JP2015040294A - Abrasive - Google Patents

Abrasive Download PDF

Info

Publication number
JP2015040294A
JP2015040294A JP2013173736A JP2013173736A JP2015040294A JP 2015040294 A JP2015040294 A JP 2015040294A JP 2013173736 A JP2013173736 A JP 2013173736A JP 2013173736 A JP2013173736 A JP 2013173736A JP 2015040294 A JP2015040294 A JP 2015040294A
Authority
JP
Japan
Prior art keywords
abrasive
polishing
abrasive grains
oxide
zinc oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013173736A
Other languages
Japanese (ja)
Other versions
JP6264529B2 (en
Inventor
宙治 桐野
Chuji Kirino
宙治 桐野
承福 李
Shofuku Ri
承福 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CRYSTAL KOGAKU KK
Crystal Optics Inc
Original Assignee
CRYSTAL KOGAKU KK
Crystal Optics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CRYSTAL KOGAKU KK, Crystal Optics Inc filed Critical CRYSTAL KOGAKU KK
Priority to JP2013173736A priority Critical patent/JP6264529B2/en
Publication of JP2015040294A publication Critical patent/JP2015040294A/en
Application granted granted Critical
Publication of JP6264529B2 publication Critical patent/JP6264529B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Surface Treatment Of Glass (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an abrasive which can improve retentivity on an abrasive pad when performing polishing and can efficiently improve polishing characteristics even when a polishing object is chemically stable quartz glass.SOLUTION: Provided is an abrasive 1 comprising mixed powder or a solid solution having zinc oxide (ZnO) 11 included in abrasive grains 12. An average particle size of zinc oxide 11 is 10% or more and 60% or less relative to an average dispersion particle size of the abrasive grains 12.

Description

本発明は、研磨対象物を研磨するための研磨材に関する。   The present invention relates to an abrasive for polishing an object to be polished.

従来から、磁気ディスク用ガラス基板や液晶ディスプレイ用ガラス基板等のガラス質の研磨対象物の研磨加工では、高精度な平坦性や高い研磨能率が要求されている。このような研磨対象物に対して研磨を行う際は、一般的に研磨対象物をホルダー等に保持した状態で、研磨材を水に分散させた研磨スラリーを供給しながら、研磨定盤上に設けられた研磨パッドの研磨面に研磨対象物の被研磨面を押圧させて回転させることにより研磨が行われる。   Conventionally, high-precision flatness and high polishing efficiency are required in polishing of glassy objects such as magnetic disk glass substrates and liquid crystal display glass substrates. When polishing such an object to be polished, the polishing object is generally held on a polishing platen while supplying the polishing slurry in which the abrasive is dispersed in water with the object being held in a holder or the like. Polishing is performed by pressing and rotating the surface to be polished of the object to be polished against the polishing surface of the polishing pad provided.

このような磁気ディスク用ガラス基板や液晶ディスプレイ用ガラス基板等のガラス研磨の研磨材としては、従来から、例えば、セリア(酸化セリウム)、ジルコニア(酸化ジルコニウム)、酸化鉄(べんがら)等の様々な材料が用いられている。近年では、研磨能率を向上させるために、酸化セリウムを主成分とする研磨材を用いたガラス研磨が多く行われているが(例えば、特許文献1参照)、酸化セリウムは、材料となるセリウムがレアアース(希少金属)であり、特定産出国への依存度が高いため、使用量を軽減させるために代替材料の利用が求められている。   Conventionally, as a polishing material for glass polishing such as a glass substrate for a magnetic disk or a glass substrate for a liquid crystal display, various materials such as ceria (cerium oxide), zirconia (zirconium oxide), iron oxide (bengara) and the like have been conventionally used. Material is used. In recent years, in order to improve polishing efficiency, glass polishing using an abrasive mainly composed of cerium oxide has been performed (see, for example, Patent Document 1). Since it is a rare earth (rare metal) and highly dependent on the specific country of origin, the use of alternative materials is required to reduce the amount used.

また、本発明者らは、セリウムの代替材料として、ジルコニウム、珪素、又は鉄のいずれかの酸化物あるいは複酸化物を主成分とする砥粒に金属酸化物、非酸化物、金属又はこれらの混合物を含有させることにより、研磨加工を行う際の研磨パッド上での滞留性を向上させ、研磨能率を向上させることができる研磨材を発明した(例えば、特許文献2参照)。   In addition, as an alternative material for cerium, the present inventors have used metal oxides, non-oxides, metals or these oxides in abrasive grains mainly composed of oxides or double oxides of zirconium, silicon, or iron. By including the mixture, the inventors have invented an abrasive that can improve the retention on the polishing pad during polishing and improve the polishing efficiency (see, for example, Patent Document 2).

特開平11−060282号公報Japanese Patent Laid-Open No. 11-060282 特開2013−121649号公報JP2013-121649A

しかしながら、特許文献1及び特許文献2では、非常に高い純度で化学的に安定している石英ガラスを研磨対象物とした場合には、効率的に表面粗さを改善し、研磨能率を向上させることが難しいという問題があった。   However, in Patent Document 1 and Patent Document 2, when quartz glass that is extremely high purity and chemically stable is used as an object to be polished, the surface roughness is efficiently improved and the polishing efficiency is improved. There was a problem that it was difficult.

本発明は、上記のような課題に鑑みてなされたものであって、研磨加工を行う際の研磨パッド上での滞留性を向上させ、研磨対象物が化学的に安定している石英ガラスの場合にも、効率的に研磨特性を向上させることができる研磨材を提供することを目的とする。   The present invention has been made in view of the problems as described above, and improves the retention on the polishing pad during polishing, and the quartz glass in which the object to be polished is chemically stable. Even in such a case, an object is to provide an abrasive capable of efficiently improving the polishing characteristics.

