JP2015037937A - Flight vehicle flight control system - Google Patents

Flight vehicle flight control system Download PDF

Info

Publication number
JP2015037937A
JP2015037937A JP2014187932A JP2014187932A JP2015037937A JP 2015037937 A JP2015037937 A JP 2015037937A JP 2014187932 A JP2014187932 A JP 2014187932A JP 2014187932 A JP2014187932 A JP 2014187932A JP 2015037937 A JP2015037937 A JP 2015037937A
Authority
JP
Japan
Prior art keywords
image
flight
point
unit
vertical camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014187932A
Other languages
Japanese (ja)
Other versions
JP5775632B2 (en
Inventor
大友 文夫
Fumio Otomo
文夫 大友
大谷 仁志
Hitoshi Otani
仁志 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2014187932A priority Critical patent/JP5775632B2/en
Publication of JP2015037937A publication Critical patent/JP2015037937A/en
Application granted granted Critical
Publication of JP5775632B2 publication Critical patent/JP5775632B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Studio Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flight control system capable of measuring a height position of a flight vehicle easily and highly accurately, and appropriately controlling flight altitude of the flight vehicle during unmanned flight.SOLUTION: A flight vehicle flight control system includes: a flight vehicle; navigation means 8, 9, 10, and 11 disposed on the flight vehicle; a position measuring unit 17; a flight control unit 18; and a main arithmetic control unit 19 that controls the position measuring unit 17 and the flight control unit 18. The position measuring unit 17 includes: a GPS device 23; a vertical camera 13; and a tile mechanism unit 30 tilting the vertical camera 13. The position measuring unit 17 measures height distances of the flight vehicle from a ground surface on the basis of images at two points photographed by the vertical camera 13, ground coordinates at two points measured by the GPS device 23, and a focal length of the vertical camera 13. The main arithmetic control unit 19 calculates a tilt angle of the ground surface on the basis of measured height distances at least at three points. If the flight vehicle flies along an inclined surface, the tilt mechanism unit 30 tilts the vertical camera 13 so that an optical axis of the vertical camera 13 is perpendicular to the inclined surface.

Description

本発明は、飛行体の無人飛行時の飛行高度を適正に制御する飛行体の飛行制御システムに関するものである。   The present invention relates to a flight control system for an aircraft that appropriately controls the flight altitude of the aircraft during unmanned flight.

上空からの写真撮影、或は上空からの測量では、地上からの写真撮影、地上での測量では得られない情報が得られ、或は人の立入れない場所の写真撮影、測量が困難な場所の情報が得られる。又、近年、遠隔操作される小型飛行機、小型ヘリコプタ等の小型飛行体の性能向上、遠隔操作技術の向上、更に撮像装置の性能の向上、小型化の促進等により小型飛行体に撮像装置を搭載し、遠隔操作により上空からの写真撮影が無人で行える様になっている。更に、予め設定した飛行スケジュールに従い、自律飛行も可能となっている。   Taking photos from the sky or surveying from the sky provides information that cannot be obtained by taking photos from the ground or surveying on the ground, or taking photos in places where people cannot enter, or places where surveying is difficult Can be obtained. In recent years, an imaging device has been installed in a small aircraft by improving the performance of small aircraft such as remotely operated small airplanes and small helicopters, improving remote control technology, improving the performance of imaging devices, and promoting miniaturization. However, it is possible to take photos from the sky unattended by remote control. Furthermore, autonomous flight is also possible according to a preset flight schedule.

小型飛行体を遠隔操作により飛行させる場合、或は自律飛行させる場合、飛行中の小型飛行体自体の正確な位置情報が必要となる。   When flying a small flying object by remote control or autonomously flying, accurate position information of the small flying object itself in flight is required.

位置情報を取得する手段として、近年ではGPS位置測定装置が普及しており、簡便に地心座標(平面位置情報)が測定できる様になっている。更に、GPS位置測定装置の小型軽量化が進み、飛行体等にも容易に設置することが可能となっている。   In recent years, GPS position measuring devices have become widespread as means for acquiring position information, and geocentric coordinates (planar position information) can be easily measured. Furthermore, the GPS position measuring device has been reduced in size and weight, and can be easily installed on a flying object or the like.

GPS位置測定装置は、地心座標については高い精度で測定することができるが、地表からの高さについては測定精度が悪い。小型飛行体が飛行する地域は、必ずしも平坦とは限らず、地表の起伏、或は構築物、建造物のある場合では、地表の起伏、或は構築物、建造物に合わせて小型飛行体の高度を制御する必要がある。   The GPS position measurement apparatus can measure the geocentric coordinates with high accuracy, but the measurement accuracy is low with respect to the height from the ground surface. The area where a small vehicle flies is not necessarily flat. If there are undulations on the surface, or if there are structures or buildings, the undulations on the surface or the altitude of the small aircraft will be adjusted to match the structure or structure. Need to control.

この為、高さ測定の精度を上げるには、別途、地表迄の高さを測定する測定装置を用意する必要がある。ところが、小型飛行体の飛行能力から、小型飛行体の搭載能力は、数百グラムと極めて限定されており、種々の測定機器を搭載することは困難である。   For this reason, in order to increase the accuracy of the height measurement, it is necessary to prepare a measuring device for measuring the height to the ground. However, due to the flight capability of the small aircraft, the installation capability of the small aircraft is extremely limited to several hundred grams, and it is difficult to mount various measuring instruments.

特開2006−10376号公報JP 2006-10376 A 特開2007−171048号公報JP 2007-171048 A 特開2004−245741号公報Japanese Patent Application Laid-Open No. 2004-245741

本発明は斯かる実情に鑑み、簡便に而も高精度に飛行体の高さ位置の測定を可能とし、無人飛行時の飛行体の飛行高度を適正に制御可能とした飛行制御システムを提供するものである。   In view of such circumstances, the present invention provides a flight control system that can easily and accurately measure the height position of a flying object and appropriately control the flying height of the flying object during unmanned flight. Is.

本発明は、飛行体と、該飛行体に設けられた航行手段と、位置測定部と、前記航行手段を制御する飛行制御部と、前記位置測定部と前記飛行制御部とを制御する主演算制御部とを具備し、前記位置測定部は飛行体の地上座標を測定するGPS装置と、飛行体下方のデジタル画像を撮像する鉛直カメラと、該鉛直カメラを傾斜させる傾動機構部とを有し、該鉛直カメラにより撮像した2地点の画像と、前記GPS装置により測定した2地点の地上座標と、前記鉛直カメラの焦点距離に基づき前記飛行体の地表からの高さ距離を測定し、前記主演算制御部は測定された少なくとも3点の高さ距離に基づき地表の傾斜角を演算し、前記飛行体が傾斜面を飛行する場合は、前記傾動機構部が前記鉛直カメラの光軸が傾斜面に対して垂直となる様に前記鉛直カメラを傾斜させる飛行体の飛行制御システムに係るものである。 The present invention includes a flying object, navigation means provided on the flying object, a position measurement unit, a flight control unit that controls the navigation means, and a main calculation that controls the position measurement unit and the flight control unit. The position measuring unit includes a GPS device that measures the ground coordinates of the flying object, a vertical camera that captures a digital image below the flying object , and a tilting mechanism that tilts the vertical camera. Measuring the height distance from the ground surface of the flying object based on the image of the two points imaged by the vertical camera, the ground coordinates of the two points measured by the GPS device, and the focal length of the vertical camera, The arithmetic control unit calculates the inclination angle of the ground surface based on the measured height distance of at least three points, and when the flying object flies over the inclined surface, the tilting mechanism unit causes the optical axis of the vertical camera to be inclined. To be perpendicular to Those of the flight control system of the aircraft to tilt the straight camera.

又本発明は、前記位置測定部は、第1地点から第2地点迄連続して画像を取得し、第1地点で取得した画像から特徴点を抽出し、第1地点から第2地点に至る画像中で画像トラッキングにより第2地点での画像中に第1地点の画像中の特徴点を特定し、第1地点の画像と第2地点の画像に基づき、前記特徴点に対応する地表の測定点の3次元測定を行う飛行体の飛行制御システムに係るものである。   In the present invention, the position measurement unit continuously acquires images from the first point to the second point, extracts feature points from the image acquired at the first point, and reaches from the first point to the second point. The feature point in the image of the first point is identified in the image at the second point by image tracking in the image, and the ground surface corresponding to the feature point is measured based on the image of the first point and the image of the second point. The present invention relates to a flight control system for an aircraft that performs three-dimensional measurement of points.

又本発明は、前記主演算制御部には、飛行計画データが設定され、該主演算制御部は前記飛行計画データに基づき前記飛行体の飛行コース、地表からの飛行高さを制御する飛行体の飛行制御システムに係るものである According to the present invention, flight plan data is set in the main calculation control unit, and the main calculation control unit controls the flight course of the flight vehicle and the flight height from the ground surface based on the flight plan data. This relates to the flight control system .

