JP2015036487A - Repair method of tunnel by filling cavity - Google Patents

Repair method of tunnel by filling cavity Download PDF

Info

Publication number
JP2015036487A
JP2015036487A JP2013167858A JP2013167858A JP2015036487A JP 2015036487 A JP2015036487 A JP 2015036487A JP 2013167858 A JP2013167858 A JP 2013167858A JP 2013167858 A JP2013167858 A JP 2013167858A JP 2015036487 A JP2015036487 A JP 2015036487A
Authority
JP
Japan
Prior art keywords
cavity
filling
tunnel
foam
urethane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013167858A
Other languages
Japanese (ja)
Other versions
JP6337375B2 (en
Inventor
長束 勇
Isamu Nagatsuka
勇 長束
将幸 石井
Masayuki Ishii
将幸 石井
展和 松藤
Tenwa Matsufuji
展和 松藤
悟 鷲見
Satoru Sumi
悟 鷲見
岳治 小浪
Takeji Konami
岳治 小浪
秀夫 橋爪
Hideo Hashizume
秀夫 橋爪
信夫 菊池
Nobuo Kikuchi
信夫 菊池
栄二 大川
Eiji Okawa
栄二 大川
栄一 長
Eiichi Cho
栄一 長
真康 園部
Masayasu Sonobe
真康 園部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEO DESIGN KK
UPCON KK
Achilles Corp
Shimane University
Okasan Livic Co Ltd
Original Assignee
GEO DESIGN KK
UPCON KK
Achilles Corp
Shimane University
Okasan Livic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GEO DESIGN KK, UPCON KK, Achilles Corp, Shimane University, Okasan Livic Co Ltd filed Critical GEO DESIGN KK
Priority to JP2013167858A priority Critical patent/JP6337375B2/en
Publication of JP2015036487A publication Critical patent/JP2015036487A/en
Application granted granted Critical
Publication of JP6337375B2 publication Critical patent/JP6337375B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lining And Supports For Tunnels (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a repair method of a tunnel by filling a cavity, capable of resuming stability of the tunnel to a state close to the completion of the tunnel not only by filling a cavity at the ceiling back side of a tunnel with hard urethane foam but also by reducing or removing a tensile stress on a side wall generated by the cavity using a foaming pressure of the hard urethane foam.SOLUTION: A cavity filling foam urethane liquid A is injected into a cavity 2 to full the cavity and is allowed to foam and to be cured. In a space between a ground and an upper part of the cavity 2 filled with the cavity filling foam urethane liquid A, a pressuring foam urethane liquid B is injected and is allowed to foam and to be cured to thereby reduce or remove the tensile stress generated on the side wall of the tunnel lining by means of a foaming pressure of the cavity filling foam urethane acting on the tunnel lining.

Description

本発明は空洞充填によるトンネルの補修方法に関し、トンネル天端背面の空洞を硬質発泡ウレタンで埋めるだけでなく、硬質発泡ウレタンの発泡圧で空洞により生じた側壁の引張応力を減少させあるいは除去して設計時に想定された応力状態を実現できるようにしたものであり、特に農業用水路トンネルの補修に好適なものである。   The present invention relates to a method for repairing a tunnel by filling a cavity, and not only fills the cavity at the back of the top of the tunnel with rigid urethane foam, but also reduces or eliminates the tensile stress of the sidewall caused by the cavity due to the foaming pressure of rigid urethane foam. It is designed to realize the stress state assumed at the time of design, and is particularly suitable for repairing agricultural canal tunnels.

トンネルの補修を必要とする場合の一つにトンネル天端背面の空洞の発生があり、建設時の余堀や供用後の湧水の影響など様々な理由によって空洞が発生する。
トンネルの形状は背面の全周から荷重を受けると覆工材料に圧縮応力のみが生じるように設計されており,圧縮に強く引張に弱いコンクリートの材料特性を活かすように配慮されている。しかしトンネル天端背面の空洞は荷重状態を乱して引張応力を発生させるため、これを放置するとトンネルの機能低下を招き、トンネルの内面の剥落やクラックの発生などの変状が生じ、大きな問題となる。
One of the cases where tunnel repair is necessary is the generation of a cavity at the back of the tunnel top, which is caused by various reasons, such as extra moat during construction and spring water after operation.
The shape of the tunnel is designed so that only the compressive stress is generated in the lining material when a load is applied from the entire circumference of the back surface, and consideration is given to utilizing the material properties of concrete that is strong against compression and weak against tension. However, the cavity at the back of the tunnel's top end disturbs the load state and generates tensile stress. If left unattended, the tunnel's function will be degraded, causing deformation such as peeling of the tunnel's inner surface and cracks. It becomes.

一方、補修が必要なトンネルとして、農業用水を安定的に供給するための農業用水路トンネルがあり、国内総延長が2000kmにも及んでおり、国営造成施設調査による「農業水利施設ストックデータベース」によれば、多くの農業用水路トンネルには、側壁のある一定高さにひび割れが発生するという大きな変状の問題があり、その補修・補強が喫緊の課題となっている。
このような水路トンネルについては、農業用開水路のフルームのような補修・補強のための手引き書が未整備であるため、現在参考にされているのが、「土地改良事業計画設計基準・設計「水路トンネル」基準書・技術書」(農林水産省構造改善局 平成8年10月)であり、この基準書では、補強工法として例えば、鋼板内張工法や既製管挿入工法が例示されている。
On the other hand, there is an agricultural canal tunnel for stable supply of agricultural water as a tunnel that needs to be repaired, and the total length of the country is as long as 2000 km. For example, many agricultural canal tunnels have a problem of large deformation that cracks occur at a certain height of the side wall, and repair and reinforcement are urgent issues.
For such a waterway tunnel, a manual for repair and reinforcement such as the flume of an agricultural open waterway has not been prepared. “Waterway Tunnel” Standards / Technical Manual ”(Ministry of Agriculture, Forestry and Fisheries, Structural Improvement Bureau, October 1996). In this standard, for example, steel plate lining method and ready-made pipe insertion method are exemplified as reinforcement methods .

また、トンネル側壁のひび割れとトンネル天端背面の空洞とに関連性があるとされ、トンネル天端背面の空洞を、充填材を用いて裏込め補修する方法が種々提案されており、セメント系の充填材を用いる方法や非セメント系の充填材を用いる方法があるが、大掛かりな設備を必要としない非セメント系の硬質ウレタンフォームを用いて現場発泡させることで空洞に充填する方法が注目されている(例えば特許文献1,2など参照)。   In addition, it is said that there is a relation between the cracks on the tunnel side wall and the cavity at the back of the tunnel top, and various methods for backfilling and repairing the cavity at the back of the tunnel top using a filler have been proposed. There are methods that use fillers and non-cement fillers, but the method of filling cavities by in-situ foaming using non-cement hard urethane foam that does not require large-scale equipment has attracted attention. (See, for example, Patent Documents 1 and 2).

例えば、特許文献1に開示されたトンネル等の空隙充填方法では、硬質ポリウレタンフォームで空隙を完全に充填することで止水効果などを高めるようにしている。
また、特許文献2に開示されたトンネルなどの地中構造物の上方に発生した空隙に発泡ウレタンを充填する際の施工管理方法では、発泡ウレタンの充填状態を感知するため、熱電対を空隙上部に位置させておき、充填材の発泡時の発熱を感知することで、空隙の上部まで発泡ウレタンが充填されたことを確認するようにしている。
そして、これらの工法では、いずれも空隙を完全に発泡ウレタンで満たすことで、補修が完了したとしている。
For example, in a gap filling method such as a tunnel disclosed in Patent Document 1, a water stop effect is enhanced by completely filling a gap with a hard polyurethane foam.
In addition, in the construction management method for filling urethane foam into a void generated above an underground structure such as a tunnel disclosed in Patent Document 2, in order to detect the filling state of the urethane foam, the thermocouple is placed above the void. By detecting the heat generated when the filler is foamed, it is confirmed that the urethane foam has been filled up to the top of the gap.
In all of these methods, the repair is completed by completely filling the voids with urethane foam.

特開平6−33697号公報JP-A-6-33697 特開2012−41697号公報JP 2012-41697 A

ところが、「水路トンネル」基準書に例示されている鋼板内張工法や既製管挿入工法は大掛かりな工法であり、これらをそのまま農業用水路トンネルに採用することは、総延長が長く、比較的通水断面が小さい農業用水路トンネルでは、必ずしも合理的でなく、不経済となる場合が多いという問題がある。
また、トンネル天端背面の空洞を、充填材を用いて裏込め補修する方法では、裏込め注入における注入圧の標準は0.2MPaとされ、この注入圧によって空洞を完全に埋めることが可能としているが、側壁にひび割れが生じるなどの変状の程度によってはこの注入圧が過大となりさらなるひび割れの発生を助長するなどトンネルの安定性を取り戻すことができないという問題がある。
However, the steel plate lining method and off-the-shelf pipe insertion method illustrated in the “Water Channel Tunnel” standard are large-scale construction methods, and adopting them as they are in agricultural water channel tunnels has a long total length and relatively high water flow. Agricultural canal tunnels with a small cross section are not always rational and often uneconomical.
In addition, in the method of backfilling the cavity at the back of the tunnel top using a filler, the injection pressure standard for backfill injection is set to 0.2 MPa, and it is possible to completely fill the cavity by this injection pressure. However, depending on the degree of deformation such as a crack on the side wall, this injection pressure becomes excessive, and there is a problem that the stability of the tunnel cannot be regained by promoting the generation of further cracks.

