JP2015034870A - Optical scanning device and image forming device having the same - Google Patents

Optical scanning device and image forming device having the same Download PDF

Info

Publication number
JP2015034870A
JP2015034870A JP2013165061A JP2013165061A JP2015034870A JP 2015034870 A JP2015034870 A JP 2015034870A JP 2013165061 A JP2013165061 A JP 2013165061A JP 2013165061 A JP2013165061 A JP 2013165061A JP 2015034870 A JP2015034870 A JP 2015034870A
Authority
JP
Japan
Prior art keywords
optical
imaging optical
imaging
scanning device
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013165061A
Other languages
Japanese (ja)
Other versions
JP2015034870A5 (en
JP6132701B2 (en
Inventor
下村 秀和
Hidekazu Shimomura
秀和 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2013165061A priority Critical patent/JP6132701B2/en
Publication of JP2015034870A publication Critical patent/JP2015034870A/en
Publication of JP2015034870A5 publication Critical patent/JP2015034870A5/ja
Application granted granted Critical
Publication of JP6132701B2 publication Critical patent/JP6132701B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce total size of an optical scanning device having common deflection means for deflecting a plurality of light beams for a plurality of scanning surfaces.SOLUTION: An optical scanning device includes; first and second imaging optical systems for focusing first and second light beams, respectively, coming via common deflection means on first and second scanning surfaces, respectively; and a plurality of reflective optical elements for bending first and second light paths such that each light path crosses itself in a sub-scanning cross-section. An effective image region W (mm) in a main scanning direction on each of the first and second scanning surfaces and a distance Dp (mm) between the first and second scanning surfaces in the sub-scanning cross-section satisfy a predetermined relationship. In a main scanning cross-section, a convergence degree m of each of the first and second light beams, which is expressed in terms of distance Sk (mm) from a rear principal plane of each of the first and second imaging optical systems to respective one of the first and second scanning surfaces and a synthetic focal length f (mm) of each of the first and second optical systems, shall be within a predetermined range.

Description

本発明は光走査装置に関し、レーザービームプリンタやデジタル複写機、マルチファンクションプリンタ等の画像形成装置に好適なものである。   The present invention relates to an optical scanning device and is suitable for an image forming apparatus such as a laser beam printer, a digital copying machine, or a multifunction printer.

従来、カラー画像を形成するカラー画像形成装置用の光走査装置においては、装置全体の小型化を目的として、光偏向器を複数の被走査面に対応する複数の光束で共用した構成が提案されている(特許文献1)。   Conventionally, in an optical scanning device for a color image forming apparatus for forming a color image, a configuration in which an optical deflector is shared by a plurality of light beams corresponding to a plurality of scanned surfaces has been proposed for the purpose of downsizing the entire apparatus. (Patent Document 1).

この構成においては、限られたスペースの中でレンズやミラー等の光学部品を光束に干渉させないように配置するために、光偏向器と複数の被走査面の夫々との間の光路を折り返しミラーにより折り曲げている。   In this configuration, the optical path between the optical deflector and each of the plurality of scanned surfaces is folded back in order to arrange an optical component such as a lens or a mirror so as not to interfere with the light beam in a limited space. It is bent by.

特開2004−317790号公報JP 2004-317790 A

ここで、特許文献1の光走査装置において、副走査断面内での複数の被走査面同士の間隔を狭くして更に小型化を図るために光偏向器側の結像レンズを更に光偏向器に近づけようとしても、光偏向器の基板やレンズ突き当て用の壁部が存在するため困難である。この時、基板を更に小さくする方法や、壁部の厚さを薄くする方法なども考えられるが、基板サイズを小さくすると光偏向器の回転軸の倒れ精度が劣化し、壁部を薄くすると組立時の強度が保てずレンズが倒れ易くなってしまう。   Here, in the optical scanning device of Patent Document 1, in order to further reduce the size by narrowing the interval between the plurality of scanned surfaces in the sub-scanning section, the imaging lens on the optical deflector side is further replaced with the optical deflector. However, it is difficult to bring the optical deflector substrate and the lens abutting wall into account. At this time, a method of further reducing the substrate or a method of reducing the thickness of the wall may be considered. However, if the substrate size is reduced, the tilting accuracy of the rotation axis of the optical deflector deteriorates, and if the wall is made thinner, assembly is performed. The strength of the time cannot be maintained, and the lens easily falls.

なお、複数の折り返しミラーにより折り曲げられた光束を光偏向器側の結像レンズに近づけて小型化を図る方法も考えられるが、従来の光走査装置では光偏向器側の結像レンズの肉厚が厚いため、光束と干渉し易くなってしまう。   Although a method of reducing the size by bringing the light beam bent by a plurality of folding mirrors closer to the imaging lens on the optical deflector side is also conceivable, in the conventional optical scanning device, the thickness of the imaging lens on the optical deflector side is considered. Is thick, it tends to interfere with the light flux.

本発明の目的は、複数の被走査面に対応する複数の光束を偏向する共通の偏向手段を有する光走査装置において、装置全体の小型化を実現することである。   An object of the present invention is to realize downsizing of the entire apparatus in an optical scanning apparatus having a common deflecting means for deflecting a plurality of light beams corresponding to a plurality of scanned surfaces.

上記目的を達成するため、本発明の一側面としての光走査装置は、第1の光源手段から出射する第1の光束を第1の偏向面にて偏向し、かつ第2の光源手段から出射する第2の光束を前記第1の偏向面とは異なる第2の偏向面にて偏向する、共通の偏向手段と、前記偏向手段により偏向された第1の光束を第1の被走査面に集光する第1の結像光学系と、前記偏向手段により偏向された第2の光束を第2の被走査面に集光する第2の結像光学系と、前記第1の偏向面と前記第1の被走査面との間の第1の光路と、前記第2の偏向面と前記第2の被走査面との間の第2の光路と、の夫々に設けられ、前記第1及び第2の光路の夫々を副走査断面内で自身と交差するように折り曲げる複数の反射光学素子と、を有する光走査装置であって、前記第1及び第2の被走査面の夫々における主走査方向の有効画像領域をW(mm)、副走査断面内における前記第1の被走査面と前記第2の被走査面との間隔をDp(mm)、とする時、
0.25<Dp/W<0.35
なる条件を満足し、かつ、主走査断面内において、前記第1及び第2の偏向面に入射する前記第1及び第2の光束の夫々の収束度をm、前記第1及び第2の結像光学系の夫々の後側主平面から前記第1及び第2の被走査面の夫々までの距離をSk(mm)、前記第1及び第2の結像光学系の夫々の合成焦点距離をf(mm)、とし、前記収束度mを
m=1−Sk/f
なる式で表した時、
0.1<m<0.3
なる条件を満足することを特徴とする。
In order to achieve the above object, an optical scanning device according to one aspect of the present invention deflects a first light beam emitted from a first light source means on a first deflection surface and emits the light from the second light source means. The second light beam to be deflected by a second deflecting surface different from the first deflecting surface, and the common deflecting means, and the first light beam deflected by the deflecting means to the first scanned surface A first imaging optical system for condensing, a second imaging optical system for condensing the second light beam deflected by the deflecting means on a second surface to be scanned, and the first deflection surface; A first optical path between the first scanned surface and a second optical path between the second deflection surface and the second scanned surface; And a plurality of reflective optical elements that bend each of the second optical paths so as to intersect with each other in the sub-scan section, And the effective image area in the main scanning direction on each of the second scanned surfaces is W (mm), and the distance between the first scanned surface and the second scanned surface in the sub-scan section is Dp (mm). )
0.25 <Dp / W <0.35
In the main scanning section, the convergence degree of each of the first and second light beams incident on the first and second deflection surfaces is m, and the first and second results are satisfied. Sk (mm) is the distance from each rear main plane of the image optical system to each of the first and second scanned surfaces, and the combined focal length of each of the first and second imaging optical systems. f (mm), and the convergence m is m = 1−Sk / f
When expressed as
0.1 <m <0.3
It satisfies the following condition.

(作用)
被走査面から結像光学光学系を介して偏向手段に向かう逆光路を考えるとき、主走査断面内で結像光学系を出射して偏向手段に向かう光束は、従来のような平行光束ではなく発散光束となることで、この結像光学系の屈折力を従来より弱くできる。これは、主走査断面内で、この結像光学系における結像光学素子の屈折力の曲率が小さくなる(曲率半径が大きくなる)ことに対応する。これにより、結像光学系における結像光学素子の偏向手段側への接近化が可能となり、かつ結像光学素子と光路を折り曲げられた光束との干渉を避けることができる(複数の反射型光学素子M2、M3の結像光学素子側への接近化が可能)。
(Function)
When considering the reverse optical path from the scanned surface to the deflecting means via the imaging optical system, the light beam exiting the imaging optical system and traveling to the deflecting means within the main scanning section is not a parallel light flux as in the prior art. By using a divergent light beam, the refractive power of the imaging optical system can be made weaker than before. This corresponds to the fact that the curvature of the refractive power of the imaging optical element in this imaging optical system becomes small (the radius of curvature becomes large) in the main scanning section. As a result, the imaging optical element in the imaging optical system can be brought closer to the deflection means side, and interference between the imaging optical element and the light beam whose optical path is bent can be avoided (a plurality of reflective optical elements). The elements M2 and M3 can be made closer to the imaging optical element side).

本発明によれば、入射光束として所定の収束度を備える収束光束を用い小型化に適した光走査装置およびそれを用いた画像形成装置を提供できる。   According to the present invention, it is possible to provide an optical scanning device suitable for miniaturization using a convergent light beam having a predetermined convergence as an incident light beam, and an image forming apparatus using the same.

