, the flow rate and the pipe diameter of the main pipe differ depending on the location, and therefore there is no appropriate value for the cycle of laminar flow or the flow velocity fluctuation range. On the other hand, if the main pipe flow rate is pulsated by 0.5 to 1.5 times, for example, in order to achieve laminar flow of each branch pipe, the reverse return system enables laminar flow of the branch pipe itself. However, since the flow rate fluctuation in the main pipe is large, the pressure loss in the main pipe becomes extremely large.

本発明は、かかる点に鑑みてなされたものであり、前記した同一多負荷接続型配管系にある熱交換器に対して、ポンプを使用して水やブライン等の熱源液体を供給する際に、脈動を利用して当該ポンプの動力を低減させることを目的としている。   This invention is made | formed in view of this point, When supplying heat source liquids, such as water and a brine, using a pump with respect to the heat exchanger in the above same multi-load connection type piping system Another object is to reduce the power of the pump using pulsation.

前記目的を達成するため、本発明は、複数の同一構成の熱交換器を、枝管を通じて主管に対して並列接続し、各熱交換器に対して熱源液体をポンプによって供給する配管系において、前記複数の熱交換器を、半数ずつの2つのグループに分け、各グループの枝管に流れる熱源液体の流量を周期的に変化させて脈動を発生させるようにし、前記脈動の周期は、各グループ間で半周期ずつずらすようにしたことを特徴としている。   To achieve the above object, the present invention provides a piping system in which a plurality of heat exchangers having the same configuration are connected in parallel to a main pipe through branch pipes, and a heat source liquid is supplied to each heat exchanger by a pump. The plurality of heat exchangers are divided into two groups each having a half, and the flow rate of the heat source liquid flowing in the branch pipes of each group is periodically changed to generate pulsation. It is characterized by the fact that it is shifted by half a period between them.

本発明においては、同一多負荷接続型配管系の複数の熱交換器を、半数ずつの2つのグループに分け、各グループの枝管に流れる熱源液体の流量を周期的に変化させて脈動を発生させ、当該脈動の周期は、各グループ間で半周期ずつずらすようにしたので、主管の流量を変えることなく、したがって主管の圧力損失はそのままで、各枝管において、脈動流による枝管内の管内壁と熱源液体との摩擦抵抗係数を低減して、ポンプの搬送動力を低減することができる。   In the present invention, a plurality of heat exchangers of the same multi-load connection type piping system are divided into two groups each having a half, and the pulsation is generated by periodically changing the flow rate of the heat source liquid flowing in the branch pipes of each group. The cycle of the pulsation is shifted by a half cycle between each group, so that the flow rate of the main pipe is not changed, so that the pressure loss of the main pipe remains unchanged, and each branch pipe has a pulsating flow in the branch pipe. The conveyance power of the pump can be reduced by reducing the frictional resistance coefficient between the pipe inner wall and the heat source liquid.

前記複数の熱交換器は、異なったグループに属する熱交換器が交互に並ぶように配置されていることが好ましい。   The plurality of heat exchangers are preferably arranged so that heat exchangers belonging to different groups are alternately arranged.

枝管に流れる熱源液体の流量を周期的に変化させるにあたっては、各枝管に設けた流量調整弁の開度制御によって行うようにしてもよい。   When the flow rate of the heat source liquid flowing in the branch pipes is periodically changed, the flow rate adjustment valve provided in each branch pipe may be controlled by opening degree control.

枝管に流れる熱源液体の流量を周期的に変化させるにあたっては、各枝管に設けた個別ポンプの制御によって行うようにしてもよい。   In periodically changing the flow rate of the heat source liquid flowing in the branch pipes, the flow rate of the heat source liquid may be controlled by controlling individual pumps provided in the branch pipes.

さらにまた、異なったグループに属する隣り合う2台1組の熱交換器対に対して、主管から1つの枝管を通じて取水し、当該枝管に三方弁を設け、当該三方弁に接続される他の2つの配管を、各々前記熱交換器対の各熱交換器に接続し、前記三方弁の開度制御によって前記2つの配管に流れる熱源液体の流量を、半周期ずつずらせて周期的に変化させるようにしてもよい。   Furthermore, for a pair of two adjacent heat exchangers belonging to different groups, water is taken from the main pipe through one branch pipe, a three-way valve is provided in the branch pipe, and the other is connected to the three-way valve. Are connected to each heat exchanger of the heat exchanger pair, and the flow rate of the heat source liquid flowing through the two pipes is shifted periodically by half a cycle by controlling the opening of the three-way valve. You may make it make it.

