JP2015035633A - Coil component and manufacturing method thereof - Google Patents

Coil component and manufacturing method thereof Download PDF

Info

Publication number
JP2015035633A
JP2015035633A JP2014233245A JP2014233245A JP2015035633A JP 2015035633 A JP2015035633 A JP 2015035633A JP 2014233245 A JP2014233245 A JP 2014233245A JP 2014233245 A JP2014233245 A JP 2014233245A JP 2015035633 A JP2015035633 A JP 2015035633A
Authority
JP
Japan
Prior art keywords
coil
winding
shape
winding axis
magnetic core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014233245A
Other languages
Japanese (ja)
Other versions
JP6002939B2 (en
Inventor
下村 理
Osamu Shimomura
理 下村
高木 潔
Kiyoshi Takagi
潔 高木
芳雄 杉達
Yoshio Sugitachi
芳雄 杉達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2014233245A priority Critical patent/JP6002939B2/en
Publication of JP2015035633A publication Critical patent/JP2015035633A/en
Application granted granted Critical
Publication of JP6002939B2 publication Critical patent/JP6002939B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a coil component with an excellent magnetic efficiency and reliability by entirely increasing the density of magnetic core.SOLUTION: The coil component includes: a magnetic core 16 formed by pressuring a magnetic material 15 of a mixture of a powder of metal magnetic substance and a binding material; and a coil 12 of a conductor wire which is spirally wound and embedded in the magnetic core 16. The coil component has a winding shaft of the coil 12. When viewing the cross section with the winding shaft vertical, the dimension of central portion between the inner periphery and an outer periphery of the coil 12 in the winding shaft direction is larger the dimension between the inner periphery and outer periphery of the coil 12 in the winding shaft direction. With this arrangement, the magnetic material 15 flows well when forming and pressing, and uniform density is achieved; and thus, a high reliable coil component superior in electric characteristics is achieved.

Description

本発明は、各種電子機器に用いられるコイル部品に関するものである。   The present invention relates to a coil component used in various electronic devices.

近年、ノートパソコンに代表されるCPUなどのLSIを組み込んだ電子機器の軽薄短小化が進み、これら電子機器を駆動するDC/DCコンバータなどの電源回路部は、駆動周波数を300kHz〜1MHzへ高周波化したり、駆動電源を低電圧大電流化するなどして搭載する電子部品を小型化、薄型化して電子機器の軽薄短小化に対応している。   In recent years, electronic devices incorporating LSIs such as CPUs typified by notebook computers have become lighter, thinner, and smaller, and power supply circuit units such as DC / DC converters that drive these electronic devices have increased in driving frequency from 300 kHz to 1 MHz. In addition, the electronic components to be mounted are reduced in size and thickness by increasing the driving power supply at low voltage and high current, etc., so that the electronic devices can be made light and thin.

このような電源回路部に用いられるチョークコイルなどのコイル部品は、フェライト材よりも飽和磁束密度の大きい鉄を主成分とした金属磁性材料を粉末にすることにより高周波電流に対する渦電流損を小さくした金属磁性体粉末を用い、この金属磁性体粉末と熱硬化性樹脂からなる結合材とを混合した磁性材料に、コイルを埋設して加圧成形することにより、小型、薄型で高周波大電流に対応している。   Coil parts such as choke coils used in such power supply circuit sections have reduced eddy current loss for high-frequency currents by powdering a metal magnetic material mainly composed of iron, which has a saturation magnetic flux density higher than that of ferrite. By using metal magnetic powder and embedding a coil in a magnetic material that is a mixture of this metal magnetic powder and a thermosetting resin binder, it is compact, thin, and capable of handling high-frequency, high-current applications. doing.

次に、このような従来のコイル部品について図面を参照して説明する。   Next, such a conventional coil component will be described with reference to the drawings.

図12は従来のコイル部品の透過斜視図、図13は図12のA−A線の断面図である。   12 is a transparent perspective view of a conventional coil component, and FIG. 13 is a cross-sectional view taken along line AA of FIG.

図12、図13に示すように、従来のコイル部品は、中央に中空の中芯部1を有する絶縁皮膜銅線を巻回したコイル2と、このコイル2の両端部の引き出し線3と、この引き出し線3と接続した導電性の金属平板を加工して形成した端子4と、鉄を主成分とした金属磁性材料を粉末にした金属磁性体粉末と熱硬化性樹脂を混合し、これを顆粒状に造粒した磁性材料5を加圧成形して形成した磁芯6とからなり、コイル2と端子4の一部を成形金型(図示していない)内に配置し、この成形金型にコイル2と端子4の一部を覆うように磁性材料5を充填した後、コイル2の上下方向よりパンチ(図示していない)で2〜4t/cm2の加圧成形することによりコイル2を埋設した磁芯6を形成し、この加圧成形した磁芯6に150〜180℃の温度で1〜2時間の熱処理を施して熱硬化性樹脂を硬化させた後、端子4を磁芯6の側面から底面に向けて折り曲げ加工してコイル部品を構成していた。 As shown in FIGS. 12 and 13, a conventional coil component includes a coil 2 in which an insulating film copper wire having a hollow core 1 at the center is wound, and lead wires 3 at both ends of the coil 2, A terminal 4 formed by processing a conductive metal flat plate connected to the lead wire 3, a metal magnetic powder made of a metal magnetic material containing iron as a main component, and a thermosetting resin are mixed. It consists of a magnetic core 6 formed by pressing a magnetic material 5 granulated into a granule, and a part of the coil 2 and the terminal 4 are placed in a molding die (not shown). After the mold 2 is filled with the magnetic material 5 so as to cover the coil 2 and part of the terminal 4, the coil 2 is pressed by punching (not shown) in the vertical direction of the coil 2 to 2-4 t / cm 2. 2 is embedded, and the pressure-molded magnetic core 6 is 150 to 180 ° C. After curing the thermosetting resin is subjected to a heat treatment of 1 to 2 hours in degrees, it constituted the coil component by bending toward the terminal 4 from the side of the magnetic core 6 to the bottom surface.

なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。   As prior art document information related to the invention of this application, for example, Patent Document 1 is known.

特開2003−217941号公報JP 2003-217941 A

上記従来のコイル部品では、コイル2を顆粒状に造粒した磁性材料5に埋設して加圧成形しているので、パンチで加圧するにつれてコイル2の上面および下面に位置した磁性材料5が、コイル2の中芯部1やコイル2の外周部の磁性材料5よりも先に圧縮度が大きくなって強固なものとなるために、このコイルの上面と下面の磁性材料5の強固な部分がコイル2の無い中芯部1やコイル2の外周部の磁性材料5を十分に加圧することの妨げとなっていた。つまり、コイルの上面および下面の部分に比べてコイルの無い中芯部1や外周部では圧縮度が小さくなるために、中芯部1の磁芯6の密度が小さくなり、結果として磁気効率の悪いものとなってしまう。   In the above-described conventional coil component, the coil 2 is embedded in the magnetic material 5 granulated into a granule and press-molded. Therefore, the magnetic material 5 positioned on the upper surface and the lower surface of the coil 2 as pressed by the punch Since the degree of compression becomes larger and stronger than the magnetic material 5 in the core 1 of the coil 2 and the outer peripheral portion of the coil 2, the strong portions of the magnetic material 5 on the upper surface and the lower surface of the coil 2 This has hindered sufficient pressurization of the magnetic material 5 on the core portion 1 without the coil 2 and the outer peripheral portion of the coil 2. That is, since the degree of compression is smaller in the core portion 1 and the outer peripheral portion where there is no coil than in the upper and lower portions of the coil, the density of the magnetic core 6 in the core portion 1 is reduced, and as a result, the magnetic efficiency is improved. It will be bad.

また、圧縮度が小さくなるコイル2の無い中芯部1やコイル2の外周部では磁性材料5の密度が小さいために、磁芯6を熱処理したときのコイル2の絶縁皮膜銅線の絶縁皮膜の樹脂が熱膨張することにより発生する上下方向の応力を受けてクラック7が生じやすくなり、中芯部1では、図13に示すようにコイル2のコイルの高さ寸法の中央付近でクラック7が発生しやすく、コイル2の外周部分では、図14に示すように端子4の埋め込み部分のエッジ部分近傍からクラック7が発生しやすくなっていた。   Further, since the density of the magnetic material 5 is small in the core portion 1 without the coil 2 and the outer peripheral portion of the coil 2 where the degree of compression becomes small, the insulation coating of the coil 2 when the magnetic core 6 is heat-treated The crack 7 is likely to occur due to the stress in the vertical direction generated by the thermal expansion of the resin of the resin, and the crack 7 is formed near the center of the height of the coil 2 of the coil 2 as shown in FIG. As shown in FIG. 14, the crack 7 is likely to occur from the vicinity of the edge portion of the embedded portion of the terminal 4 in the outer peripheral portion of the coil 2.

本発明は上記従来の問題点を解決するもので、金属磁性体粉末からなる磁芯にコイルを埋設したコイル部品において、全体的に磁芯の金属磁性体粉末の密度を高めることにより磁気効率が良く、磁芯のクラックの発生を抑制した信頼性に優れたコイル部品を得ることができるようにすることを目的としている。   The present invention solves the above-mentioned conventional problems. In a coil component in which a coil is embedded in a magnetic core made of a metal magnetic powder, the magnetic efficiency is increased by increasing the density of the magnetic metal powder of the magnetic core as a whole. It is an object of the present invention to provide a highly reliable coil component that suppresses the occurrence of cracks in the magnetic core.

本発明は上記課題を解決するために、金属磁性体粉末と結合材を混ぜて加圧成形してなる磁芯と、この磁芯の内部に埋め込まれた導線を螺旋状に巻回してなるコイルとを備え、コイルの巻回軸を含み巻回軸を上下にした断面を見たときに、コイルの内周と外周との中央部分の巻回軸方向の寸法を、コイルの内周および外周の巻回軸方向の寸法よりも大きくしたものである。   In order to solve the above problems, the present invention provides a magnetic core formed by mixing metal magnetic powder and a binder and press-molding, and a coil formed by spirally winding a conductive wire embedded in the magnetic core. When the cross section including the winding axis of the coil is taken up and down, the dimensions in the direction of the winding axis of the central portion between the inner periphery and the outer periphery of the coil are determined. Is larger than the dimension in the winding axis direction.