上記目的を達成するために、請求項1に記載の研磨材は、研磨材用砥粒に酸化亜鉛(ZnO)を含有させた混合粉体又は固溶体からなる研磨材であって、前記酸化亜鉛の平均粒径は、前記研磨材用砥粒の平均分散粒径に対して10%以上60%以下であることを特徴としている。   In order to achieve the above object, the abrasive according to claim 1 is an abrasive made of a mixed powder or a solid solution in which abrasive oxide grains contain zinc oxide (ZnO), and the zinc oxide is made of the zinc oxide. The average particle size is characterized by being 10% or more and 60% or less with respect to the average dispersed particle size of the abrasive grains.

請求項2に記載の研磨材は、前記研磨材用砥粒の平均分散粒径は、0.3μm以上2.0μm以下であることを特徴としている。   The abrasive according to claim 2 is characterized in that an average dispersed particle size of the abrasive grains is 0.3 μm or more and 2.0 μm or less.

請求項3に記載の研磨材は、ダイヤモンド、炭化ケイ素あるいはジルコニウム、セリウム、珪素、アルミニウム、クロム又は鉄のいずれかの酸化物あるいは複酸化物を主成分とする砥粒であることを特徴としている。   The abrasive according to claim 3 is an abrasive whose main component is an oxide or a double oxide of diamond, silicon carbide, zirconium, cerium, silicon, aluminum, chromium, or iron. .

請求項4に記載の研磨材は、pHが4〜10の範囲であることを特徴としている。   The abrasive according to claim 4 is characterized in that the pH is in the range of 4-10.

請求項5に記載の研磨材は、前記酸化亜鉛が、前記研磨材全体の質量を100wt%とした場合の5wt%以上45wt%以下の割合で含まれることを特徴としている。   The abrasive according to claim 5 is characterized in that the zinc oxide is contained in a ratio of 5 wt% or more and 45 wt% or less when the mass of the entire abrasive is 100 wt%.

請求項1に記載の研磨材によれば、研磨材用砥粒に含有させる酸化亜鉛(ZnO)は、凝集作用が優れており、研磨材用砥粒を凝集させ、沈殿を速めることで、研磨パッド上での滞留性を向上させ、研磨加工に作用する研磨材(砥粒)の個数を増加させることができるので、化学的に安定している石英ガラスに対しても研磨能率を向上させることができる。また、研磨能率を向上させることができるので、研磨材用砥粒の使用量も軽減することができ、コストも軽減することができる。また、使用後の洗浄も比較的容易であり、環境にも優しいので、研磨装置や作業者への負担を軽減することができる。   According to the abrasive of claim 1, zinc oxide (ZnO) contained in the abrasive grains is excellent in aggregating action, and the abrasive grains are agglomerated to accelerate the precipitation. Improves the retention performance on the pad and increases the number of abrasives (abrasive grains) that act on the polishing process, thus improving the polishing efficiency even for chemically stable quartz glass Can do. Moreover, since polishing efficiency can be improved, the usage-amount of the abrasive grain for abrasives can also be reduced and cost can also be reduced. Moreover, since cleaning after use is relatively easy and environmentally friendly, the burden on the polishing apparatus and the operator can be reduced.

請求項2に記載の研磨材によれば、研磨材用砥粒の平均分散粒径は、0.3μm以上2.0μm以下であるので、効率的に表面粗さを改善させることができる。   According to the abrasive according to claim 2, since the average dispersed particle size of the abrasive grains is 0.3 μm or more and 2.0 μm or less, the surface roughness can be improved efficiently.

請求項3に記載の研磨材によれば、研磨材用砥粒は、ダイヤモンド、炭化ケイ素あるいはジルコニウム、セリウム、珪素、アルミニウム、クロム又は鉄のいずれかの酸化物あるいは複酸化物を主成分とする砥粒であり、酸化亜鉛は、これらの砥粒に比べて硬度が低いので、研磨加工の際に研磨対象物の被研磨面に傷やスクラッチ等が生じるのを抑制することができる。   According to the abrasive according to claim 3, the abrasive grains for abrasive mainly comprise an oxide or a double oxide of diamond, silicon carbide or zirconium, cerium, silicon, aluminum, chromium or iron. Since it is an abrasive grain and zinc oxide has a lower hardness than these abrasive grains, it is possible to suppress the occurrence of scratches and scratches on the surface to be polished of the object to be polished during polishing.

請求項4に記載の研磨材によれば、pHが4〜10の範囲であるので、より研磨能率を改善することができる。   According to the abrasive of Claim 4, since pH is the range of 4-10, polishing efficiency can be improved more.

請求項5に記載の研磨材によれば、酸化亜鉛は、前記研磨材全体の質量を100wt%とした場合の5wt%以上45wt%以下の割合で含まれるので、研磨材用砥粒の研磨作用を阻害することなく、より効率的に研磨能率を改善することができる。   According to the abrasive of claim 5, since zinc oxide is contained in a proportion of 5 wt% or more and 45 wt% or less when the total mass of the abrasive is 100 wt%, the polishing action of the abrasive grains for abrasive The polishing efficiency can be improved more efficiently without hindering the above.

本発明に係る研磨材による作用を説明するための概略説明図である。It is a schematic explanatory drawing for demonstrating the effect | action by the abrasives which concern on this invention. 本発明に係る研磨材を用いた研磨スラリーの沈降特性を示すグラフである。It is a graph which shows the sedimentation characteristic of the polishing slurry using the abrasive | polishing material which concerns on this invention. 本発明に係る研磨材を用いた研磨スラリーの滑落角の比較を示す図である。It is a figure which shows the comparison of the sliding angle of the polishing slurry using the abrasive | polishing material which concerns on this invention.

