JP2015034474A - Control device of internal combustion engine - Google Patents

Control device of internal combustion engine Download PDF

Info

Publication number
JP2015034474A
JP2015034474A JP2013164578A JP2013164578A JP2015034474A JP 2015034474 A JP2015034474 A JP 2015034474A JP 2013164578 A JP2013164578 A JP 2013164578A JP 2013164578 A JP2013164578 A JP 2013164578A JP 2015034474 A JP2015034474 A JP 2015034474A
Authority
JP
Japan
Prior art keywords
target
ignition timing
temperature
cylinder
fire type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013164578A
Other languages
Japanese (ja)
Other versions
JP6249667B2 (en
Inventor
耕平 千田
Kohei Senda
耕平 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2013164578A priority Critical patent/JP6249667B2/en
Publication of JP2015034474A publication Critical patent/JP2015034474A/en
Application granted granted Critical
Publication of JP6249667B2 publication Critical patent/JP6249667B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0269Controlling the valves to perform a Miller-Atkinson cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • F02D13/0265Negative valve overlap for temporarily storing residual gas in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/025Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures
    • F02D35/026Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/028Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the combustion timing or phasing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/006Controlling exhaust gas recirculation [EGR] using internal EGR
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • F02D41/3041Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PROBLEM TO BE SOLVED: To provide a control device of an internal combustion engine of a kindling auxiliary compression-ignition type which can accurately control a temperature in a cylinder.SOLUTION: An engine of a kindling auxiliary compression-ignition type makes a part of a burned gas remain in a cylinder as an internal EGR gas, injects fuel for kindling into a homogeneous mixture formed in the cylinder, and ignites it, and burns the homogeneous mixture by compression ignition as kindling. A control device of the engine comprises: an IN-side VTC and an EX-side VTC which can change an internal EGR rate and an effective compression ratio; target kindling ignition time temperature set means which sets a target kindling ignition time temperature being a target of an in-cylinder temperature at an ignition time of a kindling air-fuel mixture; and control means which sets a target internal EGR rate and a target kindling ignition time effective compression ratio so that a target kindling ignition time temperature is obtained, and sets a target phase angle of the IN-side VTC and a target phase angle of the EX-side VTC on the basis of the target internal EGR rate and the target kindling ignition time effective compression ratio.

Description

本発明は、内燃機関の制御装置に関する。より詳しくは、気筒内に形成された均質混合気を圧縮着火によって燃焼させるものであって、既燃ガスの一部を内部EGRガスとして気筒内に残留させる内部EGR制御と均質混合気内に火種用の燃料を噴射及び着火する火種燃焼制御とを併用した火種補助圧縮着火式の内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine. More specifically, the homogeneous mixture formed in the cylinder is combusted by compression ignition, and internal EGR control in which a part of the burned gas remains in the cylinder as an internal EGR gas and the type of fire in the homogeneous mixture. TECHNICAL FIELD The present invention relates to a control device for a fire type auxiliary compression ignition type internal combustion engine that is used in combination with fire type combustion control for injecting and igniting a fuel for use.

希薄かつ均質な混合気を気筒内に形成し、この均質混合気を圧縮着火によって燃焼させる予混合圧縮着火(HCCI)燃焼が可能な内燃機関が提案されている。このHCCI燃焼は、NOxの排出量が少なくまた実効圧縮比を高めて高効率な運転が可能である。しかしながらこのHCCI燃焼は、例えば、高負荷の運転領域では、適切なタイミングで均質混合気を燃焼させることが困難であり、ノッキングや失火等が生じやすい。このため、HCCI燃焼が困難な高負荷運転領域を補うべく、点火プラグによって混合気を燃焼させる火花点火(SI)燃焼とHCCI燃焼とを、運転領域に応じて切り替えることが行われている。   There has been proposed an internal combustion engine capable of premixed compression ignition (HCCI) combustion in which a lean and homogeneous mixture is formed in a cylinder and the homogeneous mixture is burned by compression ignition. This HCCI combustion enables high-efficiency operation with low NOx emissions and an increased effective compression ratio. However, in this HCCI combustion, for example, in a high-load operation region, it is difficult to burn a homogeneous mixture at an appropriate timing, and knocking, misfire, etc. are likely to occur. For this reason, in order to compensate for the high load operation region where HCCI combustion is difficult, switching between spark ignition (SI) combustion in which the air-fuel mixture is burned by the spark plug and HCCI combustion is performed according to the operation region.

また近年では、HCCI燃焼をさらに安定して実現するため、気筒内に形成された均質混合気内にさらに局所的に燃料を噴射及び着火し、これを火種として均質混合気の自着火を誘発させる火種補助圧縮着火式の技術が提案されている。このような火種補助圧縮着火式の内燃機関の制御装置では、火種を狙い通りに燃焼させ、圧縮端温度(圧縮工程においてピストンが上死点に位置する時の気筒内の温度)を均質混合気が自着火するような適切な温度に維持するためには、圧縮初期温度(圧縮工程においてピストンが下死点に位置する時の気筒内の温度)から適切に制御する必要がある。   In recent years, in order to realize HCCI combustion more stably, fuel is injected and ignited more locally in the homogeneous mixture formed in the cylinder, and this is used as a fire type to induce self-ignition of the homogeneous mixture. Fire-type auxiliary compression ignition technology has been proposed. In such a control device for an internal combustion engine of a fire type auxiliary compression ignition type, the fire type is burned as intended, and the compression end temperature (temperature in the cylinder when the piston is located at the top dead center in the compression process) is homogeneously mixed. In order to maintain an appropriate temperature at which self-ignition occurs, it is necessary to appropriately control from the initial compression temperature (temperature in the cylinder when the piston is located at the bottom dead center in the compression process).