本発明によれば、同一多負荷接続型配管系の複数の熱交換器に対して熱源液体を供給するにあたり、主管の圧力損失はそのままで、各枝管において、脈動流による枝管内の管内壁と熱源液体との摩擦抵抗係数を低減して、ポンプの搬送動力を低減することができる。   According to the present invention, when supplying the heat source liquid to a plurality of heat exchangers of the same multi-load connection type piping system, the pressure loss of the main pipe remains as it is, and the branch pipes in the branch pipes due to the pulsating flow remain in each branch pipe. The conveyance power of the pump can be reduced by reducing the frictional resistance coefficient between the wall and the heat source liquid.

実施の形態が適用された温水供給システムの構成の概略を示す説明図である。It is explanatory drawing which shows the outline of a structure of the hot water supply system to which embodiment was applied. 実施の形態にかかる温水供給システムにおける各枝管の目標流量指示例を示す表である。It is a table | surface which shows the target flow rate instruction | indication example of each branch pipe in the hot water supply system concerning embodiment. 脈動を発生させずに各管内に流体を流す構成の場合の圧力分布の説明図である。It is explanatory drawing of the pressure distribution in the case of the structure which flows a fluid in each pipe | tube without generating a pulsation. 各枝管において脈動を発生させた本実施形態における圧力分布の説明図である。It is explanatory drawing of the pressure distribution in this embodiment which generated the pulsation in each branch pipe. 分流型の三方弁を用いて各枝管において脈動を半周期ずつずらすときの構成の説明図である。It is explanatory drawing of a structure when shifting a pulsation in each branch pipe by a half cycle using a shunt type three-way valve. 混合型の三方弁を用いて各枝管において脈動を半周期ずつずらすときの構成の説明図である。It is explanatory drawing of a structure when shifting a pulsation in each branch pipe by a half cycle using a mixed type three-way valve.

図1は、実施の形態が適用された温水供給システム1の構成の概略を示しており、ボイラ2によって生成された高温水が、ポンプ3によって熱交換機4に供給され、この熱交換器4よって水と熱交換されることで、供給される温水(熱源水)が生成される。   FIG. 1 shows an outline of the configuration of a hot water supply system 1 to which the embodiment is applied. High temperature water generated by a boiler 2 is supplied to a heat exchanger 4 by a pump 3, and the heat exchanger 4 The supplied hot water (heat source water) is generated by exchanging heat with water.

熱交換器4を出た温水は、ポンプ11によって、負荷となる熱交換器A〜A、B〜B(Nは任意の自然数)に供給されるが、往きは往管12を通じて、戻りは還管13を通じてなされる。本実施の形態では、複数台、すなわちそれぞれN台ずつで合計2N台の熱交換器A、Bが設置されている。 The hot water leaving the heat exchanger 4 is supplied to the heat exchangers A 1 to A N and B 1 to B N (N is an arbitrary natural number) serving as loads by the pump 11. The return is made through the return pipe 13. In the present embodiment, a plurality of heat exchangers A and B are installed, that is, a total of 2N heat exchangers A and B.

各熱交換器A〜A、B〜Bは、同一構成、同一定格であり、例えば互いに接続される融雪パネルのそれに相当する。同一構成の熱交換器とは、熱交換器を構成する配管径および配管形状が略同一であるものをいう。制御の都合上、これら各熱交換器A〜A、B〜Bは、Aグループの熱交換器A〜AとBグループの熱交換器B〜Bとにグループ分けられており、Aグループの熱交換器A〜AとBグループの熱交換器B〜Bとは、図1に示したように、交互に配列されている。 The heat exchangers A 1 to A N and B 1 to B N have the same configuration and the same rating, and correspond to, for example, snow melting panels connected to each other. The heat exchanger having the same configuration refers to a heat exchanger having a pipe diameter and a pipe shape that are substantially the same. For convenience of control, these heat exchangers A 1 to A N and B 1 to B N are grouped into A group heat exchangers A 1 to A N and B group heat exchangers B 1 to B N. The A group heat exchangers A 1 to A N and the B group heat exchangers B 1 to B N are alternately arranged as shown in FIG.

各熱交換器A〜A、B〜Bは、各々往管12から供給枝管14を通じて、温水を取水し、熱交換器A、Bにて外部に熱を放出した後、帰還枝管15を通じて降温した温水を、還管13に戻すようになっている。 Each of the heat exchangers A 1 to A N and B 1 to B N takes hot water from the outgoing pipe 12 through the supply branch pipe 14, discharges heat to the outside in the heat exchangers A and B, and then returns. The hot water cooled through the branch pipe 15 is returned to the return pipe 13.

そして図1からも分かるように、本実施の形態では、各熱交換器A〜A、B〜Bは、熱交換器4とはいわゆるリバースリターン方式の同一多負荷接続型配管系を構成しており、各熱交換器A〜A、B〜Bと熱交換器4との間の管路長は、同一長さとなるように配管されている。各供給枝管14には、それぞれ開閉によって流量制御を行うための、連続可変型の制御弁MVが設けられている。 As can be seen from FIG. 1, in this embodiment, each of the heat exchangers A 1 to A N and B 1 to B N is the same multi-load connection type pipe of the so-called reverse return type with respect to the heat exchanger 4. constitute a system, pipe length between the heat exchangers a 1 ~A N, B 1 ~B N and the heat exchanger 4 is piped to have the same length. Each supply branch pipe 14 is provided with a continuously variable control valve MV for controlling the flow rate by opening and closing.