以下、本発明に係る研磨材について説明する。本発明の研磨材は、研磨材用砥粒に酸化亜鉛(ZnO)を含有させた混合粉体又は固溶体からなるものである。研磨材用砥粒としては、例えば、ダイヤモンド、炭化ケイ素あるいはジルコニウム、セリウム、珪素、アルミニウム、クロム又は鉄のいずれかの酸化物あるいは複酸化物を主成分とする砥粒等を用いることができるが、これに限定されるものではなく、従来公知のガラス研磨に使用される砥粒を用いても良い。尚、ジルコニウム、セリウム、珪素、鉄の酸化物は、それぞれジルコニア(ZrO)、セリア(CeO)、シリカ(SiO)、酸化鉄(FeO、Fe、Fe)であり、ジルコニアの複酸化物としては、例えば珪酸ジルコニウム等がある。これらの研磨材用砥粒の平均分散粒径としては、研磨加工の際の表面粗さを効率的に改善させるために、0.3μm以上2.0μm以下、より好ましくは、0.7μm以上1.3μm以下のものを用いる。 Hereinafter, the abrasive according to the present invention will be described. The abrasive of the present invention comprises a mixed powder or a solid solution in which zinc oxide (ZnO) is contained in abrasive grains for abrasive. As abrasive grains for abrasives, for example, abrasive grains mainly composed of oxides or double oxides of diamond, silicon carbide or zirconium, cerium, silicon, aluminum, chromium or iron can be used. However, the present invention is not limited to this, and abrasive grains used for conventionally known glass polishing may be used. The oxides of zirconium, cerium, silicon, and iron are zirconia (ZrO 2 ), ceria (CeO 2 ), silica (SiO 2 ), and iron oxide (FeO, Fe 2 O 3 , Fe 3 O 4 ), respectively. Examples of the zirconia double oxide include zirconium silicate. The average dispersed particle size of these abrasive grains for abrasives is 0.3 μm or more and 2.0 μm or less, and more preferably 0.7 μm or more and 1 in order to efficiently improve the surface roughness during polishing. .3 μm or less is used.

尚、ダイヤモンド、炭化ケイ素あるいはジルコニウム、セリウム、珪素、アルミニウム、クロム又は鉄のいずれかの酸化物あるいは複酸化物を主成分とする砥粒は、特に制限はないが、例えば、ジルコニアを主成分とする砥粒としては、従来から一般に市販されているユニバーサル・フォトニクス社やフェロ社製のジルコニアが80〜85wt%程度含まれているもの、フジミインコーポレーテッド社や第一稀元素化学工業社製のジルコニアが95wt%程度含まれているもの等がある。また、ジルコニウムの複酸化物を主成分とする砥粒としては、珪酸ジルコニウム等を用いることができる。セリアを主成分とする砥粒としては、従来から一般に市販されているセリアを主成分として80wt%以上含む砥粒を用いることができる。シリカを主成分とする砥粒としては、従来から一般に市販されているシリカを主成分として80wt%以上含む砥粒を用いることができる。また、酸化鉄を主成分とする砥粒としては、従来から一般に市販されている酸化鉄を主成分として80wt%以上含む砥粒を用いることができる。   The abrasive grains mainly composed of diamond, silicon carbide or zirconium, cerium, silicon, aluminum, chromium or iron oxides or double oxides are not particularly limited. For example, zirconia is the main component. As abrasive grains to be used, those containing about 80 to 85 wt% of zirconia manufactured by Universal Photonics and Ferro, which are generally commercially available, zirconia manufactured by Fujimi Incorporated and Daiichi Rare Element Chemical Industries, Ltd. Is about 95 wt%. Further, zirconium silicate or the like can be used as the abrasive grains mainly composed of a double oxide of zirconium. As the abrasive grains containing ceria as a main component, conventionally available abrasive grains containing 80 wt% or more of ceria as a main component can be used. As the abrasive grains containing silica as a main component, conventionally available abrasive grains containing 80 wt% or more of silica as a main component can be used. Moreover, as an abrasive grain which has iron oxide as a main component, the abrasive grain which contains 80 wt% or more which has iron oxide as a main component conventionally marketed generally can be used.

ダイヤモンド、炭化ケイ素あるいはジルコニウム、セリウム、珪素、アルミニウム、クロム又は鉄のいずれかの酸化物あるいは複酸化物を主成分とする砥粒に添加される酸化亜鉛(ZnO)は、亜鉛(Zn)の酸化物であって、比重が5.67であり、モース硬度が4〜5である。この酸化亜鉛としては、例えば、平均粒径が前記砥粒の平均分散粒径に対して10%以上60%以下、より好ましくは40%以上60%以下のものを用いる。また、酸化亜鉛は、ダイヤモンド、炭化ケイ素あるいはジルコニウム、セリウム、珪素、アルミニウム、クロム又は鉄のいずれかの酸化物あるいは複酸化物を主成分とする砥粒に比べてモース硬度が低いので、研磨加工の際に研磨対象物の被研磨面に傷やスクラッチ等が生じるのを抑制することができる。   Zinc oxide (ZnO) added to abrasive grains mainly composed of diamond, silicon carbide, zirconium, cerium, silicon, aluminum, chromium or iron oxide or double oxide is oxidized zinc (Zn). It has a specific gravity of 5.67 and a Mohs hardness of 4-5. As this zinc oxide, for example, one having an average particle size of 10% to 60%, more preferably 40% to 60%, with respect to the average dispersed particle size of the abrasive grains is used. In addition, since zinc oxide has a lower Mohs hardness than abrasive grains mainly composed of diamond, silicon carbide or zirconium, cerium, silicon, aluminum, chromium or iron oxides or double oxides, it is polished. In this case, it is possible to suppress the occurrence of scratches, scratches and the like on the polished surface of the object to be polished.