またこの圧縮初期温度は、気筒内に残留する既燃ガスの量、いわゆる内部EGR量を増減することによって制御することができる(例えば、特許文献1参照)。この特許文献1の発明では、圧縮端温度に対する目標となる目標圧縮端温度を設定し、さらに内燃機関に対する要求トルクに応じて、目標圧縮端温度が得られるような内部EGR量を算出し、さらにこの内部EGR量に応じて排気バルブの閉時期を規定するカム位相可変機構のカム位相を設定している。   The initial compression temperature can be controlled by increasing or decreasing the amount of burnt gas remaining in the cylinder, that is, the so-called internal EGR amount (see, for example, Patent Document 1). In the invention of Patent Document 1, a target compression end temperature that is a target for the compression end temperature is set, and an internal EGR amount that can obtain the target compression end temperature is calculated according to a required torque for the internal combustion engine, The cam phase of the cam phase variable mechanism that defines the closing timing of the exhaust valve is set according to the internal EGR amount.

特開2011−220121号公報JP 2011-220121 A

しかしながら、排気バルブの閉時期を変更するとポンプロスが増加してしまうことから、特許文献1の発明のように圧縮端温度を適切な温度に制御するために排気バルブの閉時期を変更する場合、同時に吸気バルブの閉時期も変化させる必要があるが、吸気バルブの閉時期を変更すると実効圧縮比が変わってしまい圧縮端温度を目標温度に維持できなくなるおそれがある。   However, if the closing timing of the exhaust valve is changed, the pump loss increases. Therefore, when the closing timing of the exhaust valve is changed to control the compression end temperature to an appropriate temperature as in the invention of Patent Document 1, Although it is necessary to change the closing timing of the intake valve, if the closing timing of the intake valve is changed, the effective compression ratio may change, and the compression end temperature may not be maintained at the target temperature.

本発明は、火種補助圧縮着火式の内燃機関に燃焼安定性を低下させないように、気筒内の温度を高い精度で制御できる内燃機関の制御装置を提供することを目的とする。   An object of the present invention is to provide a control device for an internal combustion engine that can control the temperature in a cylinder with high accuracy so as not to lower the combustion stability of the internal combustion engine of the fire type auxiliary compression ignition type.

(1)本発明の内燃機関(例えば、後述のエンジン1)は、既燃ガスの一部を内部EGRガスとして気筒(例えば、後述のシリンダ11a)内に残留させるとともに、当該気筒内に形成された均質混合気内に火種用の燃料を噴射及び着火し、これを火種として均質混合気を圧縮着火によって燃焼させる火種補助圧縮着火式である。制御装置は、内部EGR率及び実効圧縮比を変更可能な排気バルブ(例えば、後述の排気バルブ14e)及び吸気バルブ(例えば、後述の吸気バルブ14i)の可変動弁機構(例えば、後述のIN側VTC18i、及びEX側VTC18e)と、火種用混合気の着火時期における筒内温度の目標である目標火種着火時期温度(Thidane_trg)を設定する目標火種着火時期温度設定手段(例えば、後述のECU5)と、前記目標火種着火時期温度が実現されるように、内部EGR率の目標である目標内部EGR率(rEGRn_trg)及び前記着火時期における実効圧縮比の目標である目標火種着火時期実効圧縮比(εHidane_trg)を設定し、これら目標内部EGR率及び目標火種着火時期実効圧縮比に基づいて前記可変動弁機構を制御する制御手段(例えば、後述のECU5)と、を備える。   (1) An internal combustion engine (for example, an engine 1 described later) of the present invention causes a part of burned gas to remain in a cylinder (for example, a cylinder 11a described later) as an internal EGR gas and is formed in the cylinder. This is a fire type auxiliary compression ignition type in which fuel for a fire type is injected and ignited in a homogeneous mixture, and the homogeneous mixture is burned by compression ignition using this as a fire type. The control device is a variable valve mechanism (for example, an IN side described later) of an exhaust valve (for example, an exhaust valve 14e described later) and an intake valve (for example, an intake valve 14i described later) capable of changing the internal EGR rate and the effective compression ratio. VTC 18i and EX side VTC 18e), and target fire type ignition timing temperature setting means (for example, ECU 5 described later) for setting a target fire type ignition timing temperature (Thidane_trg) that is a target of the in-cylinder temperature at the ignition timing of the mixture for the fire type The target internal EGR rate (rEGRn_trg) which is the target of the internal EGR rate and the target fire type ignition timing effective compression ratio (εHidane_trg) which is the target of the effective compression ratio at the ignition timing so that the target fire type ignition timing temperature is realized. Control means for controlling the variable valve mechanism based on the target internal EGR rate and the target fire type ignition timing effective compression ratio (for example, Includes a ECU5), the.