熱交換器4の出口付近の往管12には、往管12内の流体の温度を計測する温度センサt1が設けられ、熱交換器4の入口付近の還管13には、還管13内の流体の温度を計測する温度センサt2が設けられている。これら各温度センサt1、t2の計測データは、制御装置Cに出力される。   The outgoing pipe 12 near the outlet of the heat exchanger 4 is provided with a temperature sensor t 1 for measuring the temperature of the fluid in the outgoing pipe 12, and the return pipe 13 near the inlet of the heat exchanger 4 is provided in the return pipe 13. A temperature sensor t2 for measuring the temperature of the fluid is provided. The measurement data of these temperature sensors t1 and t2 are output to the control device C.

制御装置Cには、圧力計測点P1、P3間の差圧を測定する差圧計16からの出力、すなわち、往管12と還管13との間の差圧dP(換言すると供給枝管14における圧損)が入力される。   The control device C has an output from the differential pressure gauge 16 that measures the differential pressure between the pressure measurement points P1 and P3, that is, a differential pressure dP between the outgoing pipe 12 and the return pipe 13 (in other words, in the supply branch pipe 14). Pressure loss) is input.

制御装置Cは、各枝管(供給枝管14、帰還枝管15)の管径、設定流量、主管の液温(主管の往管t1、還管t2の平均値)tから、液体の流れを層流状態に近づける脈動周期T、流速変動幅(流速の振幅/平均流速)を演算し、所定のスケジュールを組んだ時刻毎の目標流量を演算する。そして制御装置Cは、脈動周期T、流速変動幅、時刻毎の流量(目標流量)を実現するように、各制御弁MVに対して開度を連続的(例えば1秒間に1回)に指示する。このとき、たとえばAグループとBグループの各枝管(供給枝管14、帰還枝管15)の流量変動を、半周期ずらし(脈動流の位相を180度ずらし)、また往管12、還管13とで構成されている主管の流量は変化しないように制御するようになっている。   The control device C determines the flow of liquid from the pipe diameter of each branch pipe (supply branch pipe 14 and return branch pipe 15), the set flow rate, and the liquid temperature of the main pipe (average value of the main pipe forward pipe t1 and return pipe t2) t. A pulsation period T and a flow velocity fluctuation width (amplitude of flow velocity / average flow velocity) are calculated, and a target flow rate for each time set in a predetermined schedule is calculated. Then, the control device C instructs the respective control valves MV to open continuously (for example, once per second) so as to realize the pulsation cycle T, the flow velocity fluctuation range, and the flow rate at each time (target flow rate). To do. At this time, for example, the flow fluctuations of the branch pipes (the supply branch pipe 14 and the return branch pipe 15) of the A group and the B group are shifted by a half cycle (the phase of the pulsating flow is shifted 180 degrees), and the forward pipe 12 and the return pipe 13 is controlled so as not to change the flow rate of the main pipe constituted by 13.

実施の形態にかかる温水供給システム1は、以上の構成を有しており、次にその制御例について説明する。   The hot water supply system 1 according to the embodiment has the above configuration, and a control example thereof will be described next.

まず、与条件は次の通りである。
N=1000(即ち、枝管を供給枝管14、帰還枝管15の対で1本と扱い、Aグループ、Bグループの合計で2000本)、
各枝管(供給枝管14、帰還枝管15)の設定流量q=7[L/min]=1.17×10−4[m/s]、
各枝管(供給枝管14、帰還枝管15)の管内径d×管長=0.02[m]×55[m]、
各枝管(供給枝管14、帰還枝管15)における平均流速u[m/s]=流量[m/s]/(π×(管内径d[m]/2))=0.37[m/s]
First, the given conditions are as follows.
N = 1000 (ie, the branch pipe is treated as one in the pair of the supply branch pipe 14 and the return branch pipe 15, and the total of the A group and the B group is 2000),
Set flow rate q S = 7 [L / min] = 1.17 × 10 −4 [m 3 / s] of each branch pipe (supply branch pipe 14 and return branch pipe 15),
Pipe inner diameter d × tube length = 0.02 [m] × 55 [m] of each branch pipe (supply branch pipe 14 and return branch pipe 15),
Average flow velocity u [m / s] = flow rate [m 3 / s] / (π × (inner diameter d [m] / 2) 2 ) = 0 in each branch pipe (supply branch pipe 14 and return branch pipe 15) = 0. 37 [m / s]

そして熱源液体として水を用い、その温度tは、10℃とした。したがってt=10[℃]のとき、液体密度ρ=1000[kg/m]、液体の動粘度ν=1.33[mm/s]である。 And water was used as a heat source liquid, and the temperature t was 10 degreeC. Therefore, when t = 10 [° C.], the liquid density ρ = 1000 [kg / m 3 ] and the kinematic viscosity ν = 1.33 [mm 2 / s] of the liquid.