また、酸化亜鉛は、ダイヤモンド、炭化ケイ素あるいはジルコニウム、セリウム、珪素、アルミニウム、クロム又は鉄のいずれかの酸化物あるいは複酸化物を主成分とする砥粒の研磨作用を阻害することなく、滞留性を向上させるために、研磨材全体の質量を100wt%とした場合の5wt%以上45wt%以下、より好ましくは20wt%以上40wt%以下の割合で含められる。このように、本発明の研磨材では凝集作用が優れた酸化亜鉛が、ダイヤモンド、炭化ケイ素あるいはジルコニウム、セリウム、珪素、アルミニウム、クロム又は鉄のいずれかの酸化物あるいは複酸化物を主成分とする砥粒に含まれることにより、砥粒を凝集させ、砥粒の沈殿を速めることで、研磨パッド上での滞留性を向上させることができる。つまり、図1に示すように、本発明の研磨材1を水に分散させた研磨スラリーを研磨パッド2上に供給しながら、研磨対象物となる石英ガラス基板3を研磨した場合した場合には、吸着性に優れる酸化亜鉛11により砥粒12を吸着し、複合体として働くことで砥粒12の沈殿を速め、研磨パッド2上での滞留性を向上させることができる。これにより、研磨パッド2上での研磨加工に作用する研磨材(砥粒)の個数を増加させることができるので、研磨能率を向上させることができる。   In addition, zinc oxide retains without impairing the polishing action of abrasive grains mainly composed of diamond, silicon carbide or zirconium, cerium, silicon, aluminum, chromium or iron oxide or double oxide. In order to improve the weight of the polishing material, it is included in a ratio of 5 wt% or more and 45 wt% or less, more preferably 20 wt% or more and 40 wt% or less when the total mass of the abrasive is 100 wt%. As described above, in the abrasive of the present invention, zinc oxide having an excellent aggregating action is mainly composed of an oxide or a double oxide of diamond, silicon carbide, zirconium, cerium, silicon, aluminum, chromium or iron. By being contained in the abrasive grains, it is possible to improve the retention on the polishing pad by aggregating the abrasive grains and accelerating the precipitation of the abrasive grains. That is, as shown in FIG. 1, when the quartz glass substrate 3 that is a polishing object is polished while supplying the polishing slurry in which the abrasive 1 of the present invention is dispersed in water onto the polishing pad 2, By adsorbing the abrasive grains 12 with the zinc oxide 11 having excellent adsorptive properties and acting as a composite, the precipitation of the abrasive grains 12 can be accelerated, and the retention on the polishing pad 2 can be improved. Thereby, since the number of abrasives (abrasive grains) acting on the polishing process on the polishing pad 2 can be increased, the polishing efficiency can be improved.

尚、本発明の研磨材の平均粒径は、研磨加工を行う際の表面粗さ、研磨能率、及び水等の液体に分散させた場合の研磨スラリーの分散性を考慮して、0.5μm以上3.0μm以下になるよう形成されることが好ましい。また、pHは、砥粒の凝集性を高めるために、4〜10の範囲、好ましくは6〜8、より好ましくは7〜8の範囲に調整される。つまり、メイン砥粒である研磨材用砥粒(例えば、酸化ジルコニウム砥粒:等電点pH6.7)と、添加する酸化亜鉛(等電点pH9.4)のゼータ電位が異符号となるスラリーの領域になることが好ましい。   The average particle size of the abrasive of the present invention is 0.5 μm in consideration of the surface roughness at the time of polishing, the polishing efficiency, and the dispersibility of the polishing slurry when dispersed in a liquid such as water. It is preferably formed so as to have a thickness of 3.0 μm or less. Moreover, pH is adjusted to the range of 4-10, Preferably it is 6-8, More preferably, it is the range of 7-8 in order to improve the cohesiveness of an abrasive grain. That is, a slurry in which the zeta potentials of abrasive grains (for example, zirconium oxide abrasive grains: isoelectric point pH 6.7) as main abrasive grains and zinc oxide to be added (isoelectric point pH 9.4) have different signs. It is preferable to be in the region.

本発明の研磨材の製造方法は、特に限定されるものではないが、例えば、ダイヤモンド、炭化ケイ素あるいはジルコニウム、セリウム、珪素、アルミニウム、クロム又は鉄のいずれかの酸化物あるいは複酸化物を主成分とする砥粒と添加物である酸化亜鉛とを目的とする配合(比率)で混合し、これを湿式分級することにより、同じ沈降特性を示す混合粉体を得ることができる。この際、生成される混合粉体が上述した平均粒径を超えるような場合には、平均粒径が0.5μm以上3.0μm以下になるように適宜粉砕処理を行うことにより調整すれば良い。また、ダイヤモンド、炭化ケイ素あるいはジルコニウム、セリウム、珪素、アルミニウム、クロム又は鉄のいずれかの酸化物あるいは複酸化物を主成分とする砥粒を水に分散させた研磨スラリーに酸化亜鉛を適量添加し、酸化亜鉛の凝集作用を利用しても良い。また、その他、従来公知の方法を適用しても良い。   The method for producing the abrasive of the present invention is not particularly limited. For example, the oxide or double oxide of diamond, silicon carbide, zirconium, cerium, silicon, aluminum, chromium, or iron is the main component. The mixed powder showing the same sedimentation characteristics can be obtained by mixing the abrasive grains to be added and zinc oxide as an additive in the intended blending (ratio), and subjecting the mixture to wet classification. At this time, if the mixed powder to be produced exceeds the above-mentioned average particle size, it may be adjusted by appropriately performing a pulverization treatment so that the average particle size is 0.5 μm or more and 3.0 μm or less. . In addition, an appropriate amount of zinc oxide is added to a polishing slurry in which abrasive grains mainly composed of oxides or double oxides of diamond, silicon carbide or zirconium, cerium, silicon, aluminum, chromium or iron are dispersed in water. Alternatively, the aggregating action of zinc oxide may be used. In addition, a conventionally known method may be applied.

以下、本発明の研磨材を用いた研磨の実施例及び従来の研磨材との比較について説明する。   Hereinafter, examples of polishing using the abrasive of the present invention and a comparison with conventional abrasives will be described.

(実施例1)
実施例1では、本発明の研磨材を分散させた研磨スラリーとして、平均分散粒径0.7μmの酸化ジルコニウム砥粒(Universal Photonics社製):3wt%、平均粒径0.3μmの酸化亜鉛:1wt%、水:96wt%、pH7.33の研磨スラリーを用いて石英ガラスの研磨を行った。
Example 1
In Example 1, as a polishing slurry in which the abrasive of the present invention was dispersed, zirconium oxide abrasive grains having an average dispersed particle diameter of 0.7 μm (manufactured by Universal Photonics): 3 wt%, zinc oxide having an average particle diameter of 0.3 μm: The quartz glass was polished using a polishing slurry of 1 wt%, water: 96 wt%, pH 7.33.