本発明は、前記飛行体は前方の画像を取得する前視カメラを具備し、前記主演算制御部は前記前視カメラが取得した画像から前方の障害物を判断し、障害物の回避を行う飛行体の飛行制御システムに係るものである。 Further, according to the present invention, the flying object includes a front-view camera that acquires a front image, and the main calculation control unit determines a front obstacle from the image acquired by the front-view camera and avoids the obstacle. The present invention relates to a flight control system for a flying object.

又本発明は、前記飛行体は、飛行体の傾斜を検出する姿勢検出器を具備し、該姿勢検出器は前記鉛直カメラの撮像時の前記飛行体の傾斜を検出し、前記位置測定部は、前記飛行体の傾斜に基づき第1地点の画像と第2地点の画像とを絶対標定する飛行体の飛行制御システムに係るものである。   According to the present invention, the flying object includes an attitude detector that detects an inclination of the flying object, the attitude detector detects an inclination of the flying object at the time of imaging by the vertical camera, and the position measurement unit includes: The present invention relates to a flight control system for an aircraft that absolutely positions an image of a first point and an image of a second point based on the inclination of the aircraft.

本発明によれば、飛行体と、該飛行体に設けられた航行手段と、位置測定部と、前記航行手段を制御する飛行制御部と、前記位置測定部と前記飛行制御部とを制御する主演算制御部とを具備し、前記位置測定部は飛行体の地上座標を測定するGPS装置と、飛行体下方のデジタル画像を撮像する鉛直カメラと、該鉛直カメラを傾斜させる傾動機構部とを有し、該鉛直カメラにより撮像した2地点の画像と、前記GPS装置により測定した2地点の地上座標と、前記鉛直カメラの焦点距離に基づき前記飛行体の地表からの高さ距離を測定し、前記主演算制御部は測定された少なくとも3点の高さ距離に基づき地表の傾斜角を演算し、前記飛行体が傾斜面を飛行する場合は、前記傾動機構部が前記鉛直カメラの光軸が傾斜面に対して垂直となる様に前記鉛直カメラを傾斜させるので、地形の変化がある場所でも適正な自律飛行が可能となる。 According to the present invention, the flying object, the navigation means provided on the flying object, the position measuring part, the flight control part for controlling the navigation means, the position measuring part and the flight control part are controlled. A main arithmetic control unit, and the position measuring unit includes a GPS device that measures the ground coordinates of the flying object, a vertical camera that captures a digital image below the flying object , and a tilt mechanism that tilts the vertical camera. Measuring the height distance from the ground surface of the flying object based on the image of the two points imaged by the vertical camera, the ground coordinates of the two points measured by the GPS device, and the focal length of the vertical camera, The main calculation control unit calculates the inclination angle of the ground surface based on the measured height distance of at least three points, and when the flying object flies over the inclined surface, the tilting mechanism unit determines that the optical axis of the vertical camera is To be perpendicular to the inclined surface Since tilting the vertical camera, it is possible to properly autonomous flight even in places where there is a change in the terrain.

又本発明によれば、前記位置測定部は、第1地点から第2地点迄連続して画像を取得し、第1地点で取得した画像から特徴点を抽出し、第1地点から第2地点に至る画像中で画像トラッキングにより第2地点での画像中に第1地点の画像中の特徴点を特定し、第1地点の画像と第2地点の画像に基づき、前記特徴点に対応する地表の測定点の3次元測定を行うので、地表面の画像を適正な状態で撮影できると共に地表面の3次元データを合わせて取得できる According to the invention, the position measuring unit continuously acquires images from the first point to the second point, extracts feature points from the image acquired at the first point, and then extracts the feature points from the first point to the second point. The feature point in the image of the first point is identified in the image at the second point by image tracking in the image leading to, and the ground surface corresponding to the feature point based on the image of the first point and the image of the second point Since the three-dimensional measurement of the measurement point is performed, an image of the ground surface can be taken in an appropriate state, and the three-dimensional data of the ground surface can be acquired together .

本発明によれば、前記飛行体は前方の画像を取得する前視カメラを具備し、前記主演算制御部は前記前視カメラが取得した画像から前方の障害物を判断し、障害物の回避を行うので、障害物のある場所でも、自律飛行が可能である。 Further, according to the present invention, the aircraft is equipped with a pre-vision cameras for acquiring the front image, the main arithmetic control unit determines the front obstacle from the image the foresight camera is acquired, the obstacle Because avoidance is performed, autonomous flight is possible even in places with obstacles.

又本発明によれば、前記飛行体は、飛行体の傾斜を検出する姿勢検出器を具備し、該姿勢検出器は前記鉛直カメラの撮像時の前記飛行体の傾斜を検出し、前記位置測定部は、前記飛行体の傾斜に基づき第1地点の画像と第2地点の画像とを絶対標定するので、撮影時に飛行体が傾斜していた場合でも、精度の高い高度測定、地表の3次元測定が可能となる等の優れた効果を発揮する。   According to the invention, the flying object includes an attitude detector that detects an inclination of the flying object, the attitude detector detects an inclination of the flying object at the time of imaging by the vertical camera, and the position measurement is performed. The unit absolutely positions the image of the first point and the image of the second point based on the inclination of the flying object. Therefore, even when the flying object is inclined at the time of photographing, the altitude measurement with high accuracy and the three-dimensional surface Exhibits excellent effects such as enabling measurement.

本発明に係る飛行体の飛行高度制御システムの概略図である。It is the schematic of the flight altitude control system of the flying body which concerns on this invention. 本発明の実施例に係る飛行体に搭載される制御装置のブロック図である。It is a block diagram of a control device mounted on an aircraft according to an embodiment of the present invention. 該飛行体に搭載された鉛直カメラと地表面との関係を示す説明図である。It is explanatory drawing which shows the relationship between the vertical camera mounted in this flight body, and the ground surface. 飛行体が2地点で撮影した画像から飛行体の高度、測定点の座標の測定を行う場合の説明図である。It is explanatory drawing in the case of measuring the height of a flying body, and the coordinate of a measurement point from the image which the flying body image | photographed at 2 points | pieces. 取得した画像中で抽出した特徴点の画像トラッキングと各特徴点に対応する地表面の無測定点との関係を示す説明図である。It is explanatory drawing which shows the relationship between the image tracking of the feature point extracted in the acquired image, and the unmeasured point of the ground surface corresponding to each feature point. (A)は飛行体が地表面に沿って所定の高度を維持して飛行する場合の説明図、(B)は飛行体が水平姿勢でのカメラの状態を示す説明図、(C)は傾斜面に対するカメラの状態を示す説明図である。(A) is an explanatory view when the flying object flies while maintaining a predetermined altitude along the ground surface, (B) is an explanatory view showing the state of the camera in the horizontal posture, (C) is inclined It is explanatory drawing which shows the state of the camera with respect to a surface. カメラが傾斜している場合の絶対標定についての説明図である。It is explanatory drawing about absolute orientation in case a camera inclines.

以下、図面を参照しつつ本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

先ず、図1に於いて、本発明に係る飛行体の飛行高度制御システムの概略を説明する。   First, referring to FIG. 1, an outline of a flying altitude control system for an aircraft according to the present invention will be described.

図1中、1は自律飛行する飛行体、2は地上に設置される基地制御装置であり、該基地制御装置2は、前記飛行体1とデータ通信可能であり、前記飛行体1の飛行の制御、飛行計画の設定、変更、前記飛行体1が収集した情報を保存、管理する。   In FIG. 1, reference numeral 1 denotes an autonomous flying object, 2 denotes a base control device installed on the ground, and the base control device 2 is capable of data communication with the flying object 1. Controls, sets and changes flight plans, and stores and manages information collected by the aircraft 1.

前記飛行体1は、例えば自律飛行する小型飛行体としてのヘリコプタである。該ヘリコプタ1は前記基地制御装置2から遠隔操作で操縦され、或は前記基地制御装置2から前記ヘリコプタ1の制御装置(後述)に飛行計画が設定され、飛行計画に従って、自律飛行する。   The flying object 1 is a helicopter as a small flying object that autonomously flies, for example. The helicopter 1 is operated by remote control from the base control device 2, or a flight plan is set from the base control device 2 to the control device (described later) of the helicopter 1, and autonomous flight is performed according to the flight plan.

前記ヘリコプタ1は、機体3、該機体3に設けられた所要数のプロペラ、例えば前後左右、計4組のプロペラ4,5,6,7を有し、該プロペラ4,5,6,7はそれぞれ個別に第1モータ8、第2モータ9、第3モータ10、第4モータ11(後述)に連結され、又後述する様に各第1モータ8、第2モータ9、第3モータ10、第4モータ11は独立して駆動が制御される様になっている。尚、前記プロペラ4,5,6,7及び前記第1モータ8、第2モータ9、第3モータ10、第4モータ11等は飛行体の航行手段を構成する。   The helicopter 1 has a fuselage 3, and a required number of propellers provided in the fuselage 3, for example, front, rear, left and right, a total of four propellers 4, 5, 6, 7; The first motor 8, the second motor 9, the third motor 10, and the fourth motor 11 (described later) are individually connected to the first motor 8, the second motor 9, the third motor 10, and the like. The drive of the fourth motor 11 is controlled independently. The propellers 4, 5, 6, 7 and the first motor 8, the second motor 9, the third motor 10, the fourth motor 11 and the like constitute a flying means of the flying object.