本発明は、上記従来技術の問題点に鑑みてなされたもので、硬質発泡ウレタンでトンネル天端背面の空洞を埋めるだけでなく、硬質発泡ウレタンの発泡圧で空洞により生じた側壁の引張応力を減少させあるいは除去して構築時に近い状態まで回復させトンネルの安定性を取り戻すことができる空洞充填によるトンネルの補修方法を提供しようとするものである。   The present invention has been made in view of the above-mentioned problems of the prior art, and not only fills the cavity at the back of the tunnel top end with rigid urethane foam, but also reduces the tensile stress of the side wall caused by the cavity with the foaming pressure of rigid urethane foam. It is an object of the present invention to provide a tunnel repair method by cavity filling that can be reduced or eliminated to restore a state close to the time of construction to restore tunnel stability.

上記の問題点を解決するため鋭意実験・研究を重ねた結果、トンネルに生じる変状の一つである側壁のひび割れ発生の要因は、覆工天端背面に存在する地盤の空洞に起因することが分かった。
すなわち、トンネルの設計理論では、覆工に外周から均一な垂直荷重(全周等分布荷重)が作用することを前提とし、覆工内に引張応力が発生しない状態であるとしているのに対し、図1に示すように、トンネル1の天端背面の空洞2によって、覆工の側壁3,3に両側から側圧Pが加わる状態となり、側壁3,3の内面に引張応力が作用して側壁3,3のある一定高さにひび割れ4,4が発生することが分かり、室内模型実験でも確認された。
また、空洞を充填材で裏込めするだけでは、覆工の両側から側壁に加わる圧力(側圧)がそのまま残った状態となる一方、空洞を充填し、トンネル覆工に作用する圧力を全周等分布荷重状態にすることで、トンネル覆工が設計時に想定された応力状態に近づき、トンネルの安定性を取り戻すことができることが分かり、本発明を完成したものである。
As a result of repeated experiments and research to solve the above problems, the cause of cracks in the side wall, which is one of the deformations that occur in the tunnel, is due to the ground cavity existing at the back of the lining ceiling. I understood.
That is, in the tunnel design theory, it is assumed that a uniform vertical load (distributed load around the entire circumference) acts on the lining from the outer periphery, whereas tensile stress is not generated in the lining. As shown in FIG. 1, the cavity 2 on the back of the top end of the tunnel 1 causes a side pressure P to be applied to the side walls 3, 3 of the lining from both sides, and tensile stress acts on the inner surfaces of the side walls 3, 3 to cause the side walls 3. , 3 cracks 4 and 4 occur at a certain height, which was confirmed in an indoor model experiment.
In addition, just filling the cavity with a filler will leave the pressure (side pressure) applied to the side wall from both sides of the lining as it is, while filling the cavity and the pressure acting on the tunnel lining all around It has been found that, by setting the distributed load state, the tunnel lining approaches the stress state assumed at the time of design, and the stability of the tunnel can be recovered, and the present invention has been completed.

すなわち、本発明の請求項1記載の空洞充填によるトンネルの補修方法は、トンネル天端背面の空洞に硬質ウレタンフォームを充填して補修するに際し、前記空洞を満たす空洞充填用発泡ウレタン液を当該空洞内に注入して発泡硬化させて空洞充填用発泡ウレタンとしたのち、この空洞充填用発泡ウレタンで埋められた空洞上部と地山との隙間に、前記空洞充填用発泡ウレタンを介してトンネル覆工に発泡圧を作用させトンネル覆工の側壁に生じた引張応力を減少させあるいは除去する加圧用発泡ウレタン液を注入して発泡硬化させて加圧用発泡ウレタンとするようにしたことを特徴とするものである。   That is, in the tunnel repairing method by filling the cavity according to claim 1 of the present invention, the urethane foam liquid for filling the cavity filling the cavity is filled with the hard urethane foam in the cavity at the back of the tunnel top end. After injecting into the foam and hardening to make urethane foam for filling the cavity, the tunnel lining is formed in the gap between the upper part of the cavity filled with the foam filling urethane and the natural ground via the urethane foam for filling the cavity. It is characterized by injecting urethane foam for pressurization to reduce or remove the tensile stress generated on the side wall of the tunnel lining by injecting foam pressure into the foam and curing it to make urethane foam for pressurization. It is.

また、本発明の請求項2記載の空洞充填によるトンネルの補修方法は、請求項1記載の構成に加え、前記空洞充填用発泡ウレタンは前記加圧用発泡ウレタンよりゲルタイムを長くする一方、フォーム密度を略同一とするようにしたことを特徴とするものである。   Moreover, the tunnel repairing method by cavity filling according to claim 2 of the present invention, in addition to the configuration according to claim 1, the foamed urethane for filling the cavity has a longer gel time than the foamed urethane for pressurization, while the foam density is increased. It is characterized by being substantially identical.

さらに、本発明の請求項3記載の空洞充填によるトンネルの補修方法は、請求項1または2記載の構成に加え、前記空洞充填用発泡ウレタンのゲルタイムを50〜70秒とし、前記加圧用発泡ウレタンのゲルタイムを5〜25秒とする一方、前記空洞充填用発泡ウレタンと前記加圧用発泡ウレタンのフォーム密度は30kg/m3以上とするようにしたことを特徴とするものである。 Further, in the tunnel repairing method by cavity filling according to claim 3 of the present invention, in addition to the structure according to claim 1 or 2, the urethane foam for filling cavity has a gel time of 50 to 70 seconds, and the urethane foam for pressurization is used. On the other hand, the foam density of the foam filling urethane and the pressurizing foam urethane is set to 30 kg / m 3 or more.

また、本発明の請求項4記載の空洞充填によるトンネルの補修方法は、請求項1〜3のいずれかに記載の構成に加え、トンネル覆工の側壁の引張応力を減少させあるいは除去するための限界加圧力を、予めトンネルの設計条件と空洞の発生状態および側壁のひび割れの発生状態の実測結果とから有限要素法による数値解析で求めておき、得られた限界加圧力から前記加圧用発泡ウレタンにより加える発泡圧を設定して注入するようにしたことを特徴とするものである。   According to a fourth aspect of the present invention, there is provided a method for repairing a tunnel by cavity filling, in addition to the structure according to any one of the first to third aspects, for reducing or removing the tensile stress on the side wall of the tunnel lining. The critical pressure is determined in advance by numerical analysis based on the finite element method from the design conditions of the tunnel and the measurement results of the state of occurrence of cavities and cracks on the side walls. From the obtained critical pressure, the urethane foam for pressurization is obtained. The foaming pressure to be applied is set and injected.

さらに、本発明の請求項5記載の空洞充填によるトンネルの補修方法は、請求項4記載の構成に加え、限界加圧力より低い発泡圧で前記加圧用発泡ウレタンを、トンネル覆工の側壁のひび割れが減少するまで注入充填するようにしたことを特徴とするものである。   Furthermore, the tunnel repairing method by cavity filling according to claim 5 of the present invention is the same as that of claim 4, wherein the urethane foam for pressurization is cracked on the side wall of the tunnel lining with a foaming pressure lower than the limit pressure. It is characterized in that the filling is carried out until the amount decreases.

本発明の請求項1記載の空洞充填によるトンネルの補修方法によれば、トンネル天端背面の空洞に硬質ウレタンフォームを充填して補修するに際し、前記空洞を満たす空洞充填用発泡ウレタン液を当該空洞内に注入して発泡硬化させて空洞充填用発泡ウレタンとしたのち、この空洞充填用発泡ウレタンで埋められた空洞上部と地山との隙間に、前記空洞充填用発泡ウレタンを介してトンネル覆工に発泡圧を作用させトンネル覆工の側壁に生じた引張応力を減少させあるいは除去する加圧用発泡ウレタン液を注入して発泡硬化させて加圧用発泡ウレタンとするようにしたので、空洞を空洞充填用発泡ウレタンで満たし、この空洞充填用ウレタンを介して加圧用発泡ウレタンを発泡硬化させてトンネル覆工に発泡圧を作用させることで、トンネル覆工の側壁にひび割れを生じさせた引張応力を減少させ、あるいは除去することができる。
これにより、トンネル覆工を全周等分布荷重状態に近づけたり戻すことができ、設計時に想定された荷重状態に近づけトンネルの安定性を取り戻すことができる。
According to the method for repairing a tunnel by filling the cavity according to claim 1 of the present invention, when the cavity at the back of the tunnel top is filled with the hard urethane foam and repaired, the foamed urethane liquid for filling the cavity is filled with the urethane filling liquid for filling the cavity. After injecting into the foam and hardening to make urethane foam for filling the cavity, the tunnel lining is formed in the gap between the upper part of the cavity filled with the foam filling urethane and the natural ground via the urethane foam for filling the cavity. The foaming pressure was applied to the tunnel lining to reduce or eliminate the tensile stress generated on the side wall of the tunnel lining, and the foaming urethane liquid was injected and cured to form the pressurized urethane foam. By filling with urethane foam for foaming, foaming and curing foaming urethane for pressurization through this urethane for filling cavity, and applying foaming pressure to tunnel lining, tunnel Reduce the tensile stress that caused the cracks on the side walls of the factory, or may be removed.
As a result, the tunnel lining can be brought close to or returned to a uniform load state around the entire circumference, and the tunnel stability can be brought close to the load state assumed at the time of design.