研磨条件については、以下に示すような条件で研磨を行った。また、実施例1及び比較例1〜3の研磨結果については、研磨開始から開始後30分後の研磨能率、表面粗さ、及び研磨能率を表面粗さで割ったもの(P/R)を表1に示している。尚、P/Rは、研磨特性の優劣を示す指標の1つであり、値が高いほど研磨特性が優れていることを示すものである。
(研磨条件)
研磨装置:MAT−BC15(MAT社製)
研磨パッド:KSP90(九重電気社製)
研磨圧力:20kPa
研磨定盤回転数:60rpm
ワークホルダー回転数:60rpm
スラリー流量:25mL/min
Regarding the polishing conditions, polishing was performed under the following conditions. Moreover, about the grinding | polishing result of Example 1 and Comparative Examples 1-3, what divided the polishing efficiency, surface roughness, and polishing efficiency 30 minutes after the start from grinding | polishing by surface roughness (P / R). It is shown in Table 1. Note that P / R is one of the indices indicating superiority or inferiority of the polishing characteristics, and the higher the value, the better the polishing characteristics.
(Polishing conditions)
Polishing device: MAT-BC15 (manufactured by MAT)
Polishing pad: KSP90 (manufactured by Kuju Electric)
Polishing pressure: 20 kPa
Polishing platen rotation speed: 60rpm
Work holder rotation speed: 60rpm
Slurry flow rate: 25 mL / min

(比較例1)
比較例1では、研磨材として酸化ジルコニウム砥粒(Universal Photonics社製):3wt%を水:97wt%に分散させたpH6.9の研磨スラリーを用いて実施例1と同様の研磨条件にて石英ガラスの研磨を行った。
(Comparative Example 1)
In Comparative Example 1, zirconium oxide abrasive grains (manufactured by Universal Photonics): a polishing slurry having a pH of 6.9 in which 3 wt% was dispersed in water: 97 wt% as a polishing material was used under the same polishing conditions as in Example 1. Glass was polished.

(比較例2)
比較例2では、研磨材として酸化ジルコニウム砥粒:3wt%、酸化銅(CuO):1wt%を水:96wt%に分散させたpH7.01の研磨スラリーを用いて実施例1と同様の研磨条件にて石英ガラスの研磨を行った。
(Comparative Example 2)
In Comparative Example 2, the same polishing conditions as in Example 1 were used, using a polishing slurry having a pH of 7.01 in which zirconium oxide abrasive grains: 3 wt% and copper oxide (CuO): 1 wt% were dispersed in water: 96 wt% as an abrasive. The quartz glass was polished at

(比較例3)
比較例3では、研磨材として酸化ジルコニウム砥粒:3wt%、酸化銅(WO):1wt%を水:96wt%に分散させたpH5.56の研磨スラリーを用いて実施例1と同様の研磨条件にて石英ガラスの研磨を行った。
(Comparative Example 3)
In Comparative Example 3, polishing similar to that in Example 1 was performed using a polishing slurry having a pH of 5.56 in which zirconium oxide abrasive grains: 3 wt% and copper oxide (WO 3 ): 1 wt% were dispersed in water: 96 wt% as an abrasive. The quartz glass was polished under the conditions.

表1に示すように、酸化ジルコニウム砥粒に酸化亜鉛を添加させた本発明の研磨材を用いて石英ガラスの研磨を行った実施例1では、酸化ジルコニウム砥粒のみを用いた比較例1よりも研磨能率が改善されており、比較例2及び3と比較しても研磨能率が改善されている。研磨特性の優劣を示すP/Rでも最も高い値を示しており、化学的に安定している石英ガラスに対して有効であることがわかる。   As shown in Table 1, in Example 1 in which quartz glass was polished using the abrasive of the present invention in which zinc oxide was added to zirconium oxide abrasive grains, Comparative Example 1 using only zirconium oxide abrasive grains was used. Also, the polishing efficiency is improved, and the polishing efficiency is improved as compared with Comparative Examples 2 and 3. The P / R showing the superiority or inferiority of the polishing characteristics shows the highest value, and it can be seen that this is effective for chemically stable quartz glass.

Figure 2015040294
Figure 2015040294

また、図2は、それぞれの研磨スラリーに対して、光電センサPX−10(キーエンス社製)を用いて計測を行った際の沈降特性を示しており、図2に示すように、酸化ジルコニウム砥粒に酸化亜鉛を添加させた添加させた実施例1の研磨スラリーの沈降速さは、酸化ジルコニウム砥粒のみを用いた比較例1よりも約30倍の速さになっており、他の比較例2及び3と比較しても沈降速度は速くなっている。   FIG. 2 shows the sedimentation characteristics when each polishing slurry is measured using a photoelectric sensor PX-10 (manufactured by Keyence Corporation). As shown in FIG. The settling speed of the polishing slurry of Example 1 in which zinc oxide was added to the grains was about 30 times faster than Comparative Example 1 using only zirconium oxide abrasive grains. Compared with Examples 2 and 3, the sedimentation rate is high.

また、図3は、実施例1の平均粒径0.7μmの酸化ジルコニウム砥粒(Universal Photonics社製):3wt%、平均粒径0.3μmの酸化亜鉛:1wt%、水:96wt%、pH7.33の研磨スラリーと、比較例1の酸化ジルコニウム砥粒:3wt%を水:97wt%に分散させたpH6.9の研磨スラリーを研磨パッド(KSP90)にそれぞれ液量100μlを供給した際の滑落角の測定結果を示している。図3に示すように、比較例1では、滑落角43°で既に研磨パッドから研磨スラリーが滑落しているのに対して、本発明の研磨材を分散させた実施例1では、まだ研磨パッド上に研磨スラリーが滞留した状態であり、滑落角が大きいことがわかる。このようにメイン砥粒に酸化亜鉛を添加した研磨材を用いた場合には、研磨加工を行う際に、研磨パッドの回転に伴う遠心力によって研磨スラリーが研磨パッド上から排除されるのを抑制することができる。つまり、研磨パッド上での砥粒の滞留性を改善され、研磨加工に作用する研磨材(砥粒)の個数を増加させることができるので、研磨能率を向上させることができる。   3 shows zirconium oxide abrasive grains having an average particle diameter of 0.7 μm (made by Universal Photonics) of Example 1: 3 wt%, zinc oxide having an average particle diameter of 0.3 μm: 1 wt%, water: 96 wt%, pH 7 .3 and the zirconium oxide abrasive grains of Comparative Example 1: 3 wt% dispersed in water: 97 wt% pH 6.9 polishing slurry each having a liquid volume of 100 μl supplied to the polishing pad (KSP90) The measurement result of the corner is shown. As shown in FIG. 3, in Comparative Example 1, the polishing slurry already slipped from the polishing pad at a sliding angle of 43 °, whereas in Example 1 in which the abrasive of the present invention was dispersed, the polishing pad was still It can be seen that the polishing slurry stays on top and the sliding angle is large. In this way, when using a polishing material with zinc oxide added to the main abrasive grains, the polishing slurry is prevented from being removed from the polishing pad by the centrifugal force accompanying the rotation of the polishing pad during polishing. can do. That is, the retention of abrasive grains on the polishing pad is improved, and the number of abrasives (abrasive grains) acting on the polishing process can be increased, so that the polishing efficiency can be improved.