(A)は本発明の実施形態に係る光走査装置の副走査断面図、(B)は主走査方向の展開図、(C)は偏向手段近傍の主走査断面図である。(A) is a sub-scan sectional view of the optical scanning device according to the embodiment of the present invention, (B) is a developed view in the main scanning direction, and (C) is a main scanning sectional view in the vicinity of the deflecting means. 本発明の実施形態に係る光走査装置の収束度とレンズ形状の関係を説明する図である。It is a figure explaining the relationship between the convergence of the optical scanning device which concerns on embodiment of this invention, and a lens shape. (A)は本発明の実施形態に係る光走査装置のジッターの発生を説明する図、(B)は収束系における走査光学系の説明図である。(A) is a figure explaining generation | occurrence | production of the jitter of the optical scanning device based on embodiment of this invention, (B) is explanatory drawing of the scanning optical system in a convergence system. 本発明の実施形態に係る光走査装置の収束度とジッターとの関係を説明する図である。It is a figure explaining the relationship between the convergence and the jitter of the optical scanning device concerning the embodiment of the present invention. 本発明の実施形態に係る光走査装置を搭載したカラー画像形成装置の要部概略図である。1 is a schematic view of a main part of a color image forming apparatus equipped with an optical scanning device according to an embodiment of the present invention.

以下に、本発明の好ましい実施の形態を、添付の図面に基づいて詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

《第1の実施形態》
(画像形成装置)
図5は、本発明の実施形態に係る光走査装置を搭載した画像形成装置の要部概略図である。本実施形態は、光走査装置(光結像光学系)を4個並べ各々並行して像担持体である感光ドラム面上に画像情報を記録するタンデムタイプのカラー画像形成装置である。図5において、60はカラー画像形成装置、12は各々実施形態1に示した光走査装置、21、22、23、24は各々像担持体である感光体としての感光ドラム、31、32、33、34は各々現像器、51は搬送ベルトである。
<< First Embodiment >>
(Image forming device)
FIG. 5 is a schematic diagram of a main part of an image forming apparatus equipped with an optical scanning device according to an embodiment of the present invention. The present embodiment is a tandem type color image forming apparatus in which four optical scanning devices (optical imaging optical systems) are arranged in parallel and image information is recorded on a photosensitive drum surface as an image carrier. In FIG. 5, reference numeral 60 denotes a color image forming apparatus, 12 denotes an optical scanning device shown in the first embodiment, 21, 22, 23, and 24 denote photosensitive drums as photosensitive members as image carriers, and 31, 32, and 33, respectively. , 34 are developing units, and 51 is a conveyor belt.

なお、図5においては、感光体の感光面上に形成された静電潜像をトナー像として現像する現像器(不図示)、現像器で現像されたトナー像を被転写材(記録材)に転写する転写器(不図示)と、転写されたトナー像を被転写材に定着させる定着器とを有している。   In FIG. 5, a developing device (not shown) that develops an electrostatic latent image formed on the photosensitive surface of the photoreceptor as a toner image, and the toner image developed by the developing device is a transfer material (recording material). And a fixing device for fixing the transferred toner image to the transfer material.

図5において、カラー画像形成装置60には、パーソナルコンピュータ等の外部機器52からR(レッド)、G(グリーン)、B(ブルー)のコードデータとして各色信号が入力する。これらの色信号は、装置内のプリンタコントローラ53によって、C(シアン)、M(マゼンタ)、Y(イエロー)、B(ブラック)の各画像データ(ドットデータ)に変換される。これらの画像データは、それぞれ光走査装置12に入力される。そして、これらの光走査装置からは、各画像データに応じて変調された光ビーム41、42、43、44が射出され、これらの光ビームによって感光ドラム21、22、23、24の感光面が主走査方向に走査される。   In FIG. 5, the color image forming apparatus 60 receives color signals as R (red), G (green), and B (blue) code data from an external device 52 such as a personal computer. These color signals are converted into C (cyan), M (magenta), Y (yellow), and B (black) image data (dot data) by a printer controller 53 in the apparatus. These image data are respectively input to the optical scanning device 12. From these optical scanning devices, light beams 41, 42, 43, 44 modulated according to each image data are emitted, and the photosensitive surfaces of the photosensitive drums 21, 22, 23, 24 are caused by these light beams. Scanned in the main scanning direction.

本実施形態におけるカラー画像形成装置は、光走査装置12からC(シアン)、M(マゼンタ)、Y(イエロー)、B(ブラック)の各色に対応した走査光を出射している。そして各々平行して感光ドラム21、22、23、24面上に画像信号(画像情報)を記録し、カラー画像を高速に印字するものである。   The color image forming apparatus according to the present embodiment emits scanning light corresponding to each color of C (cyan), M (magenta), Y (yellow), and B (black) from the optical scanning device 12. In parallel, image signals (image information) are recorded on the surfaces of the photosensitive drums 21, 22, 23, and 24, and color images are printed at high speed.

本実施形態におけるカラー画像形成装置は、上述の如く光走査装置12により各々の画像データに基づいた光ビームを用いて、各色の潜像を各々対応する感光ドラム21、22、23、24面上に形成している。その後、記録材に多重転写して1枚のフルカラー画像を形成している。   The color image forming apparatus according to the present embodiment uses the light beam based on each image data by the optical scanning device 12 as described above, and converts the latent images of the respective colors onto the corresponding photosensitive drums 21, 22, 23, and 24, respectively. Is formed. Thereafter, a single full color image is formed by multiple transfer onto a recording material.

外部機器52としては、例えばCCDセンサを備えたカラー画像読取装置が用いられても良い。この場合には、このカラー画像読取装置と、カラー画像形成装置60とで、カラーデジタル複写機が構成される。   As the external device 52, for example, a color image reading device including a CCD sensor may be used. In this case, the color image reading apparatus and the color image forming apparatus 60 constitute a color digital copying machine.

尚、光走査装置の上方に感光ドラムを配置した構成のカラー画像形成装置としてもよい。その場合においても同様にカラー画像形成装置のコンパクト化を達成することが可能である。   A color image forming apparatus having a configuration in which a photosensitive drum is disposed above the optical scanning device may be used. In that case as well, it is possible to achieve a compact color image forming apparatus.

(光走査装置)
図1(A)は本発明の実施形態に係る光走査装置の副走査断面図、(B)は主走査方向の展開図、(C)は偏向手段近傍の主走査断面図である。ここで、以下の本実施形態の説明において、結像光学系もしくは結像光学素子の光軸または軸上とは、被走査面の中心を通り、被走査面に垂直方向の軸のことである。副走査方向(Z方向)とは、偏向手段の回転軸と平行な方向である。主走査断面とは、副走査方向を法線とする断面である。主走査方向(Y方向)とは、偏向手段で偏向走査される光束を主走査断面に投射した方向である。副走査断面とは、主走査方向を法線とする断面である。
(Optical scanning device)
1A is a sub-scan sectional view of an optical scanning device according to an embodiment of the present invention, FIG. 1B is a development view in the main scanning direction, and FIG. 1C is a main scanning sectional view in the vicinity of a deflecting unit. Here, in the following description of the present embodiment, the optical axis or axis of the imaging optical system or imaging optical element is an axis that passes through the center of the scanned surface and is perpendicular to the scanned surface. . The sub-scanning direction (Z direction) is a direction parallel to the rotation axis of the deflecting unit. The main scanning section is a section having the normal in the sub scanning direction. The main scanning direction (Y direction) is the direction in which the light beam deflected and scanned by the deflecting means is projected onto the main scanning section. The sub-scanning cross section is a cross section whose normal is the main scanning direction.

図1(B)中、1は副走査方向に2個離間して設けられる光源手段(第1及び第3の光源手段)であり、例えば半導体レーザー等より成っている。3は開口絞りであり、通過光束を制限してビーム形状を整形している。2はアナモフィックレンズであり、光源手段1から出射された発散光束を主走査断面内において弱収束光に変換し、副走査断面内において後述する光偏向器5の偏向面5aに主走査方向を長手の線像として結像させるように変換している。なお、アナモフィックレンズ2を主走査断面内及び副走査断面内において弱収束光に変換するコリメータレンズと、副走査方向のみにパワーを有するシリンドリカルレンズの2枚の構成としても良い。   In FIG. 1B, reference numeral 1 denotes light source means (first and third light source means) that are provided two apart from each other in the sub-scanning direction, and is made of, for example, a semiconductor laser. Reference numeral 3 denotes an aperture stop which shapes the beam shape by limiting the passing light flux. An anamorphic lens 2 converts the divergent light beam emitted from the light source means 1 into weakly convergent light in the main scanning section, and extends the main scanning direction in the sub-scanning section on a deflecting surface 5a of an optical deflector 5 to be described later. So that it is formed as a line image. Note that the anamorphic lens 2 may have two configurations: a collimator lens that converts weakly convergent light in the main scanning section and the sub-scanning section, and a cylindrical lens that has power only in the sub-scanning direction.

図1(B)で、光源手段1に関し、第1の光源手段からの光束Raに対する開口絞り3、アナモフィックレンズ2の各要素は、副走査断面内で上方側より偏向手段へ光束を入射させる入射光学系LAを構成している。そして、入射光学系LAによって、偏向手段で偏向される光束は副走査断面内で下方側に向かう第1の光源手段からの光束Raとなる(図1(A))。一方、第3の光源手段からの光束Rbに対する入射光学系LBも同じ構成で、光偏向器への副走査方向の入射の向きが逆(副走査断面内で下方側より偏向手段へ光束を入射)になるだけである。偏向手段で偏向される光束は副走査断面内で上方側に向かう光束Rbとなり、第1の光路を形成する。   In FIG. 1B, regarding the light source means 1, each element of the aperture stop 3 and the anamorphic lens 2 with respect to the light beam Ra from the first light source means is incident so that the light beam is incident on the deflecting means from above in the sub-scan section. An optical system LA is configured. Then, the light beam deflected by the deflecting unit by the incident optical system LA becomes a light beam Ra from the first light source unit heading downward in the sub-scan section (FIG. 1A). On the other hand, the incident optical system LB with respect to the light beam Rb from the third light source means has the same configuration, and the direction of incidence in the sub-scanning direction to the optical deflector is reversed (the light beam is incident on the deflecting means from below in the sub-scan section). ) Only. The light beam deflected by the deflecting means becomes a light beam Rb directed upward in the sub-scan section and forms a first optical path.