また、本発明の請求項2記載の空洞充填によるトンネルの補修方法によれば、前記空洞充填用発泡ウレタンは前記加圧用発泡ウレタンよりゲルタイムを長くする一方、フォーム密度を略同一とするようにしたので、ゲルタイムの長い空洞充填用発泡ウレタンで流動性を確保して空洞を完全に埋めて充填することができ、ゲルタイムの短い加圧用発泡ウレタンで注入後直ちに発泡圧をトンネル覆工に作用させることができ、略同一のフォーム密度とすることで、空洞充填用発泡ウレタンに加圧用発泡ウレタンが入り込むことなくトンネル覆工に発泡圧を作用させることができる。   According to the tunnel repairing method by cavity filling according to claim 2 of the present invention, the foamed urethane for cavity filling has a longer gel time than the foamed urethane for pressurization, while the foam density is made substantially the same. Therefore, it is possible to fill the cavity completely by filling the cavity with foamed urethane for filling the cavity with a long gel time, and to apply the foaming pressure to the tunnel lining immediately after injection with the urethane foam for pressurization with a short gel time. When the foam density is set to substantially the same, the foaming pressure can be applied to the tunnel lining without the urethane foam for pressure entering the urethane foam for cavity filling.

さらに、本発明の請求項3記載の空洞充填によるトンネルの補修方法によれば、前記空洞充填用発泡ウレタンのゲルタイムを50〜70秒とし、前記加圧用発泡ウレタンのゲルタイムを5〜25秒とする一方、前記空洞充填用発泡ウレタンと前記加圧用発泡ウレタンのフォーム密度は30kg/m3以上とするようにしたので、これらのゲルタイムおよびフォーム密度とすることで、空洞を発泡ウレタンで完全に充填することができるとともに、充填した発泡ウレタンを介して発泡圧を作用させることができ、トンネル覆工を全周等分布荷重状態に近づけたり戻すことができ、設計時に想定された荷重状態に近づけトンネルの安定性を取り戻すことができる。 Furthermore, according to the tunnel repairing method according to claim 3 of the present invention, the gel time of the urethane foam for cavity filling is set to 50 to 70 seconds, and the gel time of the urethane foam for pressurization is set to 5 to 25 seconds. On the other hand, since the foam density of the foamed urethane for filling the cavity and the foamed urethane for pressurization was set to 30 kg / m 3 or more, by setting the gel time and the foam density, the cavity is completely filled with the foamed urethane. In addition, the foaming pressure can be applied via the filled urethane foam, and the tunnel lining can be brought close to and returned to the distributed load state around the entire circumference. Stability can be regained.

また、本発明の請求項4記載の空洞充填によるトンネルの補修方法によれば、トンネル覆工の側壁の引張応力を減少させあるいは除去するための限界加圧力を、予めトンネルの設計条件と空洞の発生状態および側壁のひび割れの発生状態の実測結果とから有限要素法による数値解析で求めておき、得られた限界加圧力から前記加圧用発泡ウレタンにより加える発泡圧を設定して注入するようにしたので、トンネルの断面形状、断面寸法、覆工厚、コンクリートの圧縮強度、引張強度、ヤング係数などその他の物性値などの設計条件と、空洞の広さやひび割れの進行程度などトンネルの空洞の発生状態およびひび割れの発生状態の実測結果を用いて有限要素法で数値解析することで、トンネルを破壊する限界加圧力を求めることができ、この限界加圧力に基づいて発泡圧を設定して加圧用発泡ウレタンを注入することで、ひび割れ発生箇所の引張応力を消滅させ、圧縮応力状態となるようにすることができる。
これにより、発泡圧のかけすぎによる新たなひび割れが発生することもなく、構築時に近い状態まで回復させトンネルの安定性を取り戻すことができる。
According to the method for repairing a tunnel by filling the cavity according to claim 4 of the present invention, the critical pressure for reducing or removing the tensile stress on the side wall of the tunnel lining is set in advance with the design conditions of the tunnel and the cavity. Obtained by numerical analysis by the finite element method from the actual state of the occurrence state and the crack occurrence state of the side wall, and set the foaming pressure to be applied by the urethane foam for pressurization from the obtained critical pressure, and injected Therefore, design conditions such as tunnel cross-sectional shape, cross-sectional dimensions, lining thickness, concrete compressive strength, tensile strength, other physical properties such as Young's modulus, and the state of occurrence of tunnel cavities such as the size of the cavities and the extent of cracking By using the finite element method and numerical analysis using the actual measurement results of cracks and cracks, the limit pressure that breaks the tunnel can be obtained. Set the foaming pressure based on the pressure to inject pressurizing urethane foam, to extinguish the tensile stress of the crack occurrence point can be made to be compressive stress state.
As a result, new cracks due to excessive foaming pressure do not occur, and it is possible to recover to a state close to the time of construction and regain the stability of the tunnel.

また、本発明の請求項5記載の空洞充填によるトンネルの補修方法によれば、限界加圧力より低い発泡圧で前記加圧用発泡ウレタンを、トンネル覆工の側壁のひび割れが減少するまで注入充填するようにしたので、発泡圧のかけすぎによる新たなひび割れの発生やトンネルの損傷を招くことなく、ひび割れの変位の監視などで簡単に管理して構築時に近い状態までトンネルを回復させ安定性を取り戻すことができる。   According to the method for repairing a tunnel by filling a cavity according to claim 5 of the present invention, the urethane foam for pressurization is injected and filled at a foaming pressure lower than the limit pressure until the cracks on the side wall of the tunnel lining are reduced. As a result, it is easy to manage by monitoring the displacement of the cracks and restore the tunnel to a state close to the time of construction and restore stability without causing new cracks or tunnel damage due to excessive foaming pressure. be able to.

空洞によるトンネルの側壁にひび割れが発生するメカニズムの説明図である。It is explanatory drawing of the mechanism in which a crack generate | occur | produces in the side wall of the tunnel by a cavity. 本発明の空洞充填によるトンネルの補修方法の一実施の形態にかかる模型水路トンネルの説明図である。It is explanatory drawing of the model waterway tunnel concerning one Embodiment of the repair method of the tunnel by cavity filling of this invention. 本発明の空洞充填によるトンネルの補修方法の一実施の形態にかかる発泡ウレタンの充填位置の説明図である。It is explanatory drawing of the filling position of the urethane foam concerning one Embodiment of the repair method of the tunnel by cavity filling of this invention. 本発明の空洞充填によるトンネルの補修方法の一実施の形態にかかる充填位置による発泡圧力の作用の時間的変化を示すグラフである。It is a graph which shows the time change of the effect | action of the foaming pressure by the filling position concerning one Embodiment of the repair method of the tunnel by the cavity filling of this invention. 本発明の空洞充填によるトンネルの補修方法の一実施の形態にかかる工程説明図である。It is process explanatory drawing concerning one Embodiment of the repair method of the tunnel by cavity filling of this invention. 本発明の空洞充填によるトンネルの補修方法の一実施の形態にかかる現地調査による縦断面方向の空洞状況結果の説明図である。It is explanatory drawing of the cavity condition result of the longitudinal cross-section direction by the field survey concerning one Embodiment of the repair method of the tunnel by cavity filling of this invention. 本発明の空洞充填によるトンネルの補修方法の一実施の形態にかかる現地調査による横断面方向の空洞状況結果の説明図である。It is explanatory drawing of the cavity condition result of the cross-sectional direction by the field survey concerning one Embodiment of the repair method of the tunnel by cavity filling of this invention. 本発明の空洞充填によるトンネルの補修方法の一実施の形態にかかる内空断面の調査結果の説明図である。It is explanatory drawing of the investigation result of the inner-air cross section concerning one Embodiment of the repair method of the tunnel by cavity filling of this invention. 本発明の空洞充填によるトンネルの補修方法の一実施の形態にかかる現地調査によるひび割れ状況の説明図である。It is explanatory drawing of the crack condition by the field survey concerning one Embodiment of the repair method of the tunnel by cavity filling of this invention. 本発明の空洞充填によるトンネルの補修方法の一実施の形態にかかる発泡ウレタン注入中のひび割れ幅の変動およびトンネル躯体の変位の測定結果の説明図である。It is explanatory drawing of the measurement result of the fluctuation | variation of the crack width in the foaming urethane injection | pouring concerning one Embodiment of the repair method of the tunnel by cavity filling of this invention, and the displacement of a tunnel housing.

以下、本発明を実施するための形態について、図面を参照して詳細に説明する。
本発明の空洞充填によるトンネルの補修方法は、トンネル天端背面の空洞に硬質ウレタンフォームを充填して補修する際に、空洞を空洞充填用発泡ウレタンで満たして発泡硬化させ、この空洞充填用ウレタンを介して加圧用発泡ウレタンを注入してトンネル覆工に発泡圧を作用させることで、トンネル覆工の側壁にひび割れを生じさせた引張応力を減少させ、あるいは除去し、これにより、トンネル覆工を全周等分布荷重状態に近づけたり戻すようにして、設計時に想定された荷重状態に近づけトンネルの安定性を取り戻すようにするものである。
Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings.
The method of repairing a tunnel by cavity filling according to the present invention is such that when a cavity at the back of the tunnel top is filled with a hard urethane foam and repaired, the cavity is filled with foamed urethane for cavity filling and foamed and cured, and this cavity filling urethane is used. By injecting urethane foam for pressurization through the tunnel and applying foaming pressure to the tunnel lining, the tensile stress that caused cracks on the side wall of the tunnel lining is reduced or eliminated. Is brought close to or returned to a uniform load state around the entire circumference so as to approach the load state assumed at the time of design and to restore the stability of the tunnel.