次に、表2では、比較例4〜6として、酸化ジルコニウム砥粒に添加させる酸化亜鉛の平均粒径が実施例1とは異なる粒径のものを使用した際の石英ガラスの研磨結果を示している。   Next, Table 2 shows the results of polishing quartz glass when the average particle diameter of zinc oxide added to the zirconium oxide abrasive grains is different from that of Example 1 as Comparative Examples 4 to 6. ing.

(比較例4)
比較例4では、研磨材として平均分散粒径0.7μmの酸化ジルコニウム砥粒:3wt%、平均粒径1.1μmの酸化亜鉛:1wt%、水:96wt%、pH7.53の研磨スラリーを用いて実施例1と同様の研磨条件にて石英ガラスの研磨を行った。
(Comparative Example 4)
In Comparative Example 4, a polishing slurry of zirconium oxide abrasive grains having an average dispersed particle diameter of 0.7 μm: 3 wt%, zinc oxide having an average particle diameter of 1.1 μm: 1 wt%, water: 96 wt%, pH 7.53 as an abrasive. The quartz glass was polished under the same polishing conditions as in Example 1.

(比較例5)
比較例5では、研磨材として平均分散粒径0.7μmの酸化ジルコニウム砥粒:3wt%、平均粒径0.6μmの酸化亜鉛:1wt%、水:96wt%、pH7.55の研磨スラリーを用いて実施例1と同様の研磨条件にて石英ガラスの研磨を行った。
(Comparative Example 5)
In Comparative Example 5, a polishing slurry of zirconium oxide abrasive grains having an average dispersed particle diameter of 0.7 μm: 3 wt%, zinc oxide having an average particle diameter of 0.6 μm: 1 wt%, water: 96 wt%, pH 7.55 as an abrasive. The quartz glass was polished under the same polishing conditions as in Example 1.

(比較例6)
比較例6では、研磨材として平均分散粒径0.7μmの酸化ジルコニウム砥粒:3wt%、平均粒径0.065μmの酸化亜鉛:1wt%、水:96wt%、pH7.63の研磨スラリーを用いて実施例1と同様の研磨条件にて石英ガラスの研磨を行った。
(Comparative Example 6)
In Comparative Example 6, a polishing slurry of zirconium oxide abrasive grains having an average dispersed particle diameter of 0.7 μm: 3 wt%, zinc oxide having an average particle diameter of 0.065 μm: 1 wt%, water: 96 wt%, pH 7.63 is used as an abrasive. The quartz glass was polished under the same polishing conditions as in Example 1.

表2に示すように、メイン砥粒である酸化ジルコニウム砥粒の平均分散粒径に対して、半分程度の粒径である酸化亜鉛を添加させた実施例1が、比較例4のように酸化ジルコニウム砥粒の平均分散粒径より大きな粒径の酸化亜鉛を添加させた場合、比較例5のように酸化ジルコニウム砥粒の平均分散粒径と同程度の粒径の酸化亜鉛を添加させた場合、及び比較例6のように酸化ジルコニウム砥粒の平均分散粒径よりも1/10未満の粒径の酸化亜鉛を添加させた場合よりも研磨能率が大きく改善され、研磨特性も向上していることがわかる。   As shown in Table 2, Example 1 in which zinc oxide having a particle size about half of the average dispersed particle size of zirconium oxide abrasive particles as main abrasive particles was added was oxidized as in Comparative Example 4. When zinc oxide having a particle size larger than the average dispersed particle size of zirconium abrasive grains is added, when zinc oxide having a particle size similar to the average dispersed particle size of zirconium oxide abrasive particles is added as in Comparative Example 5 In addition, the polishing efficiency is greatly improved and the polishing characteristics are also improved as compared with the case where zinc oxide having a particle size of less than 1/10 of the average dispersed particle size of zirconium oxide abrasive grains is added as in Comparative Example 6. I understand that.

Figure 2015040294
Figure 2015040294

(実施例2)
次に、実施例2では、本発明の研磨材を分散させた研磨スラリーとして、平均分散粒径1.2μmの酸化セリウム砥粒:3wt%、平均粒径0.3μmの酸化亜鉛:1wt%、水:96wt%、pH7.7の研磨スラリーを用いて実施例1と同様の条件にてソーダガラスの研磨を行った。
(Example 2)
Next, in Example 2, as a polishing slurry in which the abrasive of the present invention was dispersed, cerium oxide abrasive grains having an average dispersed particle diameter of 1.2 μm: 3 wt%, zinc oxide having an average particle diameter of 0.3 μm: 1 wt%, Water: Soda glass was polished under the same conditions as in Example 1 using a polishing slurry of 96 wt% and pH 7.7.

(実施例3)
実施例3では、本発明の研磨材を分散させた研磨スラリーとして、平均分散粒径1.2μmの酸化セリウム砥粒:3wt%、平均粒径0.6mの酸化亜鉛:1wt%、水:96wt%、pH7.5の研磨スラリーを用いて実施例1と同様の条件にてソーダガラスの研磨を行った。
Example 3
In Example 3, as a polishing slurry in which the abrasive of the present invention is dispersed, cerium oxide abrasive grains having an average dispersed particle diameter of 1.2 μm: 3 wt%, zinc oxide having an average particle diameter of 0.6 m: 1 wt%, water: 96 wt. % Soda glass was polished under the same conditions as in Example 1 using a polishing slurry of pH 7.5.