5は偏向手段としての光偏向器であり、外接円半径R5=10mmの4面より成るポリゴンミラーより成っている。この光偏向器5は、駆動手段(不図示)により図中矢印A方向に一定速度で回転している。   Reference numeral 5 denotes an optical deflector serving as a deflecting means, which is composed of a polygon mirror having four faces with a circumscribed radius R5 = 10 mm. This optical deflector 5 is rotated at a constant speed in the direction of arrow A in the figure by a driving means (not shown).

本実施形態の光走査装置は、光偏向器5を挟み対向する走査ユニットSR(2つの結像光学系を1組として備える)、SL(同様に2つの結像光学系を異なる1組として備える)を備える。そして、光源手段1と同様に副走査方向に2個離間して設けられる光源手段(第2及び第4の光源手段)を備える。そして、偏向手段で偏向される光束は副走査断面内で下方側に向かう第2の光源手段からの光束R‘aとなる(図1(A))。   The optical scanning device according to the present embodiment includes scanning units SR (including two imaging optical systems as one set) and opposed to each other with the optical deflector 5 interposed therebetween, and SL (similarly, two imaging optical systems as a different set). ). Similarly to the light source means 1, two light source means (second and fourth light source means) provided in the sub-scanning direction are provided. Then, the light beam deflected by the deflecting unit becomes a light beam R′a from the second light source unit heading downward in the sub-scan section (FIG. 1A).

一方、第4の光源手段からの光束Rbに対する入射光学系LBも同じ構成で、光偏向器への副走査方向の入射の向きが逆(副走査断面内で下方側より偏向手段へ光束を入射)になるだけである。偏向手段で偏向される光束は副走査断面内で上方側に向かう光束R’bとなり、第2の光路を形成する。   On the other hand, the incident optical system LB for the light beam Rb from the fourth light source means has the same configuration, and the direction of incidence in the sub-scanning direction on the optical deflector is reversed (the light beam is incident on the deflecting means from below in the sub-scan section). ) Only. The light beam deflected by the deflecting means becomes a light beam R′b directed upward in the sub-scan section, and forms a second optical path.

これにより、1つの光偏向器5により4本の光束Ra、Rb、R´a、R´bを偏向走査する。そして、夫々の光束が対応する被走査面である感光ドラム面8A(Bk)、8B(C)、8C(M)、8D(Y)を走査する。   Accordingly, the four light beams Ra, Rb, R′a, and R′b are deflected and scanned by one optical deflector 5. Then, the photosensitive drum surfaces 8A (Bk), 8B (C), 8C (M), and 8D (Y), which are scanned surfaces corresponding to the respective light beams, are scanned.

ここで、走査ユニットSRにおいて、偏向手段である光偏向器(4面ポリゴンミラー)5の偏向面5aで偏向反射した偏向光束Raは、結像レンズ6A、7Aを通過後、折り返しミラーM1により折り返され、被走査面である感光ドラム8A(Bk)に導かれる。このような結像光学素子としての結像レンズ6A、7A、反射型光学素子としての反射ミラーM1を介して感光ドラム8A(Bk)に導かれる結像光学系を第1の結像光学系とする。   Here, in the scanning unit SR, the deflected light beam Ra deflected and reflected by the deflecting surface 5a of the optical deflector (four-sided polygon mirror) 5 serving as a deflecting means passes through the imaging lenses 6A and 7A and is then turned back by the turning mirror M1. Then, it is guided to the photosensitive drum 8A (Bk) which is the surface to be scanned. The imaging optical system guided to the photosensitive drum 8A (Bk) via the imaging lenses 6A and 7A as the imaging optical elements and the reflection mirror M1 as the reflection optical element is referred to as a first imaging optical system. To do.

また、光偏向器5の偏向面5aで偏向反射した偏向光束Rbは、結像レンズ6Aを通過後、反射ミラーM2で折り返され、結像レンズ7Bを通過し、反射ミラーM3により折り返される。そして、結像レンズ6Aを通過した自分自身の光束と副走査断面内で交差した後、被走査面である感光ドラム8B(C)に到達している。   Further, the deflected light beam Rb deflected and reflected by the deflecting surface 5a of the optical deflector 5 passes through the imaging lens 6A, is folded back by the reflecting mirror M2, passes through the imaging lens 7B, and is folded back by the reflecting mirror M3. Then, after intersecting with its own light beam that has passed through the imaging lens 6A within the sub-scanning cross section, it reaches the photosensitive drum 8B (C) that is the surface to be scanned.

ここで、結像レンズ6Aを通過した自分自身の光束と交差する位置は、結像光学系を構成する光学的に最も偏向手段に近い第1の結像光学素子としての結像レンズ6Aよりも被走査面側(感光ドラム8B(C)側)である。そして、反射ミラーM2,M3及びM‘2、M’3は、前記第1及び第2の光路(感光ドラム8B及び8Cに向かう光路)の夫々を副走査断面内で自身と交差するように折り曲げる。   Here, the position that intersects with its own light beam that has passed through the imaging lens 6A is more optically than the imaging lens 6A as the first imaging optical element that is optically closest to the deflecting means constituting the imaging optical system. This is the scanned surface side (photosensitive drum 8B (C) side). The reflecting mirrors M2, M3 and M′2, M′3 bend the first and second optical paths (optical paths toward the photosensitive drums 8B and 8C) so as to intersect with each other in the sub-scan section. .

このような結像光学素子としての結像レンズ6A、7B、反射光学素子としての反射ミラーM2、M3を介して感光ドラム8A(Bk)に導かれる結像光学系を第2の結像光学系とする。   The imaging optical system guided to the photosensitive drum 8A (Bk) via the imaging lenses 6A and 7B as the imaging optical elements and the reflection mirrors M2 and M3 as the reflection optical elements is the second imaging optical system. And

一方、結像光学系SLにおいても結像光学系SRと同じ光路の取り回し方を行っている。すなわち、共通の光偏向器5の偏向面5´aで偏向反射した偏向光束R´aは、結像レンズ6´A、7´Aを通過後、折り返しミラーM´1により折り返され、被走査面である感光ドラム8D(Y)に導かれる。また、光偏向器5の偏向面5´aで偏向反射した偏向光束R´bは、結像レンズ6´Aを通過後折り返しミラーM´2で折り返され結像レンズ7´Bを通過し、折り返しミラーM´3により折り返され、被走査面である感光ドラム8C(M)に導かれる。   On the other hand, in the imaging optical system SL, the same optical path is used as in the imaging optical system SR. That is, the deflected light beam R′a deflected and reflected by the deflecting surface 5′a of the common optical deflector 5 passes through the imaging lenses 6′A and 7′A, and is then folded by the folding mirror M′1 to be scanned. It is guided to the photosensitive drum 8D (Y) which is the surface. Further, the deflected light beam R′b deflected and reflected by the deflecting surface 5′a of the optical deflector 5 passes through the imaging lens 6′A and then is folded back by the folding mirror M′2 and passes through the imaging lens 7′B. It is folded by the folding mirror M′3 and guided to the photosensitive drum 8C (M) that is the surface to be scanned.

ここで、以下の説明において、光偏向器5に最も遠い被走査面8A、8Dに結像する光学系(被走査面を走査する光学系)を結像光学系SA(上記第1の結像光学系)、SDと称する。また光偏向器5に最も近い被走査面8B、8Cに結像する光学系(被走査面を走査する光学系)を結像光学系SB(上記第2の結像光学系)、SCと称す。   Here, in the following description, an optical system (an optical system that scans the scanned surface) that forms an image on the scanned surfaces 8A and 8D farthest from the optical deflector 5 is defined as the imaging optical system SA (the first imaging). Optical system), referred to as SD. An optical system that forms an image on the scanned surfaces 8B and 8C closest to the optical deflector 5 (an optical system that scans the scanned surface) is referred to as an imaging optical system SB (the second imaging optical system), SC. .

また、上記光偏向器5に最も近いとは、光学的に該光偏向器5の偏向面に最も近いことを称し、また光偏向器5に最も遠いとは、光学的に該光偏向器5の偏向面から最も遠いことを称す。本実施形態における2つの結像光学系SR、SLの構成及び光学的作用は互いに同じであるので、以下結像光学系SRで説明する。   Further, “closest to the optical deflector 5” means optically closest to the deflecting surface of the optical deflector 5, and “farthest to the optical deflector 5” means optically the optical deflector 5. The farthest from the deflection surface. Since the configuration and optical action of the two imaging optical systems SR and SL in this embodiment are the same as each other, the following description will be made with the imaging optical system SR.

本実施形態における複数の結像光学系SA、SBは、各々複数の結像光学素子としての結像レンズから構成され、最も偏向手段に近い結像レンズ6Aは、複数の結像光学系SA、SBで共用されている。また、被走査面に近い結像レンズ7A、7Bは、入射面と出射面の面頂点を結んだ線と外形中心線が異なるレンズ(偏心レンズ)を用いている。   In the present embodiment, the plurality of imaging optical systems SA and SB are each composed of an imaging lens as a plurality of imaging optical elements, and the imaging lens 6A closest to the deflecting unit includes a plurality of imaging optical systems SA, Shared by SB. Further, the imaging lenses 7A and 7B close to the scanned surface use lenses (eccentric lenses) having different outline center lines from the line connecting the surface vertices of the entrance surface and the exit surface.

よって、走査ユニットSRに用いられる結像レンズ7Aと7Bとはレンズ光軸のずらし方の違う別形状のレンズとなる。また同様に、走査ユニットSLに用いられる結像レンズ7´Aと7´Bは、レンズ光軸のずらし方の違う別形状のレンズとなる。このようにすることで、結像レンズ7B(7B’)の偏心により、結像レンズ7B(7B’)と光束Rb(Rb’)の干渉を避けることができる。但し、後述する収束度mやKθ係数や各レンズの焦点距離などといった光学パラメータを光束RaとRbに対する光学系で同じにすることで、結像レンズ7Aと7Bは同じレンズとすることができる。   Therefore, the imaging lenses 7A and 7B used in the scanning unit SR are differently shaped lenses having different lens optical axis shifting methods. Similarly, the imaging lenses 7′A and 7′B used in the scanning unit SL are lenses having different shapes with different lens optical axis shifting methods. By doing so, it is possible to avoid interference between the imaging lens 7B (7B ') and the light beam Rb (Rb') due to the eccentricity of the imaging lens 7B (7B '). However, the imaging lenses 7A and 7B can be made to be the same lens by making the optical parameters such as the degree of convergence m, the Kθ coefficient, and the focal length of each lens, which will be described later, the same in the optical system for the light beams Ra and Rb.