(2)この場合、前記制御装置は、前記気筒内の状態を検出する気筒内状態検出手段(例えば、後述の筒内圧センサ61、吸気センサ66、排気温度センサ67、及びECU5等)と、前記気筒内状態検出手段の出力に基づいて前記着火時期における筒内温度の予測値である予測火種着火時期温度(Thidane_pre)を算出する火種着火時期温度予測手段(例えば、後述のECU5)と、前記目標火種着火時期温度(Thidane_trg)と前記予測火種着火時期温度との差分値(ΔThidane)を算出する差分値算出手段(例えば、後述のECU5)と、をさらに備え、前記制御手段は、前回の燃焼サイクル時に算出された前記差分値に基づくフィードバック制御によって前記目標内部EGR率及び前記目標火種着火時期実効圧縮比を設定することが好ましい。   (2) In this case, the control device includes an in-cylinder state detecting means (for example, an in-cylinder pressure sensor 61, an intake sensor 66, an exhaust gas temperature sensor 67, and an ECU 5 described later) that detects an in-cylinder state. Fire type ignition timing temperature predicting means (for example, ECU 5 described later) for calculating a predicted ignition type ignition timing temperature (Thidane_pre) that is a predicted value of the in-cylinder temperature at the ignition timing based on the output of the in-cylinder state detecting means, and the target Difference value calculation means (for example, ECU5 described later) for calculating a difference value (ΔThidane) between the ignition type ignition timing temperature (Thidane_trg) and the predicted ignition type ignition timing temperature, and the control means includes a previous combustion cycle. It is preferable to set the target internal EGR rate and the target fire type ignition timing effective compression ratio by feedback control based on the difference value calculated at times.

(3)この場合、前記制御手段は、積分項を含むフィードバック制御アルゴリズムによって前記差分値が0に収束するように目標内部EGR率を設定し、当該目標内部EGR率に基づいてポンプロスが最小になるように目標火種着火時期実効圧縮比を設定することが好ましい。   (3) In this case, the control means sets a target internal EGR rate so that the difference value converges to 0 by a feedback control algorithm including an integral term, and the pump loss is minimized based on the target internal EGR rate. Thus, it is preferable to set the target fire type ignition timing effective compression ratio.

(1)本発明では、火種用混合気の着火時期における筒内温度の目標である目標火種着火時期温度を設定し、さらにこの目標火種着火時期温度が実現されるように目標内部EGR率及び目標火種着火時期実効圧縮比を設定し、これら目標内部EGR率及び目標火種着火時期実効圧縮比に基づいて吸気バルブ駆動機構及び排気バルブ駆動機構を制御する。これにより、火種着火時期温度をその目標に高い精度で制御できるので、火種を狙い通りに燃焼させ、ひいてはノッキングや失火することなく安定して均質混合気を自着火させることができる。また、目標火種着火時期温度から目標内部EGR率と目標火種着火時期圧縮比との両方を設定することにより、火種着火時期温度をその目標に維持しながらポンプロスも小さくできる。   (1) In the present invention, a target ignition type ignition timing temperature that is a target of the in-cylinder temperature at the ignition timing of the mixture for the ignition type is set, and further, the target internal EGR rate and the target are set so that the target ignition type ignition timing temperature is realized. A fire type ignition timing effective compression ratio is set, and the intake valve drive mechanism and the exhaust valve drive mechanism are controlled based on the target internal EGR rate and the target fire type ignition timing effective compression ratio. As a result, the ignition type ignition timing temperature can be controlled with high accuracy, so that the ignition type can be burned as intended, and the homogeneous mixture can be self-ignited stably without knocking or misfiring. In addition, by setting both the target internal EGR rate and the target fire type ignition timing compression ratio from the target fire type ignition timing temperature, the pump loss can be reduced while maintaining the fire type ignition timing temperature at the target.

(2)本発明では、気筒内状態検出手段の出力に基づいて算出した予測火種着火時期温度と目標火種着火時期温度との差分値に基づくフィードバック制御によって目標内部EGR率及び目標火種着火時期実効圧縮比を設定し、これら目標内部EGR及び目標火種着火時期実効圧縮比に基づいて吸気バルブ駆動機構及び排気バルブ駆動機構を制御する。これにより、内燃機関の運転状態が過渡的に変化する時であっても、目標火種着火時期温度を高い精度で制御できる。   (2) In the present invention, the target internal EGR rate and the target fire type ignition timing effective compression are performed by feedback control based on the difference value between the predicted fire type ignition timing temperature calculated based on the output of the in-cylinder state detection means and the target fire type ignition timing temperature. A ratio is set, and the intake valve drive mechanism and the exhaust valve drive mechanism are controlled based on the target internal EGR and the target fire type ignition timing effective compression ratio. Thereby, even when the operating state of the internal combustion engine changes transiently, the target fire type ignition timing temperature can be controlled with high accuracy.

(3)本発明では、積分項を含むフィードバック制御アルゴリズムによって、予測火種着火時期温度と目標火種着火時期温度とが一致するように目標内部EGR率を設定し、さらにこの目標内部EGR率に基づいてポンプロスが最小になるように目標火種着火時期実効圧縮比を設定する。これにより、火種着火時期温度をその目標に維持しながら同時にポンプロスもより確実に小さくすることができる。   (3) In the present invention, the target internal EGR rate is set by the feedback control algorithm including the integral term so that the predicted fire type ignition timing temperature and the target fire type ignition timing temperature coincide with each other, and further, based on the target internal EGR rate. Set the target fire type ignition timing effective compression ratio so that the pump loss is minimized. This makes it possible to reliably reduce the pump loss while maintaining the target ignition timing temperature at the same time.