(比較例7)
比較例7では、研磨材として平均分散粒径1.2μmの酸化セリウム砥粒:3wt%を水:97wt%に分散させたpH6.9の研磨スラリーを用いて実施例1と同様の研磨条件にてソーダガラスの研磨を行った。
(Comparative Example 7)
In Comparative Example 7, a polishing slurry having a pH of 6.9 in which 3 wt% of cerium oxide abrasive grains having an average dispersed particle diameter of 1.2 μm: dispersed in 97 wt% of water was used as an abrasive, and the polishing conditions were the same as in Example 1. The soda glass was polished.

表3に示すように、酸化セリウム砥粒に酸化亜鉛を添加させた本発明の研磨材を用いてソーダガラスの研磨を行った実施例2及び3では、酸化セリウム砥粒のみを用いた比較例7よりも8%以上の研磨能率の改善がみられた。   As shown in Table 3, in Examples 2 and 3 in which soda glass was polished using the abrasive of the present invention in which zinc oxide was added to cerium oxide abrasive grains, comparative examples using only cerium oxide abrasive grains were used. An improvement in polishing efficiency of 8% or more than 7 was observed.

Figure 2015040294
Figure 2015040294

(実施例4)
次に、実施例4では、本発明の研磨材を分散させた研磨スラリーとして、平均分散粒径1.2μmの酸化セリウム砥粒:3wt%、平均粒径0.3μmの酸化亜鉛:1wt%、水:96wt%、pH7.7の研磨スラリーを用いて実施例2と同様の条件で、実施例2の研磨対象物であるソーダガラスに代えて、石英ガラスの研磨を行った。
Example 4
Next, in Example 4, as a polishing slurry in which the abrasive of the present invention is dispersed, cerium oxide abrasive grains having an average dispersed particle diameter of 1.2 μm: 3 wt%, zinc oxide having an average particle diameter of 0.3 μm: 1 wt%, Quartz glass was polished in place of soda glass, which is an object to be polished in Example 2, under the same conditions as in Example 2 using a polishing slurry of water: 96 wt% and pH 7.7.

(実施例5)
実施例5では、本発明の研磨材を分散させた研磨スラリーとして、平均分散粒径径1.2μmの酸化セリウム砥粒:3wt%、平均粒径0.6μmの酸化亜鉛:1wt%、水:96wt%、pH7.5の研磨スラリーを用いて実施例4と同様の条件にて石英ガラスの研磨を行った。
(Example 5)
In Example 5, as a polishing slurry in which the abrasive of the present invention was dispersed, cerium oxide abrasive grains having an average dispersed particle diameter of 1.2 μm: 3 wt%, zinc oxide having an average particle diameter of 0.6 μm: 1 wt%, water: Quartz glass was polished under the same conditions as in Example 4 using a 96 wt%, pH 7.5 polishing slurry.

(比較例8)
比較例8では、研磨材として平均分散粒径1.2μmの酸化セリウム砥粒:3wt%を水:97wt%に分散させたpH6.9の研磨スラリーを用いて実施例4と同様の研磨条件にて石英ガラスの研磨を行った。
(Comparative Example 8)
In Comparative Example 8, the same polishing conditions as in Example 4 were used, using a polishing slurry having a pH of 6.9 in which 3 wt% of cerium oxide abrasive grains having an average dispersed particle diameter of 1.2 μm was dispersed in 97 wt% of water as an abrasive. The quartz glass was polished.

表4に示すように、酸化セリウム砥粒に酸化亜鉛を添加させた本発明の研磨材を用いて石英ガラスの研磨を行った実施例4及び5では、酸化セリウム砥粒のみを用いた比較例8よりも大幅に研磨特性が改善されており、特に酸化セリウム砥粒の粒径の半分程度の粒径の酸化亜鉛を用いた実施例5では、40%以上の研磨能率の改善がみられた。また、実施例4及び5では、実施例2及び3のソーダガラスを研磨対象とした結果よりも顕著な研磨特性の改善が得られており、メイン砥粒に対して酸化亜鉛を添加することにより、化学的に安定している石英ガラスに対する研磨特性を飛躍的に改善できることがわかる。   As shown in Table 4, in Examples 4 and 5 in which the silica glass was polished using the abrasive of the present invention in which zinc oxide was added to cerium oxide abrasive grains, comparative examples using only cerium oxide abrasive grains were used. The polishing characteristics were significantly improved as compared to 8, especially in Example 5 using zinc oxide having a particle size about half the particle size of cerium oxide abrasive grains, an improvement in polishing efficiency of 40% or more was observed. . Moreover, in Example 4 and 5, the improvement of the remarkable grinding | polishing characteristic was acquired rather than the result which made soda glass of Example 2 and 3 grinding | polishing object, By adding zinc oxide with respect to a main abrasive grain, It can be seen that the polishing characteristics for the chemically stable quartz glass can be drastically improved.

Figure 2015040294
Figure 2015040294

尚、本発明に係る研磨材は、上述の形態に限るものではなく、本発明の思想の範囲を逸脱しない範囲で適宜変更することができる。   The abrasive according to the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the scope of the idea of the present invention.

本発明に係る研磨材は、研磨パッドを用いて研磨加工を行う際の研磨能率を改善することができる研磨材として利用することができ、化学的に安定している石英ガラスの研磨加工において特に有効に利用することができる。   The abrasive according to the present invention can be used as an abrasive capable of improving the polishing efficiency when performing polishing using a polishing pad, and particularly in polishing of chemically stable quartz glass. It can be used effectively.