また、本実施形態では、光偏向器5に最も近い被走査面8Bに結像する結像光学系SBの反射型光学素子としての折り返しミラーの枚数を必要最低限の2枚にしている。また、本実施形態では、光偏向器5から最も遠い被走査面8Aに結像する結像光学系SA(第1の結像光学系)の被走査面8Aに最も近い結像レンズ7Aを、被走査面8Aに最も近い折り返しミラーM1より光偏向器5側に配置している。これにより、結像レンズ7Aの主走査方向の長さを短くしている。   In the present embodiment, the number of folding mirrors as the reflection type optical elements of the imaging optical system SB that forms an image on the scanned surface 8B closest to the optical deflector 5 is set to the minimum two. In this embodiment, the imaging lens 7A closest to the scanned surface 8A of the imaging optical system SA (first imaging optical system) that forms an image on the scanned surface 8A farthest from the optical deflector 5, It is arranged closer to the optical deflector 5 than the folding mirror M1 closest to the scanned surface 8A. Thereby, the length of the imaging lens 7A in the main scanning direction is shortened.

一方、被走査面8Aに最も近い結像レンズ7Aを被走査面8Aに最も近い折り返しミラーM1よりも被走査面8A側に配置する構成も考えられるが、結像レンズ7Aの主走査方向の長さが長くなり、装置全体が大型化してくるため好ましくない。よって、上述したような光学設計値及び配置にすることで、必要最小限の部品点数で、コストダウンと装置の小型化の両立を図っている。   On the other hand, a configuration in which the imaging lens 7A closest to the scanned surface 8A is arranged closer to the scanned surface 8A than the folding mirror M1 closest to the scanned surface 8A is also conceivable, but the length of the imaging lens 7A in the main scanning direction is also conceivable. This is not preferable because the overall length of the apparatus becomes large. Therefore, by adopting the optical design values and arrangement as described above, it is possible to achieve both cost reduction and downsizing of the apparatus with the minimum necessary number of parts.

図1(A)の10は光走査装置の筺体(光学箱)を示しており、点線10´は従来装置の筺体の外周部を示している。本実施形態では、被走査面の間隔(光束の集光位置の間隔に等しい)Dpを58mmとすることができ(従来装置に対して11mm短縮)、光走査装置の横方向の長さも11×3=33mm短縮することができた。一般的に、A4サイズの画像を出力するカラー画像形成装置のドラム並び方向の長さは400〜500mm程度であることを考えると、1割弱のコンパクト化を達成したことになる。   1A shows a housing (optical box) of the optical scanning device, and a dotted line 10 'shows an outer peripheral portion of the housing of the conventional device. In this embodiment, the distance Dp of the surface to be scanned (equal to the distance between the condensing positions of the light beams) can be 58 mm (11 mm shorter than the conventional apparatus), and the horizontal length of the optical scanning apparatus is also 11 ×. 3 = 33 mm could be shortened. In general, considering that the length in the drum arrangement direction of a color image forming apparatus that outputs an A4 size image is about 400 to 500 mm, a compactness of less than 10% is achieved.

なお、上述した被走査面の間隔(光束の集光位置の間隔に等しい)Dpは、図5に示した感光ドラム21、22、23、24の回転と搬送ベルト51の移動との同期制御の容易化を図るため、複数の被走査面に対して等しくされている。   Note that the above-described scanning surface interval (equal to the light beam condensing position interval) Dp is a synchronous control of the rotation of the photosensitive drums 21, 22, 23, and 24 and the movement of the conveying belt 51 shown in FIG. In order to facilitate, it is made equal to a plurality of scanned surfaces.

ここで、図1(B)は光偏向器5で同じ側に偏向走査される光束Ra、Rbの内、光束Raに対する結像光学系SAの主走査断面図である。光束Rbに対する結像光学系SBも同様な主走査断面図であるため、図示は省略する。図中、C0は軸上光束の主光線の偏向反射点(基準点)である。副走査方向においては、光束Ra、Rbは偏向反射点C0にて交差する。偏向反射点C0は結像光学系の基準点であり、偏向反射点C0から被走査面までの距離を以下、「結像光学系の光路長L」と定義する。以下に、本実施形態における光走査装置のレンズ面形状及び光学配置を表1、表2として示す。   Here, FIG. 1B is a main scanning sectional view of the imaging optical system SA with respect to the light beam Ra among the light beams Ra and Rb deflected and scanned to the same side by the optical deflector 5. The imaging optical system SB for the light beam Rb is also a similar main scanning sectional view, and is not shown. In the figure, C0 is a deflection reflection point (reference point) of the principal ray of the axial light beam. In the sub-scanning direction, the light beams Ra and Rb intersect at the deflection reflection point C0. The deflection reflection point C0 is a reference point of the imaging optical system, and the distance from the deflection reflection point C0 to the surface to be scanned is hereinafter defined as “optical path length L of the imaging optical system”. Tables 1 and 2 show lens surface shapes and optical arrangements of the optical scanning device according to the present embodiment.

本実施形態のアナモフィックレンズ2の入射面は、平面上に回折格子が形成された回折面、出射面は主走査方向と副走査方向で曲率半径の異なるアナモフィックな屈折面としている。アナモフィックレンズ2はプラスチック材料を用いた射出成形で成形されており、環境変動による屈折パワーの変化を半導体レーザーの波長変化による回折パワーの変化で補償する、所謂温度補償光学系としている。また、回折面は以下に表した位相関数により定義される。
φ=2πM/λ(C+C
ここで、φは位相関数、Mは回折次数であり、本実施形態は1次回折光(M=1)を用いている。λは設計波長であり、本実施形態ではλ=790nmである。
The incident surface of the anamorphic lens 2 of this embodiment is a diffractive surface in which a diffraction grating is formed on a plane, and the exit surface is an anamorphic refracting surface having different radii of curvature in the main scanning direction and the sub-scanning direction. The anamorphic lens 2 is formed by injection molding using a plastic material, and is a so-called temperature compensation optical system that compensates for changes in refractive power due to environmental fluctuations with changes in diffraction power due to wavelength changes of the semiconductor laser. The diffraction surface is defined by the phase function expressed below.
φ = 2πM / λ (C 3 Z 2 + C 5 Y 2 )
Here, φ is a phase function, M is a diffraction order, and this embodiment uses first-order diffracted light (M = 1). λ is a design wavelength, and in this embodiment, λ = 790 nm.

結像レンズ6A、7Aのレンズ入射面、レンズ出射面の母線形状は、共に12次までの関数として表せる非球面形状により構成されている。結像レンズ6A、7Aのそれぞれのレンズ面と結像レンズ6A、7Aの光軸との交点を原点とし、光軸方向をX軸、主走査断面内において光軸と直交する軸をY軸としたとき、主走査方向と対応する母線方向が、以下の式で表わされる。   The generatrix shapes of the lens entrance surfaces and lens exit surfaces of the imaging lenses 6A and 7A are both aspherical shapes that can be expressed as functions up to the 12th order. The intersection between the lens surfaces of the imaging lenses 6A and 7A and the optical axes of the imaging lenses 6A and 7A is the origin, the optical axis direction is the X axis, and the axis orthogonal to the optical axis in the main scanning section is the Y axis. In this case, the bus direction corresponding to the main scanning direction is expressed by the following equation.

(但し、Rは母線曲率半径、K、B、B、B、B10、B12は非球面係数)
非球面係数B、B、B、B10、B12は光走査装置の半導体レーザー1が配置されている側と半導体レーザー1が配置されていない側とで数値を異ならせる。B4U、B6U、B8U、B10U、B12Uが半導体レーザー1が配置されている側の値、B4L、B6L、B8L、B10L、B12Lが半導体レーザー1が配置されていない側の値である。そのことで、主走査方向に非対称な形状を表現することができる。
(Where R is the radius of curvature of the bus, and K, B 4 , B 6 , B 8 , B 10 , B 12 are aspheric coefficients)
The numerical values of the aspheric coefficients B 4 , B 6 , B 8 , B 10 and B 12 are different on the side where the semiconductor laser 1 is arranged and the side where the semiconductor laser 1 is not arranged. B 4U , B 6U , B 8U , B 10U , B 12U are values on the side where the semiconductor laser 1 is arranged, B 4L , B 6L , B 8L , B 10L , B 12L are not arranged with the semiconductor laser 1. It is the value of the side. As a result, an asymmetric shape in the main scanning direction can be expressed.

また、副走査方向と対応する子線方向は、以下の式で表わされる。   Further, the sub line direction corresponding to the sub scanning direction is expressed by the following expression.