前記ヘリコプタ1の機体3には、撮像装置及び制御装置が設けられている。撮像装置はデジタル画像を取得する、鉛直カメラ13と前視カメラ14から構成される。該鉛直カメラ13、該前視カメラ14は、静止画像を所定時間間隔で撮像するカメラであってもよいし、或は画像を連続的に撮像するビデオカメラであってもよい。前記鉛直カメラ13は前記機体3の下面に設けられている。又、撮像装置は、撮像素子として、画素(ピクセル)の集合体であるCCD、CMOSセンサを有しており、各画素は撮像素子上の位置(座標)が特定でき、更に各画素の画角が分る様になっている。   The airframe 3 of the helicopter 1 is provided with an imaging device and a control device. The imaging device includes a vertical camera 13 and a front-view camera 14 that acquire a digital image. The vertical camera 13 and the front-view camera 14 may be cameras that capture still images at predetermined time intervals, or may be video cameras that continuously capture images. The vertical camera 13 is provided on the lower surface of the body 3. In addition, the imaging apparatus includes a CCD and a CMOS sensor, which are a collection of pixels (pixels), as the imaging device, and each pixel can specify a position (coordinates) on the imaging device, and an angle of view of each pixel. It has come to understand.

前記鉛直カメラ13は、前記機体3の基準位置(例えば機械中心)を通過する光軸15を有し、該光軸15は、前記ヘリコプタ1が水平姿勢で、鉛直線と合致する。前記鉛直カメラ13は、角度θの視野角を持っており、航空写真用の画像を取得可能となっている。又、該鉛直カメラ13で撮像した画像は、後述する様に、位置測定用の画像データとしても使用される。   The vertical camera 13 has an optical axis 15 that passes through a reference position (for example, the machine center) of the airframe 3, and the optical axis 15 matches the vertical line when the helicopter 1 is in a horizontal posture. The vertical camera 13 has a viewing angle of an angle θ and can acquire an image for aerial photography. The image captured by the vertical camera 13 is also used as position measurement image data, as will be described later.

前記鉛直カメラ13は、好ましくは、前記光軸15が前記基準位置を中心として進行・後退方向(以下、前後方向)に傾動する様に支持され、又前記鉛直カメラ13を前後方向に傾動させる傾動機構部30(後述)が設けられている。該傾動機構部30は前記光軸15が地表に対して常に垂直となる様に前記鉛直カメラ13の傾きを調整する。   The vertical camera 13 is preferably supported so that the optical axis 15 tilts in the advancing / retreating direction (hereinafter referred to as the front-rear direction) about the reference position, and tilting the tilting the vertical camera 13 in the front-rear direction. A mechanism unit 30 (described later) is provided. The tilting mechanism 30 adjusts the tilt of the vertical camera 13 so that the optical axis 15 is always perpendicular to the ground surface.

又、前記前視カメラ14は、前記機体3の前面に設けられ、前方の画像を取得するものであり、前記前視カメラ14の光軸は、水平であるか、又は水平から下方に所要角度傾斜している。従って、前記前視カメラ14は、前記ヘリコプタ1が飛行する前方の景色を撮影し、撮影した画像は、前方の地形の変化の判断、或は障害物の認識に供される。   The foresight camera 14 is provided in front of the airframe 3 and acquires a front image. The optical axis of the foresight camera 14 is horizontal or a required angle from the horizontal to the lower side. Inclined. Therefore, the front-view camera 14 captures a scene in front of the helicopter 1 flying, and the captured image is used for determination of a change in frontal terrain or recognition of an obstacle.

前記鉛直カメラ13、前記前視カメラ14で撮像された画像は、撮像した時間、GPS装置23(後述)で測定した地心座標、ジャイロユニット29(後述)で検出した前記ヘリコプタ1の姿勢状態(飛行体の傾斜)に関連付けられて、後述する第1記憶部25に格納される。   The images captured by the vertical camera 13 and the front-view camera 14 are the time of imaging, the geocentric coordinates measured by the GPS device 23 (described later), and the attitude state of the helicopter 1 detected by the gyro unit 29 (described later) ( In association with the inclination of the flying object, it is stored in the first storage unit 25 described later.

図2は、前記機体3に設けられる制御装置16を示している。該制御装置16は、主に位置測定部17、飛行制御部18、主演算制御部19、通信部20、電源部21から構成される。   FIG. 2 shows a control device 16 provided in the machine body 3. The control device 16 mainly includes a position measurement unit 17, a flight control unit 18, a main calculation control unit 19, a communication unit 20, and a power supply unit 21.

前記位置測定部17は、平面位置測定装置としてのGPS装置23、位置演算用CPU24、第1記憶部25、前記鉛直カメラ13、前記前視カメラ14等から構成される。   The position measurement unit 17 includes a GPS device 23 as a planar position measurement device, a position calculation CPU 24, a first storage unit 25, the vertical camera 13, the front-view camera 14, and the like.

前記GPS装置23は、前記ヘリコプタ1の基準位置、例えば機械中心を測定する様に構成され、又、前記GPS装置23の測定値は地心座標(絶対座標)系から求められる地上座標系を表すので、前記GPS装置23は前記基準位置の地上座標系の座標を測定する。   The GPS device 23 is configured to measure a reference position of the helicopter 1, for example, a machine center, and the measured value of the GPS device 23 represents a ground coordinate system obtained from a geocentric coordinate (absolute coordinate) system. Therefore, the GPS device 23 measures the coordinates in the ground coordinate system of the reference position.

又、前記ヘリコプタ1が水平姿勢で、前記鉛直カメラ13が基準姿勢では、前記光軸15は前記基準位置を通過すると共に鉛直となっている。従って、前記鉛直カメラ13は、前記ヘリコプタ1直下の所要の画角θの範囲の画像を取得可能であり、更に画像の中心は前記基準位置と合致する様に設定されている。   When the helicopter 1 is in a horizontal posture and the vertical camera 13 is in a reference posture, the optical axis 15 passes through the reference position and is vertical. Therefore, the vertical camera 13 can acquire an image in a range of a required angle of view θ immediately below the helicopter 1, and the center of the image is set to coincide with the reference position.

前記第1記憶部25には、前記鉛直カメラ13で取得した画像及び画像を取得した位置、時刻が前記画像に関連付けられて格納される様になっており、更に、画像を取得した時刻に同期させて前記GPS装置23によって前記ヘリコプタ1の地上座標が測定され、測定された地上座標も画像を取得した時刻に関連付けられて前記第1記憶部25に格納される様になっている。   The first storage unit 25 stores an image acquired by the vertical camera 13 and a position and time at which the image is acquired in association with the image, and further, is synchronized with the time at which the image is acquired. Thus, the ground coordinates of the helicopter 1 are measured by the GPS device 23, and the measured ground coordinates are stored in the first storage unit 25 in association with the time when the image is acquired.

又、前記第1記憶部25には、画像処理プログラム、3次元位置測定プログラム、撮像制御プログラム等のプログラムが格納されている。更に、前記第1記憶部25には、前記鉛直カメラ13、前記前視カメラ14で撮像された画像が、撮像時の時間、地上座標、前記ヘリコプタ1の姿勢状態(飛行体の傾斜)に関連付けられて格納される。   The first storage unit 25 stores programs such as an image processing program, a three-dimensional position measurement program, and an imaging control program. Further, in the first storage unit 25, images captured by the vertical camera 13 and the foresight camera 14 are associated with the time at the time of imaging, the ground coordinates, and the attitude state of the helicopter 1 (aircraft tilt). Stored.

前記画像処理プログラムは、前記鉛直カメラ13で取得した画像から特徴点を抽出する等の画像処理を行い、又前記前視カメラ14で取得した画像から、前方の地形を判断し、或は前方の障害物の認識を行う。前記3次元位置測定プログラムは、前記鉛直カメラ13の画像から抽出した特徴点に基づき、前方交会法、後方交会法等の測定方法により前記ヘリコプタ1の高さ距離を演算する。又、前記GPS装置23の測定結果から、地上座標を求め、求めた高さ距離と地上座標により前記機体3の3次元位置を演算する。前記撮像制御プログラムは、前記鉛直カメラ13、前記前視カメラ14の撮像状態を制御する。   The image processing program performs image processing such as extracting feature points from the image acquired by the vertical camera 13, determines frontal terrain from the image acquired by the foresight camera 14, or Recognize obstacles. The three-dimensional position measurement program calculates the height distance of the helicopter 1 by a measurement method such as a forward intersection method or a backward intersection method based on the feature points extracted from the image of the vertical camera 13. Further, ground coordinates are obtained from the measurement result of the GPS device 23, and the three-dimensional position of the airframe 3 is calculated from the obtained height distance and ground coordinates. The imaging control program controls the imaging state of the vertical camera 13 and the front-view camera 14.