上記構成により、加圧成形する時に、金属磁性体粉末が中芯部および外周部に流れ込み易くなり、全体的に磁芯の金属磁性体粉末の密度を高めることができ、電気的特性および信頼性に優れたコイル部品を得ることができる。   With the above configuration, the metal magnetic powder can easily flow into the core and the outer periphery during pressure molding, and the overall density of the magnetic metal powder can be increased. Electrical characteristics and reliability Can be obtained.

本発明の一実施の形態におけるコイル部品の透過斜視図1 is a transparent perspective view of a coil component according to an embodiment of the present invention. 図1のB−B線断面図BB sectional view of FIG. 本発明の一実施の形態における融着層付絶縁皮膜銅線の断面図Sectional drawing of the insulation film copper wire with a fusion | melting layer in one embodiment of this invention 本発明の一実施の形態における他の例を示すコイルの断面図Sectional drawing of the coil which shows the other example in one embodiment of this invention 本発明の一実施の形態における他の例を示すコイルの断面図Sectional drawing of the coil which shows the other example in one embodiment of this invention 本発明の一実施の形態におけるコイル部品の製造方法を説明する図The figure explaining the manufacturing method of the coil components in one embodiment of this invention 本発明の一実施の形態におけるコイル部品の製造方法を説明する図The figure explaining the manufacturing method of the coil components in one embodiment of this invention 本発明の一実施の形態におけるコイル部品の製造方法を説明する図The figure explaining the manufacturing method of the coil components in one embodiment of this invention 本発明の一実施の形態におけるコイル部品の製造方法を説明する図The figure explaining the manufacturing method of the coil components in one embodiment of this invention 本発明の一実施の形態におけるコイル部品の製造方法を説明する図The figure explaining the manufacturing method of the coil components in one embodiment of this invention 本発明の一実施の形態におけるコイル部品の製造方法を説明する図The figure explaining the manufacturing method of the coil components in one embodiment of this invention 従来のコイル部品の透過斜視図Transparent perspective view of conventional coil components 図12のA−A線断面図AA line sectional view of FIG. 従来のコイル部品の端子側側面図Terminal side view of conventional coil components

以下、本発明の一実施の形態におけるコイル部品について、図面を参照しながら説明する。   Hereinafter, a coil component according to an embodiment of the present invention will be described with reference to the drawings.

図1は本発明の一実施の形態におけるコイル部品の透過斜視図であり、図2は図1のB−B線断面図である。この図2はコイルの巻回軸を含む面で切断し、巻回軸を上下にして見たときの断面図を示している。図1、図2に示すように、本発明の一実施の形態におけるコイル部品は、表面に絶縁コーティングをした絶縁皮膜銅線21を螺旋状に巻回してなり、中央に中空の中芯部11を有したコイル12と、このコイル12の両端部の引き出し線13と、この引き出し線13と接続したりん青銅板などの金属板からなる端子14と、鉄を主成分とした金属磁性材料を粉末にした金属磁性体粉末とエポキシ樹脂等の熱硬化性樹脂からなる結合材を混合し、これを顆粒状に造粒した磁性材料15からなる磁芯16を備えており、コイル12と端子14の一部を磁性材料15に埋設させて加圧成形することによりコイル12と一体に磁芯16を形成し、この加圧成形した磁芯16を熱処理して結合材の熱硬化性樹脂を硬化した後、磁芯16の側面から露出した端子14に磁芯16の側面から底面に向けて折り曲げ加工を施してコイル部品を構成している。   FIG. 1 is a transparent perspective view of a coil component according to an embodiment of the present invention, and FIG. 2 is a sectional view taken along line BB in FIG. FIG. 2 shows a cross-sectional view of the coil cut along a plane including the winding axis and viewed with the winding axis up and down. As shown in FIGS. 1 and 2, the coil component in one embodiment of the present invention is formed by spirally winding an insulating film copper wire 21 having an insulating coating on the surface, and has a hollow core 11 in the center. A coil 12 having a lead wire, lead wires 13 at both ends of the coil 12, terminals 14 made of a metal plate such as a phosphor bronze plate connected to the lead wire 13, and a metal magnetic material containing iron as a main component. A magnetic core 16 made of a magnetic material 15 is prepared by mixing a metallic magnetic powder and a binder made of a thermosetting resin such as an epoxy resin, and granulating the binder. A magnetic core 16 is formed integrally with the coil 12 by embedding a part in the magnetic material 15 and press-molding, and the thermoset resin as a binder is cured by heat-treating the press-molded magnetic core 16. After that, exposed from the side of the magnetic core 16 Constitute a coil component to the terminal 14 from the side surface of the magnetic core 16 is subjected to bending toward the bottom.