Sは、母線方向の各々の位置における母線の法線を含み主走査面と垂直な面内に定義される子線形状である。ここで、走査方向に光軸からY離れた位置における副走査方向の曲率半径(子線曲率半径)Rsは、以下の式で表わされる。
1/Rs=1/Rs+D×Y+D×Y+D×Y+D×Y+D10×Y10
(但し、Rsは光軸上の子線曲率半径、D、D、D、D、D10は子線変化係数)
こちらも主走査形状と同様に、非球面係数D〜D10は光走査装置の半導体レーザー1が配置されている側(D2U〜D10U)と半導体レーザー1が配置されていない側(D2L〜D10L)とで数値を異ならせる。これにより、主走査方向に非対称な形状を表現することができる。なお、本実施形態では、面形状を上記定義式により函数を定義したが、本発明はこれに限定されるものではない。
S is a child line shape defined in a plane perpendicular to the main scanning plane, including the normal line of the bus bar at each position in the bus bar direction. Here, the radius of curvature (sub-wire curvature radius) Rs * in the sub-scanning direction at a position Y away from the optical axis in the scanning direction is expressed by the following equation.
1 / Rs * = 1 / Rs + D 2 × Y 2 + D 4 × Y 4 + D 6 × Y 6 + D 8 × Y 8 + D 10 × Y 10
(Where Rs is the radius of curvature of the strand on the optical axis, D 2 , D 4 , D 6 , D 8 , D 10 are the strand changing coefficients)
As in the main scanning shape, the aspherical coefficients D 2 to D 10 are determined on the side where the semiconductor laser 1 of the optical scanning device is disposed (D 2U to D 10U ) and on the side where the semiconductor laser 1 is not disposed (D 2L to D 10L) and de varying numbers. Thereby, an asymmetric shape in the main scanning direction can be expressed. In the present embodiment, the function of the surface shape is defined by the above definition formula, but the present invention is not limited to this.

ところで、通常、副走査断面内において斜め方向から光束を入射させる光走査装置では、波面収差の捩れによりスポットが崩れる現象が見られる。本実施形態においては、各面のパワー配置、結像レンズ7Aのシフト量を最適化することで、波面収差の捩れを低減している。すなわち、本実施形態の結像光学系SAでは、結像レンズ7Aを面P0に対して−1.638mm副走査方向にシフトさせることで波面収差の補正を行っている。   By the way, normally, in an optical scanning device in which a light beam is incident from an oblique direction in the sub-scanning section, a phenomenon is observed in which a spot collapses due to a twist of wavefront aberration. In the present embodiment, the twist of wavefront aberration is reduced by optimizing the power arrangement of each surface and the shift amount of the imaging lens 7A. That is, in the imaging optical system SA of the present embodiment, the wavefront aberration is corrected by shifting the imaging lens 7A in the sub-scanning direction by −1.638 mm with respect to the surface P0.

(収束光束)
本実施形態では、結像光学素子としての結像レンズ6Aに入射する光束を主走査断面内で収束光束とすることで、以下に述べるように結像レンズ6Aの主走査方向の屈折力(パワー)を弱めレンズの肉厚を低減している。更に、本実施形態では、偏向手段としての光偏向器5の偏向面が平面であることから、光偏向器への入射光束を収束光束とし、光偏向器5に向かう全ての入射光束を主走査断面内で同じ収束度mの収束光束とする。これにより、すべての結像光学系の光路長Lを短縮することで、カラー画像形成装置の小型化を図っている。
(Convergent light flux)
In the present embodiment, the light beam incident on the imaging lens 6A as the imaging optical element is set as a convergent light beam in the main scanning section, so that the refractive power (power) of the imaging lens 6A in the main scanning direction is described as follows. ) Is weakened to reduce the lens thickness. Further, in the present embodiment, since the deflecting surface of the optical deflector 5 as the deflecting means is a flat surface, the incident light beam to the optical deflector is set as a convergent light beam, and all the incident light beams directed to the optical deflector 5 are subjected to main scanning. A converged light beam having the same convergence m in the cross section is used. Accordingly, the color image forming apparatus is miniaturized by shortening the optical path length L of all the imaging optical systems.

(収束光束によるレンズ肉厚低減)
以下、収束光束によるレンズ肉厚低減の効果について説明を行う。偏向手段で偏向されて結像光学素子としての結像レンズに入射する光束を主走査断面内で収束光束とすることは、被走査面から結像光学素子を介して偏向手段に向かう逆光路を考えると、以下のようになる。すなわち、主走査断面内で結像光学素子を出射して偏向手段に向かう光束は、従来のような平行光束ではなく発散光束となる。これにより、結像光学素子の曲率は緩くなって、中心肉厚を維持するとき主走査端部の肉厚が厚くなるところ、主走査端部の肉厚を必要最低限にすれば中心肉厚を減らせることとなる。
(Lens thickness reduction by convergent luminous flux)
Hereinafter, the effect of reducing the lens thickness by the convergent light beam will be described. The light beam deflected by the deflecting unit and incident on the imaging lens serving as the imaging optical element is converted into a convergent beam within the main scanning section, and the reverse optical path from the scanned surface to the deflecting unit via the imaging optical element is reduced. Considering the following: That is, the light beam that exits the imaging optical element within the main scanning section and travels toward the deflecting means is a divergent light beam, not a conventional parallel light beam. As a result, the curvature of the imaging optical element becomes loose, and the thickness of the main scanning end becomes thick when maintaining the center thickness. If the thickness of the main scanning end is minimized, the center thickness is reduced. Will be reduced.

(収束度m)
ここで、被走査面から結像光学素子を介して偏向手段に向かう逆光路を考えるときの結像光学素子に逆光路で入射する光束の中心光線の結像光学素子の光軸に対する入射角度α、出射角度βとすると、tanβ/tanαは収束の度合いを示すこととなる。この収束の度合いを収束度mとして、以下のように定義する。
(Convergence m)
Here, when considering the reverse optical path from the scanned surface to the deflecting means through the imaging optical element, the incident angle α of the central ray of the light beam incident on the imaging optical element in the reverse optical path with respect to the optical axis of the imaging optical element Assuming that the emission angle is β, tan β / tan α indicates the degree of convergence. The degree of convergence is defined as follows as the degree of convergence m.

m=1−Sk/f
Sk:主走査断面内における結像光学素子の後側主平面から被走査面までの距離(mm)
f:結像光学素子の主走査断面内の焦点距離(mm)
また、結像光学系が複数の結像光学素子で構成される場合は、以下の式が成立する。
m = 1-Sk / f
Sk: distance from the rear main plane of the imaging optical element to the scanned surface in the main scanning section (mm)
f: Focal length (mm) in the main scanning section of the imaging optical element
Further, when the imaging optical system is composed of a plurality of imaging optical elements, the following expression is established.

m=1−Sk/f
Sk:主走査断面内における結像光学系の後側主平面から被走査面までの距離(mm)
f:結像光学系の主走査断面内の合成焦点距離(mm)
ここで、前記収束度mは、以下の条件を満たすことが好ましい。
m = 1-Sk / f
Sk: distance from the rear main plane of the imaging optical system to the scanned surface in the main scanning section (mm)
f: Composite focal length (mm) in the main scanning section of the imaging optical system
Here, the convergence m preferably satisfies the following conditions.

0.1<m<0.3 ・・・(式A)
式Aの下限値を超えると従来装置に対する本発明の効果が顕著とはならない。一方、式Aの上限値を超えると、以下に述べる収束系(又は発散系)特有の心ジッターの問題が生じて好ましくない。すなわち、収束度mを強くするとレンズの肉厚を薄くする効果はあるが、図3(A)に示すジッターδY(収束系面偏心ジッター)が問題となる。つまり、収束系においては、製造誤差などにより光偏向器の偏向面5aがシフト偏心した場合、被走査面8A上で光束が集光する位置のずれが発生する(特許文献2)。これは、収束系(又は発散系)特有の問題であり、入射光学系が平行光であれば原理的に発生しない。
0.1 <m <0.3 (Formula A)
If the lower limit of Formula A is exceeded, the effect of the present invention on the conventional apparatus will not be significant. On the other hand, if the upper limit value of the expression A is exceeded, the problem of cardiac jitter peculiar to the convergence system (or diverging system) described below arises. That is, increasing the degree of convergence m has the effect of reducing the lens thickness, but jitter δY (convergence system surface eccentricity jitter) shown in FIG. That is, in the converging system, when the deflecting surface 5a of the optical deflector is decentered due to a manufacturing error or the like, the position where the light beam is condensed on the scanned surface 8A is generated (Patent Document 2). This is a problem peculiar to the convergence system (or diverging system), and does not occur in principle if the incident optical system is parallel light.

収束系面偏心ジッターの発生原理を説明する図3(A)において、光偏向器5の偏向面5a及びシフト偏心した偏向面5bからの反射光束の主光線のみを示している。ここで2本の主光線Rap0とRap1は、走査結像系SAに入射する前は主走査断面内で平行である。この2本の平行な主光線は、結像光学系SAの焦点位置13Aにて主走査断面内で交わることになる。一方、被走査面は走査結像系の焦点位置13Aより光偏向器5側の位置8Aであるため、被走査面8A上では図に示したδYだけずれた位置に結像する。   In FIG. 3A for explaining the principle of generation of the converging system surface eccentricity jitter, only the principal ray of the reflected light beam from the deflecting surface 5a of the optical deflector 5 and the deflected deflecting surface 5b is shown. Here, the two principal rays Rap0 and Rap1 are parallel in the main scanning section before entering the scanning imaging system SA. The two parallel principal rays intersect in the main scanning section at the focal position 13A of the imaging optical system SA. On the other hand, since the surface to be scanned is a position 8A on the optical deflector 5 side from the focal position 13A of the scanning imaging system, an image is formed on the surface to be scanned 8A at a position shifted by δY shown in the figure.

図3(B)は偏向面5aで反射した光束(主光線と2本のマージナル光線)を描いたものであり、このように被走査面8A上で集光する。なお、収束度m=0の時、即ち入射光束が主走査断面内で平行光である場合は、8Aと13Aが一致する為、偏向面5aがシフト偏心したとしてもジッターは発生しない。   FIG. 3B depicts a light beam (principal ray and two marginal rays) reflected by the deflecting surface 5a, and is thus condensed on the surface to be scanned 8A. When the degree of convergence is m = 0, that is, when the incident light beam is parallel light within the main scanning section, 8A and 13A coincide with each other, so that no jitter is generated even if the deflection surface 5a is decentered.

図4は、図2で示した各収束度の結像光学系において、偏向面を10μmシフト偏心した際に発生する各像高Yでの収束系面偏心ジッターδYの量をプロットしたグラフである。前述したように、平行光束ではジッターはゼロであり、収束度mが強くなるに従いジッター量も大きくなっていく。   FIG. 4 is a graph plotting the amount of converging system surface decentering jitter δY at each image height Y generated when the deflecting surface is decentered by 10 μm in the focusing optical system shown in FIG. . As described above, the parallel light flux has zero jitter, and the amount of jitter increases as the degree of convergence m increases.