本発明の一実施形態に係るエンジンとその制御装置の構成を示す図である。It is a figure which shows the structure of the engine which concerns on one Embodiment of this invention, and its control apparatus. SI燃焼モードにおける排気バルブ及び吸気バルブの動作例を示す図である。It is a figure which shows the operation example of an exhaust valve and an intake valve in SI combustion mode. 自着火誘発温度と、圧縮端温度をこの自着火誘発温度に昇温するための手段の内訳を模式的に示す図である。It is a figure which shows typically the breakdown of the means for raising self-ignition induction temperature and compression end temperature to this self-ignition induction temperature. 火種HCCI燃焼モードにおける排気バルブ及び吸気バルブの動作例を示す図である。It is a figure which shows the operation example of an exhaust valve and an intake valve in a fire type HCCI combustion mode. 燃焼モードを選択する際に参照される制御マップを模式的に示す図である。It is a figure which shows typically the control map referred when selecting a combustion mode. 火種着火時期温度制御の具体的な手順を示すフローチャートである。It is a flowchart which shows the specific procedure of a fire type ignition timing temperature control. 目標燃焼重心位置を決定するマップの具体例を示す図である。It is a figure which shows the specific example of the map which determines a target combustion gravity center position. 目標火種着火時期温度を決定するマップの具体例を示す図である。It is a figure which shows the specific example of the map which determines target fire type ignition timing temperature. 目標火種着火時期実効圧縮比の暫定値を決定するマップの具体例を示す図である。It is a figure which shows the specific example of the map which determines the provisional value of target fire type ignition timing effective compression ratio. IN側VTCの目標位相角に対する暫定値を決定するテーブルの具体例を示す図である。It is a figure which shows the specific example of the table which determines the provisional value with respect to the target phase angle of IN side VTC. フィードバックゲインを決定するテーブルの具体例を示す図である。It is a figure which shows the specific example of the table which determines a feedback gain. 目標最大工程容積を決定するテーブルの具体例を示す図である。It is a figure which shows the specific example of the table which determines target maximum process volume. EX側VTCの目標位相角を決定するマップの具体例を示す図である。It is a figure which shows the specific example of the map which determines the target phase angle of EX side VTC. 火種着火時期温度制御のシミュレーションによる結果を示す図である。It is a figure which shows the result by simulation of a fire type ignition timing temperature control. 火種着火時期温度制御の実機による結果を示す図である。It is a figure which shows the result by the real machine of fire kind ignition timing temperature control. 火種着火時期温度制御の実機による結果を示す図である。It is a figure which shows the result by the real machine of fire kind ignition timing temperature control.

以下、本発明の一実施形態について、図面を参照しながら説明する。
図1は、本実施形態に係る内燃機関(以下、単に「エンジン」という)1及びその制御装置の構成を示す図である。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing a configuration of an internal combustion engine (hereinafter simply referred to as “engine”) 1 and a control device thereof according to the present embodiment.

エンジン1は、複数、例えば4つのシリンダ11aを備えた4気筒エンジンであり、図1にはこのうちの1つを代表的に示す。エンジン1は、シリンダ11aが形成されたシリンダブロック11と、シリンダヘッド12とを組み合わせて構成される。このエンジン1には、吸気が通流する吸気管2と、排気が通流する排気管3と、排気管3内の排気の一部を吸気管2に還流するEGR管4と、が設けられている。   The engine 1 is a four-cylinder engine having a plurality of, for example, four cylinders 11a, and one of these is representatively shown in FIG. The engine 1 is configured by combining a cylinder block 11 in which a cylinder 11 a is formed and a cylinder head 12. The engine 1 is provided with an intake pipe 2 through which intake air flows, an exhaust pipe 3 through which exhaust flows, and an EGR pipe 4 that recirculates part of the exhaust gas in the exhaust pipe 3 to the intake pipe 2. ing.

シリンダ11a内にはピストン13aが摺動可能に設けられており、このピストン13aの頂面とシリンダヘッド12のシリンダ11a側の面により、エンジン1の燃焼室12aが形成される。ピストン13aは、コンロッド13bを介してクランクシャフト13cに連結されている。すなわち、シリンダ11a内におけるピストン13aの往復動に応じてクランクシャフト13cが回転する。   A piston 13a is slidably provided in the cylinder 11a, and a combustion chamber 12a of the engine 1 is formed by the top surface of the piston 13a and the surface of the cylinder head 12 on the cylinder 11a side. The piston 13a is connected to the crankshaft 13c via a connecting rod 13b. That is, the crankshaft 13c rotates according to the reciprocation of the piston 13a in the cylinder 11a.

シリンダヘッド12には、燃焼室12aと吸気管2とを接続する吸気ポート12iと、燃焼室12aと排気管3とを接続する排気ポート12eとが形成されている。また、シリンダヘッド12には、吸気ポート12iのうち燃焼室12aに臨む吸気開口を開閉するは吸気バルブ14iと、排気ポート12eのうち燃焼室12aに臨む排気開口を開閉する排気バルブ14eとが設けられている。   The cylinder head 12 is formed with an intake port 12 i that connects the combustion chamber 12 a and the intake pipe 2, and an exhaust port 12 e that connects the combustion chamber 12 a and the exhaust pipe 3. The cylinder head 12 is provided with an intake valve 14i for opening and closing an intake opening facing the combustion chamber 12a in the intake port 12i, and an exhaust valve 14e for opening and closing an exhaust opening facing the combustion chamber 12a among the exhaust ports 12e. It has been.