そして枝管におけるレイノルズ数Re=5600(枝管における一周期の平均値)、脈動による層流化の度合いを想定して、一周期平均の圧力勾配を求めると49[Pa/m]を得て、一周期平均の壁面摩擦応力τ=d/4×(一周期平均の圧力勾配)=0.24[Pa]を得た。層流化するための条件を例えばT*=10として脈動周期Tを求めると、T=10×d/2/(τ/ρ)0.5=6.4[s]を得た。そして、例えばα=(加速期間の平均圧力勾配/一周期平均の圧力勾配)=4となるような流速変動幅(=(流速の振幅/平均流速))を求めると、1.22を得た。なお、以上の計算はWO2009/044764および「Experimental Investigation of Pump Control for Drag Reduction in Pulsating Turbulent Pipe Flow」(Proc. of the Sixth Int. Symp. on Turbulence and Shear Flow Phenomena,Seoul, Korea, 2, 761−765, 2009)に開示された内容に基づいて行っている。この結果に基づく、各枝管の目標流量指示は、図2の表に示したとおりである。 And assuming the Reynolds number Re = 5600 in the branch pipe (average value of one period in the branch pipe) and the degree of laminarization due to pulsation, the average pressure gradient of one period is 49 [Pa / m]. One cycle average wall friction stress τ w = d / 4 × (one cycle average pressure gradient) = 0.24 [Pa] was obtained. When the pulsation cycle T was obtained by setting the conditions for laminarization as T * = 10, for example, T = 10 × d / 2 / (τ w / ρ) 0.5 = 6.4 [s] was obtained. For example, when a flow velocity fluctuation width (= (flow velocity amplitude / average flow velocity)) such that α a = (average pressure gradient in acceleration period / average pressure gradient in one cycle) = 4 is obtained, 1.22 is obtained. It was. The above calculation is described in WO 2009/044764 and “Experimental Investigation of Pump Control for Drag Reduction in Pulsating in Pulsing Turbo Pipe Flow” (Proc. Of the Sixth Int. 765, 2009). The target flow rate instruction for each branch pipe based on this result is as shown in the table of FIG.

そしてたとえば、図2の目標流量指示値となるように、AグループとBグループの各枝管(供給枝管14)の制御弁MVの開度を制御することで、各枝管(供給枝管14、帰還枝管15)内の乱流を層流に近づけることができ、それに伴って、枝管内の管内壁と熱源液体との摩擦抵抗係数を低減して、ポンプ11の搬送動力を低減することができる。なお、WO2009/044764の[数8]を用いて求めた動力削減比[Rは、61.5%であった。 Then, for example, each branch pipe (supply branch pipe) is controlled by controlling the opening degree of the control valve MV of each branch pipe (supply branch pipe 14) of the A group and the B group so that the target flow rate instruction value of FIG. 14, the turbulent flow in the return branch pipe 15) can be made close to laminar flow, and accordingly, the frictional resistance coefficient between the inner wall of the branch pipe and the heat source liquid is reduced, thereby reducing the conveyance power of the pump 11. be able to. Note that the power reduction ratio [R W ] T obtained using [Equation 8] of WO2009 / 044744 was 61.5%.