なお、コイル12を磁性材料15に埋設させて加圧成形する際に、コイル12の形状を維持するためには、図3に示すように、銅線17の表面に絶縁樹脂からなる絶縁層18を皮膜した絶縁皮膜銅線21の表面に、エポキシ樹脂などからなる融着層19をコーティングした融着層19付きの絶縁皮膜銅線21を用いることが望ましく、隣接する絶縁皮膜銅線21を融着層19で固定しておくとよい。   In order to maintain the shape of the coil 12 when the coil 12 is embedded in the magnetic material 15 and press-molded, as shown in FIG. 3, an insulating layer 18 made of an insulating resin is provided on the surface of the copper wire 17. It is desirable to use an insulating film copper wire 21 with a fusion layer 19 in which a fusion layer 19 made of epoxy resin or the like is coated on the surface of the insulation film copper wire 21 coated with It is good to fix with the layer 19.

ここで、コイル12の断面の外形形状は、図2に示すように中央部の幅aを上下端の幅bとすると、b<aとなるようにしている。このようにすることにより、コイル12の断面の外形形状上で、コイル12の上下部から巻回軸の中央方向に向かって傾斜ができるため、顆粒状に造粒した磁性材料15を加圧成形するときに、加圧するにつれて磁性材料15がコイル12の上面および下面から中芯部11および外周部分に加圧によって流れ込み易くなり、コイル12の上面および下面に位置した磁性材料15がコイル12の中芯部11および外周部よりも先に強固に圧縮されることを防止して、全体的に磁芯16の密度を高めることができ、また密度が均一化するためクラック等が生じにくくなる。   Here, as shown in FIG. 2, the outer shape of the cross section of the coil 12 is such that b <a, where the width a of the central portion is the width b of the upper and lower ends. By doing in this way, since it can incline toward the center direction of a winding axis | shaft from the upper and lower parts of the coil 12 on the external shape of the cross section of the coil 12, the magnetic material 15 granulated into the granule is pressure-molded. When the pressure is applied, the magnetic material 15 easily flows from the upper surface and the lower surface of the coil 12 to the core portion 11 and the outer peripheral portion by the pressure, and the magnetic material 15 positioned on the upper surface and the lower surface of the coil 12 It is possible to prevent the core 11 and the outer peripheral portion from being strongly compressed before increasing the density of the magnetic core 16, and the density becomes uniform, so that cracks and the like are less likely to occur.

また、加圧成形した磁芯16を熱処理して結合材を熱硬化するときに、絶縁皮膜銅線21の絶縁層18の樹脂や融着層19の樹脂が熱膨張して、磁芯16の上下方向に応力が生じる。このとき、コイル12を形成した絶縁皮膜銅線21は、加圧成形の圧力により絶縁皮膜銅線21の断面形状が図2に示すように隣接する絶縁皮膜銅線21の間で円弧状から直線状に変形して密に接触しているために、絶縁層18や融着層19の樹脂の熱膨張の応力の影響を受けやすくなる。この熱膨張による応力は、従来のコイル部品のようにコイル2の断面形状が矩形形状の場合では、磁芯6の上下方向に応力が集中しやすくなり、磁芯6にクラックが発生しやすくなるが、本願発明のようにコイル12の上部と下部を傾斜した構成とすることにより、図2において矢印cに示すように熱膨張による応力の方向を分散させることができるので、磁芯16の中芯部11や外周部にクラックが発生しにくくなる。   Further, when the magnetic core 16 formed by pressure is heat-treated to thermally cure the binder, the resin of the insulating layer 18 of the insulating coating copper wire 21 and the resin of the fusion layer 19 are thermally expanded, and the magnetic core 16 Stress is generated in the vertical direction. At this time, the insulating film copper wire 21 on which the coil 12 is formed has a cross-sectional shape of the insulating film copper wire 21 between the adjacent insulating film copper wires 21 as shown in FIG. Since it is deformed into a shape and is in close contact, it is easily affected by the thermal expansion stress of the resin of the insulating layer 18 and the fusion layer 19. The stress due to the thermal expansion is likely to be concentrated in the vertical direction of the magnetic core 6 when the coil 2 has a rectangular cross-sectional shape as in a conventional coil component, and cracks are likely to occur in the magnetic core 6. However, since the upper and lower portions of the coil 12 are inclined as in the present invention, the direction of stress due to thermal expansion can be dispersed as shown by the arrow c in FIG. Cracks are less likely to occur in the core 11 and the outer periphery.

さらに、コイル12の断面の外形形状が矩形状の従来のコイル部品に比べ、本願発明のようにコイル12の上部と下部を傾斜した構成にすることにより、同じ巻数に対してコイル12の断面の周囲をまわる磁路長を短くすることができるため、磁気効率の向上を図ることができ、電気特性も向上する。   Furthermore, compared with the conventional coil component having a rectangular cross-sectional outer shape, the coil 12 has a cross-section of the coil 12 with respect to the same number of turns. Since the magnetic path length around the periphery can be shortened, the magnetic efficiency can be improved and the electrical characteristics can be improved.