シリンダヘッド12には、燃焼室12a内に臨む点火プラグ15が設けられている。点火プラグ15は、図示しないイグナイタ及びドライバを介してその電子制御ユニット(以下、「ECU」という)5に接続される。点火プラグ15は、ECU5によって実行される図示しない点火制御によって定められたタイミングで火花を発生し、シリンダ11a内に形成された混合気に着火する。   The cylinder head 12 is provided with a spark plug 15 that faces the combustion chamber 12a. The spark plug 15 is connected to an electronic control unit (hereinafter referred to as “ECU”) 5 via an igniter and a driver (not shown). The spark plug 15 generates a spark at a timing determined by ignition control (not shown) executed by the ECU 5, and ignites the air-fuel mixture formed in the cylinder 11a.

また、シリンダヘッド12には、図示しないタイミングベルトを介してクランクシャフト13cと連結され、クランクシャフト13cの回転に従って回転する吸気カムシャフト16i及び排気カムシャフト16eが設けられている。より具体的には、クランクシャフト13cが2回転すると、カムシャフト16i,16eは1回転するようになっている。吸気カムシャフト16iには、吸気バルブ14iを開閉駆動する吸気カム17iが設けられ、排気カムシャフト16eには、排気バルブ14eを開閉駆動する排気カム17eが設けられている。これにより、カムシャフト16i,16eが回転すると、バルブ14i,14eはカム17i,17eのプロファイルに応じた態様で進退する。   The cylinder head 12 is provided with an intake camshaft 16i and an exhaust camshaft 16e that are connected to a crankshaft 13c via a timing belt (not shown) and rotate according to the rotation of the crankshaft 13c. More specifically, when the crankshaft 13c rotates twice, the camshafts 16i and 16e rotate once. The intake camshaft 16i is provided with an intake cam 17i for driving the intake valve 14i to open and close, and the exhaust camshaft 16e is provided with an exhaust cam 17e for opening and closing the exhaust valve 14e. Accordingly, when the camshafts 16i and 16e rotate, the valves 14i and 14e advance and retract in a manner corresponding to the profiles of the cams 17i and 17e.

吸気カムシャフト16iの一端部には、クランクシャフト13cに対する吸気カム17iのカム位相を変更する吸気側のカム位相可変機構(以下、「IN側VTC」という)18iと、吸気バルブ14iの最大開度(すなわち、最大リフト量)と開弁期間(すなわち、開弁角度幅)を変更する吸気側のバルブリフト可変機構(いわゆる、VTEC(登録商標)19iと呼称される機構であり、以下では「IN側VTEC」という)とが設けられている。また、排気カムシャフト16eの一端部にも同様に、クランクシャフト13cに対する排気カム17eのカム位相を変更する排気側のカム位相可変機構(以下、「EX側VTC」という)18eと、排気バルブ14eの最大リフト量と開弁角度幅を変更する排気側のバルブリフト可変機構(以下、「EX側VTEC」という)とが設けられている。   At one end of the intake camshaft 16i, an intake-side cam phase variable mechanism (hereinafter referred to as "IN-side VTC") 18i for changing the cam phase of the intake cam 17i with respect to the crankshaft 13c, and the maximum opening of the intake valve 14i This is a mechanism called a variable valve lift on the intake side (so-called VTEC (registered trademark) 19i) that changes the valve opening period (that is, the valve opening angle width) (ie, the maximum lift amount), and is hereinafter referred to as “IN Side VTEC "). Similarly, at one end of the exhaust camshaft 16e, an exhaust-side cam phase variable mechanism (hereinafter referred to as “EX-side VTC”) 18e for changing the cam phase of the exhaust cam 17e with respect to the crankshaft 13c, and an exhaust valve 14e. There is provided an exhaust-side valve lift variable mechanism (hereinafter referred to as “EX-side VTEC”) that changes the maximum lift amount and the valve opening angle width.

IN側VTC18iは、吸気カムシャフト16iのカム位相を無段階に進角又は遅角させることにより、吸気バルブ14iの開閉タイミング(すなわち開時期(IVO)及び閉時期(IVC))を早めたり遅らせたりできる。本実施形態の制御装置では、このようなIN側VTC18iによってエンジン1の燃焼室12aの実効圧縮比を可変的に制御可能なアトキンソンサイクル(ミラーサイクル)での運転が実現される。すなわち、IN側VTC18iによって吸気バルブ14iの閉時期を下死点に対し進角側又は遅角側に補正し、吸気量を減少させることにより、実効圧縮比を下げることができる。   The IN side VTC 18i advances or delays the opening / closing timing of the intake valve 14i (that is, the opening timing (IVO) and the closing timing (IVC)) by advancing or retarding the cam phase of the intake camshaft 16i steplessly. it can. In the control device of the present embodiment, the operation in the Atkinson cycle (Miller cycle) in which the effective compression ratio of the combustion chamber 12a of the engine 1 can be variably controlled by the IN side VTC 18i is realized. That is, the effective compression ratio can be lowered by correcting the closing timing of the intake valve 14i to the advance side or the retard side with respect to the bottom dead center by the IN side VTC 18i and reducing the intake amount.