図3は図1に示した温水供給システム1において、脈動を発生させずに各管内に流体を流す構成とした比較例における圧力分布図であり、図4は各枝管において脈動を発生させた本実施形態における圧力分布図である。これらの図中、横軸はN(枝管の番号、ポンプから遠くなるほど大きくなる)、縦軸は圧力(配管内の水やブラインの圧力)を示す。なお、各枝管に流れる流体の設定流量は何れの場合も同量に設定している。また、図3、図4におけるp1〜p5は、図1において示した下記の位置P1〜P5の地点における各圧力を示している。また図中、aは熱交換器4の圧損、bは制御弁MVの圧損、cはポンプ11の差圧を示している。
位置P1:往管12における、最も熱交換器4側に近い熱交換器Aの供給枝管14との接続部の上流側
位置P2:往管12における、熱交換器4から最も遠い位置にある熱交換器Bの供給枝管14との接続部
位置P3:還管13における、熱交換器4から最も近い位置にある熱交換器Aの帰還枝管15との接続部
位置P4:還管13における、熱交換器4から最も遠い位置にある熱交換器Bの帰還枝管15と、還管13との接続部の下流側
位置P5:還管13における、ポンプ11の入り口付近
FIG. 3 is a pressure distribution diagram in a comparative example in which the fluid is allowed to flow in each pipe without generating pulsation in the hot water supply system 1 shown in FIG. 1, and FIG. 4 shows pulsation generated in each branch pipe. It is a pressure distribution figure in this embodiment. In these drawings, the horizontal axis indicates N (branch pipe number, increases as the distance from the pump increases), and the vertical axis indicates pressure (pressure of water or brine in the pipe). The set flow rate of the fluid flowing through each branch pipe is set to the same amount in any case. Moreover, p1-p5 in FIG. 3, FIG. 4 has shown each pressure in the point of the following position P1-P5 shown in FIG. In the figure, a is the pressure loss of the heat exchanger 4, b is the pressure loss of the control valve MV, and c is the differential pressure of the pump 11.
Position P1: in往管12, upstream position of the connecting portion between the supply branch pipe 14 of the heat exchanger A 1 closest to the heat exchanger 4 side P2: in往管12, farthest from the heat exchanger 4 Connection position P3 with a supply branch pipe 14 of a certain heat exchanger B N : Connection position P4 with a return branch pipe 15 of the heat exchanger A 1 located closest to the heat exchanger 4 in the return pipe 13: In the return pipe 13, the downstream side position P5 of the connection part between the return branch pipe 15 of the heat exchanger B N located farthest from the heat exchanger 4 and the return pipe 13: In the vicinity of the inlet of the pump 11 in the return pipe 13

上記の位置P1〜P5において最も圧力が高いのは、ポンプ11から下流側で最も近い位置P1(N=0)の圧力で、p1となる。Nが増加する(ポンプ11から遠ざかる)ほど、配管抵抗によって圧力は低下し、往管12の圧力は図3の線L1のような分布になり、往管12の末端(P2)では圧力p2となる。往管12と還管13を結ぶ供給枝管14では、熱交換器4と制御弁MVの圧損によって(p1−p3)だけ圧力が低下する。供給枝管14の形状はどれも同じなので、Nの値によらず圧力低下量は等しく、図3の線L1と線L2は平行になる。還管13の圧力は、図3の線L2のような分布になり、末端(P4)ではp4となる。還管14の末端からポンプ11まで戻る間に、圧力は還管14の配管抵抗によりp5までさらに低下する。   The pressure at the position P1 to P5 is highest at the position P1 (N = 0) closest to the downstream side from the pump 11 and is p1. As N increases (away from the pump 11), the pressure decreases due to the pipe resistance, and the pressure in the outgoing pipe 12 has a distribution as shown by the line L1 in FIG. 3, and at the end (P2) of the outgoing pipe 12, the pressure p2 Become. In the supply branch pipe 14 connecting the outgoing pipe 12 and the return pipe 13, the pressure is reduced by (p1-p3) due to the pressure loss of the heat exchanger 4 and the control valve MV. Since the shapes of the supply branch pipes 14 are the same, the pressure drop amounts are the same regardless of the value of N, and the lines L1 and L2 in FIG. The pressure in the return pipe 13 is distributed as shown by the line L2 in FIG. 3, and is p4 at the end (P4). While returning from the end of the return pipe 14 to the pump 11, the pressure further decreases to p5 due to the piping resistance of the return pipe 14.

一方、実施の形態のように脈動させた場合、往管12と還管13においては流量も配管径も変わらないので、線L1と線L2の傾きは変わらない。しかし、供給枝管14において層流化による圧損低減があるため、線L1と線L2の距離(供給枝管14での圧力低下量)が小さくなる。供給枝管14における圧力低下は制御弁MVと熱交換器A,B(図中矢印「制御弁の圧損」、「熱交換器の圧損」)で生じるが、隣り合った供給枝管14で制御弁MVの開度と流量の変動が半周期ずれている。その結果、図4のような圧力分布となる。   On the other hand, when the pulsation is performed as in the embodiment, since the flow rate and the pipe diameter are not changed in the forward pipe 12 and the return pipe 13, the slopes of the line L1 and the line L2 are not changed. However, since there is a pressure loss reduction due to laminarization in the supply branch pipe 14, the distance between the line L1 and the line L2 (pressure drop amount in the supply branch pipe 14) becomes small. The pressure drop in the supply branch pipe 14 is caused by the control valve MV and the heat exchangers A and B (arrows “control valve pressure loss”, “heat exchanger pressure loss” in the figure), but is controlled by the adjacent supply branch pipes 14. The variation of the opening degree and flow rate of the valve MV is shifted by a half cycle. As a result, the pressure distribution as shown in FIG. 4 is obtained.