前記飛行制御部18は、前記第1モータ8、第2モータ9、第3モータ10、第4モータ11及びこれらモータを個別に駆動制御するモータコントローラ26、該モータコントローラ26を制御する飛行制御用CPU27、第2記憶部28、前記ヘリコプタ1の水平に対する姿勢状態(傾斜)を検出して姿勢状態信号を発する姿勢検出器、例えばジャイロユニット29を具備する。   The flight control unit 18 includes the first motor 8, the second motor 9, the third motor 10, the fourth motor 11, a motor controller 26 that individually drives and controls these motors, and a flight control that controls the motor controller 26. The CPU 27, the second storage unit 28, and an attitude detector such as a gyro unit 29 that detects the attitude state (tilt) of the helicopter 1 with respect to the horizontal and generates an attitude state signal.

前記第2記憶部28には、前記位置測定部17からの飛行誘導データに基づき、飛行速度、上昇速度、降下速度、飛行方向、飛行高度等の飛行状態を演算する飛行制御プログラム、前記ジャイロユニット29からの前記姿勢状態信号に基づき姿勢制御用の情報を演算する姿勢制御プログラム等が格納されている。前記飛行制御用CPU27は、前記飛行制御プログラムに基づき飛行制御指令を前記モータコントローラ26に送出して該モータコントローラ26を介して前記第1モータ8、第2モータ9、第3モータ10、第4モータ11を制御し、所定の飛行を実行し、又前記姿勢制御プログラムに基づき姿勢制御指令を前記モータコントローラ26に送出して、該モータコントローラ26を介して前記第1モータ8、第2モータ9、第3モータ10、第4モータ11をそれぞれ制御することで、前記ヘリコプタ1の姿勢を所望の状態(例えば水平状態)に制御する。   The second storage unit 28 includes a flight control program for calculating a flight state such as a flight speed, an ascending speed, a descending speed, a flight direction, and a flight altitude based on the flight guidance data from the position measuring unit 17, and the gyro unit. A posture control program for calculating posture control information based on the posture state signal from 29 is stored. The flight control CPU 27 sends a flight control command to the motor controller 26 based on the flight control program, and the first motor 8, second motor 9, third motor 10, and fourth through the motor controller 26. The motor 11 is controlled, a predetermined flight is executed, and an attitude control command is sent to the motor controller 26 based on the attitude control program, and the first motor 8 and the second motor 9 are transmitted via the motor controller 26. By controlling the third motor 10 and the fourth motor 11, respectively, the posture of the helicopter 1 is controlled to a desired state (for example, a horizontal state).

前記主演算制御部19は、主CPU32、第3記憶部33、入出力制御部34を具備し、該第3記憶部33には、統合プログラム、飛行制御プログラム、測量画像処理プログラム、通信制御プログラム、撮像部姿勢制御プログラム等のプログラム及び飛行計画データが格納されている。該飛行計画データに格納されているデータとしては、例えば飛行コース、飛行高度、撮影する場所、範囲等である。   The main arithmetic control unit 19 includes a main CPU 32, a third storage unit 33, and an input / output control unit 34. The third storage unit 33 includes an integrated program, a flight control program, a survey image processing program, and a communication control program. In addition, a program such as an imaging unit attitude control program and flight plan data are stored. Examples of data stored in the flight plan data include a flight course, a flight altitude, a shooting location, a range, and the like.

前記統合プログラムは、前記位置測定部17、前記飛行制御部18を統合して制御する。前記飛行制御プログラムは、飛行計画データに基づき自律飛行する様、前記飛行制御部18に飛行制御信号を発し、又、前記位置測定部17からの高度測定結果に基づき、地表に対し所定の高度を維持する様前記飛行制御部18に飛行制御信号を発する。更に前記飛行制御プログラムは、前記前視カメラ14からの画像に基づき、前方の地形の変化の判断、或は障害物の認識を行い、危険回避、飛行コース変更の判断を行う。   The integrated program controls the position measurement unit 17 and the flight control unit 18 in an integrated manner. The flight control program issues a flight control signal to the flight control unit 18 so as to autonomously fly based on flight plan data, and sets a predetermined altitude with respect to the ground surface based on the altitude measurement result from the position measurement unit 17. A flight control signal is issued to the flight control unit 18 so as to be maintained. Further, the flight control program determines a change in the frontal terrain or recognizes an obstacle based on the image from the front-view camera 14, and determines danger avoidance and a flight course change.

又、撮像部姿勢制御プログラムは、地形の変化の判断に基づき、前記傾動機構部30を制御して前記鉛直カメラ13の光軸15が地表に対して垂直になる様、前記鉛直カメラ13の傾きを制御する。   The image capturing unit attitude control program controls the tilt mechanism unit 30 based on the determination of the change in the terrain so that the optical axis 15 of the vertical camera 13 is perpendicular to the ground surface. To control.

前記通信部20は、無線通信部35、情報通信部36等からなり、前記無線通信部35は、地上基地からの遠隔飛行制御指令を受信し、又ヘリコプタ1の飛行状態を地上基地に通信する。又、前記情報通信部36は、無線LAN或はブルートゥース(Bluetooth:登録商標)等の通信手段を用いて地上基地とヘリコプタ1間の情報の授受を行うものであり、例えば前記ヘリコプタ1が基地に着陸した状態で、前記飛行計画データが基地から前記ヘリコプタ1に送信され、或は飛行中撮像した画像、位置、時刻情報がヘリコプタ1から基地に送信される。   The communication unit 20 includes a wireless communication unit 35, an information communication unit 36, and the like. The wireless communication unit 35 receives a remote flight control command from the ground base and communicates the flight state of the helicopter 1 to the ground base. . The information communication unit 36 exchanges information between the ground base and the helicopter 1 using communication means such as a wireless LAN or Bluetooth (registered trademark). For example, the helicopter 1 is connected to the base. In the state of landing, the flight plan data is transmitted from the base to the helicopter 1, or images, positions, and time information captured during the flight are transmitted from the helicopter 1 to the base.

前記電源部21は、例えば可充電電池であり、基地に着陸した状態で充電され、飛行中は前記位置測定部17、前記飛行制御部18、前記主演算制御部19、前記通信部20、前記傾動機構部30に必要な電力を供給する。   The power supply unit 21 is, for example, a rechargeable battery, and is charged while landing at a base. During the flight, the position measuring unit 17, the flight control unit 18, the main arithmetic control unit 19, the communication unit 20, Necessary electric power is supplied to the tilting mechanism unit 30.

前記鉛直カメラ13が取得した画像、前記位置測定部17が測定した位置情報は、前記通信部20を介して前記基地制御装置2に通信され、該基地制御装置2では、前記画像からステレオ画像を作成し、或はステレオ画像に基づき写真測量を行う。   The image acquired by the vertical camera 13 and the position information measured by the position measurement unit 17 are communicated to the base control device 2 via the communication unit 20, and the base control device 2 converts a stereo image from the image. Create or perform photogrammetry based on stereo images.

次に、写真測量の測定精度について、図3を参照して説明する。   Next, the measurement accuracy of photogrammetry will be described with reference to FIG.

図3は、写真測量に用いられる画像が、撮影距離(高さ)H、撮影基線長B、カメラの焦点距離f、カメラの画素サイズΔpで撮像され、この条件での平面精度Δxyと高さ精度Δzとを示している。   FIG. 3 shows that an image used for photogrammetry is imaged at an imaging distance (height) H, an imaging baseline length B, a camera focal length f, and a camera pixel size Δp, and the plane accuracy Δxy and height under these conditions The accuracy Δz is shown.

平面精度:Δxy=H×Δp/f   Planar accuracy: Δxy = H × Δp / f

高さ精度:Δz =H×H×Δp/(B×f)となる。   Height accuracy: Δz = H × H × Δp / (B × f).

従って、高さ精度ΔzはH2 に比例するので、撮影距離Hを正確に維持すること、即ち前記機体3の高度を所定の値に正確に維持することが精度の高い写真測量を実行する条件となる。ここで撮影距離Hは、画像中の特徴点について演算した高さ距離であり、更に特徴点の高さ距離の加重平均値であり、或いは画像について得られた3次元座標全体の平均でもよい。 Therefore, since the height accuracy Δz is proportional to H 2 , it is necessary to accurately maintain the photographing distance H, that is, to accurately maintain the altitude of the airframe 3 at a predetermined value. It becomes. Here, the shooting distance H is a height distance calculated for a feature point in the image, and is a weighted average value of the height distance of the feature point, or may be an average of all the three-dimensional coordinates obtained for the image.