このジッターは、偏向面各面の偏心量が異なる時、画像モアレとして画像不良を起こしてしまう。この対策としては、偏心量を抑えた光偏向器を製造することが挙げられるが、加工精度にも限界があり、また偏心量の小さいポリゴンミラーを選別するなどの方法と取った場合、明らかにコストアップを招いてしまう。通常の加工方法では、ポリゴンの面偏心相対量は10μm程度である。   This jitter causes an image defect as an image moire when the amount of eccentricity of each surface of the deflection surface is different. As a countermeasure, it is possible to manufacture an optical deflector with a reduced amount of eccentricity. However, there is a limit to the processing accuracy, and when using a method such as selecting a polygon mirror with a small amount of eccentricity, it is obvious. Incurs an increase in cost. In a normal processing method, the relative surface eccentricity of the polygon is about 10 μm.

ここで、ジッター量δYは通常10μm程度であれば許容されるため、(式A)を満足する収束度mにおいては、許容レベル内の画質が保たれることとなる。本実施形態ではm=0.199の弱収束光束とし、結像レンズ6Aは平行光束が入射する場合と比較して、結像レンズ6Aの出射面を偏向手段側に2.7mmシフトすることができた。これにより、結像レンズ6Aの偏向手段側への接近化が可能となり、かつ結像レンズ6Aと光路を折り曲げられた光束との干渉を避けることができる(折り曲げミラーM2、M3の結像光学素子側への接近化が可能)。   Here, since the jitter amount δY is generally allowed to be about 10 μm, the image quality within the allowable level is maintained at the convergence m that satisfies (Expression A). In this embodiment, a weakly convergent light beam of m = 0.199 is used, and the imaging lens 6A can shift the exit surface of the imaging lens 6A by 2.7 mm toward the deflecting unit as compared with the case where a parallel light beam is incident. did it. As a result, the imaging lens 6A can be brought closer to the deflecting means, and interference between the imaging lens 6A and the light beam whose optical path is bent can be avoided (imaging optical elements of the folding mirrors M2 and M3). To the side).

更に本実施形態では、光偏向器5の偏向面が平面であることを前提に、光偏向器5への二つの入射光学系LA、LBの収束度mを同じにした。なお、収束度mの符号により、光偏向器に入射する光束は次の3つの場合に分けられることとなる。すなわち、m=0のとき主走査方向において光偏向器に平行光束が入射し、m<0のとき主走査方向において、光偏向器に発散光束が入射し、m>0のとき主走査方向において、光偏向器に収束光束が入射する。   Furthermore, in this embodiment, the convergence m of the two incident optical systems LA and LB to the optical deflector 5 is made the same on the assumption that the deflecting surface of the optical deflector 5 is a plane. Depending on the sign of the degree of convergence m, the light beam incident on the optical deflector is divided into the following three cases. That is, when m = 0, a parallel light beam enters the optical deflector in the main scanning direction, when m <0, a divergent light beam enters the optical deflector in the main scanning direction, and when m> 0, in the main scanning direction. The convergent light beam enters the optical deflector.

図2は、収束度mを振って設計した時の、主走査方向の主たるパワーを持つ結像レンズ6Aの肉厚tの変化を説明する図である。図の右から左に行くに従い、m=0.00、m=0.105、m=0.199、m=0.293と収束度を増している。m=0.199は表1、表2の数値実施形態で示した結像レンズである。   FIG. 2 is a diagram for explaining the change in the thickness t of the imaging lens 6A having the main power in the main scanning direction when the design is performed with the convergence degree m. As the graph moves from right to left, the convergence increases as m = 0.000, m = 0.105, m = 0.199, and m = 0.293. m = 0.199 is the imaging lens shown in the numerical embodiments of Tables 1 and 2.

従来例である平行系(m=0.00)の時の肉厚t=8.0(mm)であるのに対し、収束度mを増していくとt=7.0(mm)、t=5.5(mm)、t=5.0(mm)とレンズ肉厚を低減することが可能である。入射光学系に主走査方向のパワーを付ければ付けるほど、走査光学系の主走査方向のパワーを減らせることができ、曲率半径の大きなレンズとなる。   While the thickness t = 8.0 (mm) in the case of the parallel system (m = 0.00) as the conventional example, when the convergence m is increased, t = 7.0 (mm), t = 5.5 (mm), t = 5.0 (mm) and the lens thickness can be reduced. The more the power in the main scanning direction is applied to the incident optical system, the more the power in the main scanning direction of the scanning optical system can be reduced, resulting in a lens having a large curvature radius.

(結像レンズ肉厚tと被走査面間隔Dp)
ここで、鋭意検討した結果、装置の小型化に関連する被走査面間隔Dpと、小型化の達成に関連する結像レンズ肉厚tについて、以下の式を満足するように構成することが好ましいことが判明した。
(Imaging lens thickness t and scanning surface distance Dp)
Here, as a result of intensive studies, it is preferable that the scanning surface interval Dp related to the downsizing of the apparatus and the imaging lens thickness t related to the achievement of the downsizing are configured to satisfy the following expressions. It has been found.

0.15<2t/Dp<0.25 ・・・(式B)
(式A)を満足する収束度において、結像レンズ6Aの中心肉厚tの2倍と被走査面の間隔Dpの比は以下のようになる。
2t/Dp=2×7.0/58=0.24 (m=0.105の時)
2t/Dp=2×5.5/58=0.19 (m=0.199の時)
2t/Dp=2×5.0/58=0.17 (m=0.293の時)
図1(C)は、光偏向器5及び結像レンズ6A近傍の主走査断面を示している。従来装置と同じ光偏向器の基板やレンズの突き当て壁としても、肉厚が薄くなった結像レンズ6A(6’A)と光路を折り曲げられた紙面上方からの光束が干渉しないことが見て取れる。
0.15 <2t / Dp <0.25 (Formula B)
At the degree of convergence satisfying (Formula A), the ratio of the center thickness t of the imaging lens 6A to the distance Dp between the scanning surfaces is as follows.
2t / Dp = 2 × 7.0 / 58 = 0.24 (when m = 0.105)
2t / Dp = 2 × 5.5 / 58 = 0.19 (when m = 0.199)
2t / Dp = 2 × 5.0 / 58 = 0.17 (when m = 0.293)
FIG. 1C shows a main scanning section in the vicinity of the optical deflector 5 and the imaging lens 6A. It can be seen that the light-reflecting light beam from above the paper surface with the optical path bent does not interfere with the thinned imaging lens 6A (6′A) even when the optical deflector substrate and lens abutting wall are the same as in the conventional apparatus. .

(有効画像領域Wと被走査面間隔Dp)
また、本実施形態では、被走査面における主走査方向の有効画像領域をW(mm)、複数の被走査面の副走査断面内の間隔(光束の集光位置の間隔)をDp(mm)としたとき、以下の式を満足するような狭い被走査面間隔の時に有効に作用する。
(Effective image area W and scanning surface distance Dp)
In the present embodiment, the effective image area in the main scanning direction on the surface to be scanned is W (mm), and the interval (interval of the light beam condensing position) in the sub-scan section of the plurality of surfaces to be scanned is Dp (mm). In this case, it works effectively when the scanning surface interval is narrow enough to satisfy the following expression.

0.25<Dp/W<0.35 ・・・(式C)
(式C)の下限値を超えると、収束度mを非常に強くしないと、結像レンズ6Aと光路を折り曲げられた光束の干渉を避けることができず、上述したジッターによる劣化が無視できなくなるため好ましくない。また、(式C)の上限値を超えると、そもそも被走査面間隔Dpが広くなって画像形成装置そのものをコンパクトにすることができないため好ましくない。本実施形態では、Dp=58(mm)、W=220(mm)であるため、Dp/W=0.26であり(式C)を満足する。
0.25 <Dp / W <0.35 (Formula C)
When the lower limit of (Formula C) is exceeded, unless the convergence m is made very strong, interference between the imaging lens 6A and the light beam whose optical path is bent cannot be avoided, and the above-described deterioration due to jitter cannot be ignored. Therefore, it is not preferable. Further, if the upper limit value of (Formula C) is exceeded, it is not preferable since the distance Dp to be scanned is widened and the image forming apparatus itself cannot be made compact. In the present embodiment, since Dp = 58 (mm) and W = 220 (mm), Dp / W = 0.26, which satisfies Expression (C).

(結像光学素子と結像光学系との焦点距離の比)
また、結像光学素子と結像光学系との焦点距離の比に関して、以下の条件を満たすことが好ましい。
(Ratio of focal length between imaging optical element and imaging optical system)
Moreover, it is preferable that the following conditions are satisfied with respect to the ratio of the focal lengths of the imaging optical element and the imaging optical system.

0.7<f1/f<0.9 ・・・(式D)
(式D)の下限値を超えると、結像光学素子としての結像レンズ6Aの主走査パワーが大きくなり、その結果、曲率半径が小さくなってレンズ肉厚が増してしまう。また、(式D)の上限値を超えると、結像レンズ7Aの軸上負パワーが弱くなり、主走査端部の肉厚を確保しようとすると中心肉厚が増してしまう。その結果、レンズの材料コストアップと共に樹脂成形時間が長くなり、トータルのレンズコストアップにつながる。よって、(式D)内になるように2枚の結像レンズのパワー比を設定すれば、結像レンズ6A及び7Aともに最適な肉厚のレンズとして設計することができ、その結果コストダウンにつながる。
0.7 <f1 / f <0.9 (Formula D)
When the lower limit of (Formula D) is exceeded, the main scanning power of the imaging lens 6A as the imaging optical element increases, and as a result, the radius of curvature decreases and the lens thickness increases. If the upper limit of (Formula D) is exceeded, the on-axis negative power of the imaging lens 7A becomes weak, and if the thickness of the main scanning end is to be secured, the center thickness increases. As a result, the lens material cost increases and the resin molding time increases, leading to a total lens cost increase. Therefore, if the power ratio of the two imaging lenses is set so as to be within (Equation D), both the imaging lenses 6A and 7A can be designed as an optimally thick lens, resulting in cost reduction. Connected.