EX側VTC18eは、IN側VTC18iとほぼ同じ機構によって、排気バルブ14eの開閉タイミング(すなわち開時期(EVO)及び閉時期(EVC))を早めたり遅らせたりする。本実施形態の制御装置では、このようなEX側VTC18iによって排気バルブ14eの閉時期を変更することによって内部EGR率(吸気バルブが閉弁した後に燃焼室12a内に存在する総ガス量(新気と既燃ガスとを合わせたガスの量)に対する既燃ガス量の割合))を制御する。より具体的には、排気バルブ14eの閉時期を上死点に対し進角側に補正すると、燃焼室12a内に閉じ込められる既燃ガスの量が増加するので、内部EGR率は増加する。   The EX-side VTC 18e advances or delays the opening / closing timing of the exhaust valve 14e (that is, the opening timing (EVO) and the closing timing (EVC)) by almost the same mechanism as the IN-side VTC 18i. In the control device of the present embodiment, the EX-side VTC 18i changes the closing timing of the exhaust valve 14e to change the internal EGR rate (the total amount of gas existing in the combustion chamber 12a after the intake valve is closed (fresh air)). And the ratio of the amount of burned gas to the amount of gas, which is the sum of the burned gas and the burned gas). More specifically, when the closing timing of the exhaust valve 14e is corrected to the advance side with respect to the top dead center, the amount of burned gas confined in the combustion chamber 12a increases, so the internal EGR rate increases.

以上のように、本実施形態の制御装置では、内部EGR率及び実効圧縮比を変更可能な吸気バルブ14i及び排気バルブ14eの可変動弁機構は、IN側VTC18i及びEX側VTC18eによって構成される。   As described above, in the control device of the present embodiment, the variable valve mechanisms of the intake valve 14i and the exhaust valve 14e that can change the internal EGR rate and the effective compression ratio are configured by the IN side VTC 18i and the EX side VTC 18e.

これらVTC18i,18eは、例えば油圧によってカム位相を変更するものが用いられる。ECU5は、クランクシャフト13cに対する吸気カム17i及び排気カム17eのカム位相の目標(目標位相角)を燃焼サイクルごとに設定し(例えば、後述の図6参照)、VTC18i,18eは、ECU5によって設定された目標位相角が達成されるように吸気カム17i及び排気カム17eのカム位相を無段階に進角又は遅角させる。   As these VTCs 18i and 18e, for example, those that change the cam phase by hydraulic pressure are used. The ECU 5 sets the cam phase target (target phase angle) of the intake cam 17i and the exhaust cam 17e with respect to the crankshaft 13c for each combustion cycle (see, for example, FIG. 6 described later), and the VTCs 18i and 18e are set by the ECU 5. In order to achieve the target phase angle, the cam phases of the intake cam 17i and the exhaust cam 17e are advanced or retarded steplessly.

また、吸気カム17i及び排気カム17eは、それぞれカムノーズが異なる低速カムと高速カムとの少なくとも2種類のカムを備える(図示略)。IN側VTEC19iは、吸気カム17iを低速カムと高速カムとの間で選択的に切り替えることによって吸気バルブ14iの最大リフト量と開弁角度幅を低速用と高速用とで切り替える。EX側VTEC19eは、IN側VTEC19iとほぼ同じ機構によって、排気カム17eを低速カムと高速カムとの間で選択的に切り替えることによって排気バルブ14eの最大リフト量と開弁角度幅を低速用と高速用とで切り替えている。これらVTEC19i,19eもVTC18i,18eと同様に、例えば油圧によって上記切換動作を行うものが用いられる。すなわち、これらVTEC19i,19eは、ECU5における図示しない処理によって定められたタイミングでバルブ14i,14eを駆動するカムを低速カムと高速カムとで切り換える。   The intake cam 17i and the exhaust cam 17e include at least two types of cams (not shown), a low-speed cam and a high-speed cam, each having a different cam nose. The IN side VTEC 19i selectively switches the intake cam 17i between the low speed cam and the high speed cam to switch the maximum lift amount and the valve opening angle width of the intake valve 14i between low speed and high speed. The EX side VTEC 19e uses the same mechanism as the IN side VTEC 19i to selectively switch the exhaust cam 17e between a low speed cam and a high speed cam, thereby reducing the maximum lift amount and the opening angle width of the exhaust valve 14e for low speed and high speed. It is switched between for use. As for these VTECs 19i and 19e, those which perform the switching operation by hydraulic pressure, for example, are used similarly to the VTCs 18i and 18e. That is, these VTECs 19i and 19e switch the cam that drives the valves 14i and 14e between the low-speed cam and the high-speed cam at a timing determined by a process (not shown) in the ECU 5.

吸気ポート12iのうち吸気開口よりも上流側には、燃焼室12a側へ向かって燃料を噴射するポートインジェクタPIが設けられ、シリンダヘッド12には、燃焼室12a内へ直接燃料を噴射する直噴インジェクタDI設けられている。これらインジェクタPI,DIからの燃料噴射量(噴射期間)及びその燃料噴射タイミングは、ECU5において実行される図示しない燃料噴射制御によって制御される。   A port injector PI for injecting fuel toward the combustion chamber 12a is provided upstream of the intake opening in the intake port 12i, and direct injection for injecting fuel directly into the combustion chamber 12a is provided in the cylinder head 12. Injector DI is provided. The fuel injection amount (injection period) from these injectors PI and DI and the fuel injection timing thereof are controlled by fuel injection control (not shown) executed in the ECU 5.

吸気管2には、エンジン1の燃焼室12aに供給される空気の量(すなわち、吸気量)を制御するスロットル弁22が設けられている。スロットル弁22は、図示しないドライバを介してECU5と接続されている。すなわち、このスロットル弁22は、運転者が操作するアクセルペダル(図示せず)と機械的な接続が絶たれた所謂DBW(Drive By Wire)スロットルと呼称されるものである。スロットル弁22は、ECU5において実行される図示しない吸気量制御によって適切な開度に制御される。   The intake pipe 2 is provided with a throttle valve 22 that controls the amount of air supplied to the combustion chamber 12a of the engine 1 (that is, the intake amount). The throttle valve 22 is connected to the ECU 5 via a driver (not shown). That is, the throttle valve 22 is called a so-called DBW (Drive By Wire) throttle, which is mechanically disconnected from an accelerator pedal (not shown) operated by the driver. The throttle valve 22 is controlled to an appropriate opening degree by an intake air amount control (not shown) executed in the ECU 5.