前記機体3の高度を所定の値に維持する為に、前記機体3の高度を測定する測定方法としては、レーザ測量機を搭載し、該レーザ測量機により測定した高度に基づき前記機体3の飛行高度を制御することも考えられるが、レーザ測量機は高価であり、又前記機体3の機器構成が複雑となる。何よりも、前記機体3の搭載能力による制限がある。本実施例では、既に搭載されている鉛直カメラ13を用いて、機体3の高度をリアルタイムで測定し、更に測定結果を機体3の飛行に反映させ、地表からの高度を一定に保とうとするものである。   In order to maintain the altitude of the airframe 3 at a predetermined value, a laser surveying instrument is mounted as a measuring method for measuring the altitude of the airframe 3 and the flight of the airframe 3 based on the altitude measured by the laser surveying instrument. Although it is conceivable to control the altitude, the laser surveying instrument is expensive and the equipment configuration of the airframe 3 is complicated. Above all, there is a limitation due to the mounting ability of the airframe 3. In the present embodiment, the altitude of the airframe 3 is measured in real time using the already mounted vertical camera 13, and the measurement result is reflected in the flight of the airframe 3 so as to keep the altitude from the ground surface constant. It is.

先ず、図4により、写真測量による距離測定についての概略を説明する。   First, the outline of distance measurement by photogrammetry will be described with reference to FIG.

図4では、前記鉛直カメラ13により、既知点O1地点、既知点O2地点で測定点P点を含む画像を取得した場合であり、O1地点とO2地点とは撮影基線長Bだけ離れている。又、説明を簡略化する為、O1地点、O2地点で撮影した場合の前記鉛直カメラ13の光軸は平行であるとする。又、前記鉛直カメラ13は撮像素子41を有し、図中、41-1,41-2は、それぞれO1地点、O2地点で撮像した状態での撮像素子である。   In FIG. 4, an image including the measurement point P at the known point O1 and the known point O2 is acquired by the vertical camera 13, and the O1 point and the O2 point are separated from each other by the photographing baseline length B. For simplicity of explanation, it is assumed that the optical axis of the vertical camera 13 is parallel when images are taken at the O1 and O2 points. The vertical camera 13 has an image sensor 41. In the figure, reference numerals 41-1 and 41-2 denote image sensors in a state where images are taken at points O1 and O2, respectively.

O1地点で撮像した測定点Pの画像上(即ち撮像素子上)の位置は、p1(x1,y1)、O2地点で撮像した測定点Pの画像上(即ち撮像素子上)の位置は、p2(x2,y2)となる。撮像素子41-1の中心0-1(原点)からp1迄の距離をl1、撮像素子41-2の中心0-2(原点)からp2迄の距離をl2とすると、前記撮影基線長BからP迄の距離Zは、3角形O1,O2,Pと3角形O1,0-1,p1及び3角形O2,0-2,p2との相似関係から、Z=Bf/(l1+l2)となる。   The position of the measurement point P imaged at the point O1 (ie, on the image sensor) is p1 (x1, y1), and the position of the measurement point P imaged at the point O2 (ie, image sensor) is p2. (X2, y2). When the distance from the center 0-1 (origin) of the image sensor 41-1 to p1 is l1, and the distance from the center 0-2 (origin) of the image sensor 41-2 to p2 is l2, from the photographing base line length B, The distance Z to P is Z = Bf / (l1 + l2) because of the similarity between the triangles O1, O2, P and the triangles O1, 0-1, p1 and the triangles O2, 0-2, p2.

ここで、前記O1地点、O2地点の地上座標は前記GPS装置23によって測定でき、又前記撮影基線長Bは前記O1地点とO2地点の2点間の距離となり、前記GPS装置23の測定結果に基づき前記撮影基線長Bを求めることができる。又、測定点Pの地心位置(平面座標)も、同様にp1(x1,y1)及びp2(x2,y2)と前記GPS装置23で測定したO1地点、O2地点の地心位置から求めることができる。   Here, the ground coordinates of the O1 point and the O2 point can be measured by the GPS device 23, and the imaging baseline length B is a distance between the two points of the O1 point and the O2 point. Based on this, the imaging baseline length B can be obtained. Similarly, the geocentric position (plane coordinate) of the measurement point P is also obtained from p1 (x1, y1) and p2 (x2, y2) and the geocentric positions of the O1 and O2 points measured by the GPS device 23. Can do.

従って、前記ヘリコプタ1が移動する過程で順次撮像した2つの画像から、ヘリコプタ1の高度をリアルタイムで測定(高さ距離測定)することができる。   Therefore, the altitude of the helicopter 1 can be measured in real time (height distance measurement) from the two images sequentially captured in the process of moving the helicopter 1.

図5は、飛行中のヘリコプタ1で撮像した画像から順次高度測定を行っている状態を模式化したものである。又、図4では、ヘリコプタ1の高度測定について説明したが、前記鉛直カメラ13で撮像した画像全体について、画像の任意の部位についての高さ測定、即ち画像の部位に対応する地表面42の部位の高さ測定を実施することができる。   FIG. 5 schematically shows a state in which altitude measurement is sequentially performed from an image captured by the helicopter 1 in flight. Further, although the altitude measurement of the helicopter 1 has been described with reference to FIG. 4, with respect to the entire image captured by the vertical camera 13, the height measurement for an arbitrary part of the image, that is, the part of the ground surface 42 corresponding to the part of the image Can be measured.

前記鉛直カメラ13で撮像した地表面の画像について、画像処理を行い、画像中から特徴点a〜nを抽出する。特徴点の抽出については、エッジ処理、コントラスト処理等適宜な画像処理により実行される。   The ground surface image captured by the vertical camera 13 is subjected to image processing, and feature points a to n are extracted from the image. The feature points are extracted by appropriate image processing such as edge processing and contrast processing.

又、O1地点での画像から抽出した特徴点をO2地点で撮像した画像中に特定する必要があるが、特定する方法として画像トラッキングがある。画像トラッキングでは、O1地点からO2地点迄連続的に画像を取得し、時間的に隣接する画像に次々に特徴点を特定(画像トラッキング)し、O1地点の画像の特徴点をO2地点の画像中に特定する。   Further, it is necessary to specify the feature point extracted from the image at the O1 point in the image picked up at the O2 point, but there is image tracking as a specifying method. In image tracking, images are acquired continuously from the O1 point to the O2 point, and feature points are identified one after another in time (image tracking), and the feature point of the image at the O1 point is included in the image at the O2 point. To be specific.

尚、画像トラッキングについては、本出願人が先に出願した特願2005−370867(特開2007−171048号公報)に示されている。   The image tracking is shown in Japanese Patent Application No. 2005-370867 (Japanese Patent Laid-Open No. 2007-171048) filed earlier by the present applicant.

抽出した特徴点について、又O1地点の画像とO2地点の画像中とに基づき、各特徴点について上記した測定方法を実行し、同様にして各特徴点の高さ距離、平面座標が求められる。特徴点は、画像全体に亘るので、従って、地表面42の状態、例えば凹凸、傾斜等も測定でき、測定結果を取得した画像に関連付けることで、3次元座標を有する航空写真が得られる。   The above-described measurement method is executed for each feature point with respect to the extracted feature points and based on the image at the O1 point and the image at the O2 point, and the height distance and the plane coordinates of each feature point are obtained in the same manner. Since the feature points cover the entire image, the state of the ground surface 42, such as unevenness and inclination, can be measured, and an aerial photograph having three-dimensional coordinates can be obtained by associating the measurement result with the acquired image.

図6は、地表面42が隆起している場所をヘリコプタ1が飛行する場合を示している。   FIG. 6 shows a case where the helicopter 1 flies over a place where the ground surface 42 is raised.

前記ヘリコプタ1は、前記鉛直カメラ13で取得した画像から、高度をリアルタイムで測定しており、測定した高度は前記主演算制御部19にフィードバックされる。該主演算制御部19では、入力された高度から地表から前記ヘリコプタ1迄の距離を一定に保つ様に、高度の修正指令を前記飛行制御部18に出力し、該飛行制御部18は高度が一定となる様に前記モータコントローラ26を介して前記第1モータ8〜第4モータ11の駆動を制御する。   The helicopter 1 measures the altitude in real time from the image acquired by the vertical camera 13, and the measured altitude is fed back to the main arithmetic control unit 19. The main arithmetic control unit 19 outputs an altitude correction command to the flight control unit 18 so that the distance from the input altitude to the helicopter 1 is kept constant, and the flight control unit 18 The driving of the first motor 8 to the fourth motor 11 is controlled via the motor controller 26 so as to be constant.