なお、顆粒状に造粒した磁性材料15の流れを良くするには、コイル12の上部と下部の傾斜した面積を広くすることがよく、2b≦aとすることが、より望ましい。   In order to improve the flow of the magnetic material 15 granulated into granules, it is preferable to widen the inclined areas of the upper and lower portions of the coil 12, and it is more preferable that 2b ≦ a.

また、本実施の形態では、コイル12の断面の外形形状を六角形(図2において破線で示した形状)のもので説明したが、図4、図5の本発明の一実施の形態における他の例を示すコイルの断面図に示すように、図4のひし形にしたものや、また図5の八角形にしたものでも本実施の形態と同様の効果を得ることができる。   Further, in the present embodiment, the outer shape of the cross section of the coil 12 has been described as a hexagonal shape (the shape indicated by the broken line in FIG. 2), but the other in the embodiment of the present invention of FIGS. As shown in the cross-sectional view of the coil shown in FIG. 5, the same effect as that of the present embodiment can be obtained by using the diamond shape shown in FIG. 4 or the octagonal shape shown in FIG.

次に、本発明の一実施の形態におけるコイル部品の製造方法について、図6〜図11を用いて説明する。   Next, the manufacturing method of the coil component in one embodiment of this invention is demonstrated using FIGS.

まず、ノズル20に直径が約0.12mmの絶縁皮膜銅線21を通し、巻線シャフト23を回転させて絶縁皮膜銅線21を所定回数巻きつけることによりコイル12を形成する(図6)。ここで絶縁皮膜銅線21の銅線17の表面には絶縁材料としてポリイミドアミドからなる絶縁層18が0.01mmの厚さで形成され、その表面にはさらに未硬化のエポキシ樹脂からなる融着層19が0.005mmの厚さで形成されている。また巻線シャフト23は中央部で細くなるように、円錐をつなぎ合わせた形状となっており、中央部で分割できるような割型となっている。   First, the insulating film copper wire 21 having a diameter of about 0.12 mm is passed through the nozzle 20, and the coil 12 is formed by rotating the winding shaft 23 and winding the insulating film copper wire 21 a predetermined number of times (FIG. 6). Here, an insulating layer 18 made of polyimide amide as an insulating material is formed with a thickness of 0.01 mm on the surface of the copper wire 17 of the insulating coating copper wire 21, and further fused on the surface thereof with an uncured epoxy resin. Layer 19 is formed with a thickness of 0.005 mm. Further, the winding shaft 23 has a shape in which cones are joined so as to be thin at the center portion, and has a split shape that can be divided at the center portion.

コイル12は、巻線シャフト23の最も狭くなった部分から巻き始め、ノズル20を移動させながら絶縁皮膜銅線21を整列に巻きつけ、巻線シャフト23の幅全体に巻きつけた後、さらに外側に絶縁皮膜銅線21を重ねて巻線シャフト23の幅全体に巻きつける。これを所定回数繰り返して巻線シャフト23の形状に合わせて絶縁皮膜銅線21を巻きつけることにより、コイル12の外形の断面形状が巻回軸の中央側からコイル12の上下部の方向に広がるように傾斜した部分を形成し、続けて、絶縁皮膜銅線21を外側に重ね合わせる巻き層ごとにノズル20の移動幅を狭くしながら巻きつけ、これを所定回数繰り返すことにより、コイル12の外形の断面形状が上下部から巻回軸の中央側の方向に狭くなるように傾斜した部分を形成する。このとき、巻線シャフト23に巻きつけた絶縁皮膜銅線21の温度が約160〜180℃になるように巻線シャフト23に熱風を当てながら絶縁皮膜銅線21を巻回する。こうすることにより融着層19を硬化させながら絶縁皮膜銅線21を巻回するので、上下部から中央側の方向に傾斜したコイル12を形成するときでもコイル12の形状が崩れることがない。   The coil 12 starts to be wound from the narrowest portion of the winding shaft 23, winds the insulating coating copper wire 21 in alignment while moving the nozzle 20, winds the entire width of the winding shaft 23, and then further outwards. The insulating coating copper wire 21 is overlaid on the winding shaft 23 and wound around the entire width of the winding shaft 23. By repeating this a predetermined number of times and winding the insulating film copper wire 21 in accordance with the shape of the winding shaft 23, the cross-sectional shape of the outer shape of the coil 12 spreads from the center side of the winding axis toward the upper and lower portions of the coil 12. In this way, an inclined portion is formed, and then the winding width of the nozzle 20 is wound for each winding layer on which the insulating coating copper wire 21 is overlapped on the outside, and this is repeated a predetermined number of times, thereby repeating the outer shape of the coil 12. An inclined portion is formed so that the cross-sectional shape becomes narrower from the upper and lower portions toward the center side of the winding shaft. At this time, the insulating coating copper wire 21 is wound while hot air is applied to the winding shaft 23 so that the temperature of the insulating coating copper wire 21 wound around the winding shaft 23 is about 160 to 180 ° C. By doing so, the insulating coating copper wire 21 is wound while the fusion layer 19 is cured, so that the shape of the coil 12 does not collapse even when the coil 12 inclined from the upper and lower parts toward the center side is formed.