1 研磨材
11 酸化亜鉛
12 砥粒
2 研磨パッド
3 石英ガラス基板
DESCRIPTION OF SYMBOLS 1 Abrasive material 11 Zinc oxide 12 Abrasive grain 2 Polishing pad 3 Quartz glass substrate

Claims (5)

研磨材用砥粒に酸化亜鉛(ZnO)を含有させた混合粉体又は固溶体からなる研磨材であって、
前記酸化亜鉛の平均粒径は、前記研磨材用砥粒の平均分散粒径に対して10%以上60%以下であることを特徴とする研磨材。
An abrasive comprising a mixed powder or a solid solution containing zinc oxide (ZnO) in abrasive grains for an abrasive,
The average particle diameter of the zinc oxide is 10% or more and 60% or less with respect to the average dispersed particle diameter of the abrasive grains.
前記研磨材用砥粒の平均分散粒径は、0.3μm以上2.0μm以下であることを特徴とする請求項1に記載の研磨材。   2. The abrasive according to claim 1, wherein an average dispersed particle size of the abrasive grains is 0.3 μm or more and 2.0 μm or less. 前記研磨材用砥粒は、ダイヤモンド、炭化ケイ素あるいはジルコニウム、セリウム、珪素、アルミニウム、クロム又は鉄のいずれかの酸化物あるいは複酸化物を主成分とする砥粒であることを特徴とする請求項1又は2に記載の研磨材。   The abrasive grain for abrasives is an abrasive grain mainly composed of an oxide or a double oxide of diamond, silicon carbide, zirconium, cerium, silicon, aluminum, chromium, or iron. The abrasive according to 1 or 2. pHが4〜10の範囲であることを特徴とする請求項1乃至3のいずれかに記載の研磨材。   The abrasive according to any one of claims 1 to 3, wherein the pH is in the range of 4 to 10. 前記酸化亜鉛は、前記研磨材全体の質量を100wt%とした場合の5wt%以上45wt%以下の割合で含まれることを特徴とする請求項1乃至4のいずれかに記載の研磨材。   The abrasive according to any one of claims 1 to 4, wherein the zinc oxide is contained in a proportion of 5 wt% or more and 45 wt% or less when the mass of the entire abrasive is 100 wt%.
JP2013173736A 2013-08-23 2013-08-23 Glass substrate abrasive Active JP6264529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013173736A JP6264529B2 (en) 2013-08-23 2013-08-23 Glass substrate abrasive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013173736A JP6264529B2 (en) 2013-08-23 2013-08-23 Glass substrate abrasive

Publications (2)

Publication Number Publication Date
JP2015040294A true JP2015040294A (en) 2015-03-02
JP6264529B2 JP6264529B2 (en) 2018-01-24

Family

ID=52694640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013173736A Active JP6264529B2 (en) 2013-08-23 2013-08-23 Glass substrate abrasive

Country Status (1)

Country Link
JP (1) JP6264529B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018032659A1 (en) * 2016-08-19 2018-02-22 江苏天一超细金属粉末有限公司 Method and device for magnetorheological finishing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05293762A (en) * 1992-04-17 1993-11-09 Olympus Optical Co Ltd Precision grinding polishing wheel
JP2011049610A (en) * 2010-12-10 2011-03-10 Sumitomo Electric Ind Ltd Surface treatment method of ain crystal, ain crystal substrate, ain crystal substrate with epitaxial layer, and semiconductor device
JP2013122795A (en) * 2011-12-09 2013-06-20 Asahi Glass Co Ltd Slurry for polishing magnetic disk glass, method for manufacturing magnetic disk glass substrate using polishing slurry, and magnetic disk glass substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05293762A (en) * 1992-04-17 1993-11-09 Olympus Optical Co Ltd Precision grinding polishing wheel
JP2011049610A (en) * 2010-12-10 2011-03-10 Sumitomo Electric Ind Ltd Surface treatment method of ain crystal, ain crystal substrate, ain crystal substrate with epitaxial layer, and semiconductor device
JP2013122795A (en) * 2011-12-09 2013-06-20 Asahi Glass Co Ltd Slurry for polishing magnetic disk glass, method for manufacturing magnetic disk glass substrate using polishing slurry, and magnetic disk glass substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018032659A1 (en) * 2016-08-19 2018-02-22 江苏天一超细金属粉末有限公司 Method and device for magnetorheological finishing

Also Published As

Publication number Publication date
JP6264529B2 (en) 2018-01-24

Similar Documents

Publication Publication Date Title
JP6017315B2 (en) Abrasive material and polishing composition
JP4113282B2 (en) Polishing composition and edge polishing method using the same
JP5927059B2 (en) Polishing composition and method for producing substrate using the same
JP2000336344A (en) Abrasive
AU2006297240B2 (en) Polishing slurries and methods for utilizing same
KR20130114635A (en) Polishing agent and polishing method
TWI433903B (en) Polishing composition for nickel phosphorous memory disks
JP6262836B1 (en) Polishing abrasive grains, method for producing the same, polishing slurry containing the same, and polishing method using the same
Liu et al. Effect of graphene additions on polishing of silicon carbide wafer with functional PU/silica particles in CMP slurry
JPWO2012169515A1 (en) Abrasive material and polishing composition
WO2004106455A2 (en) Slurry composition and method of use
JP6264529B2 (en) Glass substrate abrasive
JP6078864B2 (en) Abrasive
JP6054341B2 (en) Abrasive grains, manufacturing method thereof, polishing method, polishing member and slurry
JP2012206183A (en) Polishing slurry and method of polishing the same
JP2013121649A (en) Abrasive material
JP2014024156A (en) Abradant, abrasive composition, polishing method of crustaceous material, and manufacturing method of crustaceous material substrate
JP2018002883A (en) Polishing liquid composition for sapphire plate
JP5554052B2 (en) Polishing composition and polishing method
JP2002030272A (en) Abrasive composition and method of grinding silicon oxide material using the same
KR100679460B1 (en) Cerium oxide and sheet-shaped mica complex abrasive material and method for manufacturing the same
JP2018104547A (en) Slurry for polishing
RU2354675C1 (en) Polishing suspension and method of ceramic part polishing
WO2013179926A1 (en) Polishing material slurry
JP2023141786A (en) Polishing slurry and polishing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170411

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171107

R150 Certificate of patent or registration of utility model

Ref document number: 6264529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250