又、低所平面42aを飛行していた前記ヘリコプタ1が、傾斜面42bに到達すると(図6(A)中1−3の位置)、前記鉛直カメラ13で撮像した画像中の、前方側の部位(図6(A)中、右の部位)に存在する特徴点の高さ距離が他の部位の特徴点の高さ距離より小さくなる。従って、画像中の特徴点の高さ距離が部分的に小さくなることで傾斜面42bに達したことが判断できる。又前記傾斜面42bでの測定点が3点以上得られると斜面の状態の情報、例えば傾斜角が演算できる。   When the helicopter 1 flying in the low plane 42a reaches the inclined surface 42b (position 1-3 in FIG. 6A), the front side in the image captured by the vertical camera 13 is displayed. The height distance of the feature point existing in the part (the right part in FIG. 6A) is smaller than the height distance of the feature point of the other part. Therefore, it can be determined that the inclined surface 42b has been reached by partially reducing the height distance of the feature points in the image. When three or more measurement points on the inclined surface 42b are obtained, information on the state of the inclined surface, for example, an inclination angle can be calculated.

前記主演算制御部19は演算された傾斜角に基づき、前記傾動機構部30を駆動制御し、光軸15が前記傾斜面42bと垂直となる様に前記鉛直カメラ13を傾斜させる。而して、前記傾斜面42bに対して高さ距離が所定の値となる様に前記飛行制御部18が制御される。   The main arithmetic control unit 19 drives and controls the tilting mechanism unit 30 based on the calculated tilt angle, and tilts the vertical camera 13 so that the optical axis 15 is perpendicular to the tilted surface 42b. Thus, the flight control unit 18 is controlled such that the height distance with respect to the inclined surface 42b becomes a predetermined value.

次に、前記ヘリコプタ1が前記傾斜面42bの最高点付近に達すると(図6(A)中1nの位置)、前記鉛直カメラ13で撮像した画像の右の部位に存在する特徴点の高さ距離が他の部位の高さ距離より大きくなる。画像中の部分的な高さ距離の変化で、傾斜面42bから高所平面42cへ移行することが判断できる。   Next, when the helicopter 1 reaches the vicinity of the highest point of the inclined surface 42b (position 1n in FIG. 6A), the height of the feature point present in the right part of the image captured by the vertical camera 13 The distance becomes larger than the height distance of other parts. It can be determined that a transition from the inclined surface 42b to the height plane 42c is caused by a partial change in the height distance in the image.

尚、前記ヘリコプタ1の前方は前記前視カメラ14によって撮像されており、該前視カメラ14からの映像から、前方に傾斜面が存在することを判断できる。傾斜面の傾斜角が大きくない場合は、上記した様に鉛直カメラ13の画像からも傾斜が判断できるので、前記前視カメラ14で取得した画像を飛行に反映させる必要はないが、前記傾斜面42bの傾斜角が大きく、該傾斜面42bの最高点が飛行高度を超える様な場合、或は建築物が垂直に立っている様な場合、ヘリコプタ1が傾斜面42b、建築物に衝突する危険が生じる。前記主演算制御部19は前記前視カメラ14で取得された画像から前方の障害物を判断し、前記飛行制御部18に対して飛行コースの変更等の指令を発し、障害物と前記ヘリコプタ1とが干渉又は衝突する可能性を回避する。   Note that the front of the helicopter 1 is captured by the front-view camera 14, and it can be determined from the image from the front-view camera 14 that an inclined surface exists in front. When the inclination angle of the inclined surface is not large, the inclination can also be determined from the image of the vertical camera 13 as described above, and therefore it is not necessary to reflect the image acquired by the foresight camera 14 in the flight. When the inclination angle of 42b is large and the highest point of the inclined surface 42b exceeds the flight altitude, or when the building is standing vertically, there is a risk that the helicopter 1 will collide with the inclined surface 42b or the building. Occurs. The main arithmetic control unit 19 determines a front obstacle from the image acquired by the front-view camera 14, issues a command such as a flight course change to the flight control unit 18, and the obstacle and the helicopter 1 To avoid the possibility of interference or collision.

上記した様に、前記ヘリコプタ1は前記飛行制御部18によって水平に制御されているが、傾斜面に沿って上昇、或は下降している場合、又傾斜面に光軸が垂直となる様に前記傾動機構部30によって前記鉛直カメラ13が傾斜されている場合等では、O1地点で撮像する鉛直カメラ13の姿勢と、O2地点での鉛直カメラ13の姿勢とが異なる場合がある。図7は、O1地点で撮像した画像とO2地点で撮像した画像の傾きの状態を示す模式図である。画像の傾きは、光軸15の鉛直(Z軸)を基準とすると、Z軸を中心とする回転角κ、水平第1軸(X軸)を中心とした回転角ω、水平第2軸(Y軸)を中心とした回転角φによって表され、O1地点で撮像した画像とO2地点で撮像した画像とをκ,ω,φを変数として絶対標定することで、図中破線で示す状態(図4の状態)に変換することができる。又、絶対標定することで、測定点Pの3次元座標が演算でき、更にO1地点、O2地点でのヘリコプタ1の高度を測定できる。   As described above, the helicopter 1 is horizontally controlled by the flight control unit 18, but when the helicopter 1 is rising or falling along the inclined surface, the optical axis is perpendicular to the inclined surface. When the vertical camera 13 is tilted by the tilting mechanism unit 30 or the like, the posture of the vertical camera 13 imaged at the O1 point may be different from the posture of the vertical camera 13 at the O2 point. FIG. 7 is a schematic diagram illustrating a state of inclination of an image captured at the point O1 and an image captured at the point O2. When the vertical (Z axis) of the optical axis 15 is used as a reference, the image inclination is a rotation angle κ around the Z axis, a rotation angle ω around the horizontal first axis (X axis), and a horizontal second axis ( A state indicated by a broken line in the figure by representing the rotation angle φ centered on the Y axis) and absolutely locating the image taken at the O1 point and the image taken at the O2 point using κ, ω, and φ as variables ( (The state of FIG. 4). Also, by performing absolute orientation, the three-dimensional coordinates of the measurement point P can be calculated, and the altitude of the helicopter 1 at the O1 point and the O2 point can be measured.

ここで、O1地点、O2地点での前記3軸の回転角は、前記ジャイロユニット29によって測定でき、O1地点での画像中のp1の座標(x1,y1)、O2地点での画像中のp2の座標(x2,y2)は、撮像素子の画素の位置から測定できる。従って、絶対標定後の変換座標系でのp1の座標を(X1,Y1,Z1)とし、絶対標定後の変換座標系でのp2の座標を(X2,Y2,Z2)、鉛直カメラ13の焦点距離fとすれば、   Here, the rotation angles of the three axes at the O1 point and the O2 point can be measured by the gyro unit 29, and the coordinates (x1, y1) of p1 in the image at the O1 point and p2 in the image at the O2 point. The coordinates (x2, y2) can be measured from the pixel position of the image sensor. Therefore, the coordinates of p1 in the converted coordinate system after absolute orientation are (X1, Y1, Z1), the coordinates of p2 in the converted coordinate system after absolute orientation are (X2, Y2, Z2), and the focus of the vertical camera 13 If the distance is f,

変換座標系でのp1,p2の座標は以下に表される。   The coordinates of p1 and p2 in the conversion coordinate system are expressed below.

X1=x1 cosφ1 ・cosκ1 −y1 cosφ1 ・sinκ1 −fsinφ1
Y1=x1 sinκ1 −y1 cosκ1
Z1=−x1 sinφ1 ・cosκ1 −y1 sinφ1 ・sinκ1 −fcosφ1
X2=x2 cosφ2 ・cosκ2 −y2 cosφ2 ・sinκ2 −fsinφ2 +1
Y2=x2 (cosω2 sinκ2 +sinω2 ・sinφ2 cosκ2 )+
2 (cosω2 cosκ2 −sinω2 ・sinφ2 ・sinκ2 )+
fsinω2 ・cosφ2
Z2=x2 (sinω2 ・sinκ2 −cosω2 ・sinφ2 ・cosκ2 )+
2 (sinω2 ・cosκ2 +cosω2 ・sinφ2 ・sinκ2 )−
fcosω2 ・cosφ2
X1 = x 1 cosφ 1 · cosκ 1 −y 1 cosφ 1 · sinκ 1 −fsinφ 1
Y1 = x 1 sinκ 1 −y 1 cosκ 1
Z1 = -x 1 sinφ 1 · cosκ 1 -y 1 sinφ 1 · sinκ 1 -fcosφ 1
X2 = x 2 cosφ 2 · cosκ 2 −y 2 cosφ 2 · sinκ 2 −fsinφ 2 +1
Y2 = x 2 (cosω 2 sinκ 2 + sinω 2 · sinφ 2 cosκ 2) +
y 2 (cosω 2 cosκ 2 -sinω 2 · sinφ 2 · sinκ 2) +
fsinω 2・ cosφ 2
Z2 = x 2 (sinω 2 · sinκ 2 -cosω 2 · sinφ 2 · cosκ 2) +
y 2 (sinω 2 · cosκ 2 + cosω 2 · sinφ 2 · sinκ 2) -
fcosω 2・ cosφ 2

従って、得られたp1の座標(X1,Y1,Z1)、p2の座標(X2,Y2,Z2)に基づき図4で示したと同様にして測定点Pの3次元座標を演算することができる。   Therefore, based on the obtained coordinates (X1, Y1, Z1) of p1 and coordinates (X2, Y2, Z2) of p2, the three-dimensional coordinates of the measurement point P can be calculated in the same manner as shown in FIG.