この後、巻線シャフト23を中央部分で分離させて、巻線シャフト23からはずすことにより、図7のような上下部から巻回軸の中央方向に向かって傾斜を有したコイル12を得ることができる。このときも、コイル12の断面の外形形状が、中央部の幅が上下端の幅よりも大きくなるようになっているが、融着層19によってお互いが固定されているためにコイル12の形状が崩れることはない。   Thereafter, the winding shaft 23 is separated at the central portion and is detached from the winding shaft 23, whereby the coil 12 having an inclination from the upper and lower portions toward the center of the winding shaft as shown in FIG. 7 is obtained. Can do. Also at this time, the outer shape of the cross section of the coil 12 is such that the width of the central portion is larger than the width of the upper and lower ends, but the shape of the coil 12 is fixed because each other is fixed by the fusion layer 19. Will not collapse.

次に、りん青銅板などの金属平板を加工した端子14にコイル12の引き出し線13を電気溶接などで接続を行う(図8)。端子14は個片で形成したり、連続したフープ状に形成してもよく、生産性を考慮すると連続したフープ状にすることが望ましい。   Next, the lead wire 13 of the coil 12 is connected to the terminal 14 formed by processing a metal flat plate such as a phosphor bronze plate by electric welding or the like (FIG. 8). The terminal 14 may be formed as a single piece or in a continuous hoop shape, and it is desirable to form a continuous hoop shape in consideration of productivity.

次に、貫通孔24を有した上ダイ金型25、下ダイ金型26と、貫通孔24に挿通するとともに摺動自在な上パンチ27、下パンチ28を有した金型(図9(a))に、端子14を上ダイ金型25と下ダイ金型26で挟み込んで支持し、コイル12を金型内に配置する(図9(b))。そして、下パンチ28を所定の位置に配置し、鉄を主成分とした金属磁性材料を粉末にした金属磁性体粉末とエポキシ樹脂等の熱硬化性樹脂からなる結合材を混合し、これを顆粒状に造粒した磁性材料15を金型内に所定量充填する(図9(c))。その後、上パンチ27および下パンチ28をコイル12の巻回軸方向(図9(d)において矢印の方向)に上下から2〜4t/cm2の加圧力で加圧成形することにより磁芯16を形成する(図9(d))。このとき、コイル12の断面の外形形状の上下部に傾斜ができているため、顆粒状に造粒した磁性材料15を加圧成形するときに、上パンチ27と下パンチ28で加圧するにつれて磁性材料15がコイル12の上面および下面から中芯部11および外周部に流れこみ易くなり、全体的に磁芯16の密度を高めることができ、また磁芯16の密度を均一化するためクラック等が発生しにくくなる。 Next, a die having an upper die 25 and a lower die 26 having a through hole 24, and an upper punch 27 and a lower punch 28 which are inserted into the through hole 24 and slidable (FIG. 9A). )), The terminal 14 is sandwiched and supported by the upper die 25 and the lower die 26, and the coil 12 is placed in the die (FIG. 9B). Then, the lower punch 28 is arranged at a predetermined position, and a metal magnetic powder made of a metal magnetic material containing iron as a main component and a binder made of a thermosetting resin such as an epoxy resin are mixed, and this is granulated. A predetermined amount of the magnetic material 15 granulated in a shape is filled in the mold (FIG. 9C). Thereafter, the upper punch 27 and the lower punch 28 are press-formed in the winding axis direction of the coil 12 (in the direction of the arrow in FIG. 9D) from above and below with a pressing force of 2 to 4 t / cm 2 to thereby form the magnetic core 16. Is formed (FIG. 9D). At this time, since the upper and lower portions of the outer shape of the cross section of the coil 12 are inclined, the magnetic material 15 granulated into a granular shape becomes magnetic as it is pressed by the upper punch 27 and the lower punch 28 when pressed. The material 15 can easily flow from the upper surface and the lower surface of the coil 12 to the core portion 11 and the outer peripheral portion, so that the density of the magnetic core 16 can be increased as a whole. Is less likely to occur.

次に、加圧成形した磁芯16を金型から取り出し(図10)、160〜180℃/1〜2時間の熱処理を行い、磁性材料15の結合材を硬化する。   Next, the pressure-molded magnetic core 16 is taken out from the mold (FIG. 10), and heat treatment is performed at 160 to 180 ° C./1 to 2 hours to cure the binder of the magnetic material 15.

そして最後に、フープ状の端子14の余剰部分を所定の位置で切断し、磁芯16の側面から底面に向けて折り曲げ加工を行うことにより(図11)、コイル部品を得ることができる。   Finally, an excessive portion of the hoop-shaped terminal 14 is cut at a predetermined position and bent from the side surface of the magnetic core 16 toward the bottom surface (FIG. 11), whereby a coil component can be obtained.

本発明に係るコイル部品は、全体的に磁芯の金属磁性体粉末の密度を高めることができ、電気的特性および信頼性に優れたコイル部品を得ることが、産業上有用である。   In the coil component according to the present invention, it is industrially useful to obtain a coil component that can increase the density of the magnetic metal powder of the magnetic core as a whole and has excellent electrical characteristics and reliability.