前記実施の形態では、往管12、還管13の接近した2点の差圧、すなわち枝管上下流の差圧dPを測定するようにしているので、「一周期平均の圧力勾配」を「dP/各枝管の管長」で置き換えて計算してもよい。この場合、枝管における脈動による層流化の度合の想定が、より実態に近くなる。   In the above embodiment, since the differential pressure at two points close to the outgoing pipe 12 and the return pipe 13, that is, the differential pressure dP on the upstream and downstream of the branch pipe is measured, the “average pressure gradient of one cycle” is set to “ It may be calculated by replacing with “dP / length of each branch pipe”. In this case, the assumption of the degree of laminarization due to pulsation in the branch pipe becomes closer to the actual situation.

なお前記した実施の形態では、各供給枝管14に制御弁MVを設け、Aグループの熱交換器A〜Aと、BグループのB〜Bの脈動周期を半周期ずつずらすようにしたが、これに代えて、各供給枝管14に対して個別にポンプと逆止弁を設け、これら各ポンプの制御(たとえばインバータ制御)によって、各供給枝管14ごとに脈動を発生させ、Aグループの熱交換器A〜Aと、BグループのB〜Bの脈動周期を半周期ずつずらすようにしてもよい。かかる制御も制御装置Cによって行なわれる。 In the above-described embodiment, each supply branch pipe 14 is provided with a control valve MV so that the pulsation periods of the heat exchangers A 1 to A N of the A group and B 1 to B N of the B group are shifted by half a period. However, instead of this, a pump and a check valve are individually provided for each supply branch pipe 14, and pulsation is generated for each supply branch pipe 14 by the control of each pump (for example, inverter control). The pulsation cycles of the heat exchangers A 1 to A N of the A group and the B 1 to B N of the B group may be shifted by a half cycle. Such control is also performed by the control device C.

さらにその他、図5に示したように、例えば異なったグループに属する隣り合う2台1組の熱交換器対Z1、Z2...の熱交換器A1とB1、A2とB2...に対して、主管12から1つの取水管21を通じて取水するようにし、この取水管21に分流型の三方弁22を設け、当該三方弁22に接続される供給枝管14、14を、各々前記熱交換器対Z1、Z2...の各熱交換器A1、B1、A2、B2...に接続するようにしてもよい。また、図6に示したように、熱交換器対Z1、Z2...の熱交換器A1とB1、A2とB2...の帰還枝管15を合流させて混合型の三方弁22を介して還管13に戻すようにしてもよい。こうすることで、三方弁22の開度制御によって流量分配比(図5の分流型の場合)、あるいは混合比(図6の混合型の場合)を変化させることによって、三方弁22に接続された各熱交換器対Z1、Z2...における2つの供給枝管14、14に流れる熱源液体の流量の脈動を、半周期ずつずらせて周期的に変化させるようにしてもよい。かかる三方弁22の制御も制御装置Cによって行なわれる。   In addition, as shown in FIG. 5, for example, a pair of two adjacent heat exchangers Z1, Z2,. . . Heat exchangers A1 and B1, A2 and B2. . . On the other hand, water is taken from the main pipe 12 through one intake pipe 21, and a branch type three-way valve 22 is provided in the intake pipe 21, and the supply branch pipes 14 and 14 connected to the three-way valve 22 are respectively connected to the intake pipe 21. Heat exchanger pair Z1, Z2. . . Heat exchangers A1, B1, A2, B2. . . You may make it connect to. Further, as shown in FIG. 6, the heat exchanger pairs Z1, Z2,. . . Heat exchangers A1 and B1, A2 and B2. . . These return branch pipes 15 may be joined together and returned to the return pipe 13 via the mixed three-way valve 22. By doing so, the flow rate distribution ratio (in the case of the shunt type in FIG. 5) or the mixing ratio (in the case of the mixed type in FIG. 6) or the mixing ratio (in the case of the mixed type in FIG. 6) is changed by controlling the opening degree of the three-way valve 22. Each heat exchanger pair Z1, Z2. . . The pulsation of the flow rate of the heat source liquid flowing in the two supply branch pipes 14 and 14 may be shifted periodically by shifting by half a cycle. Control of the three-way valve 22 is also performed by the control device C.

前記した温水供給システム1ではAグループの熱交換器A〜Aと、BグループのB〜Bの2N台、すなわち偶数の熱交換器を用いた例を示した。この点に関し、例えば奇数の場合、すなわちAグループの熱交換器A〜AN+1とBグループのB〜Bの2N+1台の熱交換器を用いる場合については、AグループとBグループの流量を交互に脈動させると、主管の流量は一定とならずに一つの供給枝管14に流れる分だけ流量が変動することになる。しかしNの数が十分に大きければ(例えば10以上、より好ましくは100以上)、この変動分は大きな影響を及ぼすものではないので、奇数であっても本発明は、適用することが可能である。したがって、本発明において、「半数ずつ」とあっても、厳密に同数ずつでなくとも、本発明は適用される。 In the hot water supply system 1 described above, an example in which 2N units of the heat exchangers A 1 to A N of the A group and B 1 to B N of the B group, that is, an even number of heat exchangers is shown. In this regard, for example, in the case of an odd number, that is, when using 2N + 1 heat exchangers A 1 to A N + 1 of the A group and B 1 to B N of the B group, the flow rates of the A group and the B group When the pulsation is alternately pulsated, the flow rate of the main pipe is not constant, and the flow rate is changed by the amount flowing through one supply branch pipe 14. However, if the number of N is sufficiently large (for example, 10 or more, more preferably 100 or more), this variation does not have a significant effect, so that the present invention can be applied even if it is an odd number. . Therefore, in the present invention, the present invention is applied even if “half by half” is not strictly the same.