尚、上記した実施例では、前記位置測定部17が位置演算用CPU24、第1記憶部25を具備し、該位置演算用CPU24、第1記憶部25によって画像処理、地表面42の3次元測定を行ったが、前記主CPU32、前記第3記憶部33が前記位置演算用CPU24、前記第1記憶部25の機能を兼用してもよい。尚、前記位置演算用CPU24及び前記第1記憶部25が省略された場合は、前記主CPU32、前記第3記憶部33及び前記GPS装置23、前記鉛直カメラ13等が前記位置測定部17を構成する。   In the above-described embodiment, the position measurement unit 17 includes the position calculation CPU 24 and the first storage unit 25, and the position calculation CPU 24 and the first storage unit 25 perform image processing and three-dimensional measurement of the ground surface 42. However, the main CPU 32 and the third storage unit 33 may share the functions of the position calculation CPU 24 and the first storage unit 25. When the position calculation CPU 24 and the first storage unit 25 are omitted, the main CPU 32, the third storage unit 33, the GPS device 23, the vertical camera 13, and the like constitute the position measurement unit 17. To do.

上記した様に、本発明によれば、搭載したカメラのみで地表面42からのヘリコプタ1の高度を測定できると共に前記地表面42の凹凸等、地表面42の3次元測定が可能となる。従って、適正な高度で而も適正な位置での地表面42の撮影が可能であり、又地表面42の3次元測定の結果と撮像画像を関連付けることで、3次元位置情報付の画像を取得することができる。   As described above, according to the present invention, it is possible to measure the altitude of the helicopter 1 from the ground surface 42 only with the mounted camera and to perform three-dimensional measurement of the ground surface 42 such as the unevenness of the ground surface 42. Therefore, it is possible to photograph the ground surface 42 at an appropriate altitude and an appropriate position, and obtain an image with three-dimensional position information by associating the captured image with the result of the three-dimensional measurement of the ground surface 42. can do.

1 ヘリコプタ
2 基地制御装置
3 機体
13 鉛直カメラ
14 前視カメラ
16 制御装置
17 位置測定部
18 飛行制御部
19 主演算制御部
20 通信部
21 電源部
23 GPS装置
24 位置演算用CPU
25 第1記憶部
26 モータコントローラ
27 飛行制御用CPU
28 第2記憶部
29 ジャイロユニット
30 傾動機構部
32 主CPU
33 第3記憶部
34 入出力制御部
35 無線通信部
36 情報通信部
41 撮像素子
42 地表面
DESCRIPTION OF SYMBOLS 1 Helicopter 2 Base control apparatus 3 Airframe 13 Vertical camera 14 Foresight camera 16 Control apparatus 17 Position measurement part 18 Flight control part 19 Main calculation control part 20 Communication part 21 Power supply part 23 GPS apparatus 24 CPU for position calculation
25 First Storage Unit 26 Motor Controller 27 Flight Control CPU
28 Second storage unit 29 Gyro unit 30 Tilt mechanism unit 32 Main CPU
33 Third storage unit 34 Input / output control unit 35 Wireless communication unit 36 Information communication unit 41 Image sensor 42 Ground surface

Claims (5)

飛行体と、該飛行体に設けられた航行手段と、位置測定部と、前記航行手段を制御する飛行制御部と、前記位置測定部と前記飛行制御部とを制御する主演算制御部とを具備し、前記位置測定部は飛行体の地上座標を測定するGPS装置と、飛行体下方のデジタル画像を撮像する鉛直カメラと、該鉛直カメラを傾斜させる傾動機構部とを有し、該鉛直カメラにより撮像した2地点の画像と、前記GPS装置により測定した2地点の地上座標と、前記鉛直カメラの焦点距離に基づき前記飛行体の地表からの高さ距離を測定し、前記主演算制御部は測定された少なくとも3点の高さ距離に基づき地表の傾斜角を演算し、前記飛行体が傾斜面を飛行する場合は、前記傾動機構部が前記鉛直カメラの光軸が傾斜面に対して垂直となる様に前記鉛直カメラを傾斜させることを特徴とする飛行体の飛行制御システム。 An aircraft, navigation means provided on the aircraft, a position measurement unit, a flight control unit that controls the navigation unit, and a main arithmetic control unit that controls the position measurement unit and the flight control unit. The position measuring unit includes a GPS device that measures the ground coordinates of the flying object, a vertical camera that captures a digital image below the flying object , and a tilting mechanism that tilts the vertical camera. Measure the height distance from the ground surface of the flying object based on the image of the two points imaged by the above, the ground coordinates of the two points measured by the GPS device, and the focal length of the vertical camera, Based on the measured height distances of at least three points, the inclination angle of the ground surface is calculated, and when the flying object flies over the inclined surface, the tilting mechanism unit causes the optical axis of the vertical camera to be perpendicular to the inclined surface. So that the vertical camera Aircraft flight control system, characterized in that tilting. 前記位置測定部は、第1地点から第2地点迄連続して画像を取得し、第1地点で取得した画像から特徴点を抽出し、第1地点から第2地点に至る画像中で画像トラッキングにより第2地点での画像中に第1地点の画像中の特徴点を特定し、第1地点の画像と第2地点の画像に基づき、前記特徴点に対応する地表の測定点の3次元測定を行う請求項1の飛行体の飛行制御システム。   The position measurement unit continuously acquires images from the first point to the second point, extracts feature points from the image acquired at the first point, and performs image tracking in the image from the first point to the second point. To identify the feature point in the image of the first point in the image at the second point, and based on the image of the first point and the image of the second point, three-dimensional measurement of the measurement point on the ground surface corresponding to the feature point The flight control system for an aircraft according to claim 1. 前記主演算制御部には、飛行計画データが設定され、該主演算制御部は前記飛行計画データに基づき前記飛行体の飛行コース、地表からの飛行高さを制御する請求項1又は請求項2の飛行体の飛行制御システム The flight calculation data is set in the main calculation control unit, and the main calculation control unit controls the flight course of the flying object and the flight height from the ground surface based on the flight plan data. Aircraft flight control system . 記飛行体は前方の画像を取得する前視カメラを具備し、前記主演算制御部は前記前視カメラが取得した画像から前方の障害物を判断し、障害物の回避を行う請求項1の飛行体の飛行制御システム。 Before SL aircraft comprises a foresight camera for acquiring image ahead of, the main arithmetic control unit determines the front obstacle from the image the foresight camera is acquired, claim performing obstacle avoidance 1 aircraft flight control systems. 前記飛行体は、飛行体の傾斜を検出する姿勢検出器を具備し、該姿勢検出器は前記鉛直カメラの撮像時の前記飛行体の傾斜を検出し、前記位置測定部は、前記飛行体の傾斜に基づき第1地点の画像と第2地点の画像とを絶対標定する請求項1の飛行体の飛行制御システム。 The flying object includes an attitude detector that detects an inclination of the flying object, the attitude detector detects an inclination of the flying object at the time of imaging by the vertical camera, and the position measurement unit 2. The flight control system for an aircraft according to claim 1, wherein an image of the first point and an image of the second point are absolute-positioned based on the inclination.
JP2014187932A 2014-09-16 2014-09-16 Aircraft flight control system Active JP5775632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014187932A JP5775632B2 (en) 2014-09-16 2014-09-16 Aircraft flight control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014187932A JP5775632B2 (en) 2014-09-16 2014-09-16 Aircraft flight control system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011000184A Division JP5618840B2 (en) 2011-01-04 2011-01-04 Aircraft flight control system

Publications (2)

Publication Number Publication Date
JP2015037937A true JP2015037937A (en) 2015-02-26
JP5775632B2 JP5775632B2 (en) 2015-09-09

Family

ID=52631341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014187932A Active JP5775632B2 (en) 2014-09-16 2014-09-16 Aircraft flight control system

Country Status (1)