すなわち、これまでのトンネル天端背面に空洞が生じている場合の補修方法では、空洞をセメント系や非セメント系の充填材を用いて埋めるようにすることが行われ、空洞が充填材で完全に埋まったことを温度センサや充填圧力を監視することで管理するようにしていたが、圧力を作用させようとするものではなかった。そのため、トンネル覆工の側壁に発生しているひび割れそのものの原因となっている引張応力への対策はなされていなかった。   In other words, in the conventional repair method in the case where a cavity has occurred at the back of the tunnel top, the cavity is filled with a cement or non-cement filler, and the cavity is completely filled with the filler. Although it was managed by monitoring the temperature sensor and the filling pressure, it was not intended to apply pressure. Therefore, no countermeasure has been taken against the tensile stress that causes the cracks generated on the side walls of the tunnel lining.

そこで、この空洞充填によるトンネルの補修方法では、空洞を埋めるだけでなく、さらに圧力を加えることによって覆工に生じる引張応力を減少させ、あるいは除去するものであり、まず、トンネル天端背面の空洞に空洞充填用発泡ウレタンAを注入して発泡硬化させて空洞を埋めるようにする。   Therefore, this tunnel repair method by filling the cavity not only fills the cavity but also reduces or eliminates the tensile stress generated in the lining by applying pressure. The foamed urethane A for filling the cavity is injected into the foam and cured by foaming so as to fill the cavity.

この空洞充填用発泡ウレタンAとしては、表1(a)〜(c)に示すように、トンネル背面の空洞に隙間なく充填する必要があることから、ゲルタイム(発泡硬化するまでの時間)が長いものが良く、例えば50〜70秒のものが用いられる。この範囲よりゲルタイムが短い場合には、空洞への注入口から空洞の端部まで充填することができなくなる場合があり、ゲルタイムが長い場合には、発泡硬化までに時間がかかり施工全体の効率が低下する場合がある。
また、空洞充填用発泡ウレタンAとしては、フォーム密度が30kg/m3以上のものが良く、次工程で注入する加圧用発泡ウレタンBによる発泡圧を有効に覆工に作用させることができるようにする。フォーム密度が30kg/m3より小さい場合には、発泡硬化した空洞充填用発泡ウレタンAの間に加圧用発泡ウレタンBが入り込んで発泡圧を作用させることができなくなる場合がある。
このような空洞充填用発泡ウレタンAとしては、上記のゲルタイムやフォーム密度のほか、例えばイソシアネート液Iとポリオール液Rとの混合比が重量比で、100:74±3、クリームタイムが9〜19秒の範囲のものが用いられる。
As shown in Tables 1 (a) to 1 (c), the foam filling urethane A for filling the cavity has a long gel time (time until foaming and curing) because it is necessary to fill the cavity on the back surface of the tunnel without any gap. For example, a thing of 50 to 70 seconds is used. If the gel time is shorter than this range, it may not be possible to fill from the inlet to the cavity to the end of the cavity. May decrease.
Moreover, as the foaming urethane A for filling the cavity, the foam density is preferably 30 kg / m 3 or more so that the foaming pressure by the foaming urethane B injected in the next step can be effectively applied to the lining. To do. When the foam density is less than 30 kg / m 3, there is a case where the urethane foam B for pressurization enters between the foamed urethane foam A for foam filling and the foaming pressure cannot be applied.
As such foam filling urethane A for cavity filling, in addition to the above gel time and foam density, for example, the mixing ratio of isocyanate liquid I and polyol liquid R is 100: 74 ± 3, cream time is 9 to 19 The one in the second range is used.

Figure 2015036487
Figure 2015036487

このような空洞充填用発泡ウレタンAの空洞への充填性の確認と発泡硬化した空洞充填用発泡ウレタンAを介してトンネル覆工に加圧用発泡ウレタンBによって発泡圧を作用させることができるかどうかの確認のため、次のような模型実験を行った。
この模型実験では、図2に示すように、鋼材を用いてトンネル1の上部の空洞2を模擬した内径が半径1250mmの地山壁5と半径1000mmの覆工壁6とを備えた2重構造のライナープレートによる側壁を備えた模型水路トンネル7を用意した。なお、トンネルの軸方向の長さ(延長)は1500mmである。
Whether or not the foaming pressure can be applied to the tunnel lining through the confirmation of the filling property of the cavity filling foam urethane A into the cavity and the foam filling urethane A for foam filling. The following model experiment was conducted to confirm this.
In this model experiment, as shown in FIG. 2, a double structure comprising a natural wall 5 having a radius of 1250 mm and a lining wall 6 having a radius of 1000 mm simulating the cavity 2 at the top of the tunnel 1 using a steel material. A model waterway tunnel 7 having a side wall of a liner plate was prepared. The length (extension) of the tunnel in the axial direction is 1500 mm.

空洞充填用発泡ウレタンAの空洞充填性を確認するため、注入中は熱電対を用いた温度計測で行い、施工後では、解体し目視により行った。
また、加圧用発泡ウレタンBにより加わる圧力を模型水路トンネルの内側の表面に圧力センサを設置して圧力を計測することで行った。なお、圧力センサを発泡熱から保護するため油粘土で表面を覆うようにした。
In order to confirm the cavity filling property of the foamed urethane A for cavity filling, temperature measurement using a thermocouple was performed during the injection, and after the construction, it was disassembled and visually observed.
Moreover, the pressure applied by the urethane foam B for pressurization was performed by installing a pressure sensor on the inner surface of the model channel tunnel and measuring the pressure. The pressure sensor was covered with oil clay to protect it from heat of foaming.

実験では、空洞充填用発泡ウレタンAを2重構造のライナープレートの空洞部全体に注入した。
加圧用発泡ウレタンBの注入は、図3に示すように、模型水路トンネル7の空洞2に対し充填位置の異なる3つのケースで実験を行い、発泡硬化した空洞充填用発泡ウレタンAの上側に注入するケース1(図3(a)参照)、両脇に注入し発泡硬化した空洞充填用発泡ウレタンAの中央部に注入するケース2(図3(b)参照)、発泡硬化した空洞充填用発泡ウレタンAの下側に注入するケース3(図3(c)参照)について実験を行った。
なお、空洞充填用発泡ウレタンAを天端両脇に注入後、中央部に加圧用発泡ウレタンBを注入するケース2の場合には、空洞充填用発泡ウレタンAを空洞部全体に注入後、解体により中央部の空洞充填用発泡ウレタンAを取り除いた後、加圧用発泡ウレタンBを注入した。
In the experiment, urethane foam A for filling the cavity was injected into the entire cavity of the double-layer liner plate.
As shown in FIG. 3, the injection of pressurized urethane foam B is performed in three cases with different filling positions for the cavity 2 of the model waterway tunnel 7, and injected into the upper side of the foam filling urethane A for foam hardening. Case 1 (see FIG. 3 (a)), Case 2 (see FIG. 3 (b)) injected into the center of the foam filling urethane A injected into both sides and foam-cured, and foam-filled cavity filling foam An experiment was conducted on case 3 (see FIG. 3C) injected into the lower side of urethane A.
In addition, in the case of the case 2 in which the foaming urethane A for cavity filling is injected into both sides of the top end and the urethane foam for pressurization B is injected into the central portion, the foaming urethane A for filling the cavity is injected into the entire cavity portion and then disassembled. After removing the foaming urethane A for cavity filling at the center, the foaming urethane B for pressurization was injected.

実験結果
ケース1〜3のいずれも空洞充填用発泡ウレタンAは、トンネルの延長方向中心部の注入口から注入することで、トンネル天端の空洞部に十分充填できることが熱電対による温度計測および解体後の目視で確認できた。
これにより、1つの注入口から注入範囲は、半径1500mmとすることが可能であると考えられる。
次に、ケース1〜3の加圧用発泡ウレタンBの注入結果から空洞充填用発泡ウレタンAの発泡硬化後に加圧用発泡ウレタンBを注入充填できることが分かった。
さらに、加圧用発泡ウレタンBの充填位置によってトンネル覆工に相当する内側のライナープレートに及ぼす圧力が異なり、図4(a)〜(c)に示すように、ケース1の空洞充填用発泡ウレタンAの上側またはケース3の下側に注入充填することが有効であり、最も発泡圧を有効に作用させることができるのは、ケース1の空洞充填用発泡ウレタンAの上側に注入充填する場合であることが分かった。
なお、ケース2の中央部に加圧用発泡ウレタンBを注入充填する場合には、トンネル覆工に相当する内側のライナープレートへの圧力の作用はわずかであり、これは両側の空洞充填用発泡ウレタンAに発泡圧が作用したものと考えられる。
Experimental results In all cases 1 to 3, the urethane foam A for filling the cavity can be sufficiently filled into the cavity at the top of the tunnel by injecting it from the injection port at the center in the extension direction of the tunnel. It was confirmed by visual inspection later.
Thereby, it is considered that the injection range from one injection port can be a radius of 1500 mm.
Next, it was found from the results of the injection of the urethane foam B for pressurization in the cases 1 to 3 that the urethane foam B for pressurization can be injected and filled after the foaming and curing of the urethane foam A for filling the cavity.
Further, the pressure exerted on the inner liner plate corresponding to the tunnel lining differs depending on the filling position of the urethane foam B for pressurization, and as shown in FIGS. It is effective to inject and fill the upper side of the case 3 or the lower side of the case 3, and the case where the foaming pressure can be most effectively applied is the case of injecting and filling the upper side of the foamed urethane A for cavity filling of the case 1 I understood that.
In addition, when the foaming urethane B for pressurization is injected and filled in the center part of the case 2, the action of the pressure on the inner liner plate corresponding to the tunnel lining is negligible. It is considered that the foaming pressure acted on A.