本発明は、同一多負荷接続型配管系にある熱交換器に熱源液体を供給する際に有用である。   The present invention is useful when supplying a heat source liquid to a heat exchanger in the same multi-load connection type piping system.

1 温水供給システム
2 ボイラ
3、11 ポンプ
12 往還
13 還管
14 供給枝管
15 帰還枝管
16 差圧計
21 取水管
22 三方弁
〜A、B〜B 熱交換器
C 制御装置
MV 制御弁
P1〜P5 位置
1 hot water supply system 2 boiler 3,11 pump 12 shuttle 13 Kaekan 14 supply branch pipe 15 feedback branch pipe 16 a differential pressure gauge 21 intake pipe 22 three-way valve A 1 ~A N, B 1 ~B N heat exchanger C controller MV Control valve P1-P5 position

Claims (5)

複数の同一構成の熱交換器を、枝管を通じて主管に対して並列接続し、各熱交換器に対して熱源液体をポンプによって供給する配管系において、
前記複数の熱交換器を、半数ずつの2つのグループに分け、各グループの枝管に流れる熱源液体の流量を周期的に変化させて脈動を発生させるようにし、
前記脈動の周期は、各グループ間で半周期ずつずらすようにしたことを特徴とする、熱源液体の供給方法。
In a piping system in which a plurality of heat exchangers having the same configuration are connected in parallel to a main pipe through branch pipes and a heat source liquid is supplied to each heat exchanger by a pump.
The plurality of heat exchangers are divided into two groups of half, and the flow rate of the heat source liquid flowing in the branch pipes of each group is periodically changed to generate pulsation,
The method of supplying a heat source liquid, wherein the pulsation period is shifted by a half period between each group.
前記複数の熱交換器は、異なったグループに属する熱交換器が交互に並ぶように配置されていることを特徴とする、請求項1に記載の熱源液体の供給方法。 The heat source liquid supply method according to claim 1, wherein the plurality of heat exchangers are arranged so that heat exchangers belonging to different groups are alternately arranged. 枝管に流れる熱源液体の流量を周期的に変化させるにあたっては、各枝管に設けた流量調整弁の開度制御によって行うことを特徴とする、請求項1または2に記載の熱源液体の供給方法。 The supply of the heat source liquid according to claim 1 or 2, wherein the flow rate of the heat source liquid flowing in the branch pipes is periodically changed by opening control of a flow rate adjusting valve provided in each branch pipe. Method. 枝管に流れる熱源液体の流量を周期的に変化させるにあたっては、各枝管に設けた個別ポンプの制御によって行うことを特徴とする、請求項1または2に記載の熱源液体の供給方法。 The method for supplying a heat source liquid according to claim 1 or 2, wherein the flow rate of the heat source liquid flowing in the branch pipes is periodically changed by control of an individual pump provided in each branch pipe. 枝管に流れる熱源液体の流量を周期的に変化させるにあたっては、異なったグループに属する隣り合う2台1組の熱交換器対に対して、
主管から1つの枝管を通じて取水し、
当該枝管に三方弁を設け、
当該三方弁に接続される他の2つの配管を、各々前記熱交換器対の各熱交換器に接続し、
前記三方弁の開度制御によって前記2つの配管に流れる熱源液体の流量を、半周期ずつずらせて周期的に変化させることを特徴とする、請求項2に記載の熱源液体の供給方法。
In periodically changing the flow rate of the heat source liquid flowing in the branch pipes, for a pair of adjacent two heat exchangers belonging to different groups,
Water is taken from the main pipe through one branch pipe,
A three-way valve is provided on the branch pipe,
Connect the other two pipes connected to the three-way valve to each heat exchanger of the heat exchanger pair,
The heat source liquid supply method according to claim 2, wherein the flow rate of the heat source liquid flowing through the two pipes is shifted by half a period and periodically changed by controlling the opening of the three-way valve.
JP2013172109A 2013-08-22 2013-08-22 Heat source liquid supply method and heat source liquid supply system Active JP6239900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013172109A JP6239900B2 (en) 2013-08-22 2013-08-22 Heat source liquid supply method and heat source liquid supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013172109A JP6239900B2 (en) 2013-08-22 2013-08-22 Heat source liquid supply method and heat source liquid supply system