排気管3には、排気を浄化する排気浄化触媒31が設けられている。排気浄化触媒31は、例えば三元触媒であり、排気中のHC、CO、NOx等を浄化する。   The exhaust pipe 3 is provided with an exhaust purification catalyst 31 for purifying the exhaust. The exhaust purification catalyst 31 is, for example, a three-way catalyst, and purifies HC, CO, NOx, etc. in the exhaust.

EGR管4は、排気管3のうち排気浄化触媒31の下流側と、吸気管2のうちスロットル弁22の下流側とを接続し、エンジン1から排出された排気の一部を還流する。このEGR管4には、還流される排気を冷却するEGRクーラ41と、還流する排気の流量を制御するEGR弁42とが設けられている。EGR弁42は、図示しないドライバを介してECU5に接続されている。EGR弁42は、ECU5において実行される図示しない吸気量制御によって適切な開度に制御される。   The EGR pipe 4 connects the downstream side of the exhaust purification catalyst 31 in the exhaust pipe 3 and the downstream side of the throttle valve 22 in the intake pipe 2 to recirculate part of the exhaust discharged from the engine 1. The EGR pipe 4 is provided with an EGR cooler 41 that cools the recirculated exhaust gas and an EGR valve 42 that controls the flow rate of the recirculated exhaust gas. The EGR valve 42 is connected to the ECU 5 via a driver (not shown). The EGR valve 42 is controlled to an appropriate opening degree by intake air amount control (not shown) executed in the ECU 5.

ECU5は、エンジン1及びその付帯装置を電子的に制御する電子制御ユニットであり、CPU、ROM、RAM、及び各種インターフェースなどの電子回路を含んで構成される。ECU5には、エンジン1の状態及びエンジン1を搭載した車両の状態等を把握するため、複数のセンサ61〜67が接続されている。   The ECU 5 is an electronic control unit that electronically controls the engine 1 and its auxiliary devices, and includes an electronic circuit such as a CPU, a ROM, a RAM, and various interfaces. A plurality of sensors 61 to 67 are connected to the ECU 5 in order to grasp the state of the engine 1 and the state of the vehicle on which the engine 1 is mounted.

筒内圧センサ61は、1つのシリンダ11aに対して1つずつ設けられている。図1には、これら複数の筒内圧センサ61のうちの1つのみを代表的に示す。筒内圧センサ61は、シリンダ11a内の圧力(筒内圧)を検出し、ECU5に送信する。複数のパラメータのうちの1つである燃焼重心位置や筒内最大圧は、この筒内圧センサ61の出力に基づいてECU5における図示しない処理によって算出される。   One in-cylinder pressure sensor 61 is provided for each cylinder 11a. FIG. 1 representatively shows only one of the plurality of in-cylinder pressure sensors 61. The in-cylinder pressure sensor 61 detects the pressure in the cylinder 11a (in-cylinder pressure) and transmits it to the ECU 5. The combustion barycentric position and the in-cylinder maximum pressure, which are one of the plurality of parameters, are calculated by a process (not shown) in the ECU 5 based on the output of the in-cylinder pressure sensor 61.

吸気側カムセンサ62iは、吸気カムシャフト16iの回転に伴い、所定のカム角ごとにパルス信号をECU5に送信する。排気側カムセンサ62eは、排気カムシャフト16eの回転に伴い、所定のカム角ごとにパルス信号をECU5に送信する。ECU5では、これらカムセンサ62i,62eから送信されるパルス信号に基づいて、カムシャフト16i,16eの実際のカム位相を把握する。   The intake side cam sensor 62i transmits a pulse signal to the ECU 5 at every predetermined cam angle as the intake camshaft 16i rotates. The exhaust cam sensor 62e transmits a pulse signal to the ECU 5 at every predetermined cam angle as the exhaust camshaft 16e rotates. The ECU 5 grasps the actual cam phase of the camshafts 16i and 16e based on the pulse signals transmitted from the cam sensors 62i and 62e.

クランク角センサ63は、クランクシャフト13cに固定されたパルサの回転に応じて、所定のクランク角ごとにパルス信号をECU5に送信する。ECU5では、このクランク角センサ63からのパルス信号に基づいて実際のエンジンの回転数が把握される。   The crank angle sensor 63 transmits a pulse signal to the ECU 5 at every predetermined crank angle in accordance with the rotation of the pulser fixed to the crankshaft 13c. The ECU 5 grasps the actual engine speed based on the pulse signal from the crank angle sensor 63.

アクセルペダルセンサ65は、運転者が操作するアクセルペダルの踏み込み量を検出し、これに応じた検出信号をECU5に送信する。運転者からエンジン1に要求されるトルクに相当する要求トルクは、アクセルペダルセンサ65から送信される検出信号や、エンジン回転数等に基づいて、ECU5における図示しない処理によって算出される。   The accelerator pedal sensor 65 detects the amount of depression of the accelerator pedal operated by the driver, and transmits a detection signal corresponding to the depression amount to the ECU 5. The required torque corresponding to the torque required for the engine 1 from the driver is calculated by a process (not shown) in the ECU 5 based on the detection signal transmitted from the accelerator pedal sensor 65, the engine speed, and the like.