このような模型水路トンネルの実験には、加圧用発泡ウレタンBとして、表1(d)に示すように、発泡硬化した空洞充填用発泡ウレタンAを介してトンネル背面に発泡圧を直ちに作用させる必要から、ゲルタイム(発泡硬化するまで時間)が空洞充填用発泡ウレタンAに比べて短いものが良く、例えば5〜25秒のものが用いられる。この範囲よりゲルタイムが短い場合には、発泡硬化した空洞充填用発泡ウレタンAの上側に充填することができなくなる場合があり、ゲルタイムが長い場合には、発泡圧を作用させるまでに時間がかかり施工全体の効率が低下する場合がある。
また、加圧用発泡ウレタンBとしては、フォーム密度が空洞充填用発泡ウレタンAと略同一のものであれば良く、フォーム密度が30kg/m3以上のものが用いられる。これにより、発泡硬化した空洞充填用発泡ウレタンAの間に加圧用発泡ウレタンBが入り込んで発泡圧を作用させることができなくなることもなく、発泡圧を有効に作用させることができる。
このような加圧用発泡ウレタンBとしては、上記のゲルタイムやフォーム密度のほか、例えばイソシアネート液Iとポリオール液Rとの混合比が重量比で、100:100±3、クリームタイムが9〜19秒の範囲のものが用いられる。
以上の模型水路トンネルを用いた実験により空洞充填用発泡ウレタンAを注入して空洞を埋めた後、発泡硬化した空洞充填用発泡ウレタンAを介して加圧用発泡ウレタンBを注入して発泡圧をトンネル覆工に作用させることができることが確認できた。
In the experiment of such a model channel tunnel, as shown in Table 1 (d), it is necessary to immediately apply foam pressure to the back surface of the tunnel through the foam-filled urethane foam A for foam filling as the foam foam B for pressurization. Therefore, it is preferable that the gel time (time until foaming and curing) is shorter than that of the foaming urethane A for filling the cavity, for example, 5 to 25 seconds. If the gel time is shorter than this range, it may not be possible to fill the upper side of the foam-filled urethane foam A for foam filling, and if the gel time is long, it takes time to apply the foaming pressure. Overall efficiency may be reduced.
Further, the urethane foam B for pressurization only needs to have a foam density that is substantially the same as the foamed urethane foam A for cavity filling, and a foam density of 30 kg / m 3 or more is used. Thus, the foaming pressure B can be effectively applied without the foaming urethane B for pressurization entering the void-filling foaming urethane A that has been foam-cured and being unable to act on the foaming pressure.
As such a urethane foam B for pressurization, in addition to the above gel time and foam density, for example, the mixing ratio of the isocyanate liquid I and the polyol liquid R is 100: 100 ± 3, and the cream time is 9 to 19 seconds. The thing of the range of is used.
After filling the cavity by filling the cavity filling foam urethane A by the experiment using the above model waterway tunnel, the foaming urethane B is injected through the foam filling urethane foam A which has been foam-cured to increase the foaming pressure. It was confirmed that it can be applied to tunnel lining.

そこで、実際にひび割れが生じている水路トンネルの補修に適用しようとすると、図5に施工工程のフローを示すように、トンネルの天端背面の空洞量、トンネル覆工に作用させる圧力値を設定し、発泡圧によりトンネル覆工に破損や破壊などの重大なダメージを生じさせないようにする必要がある。   Therefore, when applying to repairing a water channel tunnel that has actually cracked, set the amount of cavities at the back of the top of the tunnel and the pressure value acting on the tunnel lining as shown in the flow of the construction process in Fig. 5 However, it is necessary to prevent the tunnel lining from causing serious damage such as breakage or destruction by the foaming pressure.

1).そのため、まず、水路トンネルの現地調査を行う。
この現地調査では、1)−1.トンネルと地山との空洞量、1)−2.トンネル躯体の断面形状(巻厚や内空断面)、1)−3,4.躯体コンクリートの状態(強度やひび割れ)などの調査のほか、必要に応じて測量などを行う。
空洞量についての調査は、例えばレーダー探査を行うことで、連続的かつ迅速に把握することが可能である。計測は、例えば天端位置に加え、中心角度左右30度よび60度に設定した軸方向の5測線に対して行い、躯体コンクリートの巻厚をコア抜きなどにより確認し、キャリブレーションを行うことで、計測精度の向上を図る。巻厚の調査では,軸方向の調査に加えて横断面方向のレーダー探査を行うことが有効である。
また、空洞および巻厚に対する追加調査としてCCDカメラを用いることができる。躯体コンクリートに直径20mm程度の孔を削孔し、CCDカメラによる目視をあわせて行う。
レーダー探査による空洞の調査結果の一例を図6,7に示した。図6は縦断面方向の空洞の3測線における調査結果であり、図7は横断面方向の空洞の2箇所における調査結果である。
1). Therefore, a field survey of the canal tunnel is first conducted.
In this field survey, 1) -1. Cavity of tunnel and natural ground, 1) -2. 3. Cross-sectional shape of tunnel housing (coil thickness and internal cross section), 1) -3,4. In addition to investigating the state of concrete (strength and cracks), surveys are conducted as necessary.
The investigation of the amount of cavities can be grasped continuously and quickly, for example, by radar exploration. For example, in addition to the top end position, the measurement is performed on five measuring lines in the axial direction set to 30 degrees and 60 degrees on the center angle, and the thickness of the concrete frame is confirmed by core removal and calibration is performed. To improve measurement accuracy. In the investigation of the winding thickness, it is effective to conduct a radar survey in the cross-sectional direction in addition to the axial investigation.
Also, a CCD camera can be used as an additional study for cavities and winding thickness. A hole with a diameter of about 20 mm is drilled in the frame concrete, and the inspection is performed with a CCD camera.
An example of the cavity survey results by radar survey is shown in FIGS. FIG. 6 shows the results of investigation in three survey lines of the cavity in the longitudinal section direction, and FIG. 7 shows the results of investigation in two places of the cavity in the transverse section direction.

内空断面の計測は、レーザー式内空断面計測器を用い、全周を等間隔で100点計測する。この内空断面の計測は、空洞の位置や空洞の大きさに応じて複数箇所で計測する。
このレーザー式内空断面計測器による計測結果の一例を標準断面とともに、図8に示した。
さらに、側面クラックについても調査し、その位置やクラック幅について計測する。側面クラック計測の結果の一例を左側面および右側面について図9に示した。
The measurement of the inner air cross section uses a laser type inner air cross section measuring device and measures 100 points at equal intervals on the entire circumference. This inner cross section is measured at a plurality of locations according to the position of the cavity and the size of the cavity.
An example of the measurement result obtained by this laser-type hollow section measuring instrument is shown in FIG. 8 together with a standard section.
Furthermore, the side cracks are also investigated, and the position and crack width are measured. An example of the result of the side crack measurement is shown in FIG. 9 for the left side and the right side.

躯体コンクリートの状態は、穿孔機を用いてトンネル躯体の健全部およびスプリングラインのひび割れ部から供試体を得て、圧縮試験による強度確認、ひび割れの発達の程度を把握する。
なお、現地調査にともなうコア抜き部分、CCDカメラ用の削孔部分、圧縮試験などの供試体の穿孔部分は無収縮モルタルなどの充填で補修する。
The condition of the frame concrete is obtained from the sound part of the tunnel frame and the crack part of the spring line using a drilling machine, and the strength is confirmed by the compression test and the degree of development of the crack is grasped.
In addition, the core-extracted part, the drilling part for the CCD camera, and the perforated part of the specimen such as compression test are repaired by filling with non-shrink mortar.

2).次に、スプリングラインにひび割れのあるトンネル躯体の断面調査結果などに基づき、有限要素法による数値解析を行い現況のコンクリート覆工の背面圧力の推定を行う。
次いで、現況背面圧力の推定値を基に、有限要素法による数値解析による加圧用発泡ウレタンBの限界注入圧力の設定を行う。
2). Next, based on the cross-sectional investigation results of the tunnel frame with cracks in the spring line, numerical analysis by the finite element method is performed to estimate the back pressure of the current concrete lining.
Next, based on the estimated value of the current back pressure, the limit injection pressure of the urethane foam B for pressurization is set by numerical analysis using the finite element method.

2)−1.スプリングラインにひび割れのある躯体の断面調査結果の利用
(1)躯体条件 :覆工巻厚、躯体コンクリートの圧縮強度
(2)地山条件 :躯体天端の空洞の位置と大きさ
(3)底版支持条件:計算上の仮定で代替(調査極めて困難)
2) -1. Use of cross-sectional survey results of a frame with cracks in the spring line (1) Frame condition: lining winding thickness, compressive strength of frame concrete (2) Ground condition: Position and size of cavity at the top of the frame (3) Bottom plate Supporting conditions: Substituting with calculation assumptions (very difficult to investigate)

2)−2.有限要素法による現況背面圧力の推定
(1)空洞を背面圧力が作用しない領域として表現する。
(2)躯体底版の支持条件をP1:完全固定(基礎が実際より強固)
P2:単純支承(基礎が実際より弱い)と仮定
(3)現場の躯体と同様のひび割れが生じる背面圧力L1と、現場の状況を超えるひび割れにいたる背面圧力L2を、それぞれの底版支持条件に対し計算し、4つの値、L1(P1),L2(P1),L1(P2),L2(P2)を求める。
2) -2. Estimation of the current back pressure by the finite element method (1) The cavity is expressed as a region where the back pressure does not act.
(2) P1: Supporting the bottom of the frame bottom plate completely fixed (the foundation is stronger than the actual)
P2: Assuming simple bearings (the foundation is weaker than the actual one) (3) Back pressure L1 that causes cracks similar to that in the field frame, and back pressure L2 that leads to cracks that exceed the site conditions, for each bottom plate support condition The four values L1 (P1), L2 (P1), L1 (P2), and L2 (P2) are calculated.