Country Link
JP (1) JP5775632B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016179742A (en) * 2015-03-24 2016-10-13 株式会社フジタ Flight body having cable
WO2017047118A1 (en) * 2015-09-19 2017-03-23 ソフトバンク株式会社 Base station design assistance system using unmanned aerial vehicle, and server used in this system
JP2017075863A (en) * 2015-10-15 2017-04-20 株式会社プロドローン Aerial type inspection device and inspection method
JP2017178018A (en) * 2016-03-30 2017-10-05 三洋化成工業株式会社 Flight body and non-contact charging system
JP2018084528A (en) * 2016-11-25 2018-05-31 株式会社トプコン Aerial photograph surveying device and aerial photograph surveying method
JP2018128437A (en) * 2017-02-10 2018-08-16 株式会社トプコン Surveying device and surveying system
JP2018205264A (en) * 2017-06-09 2018-12-27 株式会社トプコン Image processor, method for processing image, and image processing program
CN109747824A (en) * 2019-01-14 2019-05-14 中国计量大学 Device and barrier-avoiding method for unmanned plane avoidance inside chimney
JPWO2018158927A1 (en) * 2017-03-02 2019-12-26 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Three-dimensional shape estimation method, flying object, mobile platform, program, and recording medium
US10767347B2 (en) 2016-01-29 2020-09-08 Sumitomo(S.H.I.) Construction Machinery Co., Ltd. Shovel and autonomous aerial vehicle flying around shovel
US10927528B2 (en) 2015-09-15 2021-02-23 Sumitomo(S.H.I.) Construction Machinery Co., Ltd. Shovel
CN112867670A (en) * 2019-02-27 2021-05-28 三菱动力株式会社 Unmanned aerial vehicle and inspection method
CN113079698A (en) * 2019-11-05 2021-07-06 乐天株式会社 Control device and control method for controlling flight of aircraft
WO2022196515A1 (en) 2021-03-17 2022-09-22 株式会社RedDotDroneJapan Flight control system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170651A1 (en) 2016-03-31 2017-10-05 住友重機械工業株式会社 Work management system for construction machine, and construction machine
CN108196583B (en) * 2017-08-21 2020-09-01 中国人民解放军陆军工程大学 Unmanned aerial vehicle cluster control method
CN112684803B (en) * 2021-03-11 2021-06-11 上海擎朗智能科技有限公司 Control method and device for mobile robot, mobile robot and storage medium

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53115262A (en) * 1977-03-18 1978-10-07 Toshiba Corp Geometrical strain corrector of picture image
JPH01134351A (en) * 1987-11-19 1989-05-26 Jiimaato:Yuugen Automatic photography
JPH04270899A (en) * 1991-02-26 1992-09-28 Mitsubishi Heavy Ind Ltd Cruising missile
JP2004245741A (en) * 2003-02-14 2004-09-02 Pasuko:Kk Aerial photographic survey method
JP2005269413A (en) * 2004-03-19 2005-09-29 Chugoku Electric Power Co Inc:The Aerial photography system using unmanned flying object
JP2005271781A (en) * 2004-03-25 2005-10-06 Seiko Epson Corp Information collecting robot
US20050273259A1 (en) * 2004-04-06 2005-12-08 Fredrik Qwarfort Passive measurement of terrain parameters
JP2006166107A (en) * 2004-12-08 2006-06-22 Fast:Kk Split imaging system and split imaging apparatus for automatically determining split imaging areas using two cameras
JP2009150848A (en) * 2007-12-21 2009-07-09 Topcon Corp Image processing apparatus
JP2010095246A (en) * 2008-10-20 2010-04-30 Honeywell Internatl Inc System for navigation of unmanned aerial vehicle and method used for the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53115262A (en) * 1977-03-18 1978-10-07 Toshiba Corp Geometrical strain corrector of picture image
JPH01134351A (en) * 1987-11-19 1989-05-26 Jiimaato:Yuugen Automatic photography
JPH04270899A (en) * 1991-02-26 1992-09-28 Mitsubishi Heavy Ind Ltd Cruising missile
JP2004245741A (en) * 2003-02-14 2004-09-02 Pasuko:Kk Aerial photographic survey method
JP2005269413A (en) * 2004-03-19 2005-09-29 Chugoku Electric Power Co Inc:The Aerial photography system using unmanned flying object
JP2005271781A (en) * 2004-03-25 2005-10-06 Seiko Epson Corp Information collecting robot
US20050273259A1 (en) * 2004-04-06 2005-12-08 Fredrik Qwarfort Passive measurement of terrain parameters
JP2006166107A (en) * 2004-12-08 2006-06-22 Fast:Kk Split imaging system and split imaging apparatus for automatically determining split imaging areas using two cameras
JP2009150848A (en) * 2007-12-21 2009-07-09 Topcon Corp Image processing apparatus
JP2010095246A (en) * 2008-10-20 2010-04-30 Honeywell Internatl Inc System for navigation of unmanned aerial vehicle and method used for the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016179742A (en) * 2015-03-24 2016-10-13 株式会社フジタ Flight body having cable
US10927528B2 (en) 2015-09-15 2021-02-23 Sumitomo(S.H.I.) Construction Machinery Co., Ltd. Shovel
WO2017047118A1 (en) * 2015-09-19 2017-03-23 ソフトバンク株式会社 Base station design assistance system using unmanned aerial vehicle, and server used in this system
JPWO2017047118A1 (en) * 2015-09-19 2018-05-10 ソフトバンク株式会社 Base station design support system using unmanned aerial vehicles and server used in the system
JP2017075863A (en) * 2015-10-15 2017-04-20 株式会社プロドローン Aerial type inspection device and inspection method
WO2017065102A1 (en) * 2015-10-15 2017-04-20 株式会社プロドローン Flying-type inspection device and inspection method
US10767347B2 (en) 2016-01-29 2020-09-08 Sumitomo(S.H.I.) Construction Machinery Co., Ltd. Shovel and autonomous aerial vehicle flying around shovel
US11492783B2 (en) 2016-01-29 2022-11-08 Sumitomo(S.H.I) Construction Machinery Co., Ltd. Shovel and autonomous aerial vehicle flying around shovel
JP2017178018A (en) * 2016-03-30 2017-10-05 三洋化成工業株式会社 Flight body and non-contact charging system
JP2018084528A (en) * 2016-11-25 2018-05-31 株式会社トプコン Aerial photograph surveying device and aerial photograph surveying method
JP2018128437A (en) * 2017-02-10 2018-08-16 株式会社トプコン Surveying device and surveying system
JPWO2018158927A1 (en) * 2017-03-02 2019-12-26 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Three-dimensional shape estimation method, flying object, mobile platform, program, and recording medium
JP2018205264A (en) * 2017-06-09 2018-12-27 株式会社トプコン Image processor, method for processing image, and image processing program
CN109747824A (en) * 2019-01-14 2019-05-14 中国计量大学 Device and barrier-avoiding method for unmanned plane avoidance inside chimney
CN109747824B (en) * 2019-01-14 2023-08-25 中国计量大学 Device and method for avoiding obstacle of unmanned aerial vehicle in chimney
CN112867670A (en) * 2019-02-27 2021-05-28 三菱动力株式会社 Unmanned aerial vehicle and inspection method
CN113079698A (en) * 2019-11-05 2021-07-06 乐天株式会社 Control device and control method for controlling flight of aircraft
WO2022196515A1 (en) 2021-03-17 2022-09-22 株式会社RedDotDroneJapan Flight control system

Also Published As

Publication number Publication date
JP5775632B2 (en) 2015-09-09

Similar Documents

Publication Publication Date Title
JP5618840B2 (en) Aircraft flight control system
JP5775632B2 (en) Aircraft flight control system
US20210065400A1 (en) Selective processing of sensor data
JP5947634B2 (en) Aerial photography imaging method and aerial photography imaging system
JP5748561B2 (en) Aerial photography imaging method and aerial photography imaging apparatus
US9013576B2 (en) Aerial photograph image pickup method and aerial photograph image pickup apparatus
WO2018227350A1 (en) Control method for homeward voyage of unmanned aerial vehicle, unmanned aerial vehicle and machine-readable storage medium
JP2017065467A (en) Drone and control method thereof
JP2018534599A (en) System for imaging a target object
JP2006027331A (en) Method for collecting aerial image information by utilizing unmanned flying object
CN103134475A (en) Aerial photograph image pickup method and aerial photograph image pickup apparatus
JP6583840B1 (en) Inspection system
WO2018081952A1 (en) Systems and methods for height control of a movable object
CN109665099B (en) Unmanned aerial vehicle and overhead line shooting method
JP2018084528A (en) Aerial photograph surveying device and aerial photograph surveying method
JP6001914B2 (en) Target position specifying device, target position specifying system, and target position specifying method
CN109857133A (en) Multi-rotor unmanned aerial vehicle selectivity avoidance obstacle method based on binocular vision
CN118089653B (en) Non-contact unmanned aerial vehicle tower elevation measurement method
JP6482856B2 (en) Monitoring system
JP2016118994A (en) Monitoring system
JP7501535B2 (en) Information processing device, information processing method, and information processing program
JP2020135327A (en) Flight body system, flight body, position measuring method and program
KR20230115042A (en) Collision avoidance drone and control method
Sumetheeprasit Flexible Configuration Stereo Vision using Aerial Robots
JP2023070120A (en) Autonomous flight control method, autonomous flight control apparatus and autonomous flight control system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150703

R150 Certificate of patent or registration of utility model

Ref document number: 5775632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250