ところで、走査像高Y(mm)に対する走査画角θ(rad)の比K(Kθ係数、Y=Kθ)は、平行光入射の場合、結像光学系の主走査焦点距離と同じ数値になるが、収束系の場合、Kよりも結像光学系の主走査焦点距離が長くなる。本実施形態においては、K=123(mm/rad)であるのに対し、結像光学系の主走査焦点距離はf=152.16(mm)と長い。本実施形態では、結像光学素子としての結像レンズ6Aの主走査焦点距離f1=117.02(mm)、結像レンズ7Aの主走査焦点距離f2=−349.67(mm)であり、f1/f=0.769であり、式Dを満足する。   By the way, the ratio K (Kθ coefficient, Y = Kθ) of the scanning field angle θ (rad) with respect to the scanning image height Y (mm) becomes the same value as the main scanning focal length of the imaging optical system in the case of parallel light incidence. However, in the case of the convergence system, the main scanning focal length of the imaging optical system becomes longer than K. In this embodiment, while K = 123 (mm / rad), the main scanning focal length of the imaging optical system is as long as f = 152.16 (mm). In the present embodiment, the main scanning focal length f1 of the imaging lens 6A as the imaging optical element is 117.02 (mm), and the main scanning focal length f2 of the imaging lens 7A is −349.67 (mm). f1 / f = 0.769, which satisfies the expression D.

(偏向面の外接円半径R5と被走査面間隔Dp)
また、偏向面の外接円半径R5と被走査面間隔Dpに関して、以下の式を満たすことが好ましい。
(The circumscribed circle radius R5 of the deflection surface and the distance Dp to be scanned)
Further, regarding the circumscribed radius R5 of the deflection surface and the distance Dp to be scanned, it is preferable to satisfy the following expression.

0.14<R5/Dp<0.20 ・・・(式E)
(式E)の下限値を超えるとポリゴンミラーの反射面が小さすぎて、広角走査することが難しく、光偏向器から被走査面までの距離Lが長くなってしまう。(式E)の上限値を超えると被走査面の間隔Dpに対しポリゴンミラーが大きいため、結像レンズと光束の干渉が生じ易くなる。よって、(式E)内になるように、偏向面であるポリゴンミラー面の外接円半径R5を設定することで、広角走査による小型化と結像レンズと光束の干渉の回避の両立を図ることができる。本実施形態では、R5/Dp=0.172で(式E)を満足する。
0.14 <R5 / Dp <0.20 (formula E)
If the lower limit of (Equation E) is exceeded, the reflecting surface of the polygon mirror is too small to perform wide-angle scanning, and the distance L from the optical deflector to the surface to be scanned becomes long. If the upper limit of (Equation E) is exceeded, the polygon mirror is larger than the distance Dp of the surface to be scanned, and interference between the imaging lens and the light beam is likely to occur. Therefore, by setting the circumscribed circle radius R5 of the polygon mirror surface, which is the deflection surface, so as to be within (Equation E), both miniaturization by wide-angle scanning and avoidance of interference between the imaging lens and the light beam can be achieved. Can do. In the present embodiment, R5 / Dp = 0.172 satisfies (Equation E).

(変形例)
以上、本発明の実施形態について述べたが、本発明はこれに限定されず、本発明の同一性の範囲内で種々の変形が可能である。
(Modification)
As mentioned above, although embodiment of this invention was described, this invention is not limited to this, A various deformation | transformation is possible within the range of the identity of this invention.

(変形例1)
上述した実施形態では、光偏向器の偏向面に対し、副走査断面内において光束を斜め方向から入射させる斜入射光学系について説明してきたが、本発明はこれに限られない。例えば、偏向手段としてのポリゴンミラーを副走査方向に上下2段に重ねて、それぞれのポリゴンミラーの偏向面に対し、副走査断面内において光束を垂直に入射させるものであっても良い。
(Modification 1)
In the above-described embodiment, the oblique incidence optical system that causes the light beam to be incident on the deflection surface of the optical deflector from the oblique direction within the sub-scan section has been described, but the present invention is not limited to this. For example, polygon mirrors as deflecting means may be stacked in two stages in the sub-scanning direction so that the light beam is incident vertically on the deflection surface of each polygon mirror within the sub-scanning section.

(変形例2)
上述した実施形態では、結像光学系が2枚の結像レンズ(結像光学素子)を備える構成としたが、本発明はこれに限らず、結像光学系が3枚以上の複数個の結像レンズもしくは1枚だけの結像レンズを備える構成としても良い。また、光路を折り曲げられた光束を2枚の反射型光学素子としての折り返しミラーで形成したが、3枚以上の反射型光学素子としての折り返しミラーを用いても良い。但し、一般的に折り返しミラーの枚数が多くなればなるほど、ミラーに付着するゴミやキズなどにより画像に筋が出やすくなることや、ミラーの振動による走査線のバンディングが生じること、コストが上がってしまうことが別途考慮されるべきである。
(Modification 2)
In the above-described embodiment, the imaging optical system includes two imaging lenses (imaging optical elements). However, the present invention is not limited to this, and the imaging optical system includes a plurality of imaging optical systems including a plurality of imaging lenses. It may be configured to include an imaging lens or only one imaging lens. Further, although the light beam whose optical path is bent is formed by the folding mirror as two reflection type optical elements, the folding mirror as three or more reflection type optical elements may be used. However, in general, the larger the number of folding mirrors, the easier it is to create streaks in the image due to dust and scratches adhering to the mirrors, the banding of scanning lines due to mirror vibrations, and higher costs. It should be considered separately.

(変形例3)
また、上述した実施形態では、偏向手段の偏向面が平面である前提で偏向手段に入射する光束の収束度mを全て同じ値としたが、異なる値にすることもできる。また、偏向手段の偏向面が平面でなく、主走査断面内で屈折力を有する場合には、偏向手段に入射する光束を平行光束とすることもできる。
(Modification 3)
In the above-described embodiment, the convergence m of the light beams incident on the deflecting unit is all set to the same value on the assumption that the deflecting surface of the deflecting unit is a plane, but may be set to different values. In addition, when the deflecting surface of the deflecting unit is not a flat surface and has refractive power in the main scanning section, the light beam incident on the deflecting unit can be a parallel light beam.

(変形例4)
また、上述した実施形態では、最も光偏向器に近い結像レンズの光偏向器から遠ざかる側のスペースに光路を折り曲げられた光束を通過させたが、光偏向器との間のスペースに光路を折り曲げられた光束を通過させることもできる。
(Modification 4)
In the above-described embodiment, the light beam whose optical path is bent is passed through the space on the side away from the optical deflector of the imaging lens closest to the optical deflector. However, the optical path is provided in the space between the optical deflector and the optical deflector. It is also possible to pass a bent light beam.

5・・光偏向器(偏向手段)、6A、7B・・結像レンズ(結像光学素子)、8A・・被走査面(感光ドラム面)、M2M3・・折り返しミラー(反射型光学素子) 5 .. Optical deflector (deflection means), 6A, 7B .. Imaging lens (imaging optical element), 8A .. Scanned surface (photosensitive drum surface), M2M3 .. Folding mirror (reflection optical element)

Claims (11)