2)−3.有限要素法による加圧用発泡ウレタンBの限界注入圧力の設定
(1)上記の支持条件および荷重条件の4つの組合せに基づいて、躯体に新たなひび割れを生じさせてしまう4つの充填圧力UPを有限要素法による数値解析で求める。
(2)得られた4つの充填圧力UP1(L1P1),UP2(L2P1),UP3(L1P2),UP4(L2P2)のうち、最小のものを限界注入圧力UPとする。
なお、想定荷重は等方等圧(塑性圧に近い岩圧)とし、破壊の定義として解析が収束しなくなった荷重を破壊荷重とした。
また、解析プログラムとしてコンクリート構造物の破壊解析が可能なATENAを使用した。
2) -3. Setting of limit injection pressure of urethane foam B for pressurization by finite element method (1) Based on four combinations of the above support conditions and load conditions, four filling pressures UP that cause new cracks in the housing are limited Obtained by numerical analysis using the element method.
(2) Among the obtained four filling pressures UP1 (L1P1), UP2 (L2P1), UP3 (L1P2), and UP4 (L2P2), the minimum one is set as the limit injection pressure UP.
The assumed load was isotropic isostatic (rock pressure close to plastic pressure), and the load at which analysis no longer converged was defined as the fracture load.
In addition, ATEN, which can analyze the fracture of concrete structures, was used as an analysis program.

このような有限要素法による数値解析の結果の一例として次のような解析結果を得た。
底版固定(P1)での解析結果
スプリングライン内側にひび割れ:0.63MPa(L1(P1))
天端内側の圧壊 :1.16MPa(L2(P1))
覆工破壊 :1.30MPa(破壊モード:アーチと側壁の曲げ破壊)
よって、スプリングライン内側にひび割れが生じており、かつ天端内側に圧壊がみられない現状から判断して.岩圧は0.63MPaから1.16MPaの間にあると推定される。
単純支承での解析結果(P2)
スプリングライン内側にひび割れ:0.128MPa(L1(P2))
覆工破壊 :0.129MPa(破壊モード:インバートの曲げ破壊)
よって、岩圧は0.128MPa程度であると推定される。
As an example of the result of numerical analysis by such a finite element method, the following analysis result was obtained.
Analysis result of bottom plate fixation (P1) Crack inside spring line: 0.63 MPa (L1 (P1))
Collapse inside the top: 1.16 MPa (L2 (P1))
Breaking lining: 1.30 MPa (Fracture mode: Bending fracture of arch and side wall)
Judging from the current situation, there are cracks inside the spring line and no crushing inside the top. The rock pressure is estimated to be between 0.63 MPa and 1.16 MPa.
Analysis results with simple bearings (P2)
Crack inside spring line: 0.128 MPa (L1 (P2))
Overlay failure: 0.129 MPa (Fracture mode: Invert bending failure)
Therefore, the rock pressure is estimated to be about 0.128 MPa.

破壊充填圧の解析結果
想定岩圧0.63MPaの破壊充填圧 :2.00MPa以上(U1(L1P1))
想定岩圧1.16MPaの破壊充填圧 :0.60MPa(U2(L2P1))
想定岩圧0.128MPaの破壊充填圧:0.62MPa(U3(L1P2))
Analysis result of failure filling pressure Failure filling pressure of assumed rock pressure 0.63MPa: 2.00MPa or more (U1 (L1P1))
Fracture filling pressure with an assumed rock pressure of 1.16 MPa: 0.60 MPa (U2 (L2P1))
Fracture filling pressure with an assumed rock pressure of 0.128 MPa: 0.62 MPa (U3 (L1P2))

3).発泡ウレタンの充填圧力の設定
よって、最小の破壊充填圧から限界注入圧力を0.60MPaと設定することができる。
なお、以上の有限要素法による数値解析では、全ての解析条件において、充填圧力0.20MPaでは、破壊に至らないとの結果が得られた。
3). By setting the filling pressure of the urethane foam, the limit injection pressure can be set to 0.60 MPa from the minimum breaking filling pressure.
In the above numerical analysis by the finite element method, it was found that under all the analysis conditions, destruction was not caused at a filling pressure of 0.20 MPa.

実際の施工では、覆工の変位変形やひび割れ幅を計測しながらの慎重な施工を行うことが重要であるが、以上の解析結果から加圧用発泡ウレタンBを0.20MPa程度の充填圧力で充填しても調査補修対象としたトンネル覆工に重大なダメージが生じる危険はないと判断できる。   In actual construction, it is important to perform careful construction while measuring the displacement deformation and crack width of the lining, but from the above analysis results, the foamed urethane B for pressurization is filled at a filling pressure of about 0.20 MPa. Even so, it can be determined that there is no danger of serious damage to the tunnel linings that were subject to investigation and repair.

このような数値解析で設定した充填圧で加圧用発泡ウレタンBを、空洞を埋めた空洞充填用発泡ウレタンAの上側に充填することで、トンネル覆工に発泡圧を作用させ、引張応力を減少させあるいは除去するようにしてトンネル躯体の応力状態を設計時に回復させる施工を行う。   By filling urethane foam B for pressurization with the filling pressure set in the numerical analysis above the foaming urethane A for filling the cavity, the foaming pressure is applied to the tunnel lining and the tensile stress is reduced. The construction to restore the stress state of the tunnel body at the time of design is performed so that it is removed or removed.

4).現場施工の準備
この加圧用発泡ウレタンBの充填施工の管理と、施工中の安全性の確保のため、トンネルの挙動を、例えば、次の3つの方法で計測する。
(1)レーザー変位計を施工対象トンネルのバレルの上流端から7.5mの位置に設置し、天端、左右スプリングラインの3測点で躯体変位を計測。
(2)パイ型変位計をバレルの上流端から4mと6mの位置に設置し、左右側壁のひび割れ幅の変動を計測。
(3)コンタクトゲージにより、施工前後のひび割れ幅の計測(右側壁8測点、左側壁7測点、合計15測点)。
4). Preparation for on-site construction In order to control the filling of urethane foam B for pressurization and to ensure safety during construction, the behavior of the tunnel is measured, for example, by the following three methods.
(1) A laser displacement meter is installed at a position 7.5 m from the upstream end of the barrel of the tunnel to be constructed, and the displacement of the frame is measured at three points, the top end and the left and right spring lines.
(2) A pie-type displacement meter is installed at 4m and 6m positions from the upstream end of the barrel, and the fluctuation of crack width on the left and right side walls is measured.
(3) Measurement of crack width before and after construction with contact gauge (right side wall 8 stations, left side wall 7 stations, total 15 stations).

5).こうして空洞充填用発泡ウレタンAおよび加圧用発泡ウレタンBの充填のための施工の管理と、施工中の安全性の確保のための計測の準備が完了し、あるいは準備と並行して、空洞充填用発泡ウレタンAの充填の準備および施工を行う。
5)−1.トンネル覆工の天端背面の空洞の調査結果に基づき、注入孔を削孔し、注入管を設置する。
5)−2,3.空洞充填用発泡ウレタンAを発砲注入するため発泡設備を用意し、イソシアネート液I、ポリオール液R、触媒、発泡剤、整泡剤、難燃剤を所定のフォーム密度やゲルタイムなどの特性となるように混合し、予備発泡を行いキャリブレーションにより2液の配合比率と流量計の精度の確認を行なうとともに、発泡状態の確認を行なう。
5)−4.発泡設備のミキシングヘッドと注入管を注入ホースで接続し、空洞充填用発泡ウレタンAを空洞に注入する。空洞への注入は、注入量と注入圧力を管理する。
なお、空洞内に設けた温度センサや圧力センサによる圧力測定で隙間なく充填されたことを確認するようにすることもできる。
5). In this way, the construction management for filling of foaming urethane A for pressurization and urethane foam B for pressurization and measurement preparation for ensuring safety during construction are completed, or in parallel with the preparation Preparation and construction for filling urethane foam A are performed.
5) -1. Based on the survey results of the cavity behind the top of the tunnel lining, drill the injection hole and install the injection pipe.
5) -2,3. Prepare foaming equipment for foaming and injecting foamed urethane A for cavity filling, so that isocyanate liquid I, polyol liquid R, catalyst, foaming agent, foam stabilizer, and flame retardant have characteristics such as predetermined foam density and gel time. After mixing, preliminary foaming is performed, and the mixing ratio of the two liquids and the accuracy of the flowmeter are confirmed by calibration, and the foaming state is confirmed.
5) -4. The mixing head of the foaming equipment and the injection pipe are connected by an injection hose, and the foaming urethane A for filling the cavity is injected into the cavity. The injection into the cavity manages the injection volume and the injection pressure.
In addition, it can also be made to confirm that it filled without gap by the pressure measurement by the temperature sensor provided in the cavity, or a pressure sensor.