11 中芯部
12 コイル
13 引き出し線
14 端子
15 磁性材料
16 磁芯
17 銅線
18 絶縁層
19 融着層
20 ノズル
21 絶縁皮膜銅線
23 巻線シャフト
24 貫通孔
25 上ダイ金型
26 下ダイ金型
27 上パンチ
28 下パンチ
DESCRIPTION OF SYMBOLS 11 Middle core part 12 Coil 13 Lead wire 14 Terminal 15 Magnetic material 16 Magnetic core 17 Copper wire 18 Insulation layer 19 Fusion layer 20 Nozzle 21 Insulation film copper wire 23 Winding shaft 24 Through-hole 25 Upper die 26 Lower die Mold 27 Upper punch 28 Lower punch

Claims (4)

金属磁性体粉末と結合材を混ぜて加圧成形してなる磁芯と、この磁芯の内部に埋め込まれた導線を螺旋状に巻回してなるコイルとを備え、前記コイルの巻回軸を含み前記巻回軸を上下にした断面を見たときに、前記コイルの内周と外周との中央部分の前記巻回軸方向の寸法を、前記コイルの内周および外周の前記巻回軸方向の寸法よりも大きくしたコイル部品。 A magnetic core formed by mixing metal magnetic powder and a binder and press-molding, and a coil formed by spirally winding a conductive wire embedded in the magnetic core, and a winding axis of the coil Including the dimensions of the winding axis direction of the central portion of the inner periphery and outer periphery of the coil when the cross section with the winding axis up and down is viewed, and the winding axis direction of the inner periphery and outer periphery of the coil Coil parts larger than the dimensions of 前記コイルの断面の外形形状を六角形形状または菱形形状、もしくは八角形形状としたコイル部品。 A coil component in which the outer shape of the cross section of the coil is a hexagonal shape, a rhombus shape, or an octagonal shape. 断面形状が円形の導線を巻回してコイルを形成する工程と、前記コイルを金属磁性体粉末と結合材を混ぜたものに埋設して加圧成形した磁芯を形成する工程とを含むコイル部品の製造方法であって、前記コイルを形成する工程は、前記コイルの巻回軸方向に移動可能なノズルに前記導線を通し、回転する巻線シャフトに前記導線を内周側から外周側に複数層巻きつけるものであり、前記シャフトが前記コイルの巻回軸方向の中央部で分割可能であり、かつ巻回軸の中央部が細く中央部から離れるにつれて太くなるように形成されており、前記コイルの内周側では前記巻線シャフトの最も細い部分から前記巻線シャフトの形状に合わせて前記ノズルを移動させて前記導線を複数層巻きつけ、前記コイルの外周側では巻層毎に前記ノズルの移動幅を中央側の方向に狭くしながら前記導線を巻きつけることにより、前記コイルの巻回軸を含み前記巻回軸を上下にした断面を見たときに、前記コイルの内周と外周との中央部分の前記巻回軸方向の寸法を、前記コイルの内周および外周の前記巻回軸方向の寸法よりも大きく形成し、前記巻線シャフトを中央部で分離することにより前記コイルを取り出すようにしたコイル部品の製造方法。 A coil component comprising: a step of forming a coil by winding a conducting wire having a circular cross-sectional shape; and a step of forming a magnetic core formed by pressing and embedding the coil in a mixture of a metal magnetic powder and a binder. The method of forming the coil includes the step of passing the conductive wire through a nozzle movable in the winding axis direction of the coil, and a plurality of the conductive wires from an inner peripheral side to an outer peripheral side on a rotating winding shaft. The layer is wound, and the shaft can be divided at the central part in the winding axis direction of the coil, and the central part of the winding axis is thin and is formed so as to become thicker as the distance from the central part increases. The nozzle is moved from the thinnest part of the winding shaft to the shape of the winding shaft on the inner peripheral side of the coil to wind the conductive wire in a plurality of layers, and the nozzle is wound for each winding layer on the outer peripheral side of the coil. Movement width By winding the conducting wire while narrowing in the direction of the center side, when a cross section including the winding axis of the coil and including the winding axis up and down is viewed, the central portion between the inner periphery and the outer periphery of the coil The dimensions of the winding axis of the coil are formed larger than the dimensions of the inner and outer circumferences of the coil in the direction of the winding axis, and the coil is taken out by separating the winding shaft at the center. Manufacturing method of coil parts. 前記コイルの断面の外形形状を六角形形状または菱形形状、もしくは八角形形状に形成したコイル部品の製造方法。 The manufacturing method of the coil components which formed the external shape of the cross section of the said coil in the hexagon shape, the rhombus shape, or the octagon shape.
JP2014233245A 2014-11-18 2014-11-18 Coil parts manufacturing method Active JP6002939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014233245A JP6002939B2 (en) 2014-11-18 2014-11-18 Coil parts manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014233245A JP6002939B2 (en) 2014-11-18 2014-11-18 Coil parts manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010233224A Division JP5659683B2 (en) 2010-10-18 2010-10-18 Coil parts

Publications (2)

Publication Number Publication Date
JP2015035633A true JP2015035633A (en) 2015-02-19
JP6002939B2 JP6002939B2 (en) 2016-10-05