第1の光源手段から出射する第1の光束を第1の偏向面にて偏向し、かつ第2の光源手段から出射する第2の光束を前記第1の偏向面とは異なる第2の偏向面にて偏向する、共通の偏向手段と、
前記偏向手段により偏向された第1の光束を第1の被走査面に集光する第1の結像光学系と、前記偏向手段により偏向された第2の光束を第2の被走査面に集光する第2の結像光学系と、
前記第1の偏向面と前記第1の被走査面との間の第1の光路と、前記第2の偏向面と前記第2の被走査面との間の第2の光路と、の夫々に設けられ、前記第1及び第2の光路の夫々を副走査断面内で自身と交差するように折り曲げる複数の反射光学素子と、
を有する光走査装置であって、
前記第1及び第2の被走査面の夫々における主走査方向の有効画像領域をW(mm)、副走査断面内における前記第1の被走査面と前記第2の被走査面との間隔をDp(mm)、とする時、
0.25<Dp/W<0.35
なる条件を満足し、かつ、
主走査断面内において、前記第1及び第2の偏向面に入射する前記第1及び第2の光束の夫々の収束度をm、前記第1及び第2の結像光学系の夫々の後側主平面から前記第1及び第2の被走査面の夫々までの距離をSk(mm)、前記第1及び第2の結像光学系の夫々の合成焦点距離をf(mm)、とし、前記収束度mを
m=1−Sk/f
なる式で表した時、
0.1<m<0.3
なる条件を満足することを特徴とする光走査装置。
The first light beam emitted from the first light source means is deflected by the first deflection surface, and the second light beam emitted from the second light source means is different from the first deflection surface. A common deflection means for deflecting on the surface;
A first imaging optical system for condensing the first light beam deflected by the deflecting unit on the first scanned surface, and the second light beam deflected by the deflecting unit on the second scanned surface. A second imaging optical system for focusing;
A first optical path between the first deflection surface and the first scanned surface, and a second optical path between the second deflection surface and the second scanned surface, respectively. A plurality of reflective optical elements that bend each of the first and second optical paths so as to intersect with each other in the sub-scan section,
An optical scanning device comprising:
The effective image area in the main scanning direction on each of the first and second scanned surfaces is W (mm), and the interval between the first scanned surface and the second scanned surface in the sub-scanning section is defined as W (mm). When Dp (mm),
0.25 <Dp / W <0.35
Satisfying the following conditions, and
In the main scanning section, the convergence degree of each of the first and second light beams incident on the first and second deflection surfaces is m, and the rear side of each of the first and second imaging optical systems. The distance from the main plane to each of the first and second scanned surfaces is Sk (mm), and the combined focal length of each of the first and second imaging optical systems is f (mm). Convergence m is m = 1−Sk / f
When expressed as
0.1 <m <0.3
An optical scanning device characterized by satisfying the following conditions.
前記第1の光路は、前記第1の結像光学系を構成する光学的に最も前記偏向手段に近い第1の結像光学素子よりも前記第1の被走査面側において自身と交差しており、かつ、前記第2の光路は、前記第2の結像光学系を構成する光学的に最も前記偏向手段に近い第2の結像光学素子よりも前記第2の被走査面側において自身と交差していることを特徴とする請求項1に記載の光走査装置。   The first optical path intersects itself on the first surface to be scanned side with respect to the first imaging optical element that is optically closest to the deflecting means and that constitutes the first imaging optical system. And the second optical path is itself closer to the second surface to be scanned than the second imaging optical element optically closest to the deflecting means constituting the second imaging optical system. The optical scanning device according to claim 1, wherein 前記第1及び第2の結像光学素子の夫々の主走査断面内での焦点距離をf1(mm)とする時、
0.7<f1/f<0.9
なる条件を満たすことを特徴とする請求項1又は2に記載の光走査装置。
When the focal length in the main scanning section of each of the first and second imaging optical elements is f1 (mm),
0.7 <f1 / f <0.9
The optical scanning device according to claim 1, wherein the following condition is satisfied.
前記第1及び第2の結像光学素子の夫々の肉厚をt(mm)とする時、
0.15<2t/Dp<0.25
なる条件を満たすことを特徴とする請求項1乃至3のいずれか1項に記載の光走査装置。
When the thickness of each of the first and second imaging optical elements is t (mm),
0.15 <2t / Dp <0.25
The optical scanning device according to claim 1, wherein the following condition is satisfied.
主走査断面内において、前記第1及び第2の偏向面に入射する前記第1及び第2の光束の夫々の収束度は同一であることを特徴とする請求項1乃至4のいずれか1項に記載の光走査装置。   5. The convergence of each of the first and second light beams incident on the first and second deflecting surfaces in the main scanning section is the same. 6. The optical scanning device according to 1. 前記偏向手段は4つの偏向面を備えており、該4つの偏向面の夫々の外接円半径をR5(mm)とするとき、
0.14<R5/Dp<0.20
なる条件を満たすことを特徴とする請求項1乃至5のいずれか1項に記載の光走査装置。
The deflection means includes four deflection surfaces, and when the circumscribed circle radius of each of the four deflection surfaces is R5 (mm),
0.14 <R5 / Dp <0.20
The optical scanning device according to claim 1, wherein the following condition is satisfied.
前記第1の結像光学系は、第1の結像光学素子と第3の結像光学素子からなり、かつ、前記第2の結像光学系は、第2の結像光学素子と第4の結像光学素子からなることを特徴とする請求項1乃至6のいずれか1項に記載の光走査装置。   The first imaging optical system includes a first imaging optical element and a third imaging optical element, and the second imaging optical system includes a second imaging optical element and a fourth imaging optical element. The optical scanning device according to claim 1, comprising: an imaging optical element. 前記偏向手段は、第3の光源手段から出射する第3の光束を前記第1の偏向面にて偏向し、かつ第4の光源手段から出射する第4の光束を前記第2の偏向面にて偏向しており、前記第1及び第3の光束は前記第1の結像光学素子を通過し、かつ第2及び第4の光束は前記第2の結像光学素子を通過していることを特徴とする請求項1乃至7のいずれか1項に記載の光走査装置。   The deflecting means deflects the third light beam emitted from the third light source means on the first deflecting surface, and the fourth light beam emitted from the fourth light source means on the second deflecting surface. The first and third light beams pass through the first imaging optical element, and the second and fourth light beams pass through the second imaging optical element. The optical scanning device according to claim 1, wherein: 前記第1の光路、前記第2の光路の夫々に2つの反射光学素子があることを特徴とする請求項1乃至8のいずれか1項に記載の光走査装置。   9. The optical scanning device according to claim 1, wherein there are two reflective optical elements in each of the first optical path and the second optical path. 請求項1乃至9のいずれか1項に記載の光走査装置と、前記光走査装置から出射した光束により前記被走査面に配置された感光体の感光面上に形成された静電潜像を、トナー像として現像する現像器と、現像された前記トナー像を被転写材に転写する転写器と、転写された前記トナー像を前記被転写材に定着させる定着器と、を有することを特徴とする画像形成装置。   An electrostatic latent image formed on the photosensitive surface of the photosensitive member disposed on the scanned surface by the optical scanning device according to any one of claims 1 to 9 and a light beam emitted from the optical scanning device. A developing unit that develops the toner image as a toner image; a transfer unit that transfers the developed toner image onto a transfer material; and a fixing unit that fixes the transferred toner image onto the transfer material. An image forming apparatus. 請求項1乃至9のいずれか1項に記載の光走査装置と、外部機器から入力したコードデータを画像信号に変換して前記光走査装置に入力せしめるプリンタコントローラと、を有することを特徴とする画像形成装置。   The optical scanning device according to claim 1, and a printer controller that converts code data input from an external device into an image signal and inputs the image signal to the optical scanning device. Image forming apparatus.
JP2013165061A 2013-08-08 2013-08-08 Optical scanning device and image forming apparatus using the same Active JP6132701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013165061A JP6132701B2 (en) 2013-08-08 2013-08-08 Optical scanning device and image forming apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013165061A JP6132701B2 (en) 2013-08-08 2013-08-08 Optical scanning device and image forming apparatus using the same

Publications (3)

Publication Number Publication Date
JP2015034870A true JP2015034870A (en) 2015-02-19
JP2015034870A5 JP2015034870A5 (en) 2016-09-01
JP6132701B2 JP6132701B2 (en) 2017-05-24

Family

ID=52543450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013165061A Active JP6132701B2 (en) 2013-08-08 2013-08-08 Optical scanning device and image forming apparatus using the same

Country Status (1)

Country Link
JP (1) JP6132701B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170053584A (en) * 2015-11-06 2017-05-16 캐논 가부시끼가이샤 Optical scanning apparatus
JP2017097244A (en) * 2015-11-26 2017-06-01 キヤノン株式会社 Optical scanner and image forming apparatus including the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008299051A (en) * 2007-05-31 2008-12-11 Canon Inc Optical scanner and image forming apparatus using the same
JP2009092915A (en) * 2007-10-09 2009-04-30 Canon Inc Optical scanning apparatus and image forming apparatus using the same
JP2012013754A (en) * 2010-06-29 2012-01-19 Canon Inc Optical scanning device and color-image forming apparatus using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008299051A (en) * 2007-05-31 2008-12-11 Canon Inc Optical scanner and image forming apparatus using the same
JP2009092915A (en) * 2007-10-09 2009-04-30 Canon Inc Optical scanning apparatus and image forming apparatus using the same
JP2012013754A (en) * 2010-06-29 2012-01-19 Canon Inc Optical scanning device and color-image forming apparatus using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170053584A (en) * 2015-11-06 2017-05-16 캐논 가부시끼가이샤 Optical scanning apparatus
KR102021173B1 (en) 2015-11-06 2019-09-11 캐논 가부시끼가이샤 Optical scanning apparatus
JP2017097244A (en) * 2015-11-26 2017-06-01 キヤノン株式会社 Optical scanner and image forming apparatus including the same
KR20170061614A (en) * 2015-11-26 2017-06-05 캐논 가부시끼가이샤 Optical scanning apparatus and image forming apparatus including the same
CN106896669A (en) * 2015-11-26 2017-06-27 佳能株式会社 Optical scanning device and the image forming apparatus including the optical scanning device
US9874831B2 (en) 2015-11-26 2018-01-23 Canon Kabushiki Kaisha Optical scanning apparatus and image forming apparatus including the same
KR102035380B1 (en) * 2015-11-26 2019-10-22 캐논 가부시끼가이샤 Optical scanning apparatus and image forming apparatus including the same
CN106896669B (en) * 2015-11-26 2019-11-15 佳能株式会社 Optical scanning device and image forming apparatus including the optical scanning device

Also Published As

Publication number Publication date
JP6132701B2 (en) 2017-05-24

Similar Documents

Publication Publication Date Title
JP5094318B2 (en) Optical scanning device and image forming apparatus using the same
JP6047107B2 (en) Optical scanning device and image forming apparatus having the same
JP2010026055A (en) Optical scanner and image forming apparatus using the same
JP2016085433A (en) Optical scanner and image forming apparatus using the same
JP2007140418A (en) Light scanning device and scanning optical system
JP6147067B2 (en) Optical scanning device and image forming apparatus using the same
JP6212528B2 (en) Optical scanning device
JP6132701B2 (en) Optical scanning device and image forming apparatus using the same
JP6021407B2 (en) Optical scanning device and image forming apparatus having the same
JP2009265403A (en) Optical scanning apparatus and image forming apparatus using the same
JP6140971B2 (en) Optical scanning apparatus and image forming apparatus
US10025220B2 (en) Optical scanning apparatus
JP4902279B2 (en) Image forming apparatus
JP2015052727A (en) Optical scanning device and image forming device having the same
JP2014006277A (en) Optical scanner and image forming apparatus
JP2014016404A (en) Optical scanner and color image forming apparatus
JP2012128085A (en) Optical scanner and image forming apparatus including the same
JP2015219496A (en) Scanning optical system and image formation device using the same
JP5882692B2 (en) Optical scanning apparatus and image forming apparatus
JP2010049059A (en) Scanning optical apparatus and image forming apparatus using the same
JP2014153600A (en) Optical scanner and color image forming apparatus using the same
JP6494213B2 (en) Optical scanning device and image forming apparatus having the same
JP2017090592A (en) Optical scanning device
JP6494212B2 (en) Optical scanning device and image forming apparatus having the same
JP6667274B2 (en) Optical scanning device, image forming apparatus, and imaging optical element

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160708

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170321

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170418

R151 Written notification of patent or utility model registration

Ref document number: 6132701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03