6).こうして空洞内を発泡硬化させた空洞充填用発泡ウレタンAで満たした後、加圧用発泡ウレタンBの注入を行う。
6)−1.このため、発泡硬化させた空洞充填用発泡ウレタンAの上側に注入するための注入孔を削孔し、注入ノズルを取り付ける。
6)−2.加圧用発泡ウレタンBを発砲注入するため発泡設備を用意し、イソシアネート液I、ポリオール液R、触媒、発泡剤、整泡剤、難燃剤を所定のフォーム密度やゲルタイムなどの特性となるように混合し、予備発泡を行いキャリブレーションにより2液の配合比率と流量計の精度の確認を行なうとともに、発泡状態の確認を行なう。
6)−3.発泡設備のミキシングヘッドと注入ノズルを接続し、加圧用発泡ウレタンBを注入する。この加圧用発泡ウレタンBの注入は、注入圧力を0.2MPaとし、目視によりコンクリート覆工の変形、ひび割れの監視を行うとともに、トンネルの挙動を監理する3つの計測器で計測する。
6)−4.そして、例えば、目視によりトンネル覆工の側壁のひび割れが減少するまで注入充填する。また、3つの計測による計測値から側壁のひび割れが減少し、あるいはひび割れが密着したことを確認するようにしても良い。
6). After filling the cavity with foamed urethane foam A which has been foam-hardened in this way, the urethane foam B for pressurization is injected.
6) -1. For this purpose, an injection hole for injecting into the upper side of the foam-filled urethane foam A which has been foam-cured is drilled, and an injection nozzle is attached.
6) -2. Prepare foaming equipment to fire and inject foamed urethane B for pressurization, and mix isocyanate liquid I, polyol liquid R, catalyst, foaming agent, foam stabilizer, and flame retardant so that the properties such as predetermined foam density and gel time are obtained. Then, preliminary foaming is performed, and the mixing ratio of the two liquids and the accuracy of the flowmeter are confirmed by calibration, and the foaming state is also confirmed.
6) -3. The mixing head of the foaming equipment and the injection nozzle are connected, and the urethane foam B for pressurization is injected. The injection of the urethane foam B for pressurization is performed with three measuring instruments that monitor the deformation and cracking of the concrete lining and visually monitor the behavior of the tunnel, with an injection pressure of 0.2 MPa.
6) -4. Then, for example, injection filling is performed until cracks on the side walls of the tunnel lining are visually reduced. Further, it may be confirmed that the cracks on the side wall are reduced or the cracks are in close contact with each other based on the measurement values obtained by the three measurements.

このような加圧用発泡ウレタンBの注入中におけるトンネル躯体の変位を図10(a)に示すとともに、注入中におけるひび割れ幅の変動を図10(b)に示す。また、右側壁におけるひび割れ幅の変化量を表2に示す。同表中、注入前後のひび割れ幅の変化量で負の値はひび割れが閉じていることを示す。
注入中のトンネル躯体の変位の計測結果から加圧用発泡ウレタンBの充填にともない、天端は覆工内面方向へ変位し、左右スプリングラインは覆工外面方向に変位した。
注入中における最大圧力は0.78MPaとなり、注入終了時におけるトンネル躯体の変位量は、天端で0.068mm、左スプリングラインで0.012mm、右スプリングラインで0.016mmとなった。
注入中のひび割れ幅の変動の計測結果から加圧用発泡ウレタンBの充填にともないひび割れ幅が減少した。施工終了時のひび割れ幅は、右側壁で0.012mm、左側壁で0.003mm減少が見られた。
このようなトンネル躯体の変位およびひび割れ幅の減少は、加圧用発泡ウレタンBを注入充填したことによって、発泡圧が作用したためだと考えられる。
また、トンネル躯体の変位およびひび割れ幅の変位開始は、圧力の上昇より遅れているが、これは加圧用発泡ウレタンBを注入してから発泡するまでに時間を要するためであると考えられる。
さらに、右側壁におけるひび割れ幅の変位量は、施工後におけるひび割れ幅が施工前と比較して減少した。ひび割れ幅は最大で0.048mm減少しており、平均して0.016mmの現象が見られた。これは、左側壁においても同じ傾向が見られた。
施工終了後にレーダーを用いた調査を行ったところ、覆工天端背面に空洞は確認されず、空洞は十分に発泡ウレタンA,Bで充填されていた。
FIG. 10A shows the displacement of the tunnel housing during the injection of the urethane foam B for pressurization, and FIG. 10B shows the fluctuation of the crack width during the injection. Table 2 shows the amount of change in the crack width in the right side wall. In the table, a negative value of the change in crack width before and after injection indicates that the crack is closed.
From the measurement result of the displacement of the tunnel housing during injection, the top edge was displaced toward the inner surface of the lining, and the left and right spring lines were displaced toward the outer surface of the lining as the pressurized urethane foam B was filled.
The maximum pressure during the injection was 0.78 MPa, and the displacement amount of the tunnel housing at the end of the injection was 0.068 mm at the top, 0.012 mm at the left spring line, and 0.016 mm at the right spring line.
The crack width decreased with the filling of the urethane foam B for pressurization from the measurement result of the fluctuation of the crack width during the injection. The crack width at the end of construction was found to be 0.012 mm on the right side wall and 0.003 mm on the left side wall.
Such a displacement of the tunnel housing and a decrease in the crack width are considered to be due to the foaming pressure acting by injecting and filling the urethane foam B for pressurization.
In addition, the displacement of the tunnel body and the start of the displacement of the crack width are delayed from the increase in pressure, which is considered to be because it takes time from the injection of the pressurized urethane foam B to the foaming.
Furthermore, the displacement amount of the crack width in the right side wall decreased after the construction compared to before the construction. The crack width decreased by a maximum of 0.048 mm, and an average phenomenon of 0.016 mm was observed. The same tendency was observed on the left side wall.
When a survey using a radar was performed after the construction was completed, no cavity was found on the back of the lining ceiling, and the cavity was sufficiently filled with urethane foam A and B.

Figure 2015036487
Figure 2015036487

このような空洞充填によるトンネルの補修方法によれば、空洞に空洞充填用発泡ウレタンAを注入し、発泡硬化させた後、空洞充填用発泡ウレタンAの上側に加圧用発泡ウレタンBを注入して発泡圧を作用させることで、空洞を埋めることができるだけでなく、トンネル躯体に作用する荷重を設計で想定された状態に近づけ、ひび割れの幅を小さくすることができるとともに、側壁に生じる引張応力を減少させ、あるいは除去することができる。   According to such a tunnel repair method by filling the cavity, the foam filling urethane A is injected into the cavity and foamed and cured, and then the urethane foam B for pressurization is injected above the foam filling urethane A. By applying foaming pressure, not only can the cavity be filled, but the load acting on the tunnel housing can be brought close to the state assumed in the design, the width of the crack can be reduced, and the tensile stress generated on the side wall can be reduced. It can be reduced or eliminated.

また、この空洞充填によるトンネルの補修方法によれば、加圧用発泡ウレタンBの発泡圧を、トンネルの調査結果と設計条件などに基づく有限要素法による数値解析で求めた限界加圧力から設定するようにしたので、加圧用発泡ウレタンBの発泡圧でトンネルの損傷や破壊を招くことなく安全性を確保して補修することができる。
さらに、空洞充填用発泡ウレタンAのゲルタイムを長くし、加圧用発泡ウレタンBのゲルタイムを短くしたので、空洞全体に隙間なく発泡ウレタンAを充填することができるとともに、加圧用発泡ウレタンBで効率よく短時間に発泡圧を作用させることができ、効率的にひび割れたトンネル覆工を補修することができる。
Further, according to the tunnel repair method by filling the cavity, the foaming pressure of the urethane foam B for pressurization is set from the limit pressure obtained by the numerical analysis by the finite element method based on the investigation result of the tunnel and the design conditions. Therefore, the foaming pressure of the urethane foam B for pressurization can be repaired while ensuring safety without causing damage or destruction of the tunnel.
Furthermore, since the gel time of the foaming urethane A for cavity filling is lengthened and the gel time of the urethane foam B for pressing is shortened, the entire cavity can be filled with the urethane foam A without any gaps, and the urethane foam B for pressing is efficiently used. The foaming pressure can be applied in a short time, and the cracked tunnel lining can be repaired efficiently.

1 トンネル(水路トンネル)
2 空洞
3 側壁
4 ひび割れ
5 地山壁
6 覆工壁
7 模型水路トンネル
A 空洞充填用発泡ウレタン
B 加圧用発泡ウレタン
P 側圧
1 tunnel (waterway tunnel)
2 Cavity 3 Side wall 4 Crack 5 Ground wall 6 Covering wall 7 Model waterway tunnel A Foam urethane for cavity filling B Foam urethane for pressure P Side pressure

Claims (5)