Publications (3)

Publication Number Publication Date
JP2015040662A true JP2015040662A (en) 2015-03-02
JP2015040662A5 JP2015040662A5 (en) 2016-10-06
JP6239900B2 JP6239900B2 (en) 2017-11-29

Family

ID=52694928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013172109A Active JP6239900B2 (en) 2013-08-22 2013-08-22 Heat source liquid supply method and heat source liquid supply system

Country Status (1)

Country Link
JP (1) JP6239900B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107388322A (en) * 2016-05-17 2017-11-24 高金龙 Circulating heating hybrid system
US11035629B2 (en) 2017-06-06 2021-06-15 Denso Corporation Heat exchange apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145093A (en) * 1984-08-10 1986-03-04 株式会社熊谷組 In-series cooperative operation of earth and sand transport pump
JP2007533170A (en) * 2004-04-19 2007-11-15 エクシジェント テクノロジーズ, エルエルシー Heat transfer system driven by electrodynamic pump
WO2009044764A1 (en) * 2007-10-02 2009-04-09 National University Corporation Tokyo University Of Agriculture And Technology Fluid transfer apparatus and method of transferring fluid
JP2012202681A (en) * 2011-03-28 2012-10-22 Tokyo Electric Power Co Inc:The Air conditioning system, air conditioning method, and fluid feeding apparatus for air conditioning system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145093A (en) * 1984-08-10 1986-03-04 株式会社熊谷組 In-series cooperative operation of earth and sand transport pump
JP2007533170A (en) * 2004-04-19 2007-11-15 エクシジェント テクノロジーズ, エルエルシー Heat transfer system driven by electrodynamic pump
WO2009044764A1 (en) * 2007-10-02 2009-04-09 National University Corporation Tokyo University Of Agriculture And Technology Fluid transfer apparatus and method of transferring fluid
JP2012202681A (en) * 2011-03-28 2012-10-22 Tokyo Electric Power Co Inc:The Air conditioning system, air conditioning method, and fluid feeding apparatus for air conditioning system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107388322A (en) * 2016-05-17 2017-11-24 高金龙 Circulating heating hybrid system
US11035629B2 (en) 2017-06-06 2021-06-15 Denso Corporation Heat exchange apparatus

Also Published As

Publication number Publication date
JP6239900B2 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
Zohir et al. Heat transfer characteristics and pressure drop of the concentric tube equipped with coiled wires for pulsating turbulent flow
Wang et al. Characteristics of flow distribution in compact parallel flow heat exchangers, part I: Typical inlet header
MX2009011826A (en) Improved heat exchanger for use in precision cooling systems.
JP6239900B2 (en) Heat source liquid supply method and heat source liquid supply system
Xu et al. Simulations and experiments of laminar heat transfer for Therminol heat transfer fluids in a rifled tube
Pardhi et al. Performance improvement of double pipe heat exchanger by using turbulator
Pawar et al. Two regimes of flux scaling in axially homogeneous turbulent convection in vertical tube
KR101764666B1 (en) Calculation method of the diameters of branch pipes for uniform flow distribution
EP2940382A1 (en) Evaporator apparatus and method of operating the same
JP6160523B2 (en) Heat transport system
JP2015045478A (en) Heat conveyance system
Afrouzi et al. Pulsating flow and heat transfer in a helical tube with constant heat flux
CN106321416A (en) Test bed for heating injection pumps
Mizutani et al. Evaluation of influence of the inlet swirling flow on the flow field in a triple elbow system
Chokphoemphun et al. Thermal performance in circular tube with co/counter-twisted tapes
ITVI20110132A1 (en) HEATING SYSTEM OF A GAS IN GAS PRESSURE REDUCTION SYSTEMS AND A METHOD OF REALIZING SUCH HEATING.
Chavan et al. Heat transfer enhancement by using twisted tape insert
Dehankar et al. Heat transfer augmentation-a review for helical tape insert
Nandan et al. Experimental studies on heat transfer performance of shell and tube heat exchanger with air bubble injection
JP2015040662A5 (en) Heat source liquid supply method and heat source liquid supply system
Rashidov et al. Improvement of the flow distribution uniformity over riser pipes of the beam-absorbing heat exchanger of a solar water heating plate-type collector with forced circulation
Schmandt et al. Performance evaluation of the flow in micro junctions: head change versus head loss coefficients
JP2015170021A (en) Flow controller and flow controlling method
Eswaramoorthy Comparative CFD analysis on heat transfer coefficient of circular & non circular duct
Uchiyama et al. Experimental Evaluation of Resonance Frequency at Branch Section in Each Dry and Wet Steam Flow

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160818

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171102

R150 Certificate of patent or registration of utility model

Ref document number: 6239900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150