Family

ID=52543894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014233245A Active JP6002939B2 (en) 2014-11-18 2014-11-18 Coil parts manufacturing method

Country Status (1)

Country Link
JP (1) JP6002939B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102275958B1 (en) * 2020-09-16 2021-07-13 (주)대명솔루션 Egg case

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136807A (en) * 1985-12-10 1987-06-19 Nippon Denso Co Ltd Winding machine
JPH0628939U (en) * 1992-09-14 1994-04-15 株式会社トーキン Fusion coil
JPH1083914A (en) * 1996-09-09 1998-03-31 Tdk Corp Multilayer air-core coil and manufacture thereof
JP2001203120A (en) * 2000-01-18 2001-07-27 Nittoku Eng Co Ltd Method of winding, winding jig, and winding machine
JP2003309024A (en) * 2002-04-16 2003-10-31 Tdk Corp Coil encapsulating magnetic component and method of manufacturing the same
JP2003332164A (en) * 2002-05-10 2003-11-21 Denso Corp Device and method for winding
JP2004281778A (en) * 2003-03-17 2004-10-07 Tokyo Coil Engineering Kk Choke coil and its producing method
JP2005191403A (en) * 2003-12-26 2005-07-14 Matsushita Electric Ind Co Ltd Coil component
JP2005303034A (en) * 2004-04-13 2005-10-27 Cosel Co Ltd Inductor and its manufacturing method
JP2008103430A (en) * 2006-10-17 2008-05-01 Sigma Denshi Kk Inductor
JP2008166502A (en) * 2006-12-28 2008-07-17 Denso Corp Reactor
JP2008218872A (en) * 2007-03-07 2008-09-18 Matsushita Electric Ind Co Ltd Winding coil
JP2010087242A (en) * 2008-09-30 2010-04-15 Tdk Corp Coil component

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136807A (en) * 1985-12-10 1987-06-19 Nippon Denso Co Ltd Winding machine
JPH0628939U (en) * 1992-09-14 1994-04-15 株式会社トーキン Fusion coil
JPH1083914A (en) * 1996-09-09 1998-03-31 Tdk Corp Multilayer air-core coil and manufacture thereof
JP2001203120A (en) * 2000-01-18 2001-07-27 Nittoku Eng Co Ltd Method of winding, winding jig, and winding machine
JP2003309024A (en) * 2002-04-16 2003-10-31 Tdk Corp Coil encapsulating magnetic component and method of manufacturing the same
JP2003332164A (en) * 2002-05-10 2003-11-21 Denso Corp Device and method for winding
JP2004281778A (en) * 2003-03-17 2004-10-07 Tokyo Coil Engineering Kk Choke coil and its producing method
JP2005191403A (en) * 2003-12-26 2005-07-14 Matsushita Electric Ind Co Ltd Coil component
JP2005303034A (en) * 2004-04-13 2005-10-27 Cosel Co Ltd Inductor and its manufacturing method
JP2008103430A (en) * 2006-10-17 2008-05-01 Sigma Denshi Kk Inductor
JP2008166502A (en) * 2006-12-28 2008-07-17 Denso Corp Reactor
JP2008218872A (en) * 2007-03-07 2008-09-18 Matsushita Electric Ind Co Ltd Winding coil
JP2010087242A (en) * 2008-09-30 2010-04-15 Tdk Corp Coil component

Also Published As

Publication number Publication date
JP6002939B2 (en) 2016-10-05

Similar Documents

Publication Publication Date Title
US9305702B2 (en) Surface-mount inductor and production method thereof
JP6763295B2 (en) Surface mount inductor
JP5450675B2 (en) Surface mount inductor and manufacturing method thereof
WO2016035861A1 (en) Surface-mounted inductor and method for manufacturing same
WO2012105489A1 (en) Surface mount inductor and method for producing surface mount inductor
JP6450943B2 (en) Coil component and manufacturing method thereof
JP2014225590A (en) Method for manufacturing surface mounted inductor
JP5450565B2 (en) Surface mount inductor
JP2007165779A (en) Coil-sealed-type magnetic component
KR102064119B1 (en) Sheet type inductor
JP5877296B2 (en) Coil component and manufacturing method thereof
JP2017069460A (en) Coil component and manufacturing method therefor
JP5659683B2 (en) Coil parts
JP2013191726A (en) Coil component and manufacturing method thereof
JP6519989B2 (en) Inductor element
CN112242223B (en) Inductor
JP6002939B2 (en) Coil parts manufacturing method
JP6631392B2 (en) Coil device
JP2013098283A (en) Manufacturing method for plane mounting inductor
JP2011199098A (en) Winding method of molded coil integrated with winding
JP6631391B2 (en) Coil device
WO2015098355A1 (en) Method for producing electronic component, and electronic component
JP6414612B2 (en) Surface mount inductor and manufacturing method thereof
JP2016127189A (en) Coil component and manufacturing method for the same
JP6561905B2 (en) Coil device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160217

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160808

R151 Written notification of patent or utility model registration

Ref document number: 6002939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151