トンネル天端背面の空洞に硬質ウレタンフォームを充填して補修するに際し、
前記空洞を満たす空洞充填用発泡ウレタン液を当該空洞内に注入して発泡硬化させて空洞充填用発泡ウレタンとしたのち、
この空洞充填用発泡ウレタンで埋められた空洞上部と地山との隙間に、前記空洞充填用発泡ウレタンを介してトンネル覆工に発泡圧を作用させトンネル覆工の側壁に生じた引張応力を減少させあるいは除去する加圧用発泡ウレタン液を注入して発泡硬化させて加圧用発泡ウレタンとするようにしたことを特徴とする空洞充填によるトンネルの補修方法。
When filling and repairing hard urethane foam in the cavity at the back of the tunnel top,
After injecting a foam filling urethane liquid filling the cavity into the cavity and foaming and curing the foamed urethane foam for filling the cavity,
Reduces the tensile stress generated on the side wall of the tunnel lining by applying foaming pressure to the tunnel lining through the urethane foam for filling the gap between the upper part of the cavity filled with foamed urethane for filling the cavity and the ground. A method of repairing a tunnel by filling with a cavity, wherein a urethane foam for pressurization to be removed or removed is injected and cured by foaming to obtain a urethane foam for pressurization.
前記空洞充填用発泡ウレタンは前記加圧用発泡ウレタンよりゲルタイムを長くする一方、フォーム密度を略同一とするようにしたことを特徴とする請求項1記載の空洞充填によるトンネルの補修方法。   2. The method for repairing a tunnel by filling a cavity according to claim 1, wherein the foamed urethane for filling the cavity has a gel time longer than that of the foamed urethane for pressurization, while the foam density is made substantially the same. 前記空洞充填用発泡ウレタンのゲルタイムを50〜70秒とし、前記加圧用発泡ウレタンのゲルタイムを5〜25秒とする一方、前記空洞充填用発泡ウレタンと前記加圧用発泡ウレタンのフォーム密度は30kg/m3以上とするようにしたことを特徴とする請求項1または2記載の空洞充填によるトンネルの補修方法。 While the gel time of the urethane foam for filling the cavity is 50 to 70 seconds and the gel time of the urethane foam for pressurization is 5 to 25 seconds, the foam density of the urethane foam for cavity filling and the urethane foam for pressurization is 30 kg / m. 3. The tunnel repairing method according to claim 1 or 2, wherein the number is 3 or more. トンネル覆工の側壁の引張応力を減少させあるいは除去するための限界加圧力を、予めトンネルの設計条件と空洞の発生状態および側壁のひび割れの発生状態の実測結果とから有限要素法による数値解析で求めておき、得られた限界加圧力から前記加圧用発泡ウレタンにより加える発泡圧を設定して注入するようにしたことを特徴とする請求項1〜3のいずれかに記載の空洞充填によるトンネルの補修方法。   The critical pressure for reducing or eliminating the tensile stress on the side wall of the tunnel lining is determined by numerical analysis using the finite element method based on the design conditions of the tunnel and the actual measurement results of the state of cavities and cracks on the side walls. The tunnel filling by cavity filling according to any one of claims 1 to 3, wherein the injection is performed by setting a foaming pressure to be added by the urethane foam for pressurization from the obtained critical pressure. Repair method. 限界加圧力より低い発泡圧で前記加圧用発泡ウレタンを、トンネル覆工の側壁のひび割れが減少するまで注入充填するようにしたことを特徴とする請求項4記載の空洞充填によるトンネルの補修方法。   5. The method of repairing a tunnel by cavity filling according to claim 4, wherein the urethane foam for pressurization is injected and filled at a foaming pressure lower than a limit pressure until cracks on the side walls of the tunnel lining are reduced.
JP2013167858A 2013-08-12 2013-08-12 Tunnel repair method by cavity filling Active JP6337375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013167858A JP6337375B2 (en) 2013-08-12 2013-08-12 Tunnel repair method by cavity filling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013167858A JP6337375B2 (en) 2013-08-12 2013-08-12 Tunnel repair method by cavity filling

Publications (2)

Publication Number Publication Date
JP2015036487A true JP2015036487A (en) 2015-02-23
JP6337375B2 JP6337375B2 (en) 2018-06-06

Family

ID=52687091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013167858A Active JP6337375B2 (en) 2013-08-12 2013-08-12 Tunnel repair method by cavity filling

Country Status (1)

Country Link
JP (1) JP6337375B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5997398B1 (en) * 2016-02-29 2016-09-28 規方 田熊 Air leak prevention method in underground cavities
JP6240805B1 (en) * 2017-07-26 2017-11-29 株式会社マシノ Production method and production apparatus for test piece for urethane underwater inseparability test
CN113513341A (en) * 2021-05-10 2021-10-19 中铁十六局集团第二工程有限公司 Method for treating cracking of primary support of water delivery tunnel
CN113605929A (en) * 2021-07-12 2021-11-05 中交路桥建设有限公司 Method for repairing stratum shield subway tunnel after accidental breakdown
WO2022254636A1 (en) * 2021-06-02 2022-12-08 日本電信電話株式会社 Analysis device, analysis method, and program

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4465405A (en) * 1981-04-29 1984-08-14 Gtg Gesteins- Und Tiefbau Gmbh Method and device for the backfilling of roadway supports in mine and tunnel construction with the aid of support hoses having a hardening filler
JPH02236398A (en) * 1989-03-09 1990-09-19 Sekisui Plastics Co Ltd Tunnel construction method
JPH0579291A (en) * 1991-06-07 1993-03-30 Mitsui Constr Co Ltd Backing of tunnel
JP2007146522A (en) * 2005-11-29 2007-06-14 Shimizu Corp Cavity filling method
JP2007309008A (en) * 2006-05-19 2007-11-29 Shimizu Corp Method of analyzing state change of tunnel
JP2012041697A (en) * 2010-08-17 2012-03-01 Upcon Kk Construction management method when filling urethane foam in gap generated at upper part of underground structure such as tunnel
JP2013091981A (en) * 2011-10-26 2013-05-16 Mashino:Kk Backfill injection method of tunnel and injection apparatus used in the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4465405A (en) * 1981-04-29 1984-08-14 Gtg Gesteins- Und Tiefbau Gmbh Method and device for the backfilling of roadway supports in mine and tunnel construction with the aid of support hoses having a hardening filler
JPH02236398A (en) * 1989-03-09 1990-09-19 Sekisui Plastics Co Ltd Tunnel construction method
JPH0579291A (en) * 1991-06-07 1993-03-30 Mitsui Constr Co Ltd Backing of tunnel
JP2007146522A (en) * 2005-11-29 2007-06-14 Shimizu Corp Cavity filling method
JP2007309008A (en) * 2006-05-19 2007-11-29 Shimizu Corp Method of analyzing state change of tunnel
JP2012041697A (en) * 2010-08-17 2012-03-01 Upcon Kk Construction management method when filling urethane foam in gap generated at upper part of underground structure such as tunnel
JP2013091981A (en) * 2011-10-26 2013-05-16 Mashino:Kk Backfill injection method of tunnel and injection apparatus used in the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
松本 拓,外7名: "発泡ウレタンを使用した裏込め充填工法の試験施工", 平成24年農業農村工学会大会講演会講演要旨集, JPN7017002557, 1 September 2012 (2012-09-01), JP, pages 892 - 893, ISSN: 0003614318 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5997398B1 (en) * 2016-02-29 2016-09-28 規方 田熊 Air leak prevention method in underground cavities
US9885238B2 (en) 2016-02-29 2018-02-06 Norikata Takuma Method of preventing leakage of air inside underground cavern
JP6240805B1 (en) * 2017-07-26 2017-11-29 株式会社マシノ Production method and production apparatus for test piece for urethane underwater inseparability test
JP2019027815A (en) * 2017-07-26 2019-02-21 株式会社マシノ Producing method and producing device of specimen for underwater non-separability test of urethane foam
CN113513341A (en) * 2021-05-10 2021-10-19 中铁十六局集团第二工程有限公司 Method for treating cracking of primary support of water delivery tunnel
WO2022254636A1 (en) * 2021-06-02 2022-12-08 日本電信電話株式会社 Analysis device, analysis method, and program
CN113605929A (en) * 2021-07-12 2021-11-05 中交路桥建设有限公司 Method for repairing stratum shield subway tunnel after accidental breakdown
CN113605929B (en) * 2021-07-12 2023-05-09 中交路桥建设有限公司 Repairing method for rock stratum shield subway tunnel after accidental breakdown

Also Published As

Publication number Publication date
JP6337375B2 (en) 2018-06-06

Similar Documents

Publication Publication Date Title
JP6337375B2 (en) Tunnel repair method by cavity filling
KR101529098B1 (en) Test apparatus for shield tunnel mock-up considering both underground earth pressure and pore water pressure according to draining condition, and method for the same
JP4402596B2 (en) Methods for wall system repair, waterproofing, insulation, reinforcement and restoration
Kang et al. Investigation on the influence of abutment pressure on the stability of rock bolt reinforced roof strata through physical and numerical modeling
KR20110054925A (en) Construction method of concrete pile
CN110397451B (en) Construction method for pre-reinforcing excavation cavern by utilizing deep soft rock to form cavity
CN103913514A (en) Method for monitoring temperature and gradient cracks of large-volume concrete
JP2011185620A (en) Measuring device of elastic modulus of concrete
Ye et al. Investigating the relationship between erosion-induced structural damage and lining displacement parameters in shield tunnelling
CN113848123B (en) Method for testing surrounding rock and lining structure under unequal confining pressure and water pressure
Medeiros et al. Innovation in flat-jack application to evaluate modern high-strength hollow concrete block masonry
JP4909444B1 (en) Tunnel backfill injection method and injection device used therefor
Zou et al. A semi-analytical model of fully grouted bolts in jointed rock masses
KR101119829B1 (en) Method for cast-in-place pile construction using punctured couplers
Xia et al. Splitting tensile properties and damage characterization of polymer grouting materials: Density, geometry and size effects
KR101222071B1 (en) Membrane Cover Apparatus for Concrete Pile
Yang et al. APPLICATION OF POST-GROUTING IN BRIDGE FOUNDATION REINFORCEMENT: A CASE STUDY.
JP2006307534A (en) Water cutoff method for concrete structure
Tolooiyan et al. Finite element analysis of the CPT for design of bored piles
Likins et al. A brief overview of testing of deep foundations
JP6320850B2 (en) Reinforcement construction and quality control method of earth structure using injection type natural ground reinforcement
Pastars et al. Determination of load transfer characteristics of gloved resin bolts from laboratory and in situ field testing
CN113832903B (en) Water-force coupling test method for tunnel surrounding rock and lining structure bearing system
JP7554164B2 (en) Linear object installation method
Bharti et al. Performance of grouted rock bolts in rock mass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180419

R150 Certificate of patent or registration of utility model

Ref document number: 6337375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250