吸気センサ66は、吸気管2内の吸気の状態を検出するセンサである。より具体的には、この吸気センサ66は、対象箇所の吸気の温度(以下、「吸気温度」という)に略比例した検出信号をECU5に送信する吸気温度センサ、及び対象箇所の吸気の圧力(以下、「吸気圧」という)に略比例した検出信号をECU5に送信する吸気圧センサ等で構成される。   The intake sensor 66 is a sensor that detects the state of intake air in the intake pipe 2. More specifically, the intake sensor 66 includes an intake air temperature sensor that transmits a detection signal substantially proportional to the intake air temperature at the target location (hereinafter referred to as “intake air temperature”) to the ECU 5, and the intake air pressure at the target location ( Hereinafter, it is constituted by an intake pressure sensor or the like that transmits a detection signal substantially proportional to “intake pressure”) to the ECU 5.

排気温度センサ67は、排気管3内の排気の温度を検出するセンサである。より具体的には、この排気温度センサ67は、対象箇所の排気の温度(以下、「排気温度」という)に略比例した検出信号をECU5に送信する。   The exhaust temperature sensor 67 is a sensor that detects the temperature of the exhaust gas in the exhaust pipe 3. More specifically, the exhaust temperature sensor 67 transmits to the ECU 5 a detection signal that is substantially proportional to the exhaust temperature at the target location (hereinafter referred to as “exhaust temperature”).

以上のように構成されたエンジン1は、運転状態に応じてその燃焼モードを、火花点火燃焼モード(以下、「SI(Spark Ignition)燃焼モード」という)と、火種補助予混合圧縮着火燃焼モード(以下、「火種HCCI(Homogeneous Charge Compression Ignition)燃焼モード」という)とで切り替えることができる。   The engine 1 configured as described above has a combustion mode according to an operating state, which is a spark ignition combustion mode (hereinafter referred to as “SI (Spark Ignition) combustion mode”) and a fire type auxiliary premixed compression ignition combustion mode ( Hereinafter, it can be switched between “fire type HCCI (Homogeneous Charge Compression Ignition) combustion mode”).

SI燃焼モードでは、例えば、吸気工程中にインジェクタPIにより吸気ポート12i内に所定量の燃焼を噴射し、さらに圧縮工程中にインジェクタDIにより所定量の燃料を噴射した後、所定のタイミングで点火プラグ15から火花を発し、シリンダ11a内に形成された混合気を着火燃焼させる。ここで、SI燃焼モードにおける吸気量制御及び燃料噴射制御では、シリンダ11a内に形成される混合気の空燃比は、後述の火種HCCI燃焼モードと異なり、理論空燃比(例えば、A/F=14.7程度)とほぼ等しくなるように調整される。   In the SI combustion mode, for example, a predetermined amount of combustion is injected into the intake port 12i by the injector PI during the intake process, and a predetermined amount of fuel is injected by the injector DI during the compression process, and then the ignition plug is injected at a predetermined timing. A spark is emitted from 15 to ignite and burn the air-fuel mixture formed in the cylinder 11a. Here, in the intake air amount control and the fuel injection control in the SI combustion mode, the air-fuel ratio of the air-fuel mixture formed in the cylinder 11a is different from the fire type HCCI combustion mode described later, and the stoichiometric air-fuel ratio (for example, A / F = 14.7). Degree).

図2は、SI燃焼モードにおける排気バルブ及び吸気バルブの動作例を示す図である。SI燃焼モードでは、ピストンが下死点から上死点に向かう排気工程にわたって排気バルブを開き、ピストンが上死点から下死点に向かう吸気工程にわたって吸気バルブを開く。また図2に示すように、SI燃焼モードでは、吸気バルブ及び排気バルブは、両者の開弁時期に正の重複が生じるように駆動される。   FIG. 2 is a diagram illustrating an operation example of the exhaust valve and the intake valve in the SI combustion mode. In the SI combustion mode, the exhaust valve is opened over the exhaust process from the bottom dead center to the top dead center, and the intake valve is opened over the intake process from the top dead center to the bottom dead center. Further, as shown in FIG. 2, in the SI combustion mode, the intake valve and the exhaust valve are driven so that a positive overlap occurs between the opening timings of both.

火種HCCI燃焼モードでは、上記SI燃焼モードと異なり、混合気を圧縮着火によって燃焼させる。このため、筒内温度(特に、ピストンが上死点に達した時の筒内温度である圧縮端温度)については、SI燃焼モードよりも高い自着火誘発温度(約1000[K])まで上昇させる必要がある。圧縮端温度が自着火誘発温度より大きく下回ると失火してしまい、圧縮端温度が自着火誘発温度より大きく上回ると過早着火してしまう。このため、火種HCCI燃焼モードを安定して実現するためには、圧縮端温度を自着火誘発温度の近傍に高い精度で制御することが重要となる。   In the fire type HCCI combustion mode, unlike the SI combustion mode, the air-fuel mixture is combusted by compression ignition. For this reason, the in-cylinder temperature (especially, the compression end temperature, which is the in-cylinder temperature when the piston reaches top dead center), rises to a self-ignition induction temperature (approximately 1000 [K]) higher than the SI combustion mode. It is necessary to let If the compression end temperature is much lower than the self-ignition inducing temperature, misfire occurs, and if the compression end temperature is much higher than the self-ignition inducing temperature, pre-ignition occurs. For this reason, in order to stably realize the fire type HCCI combustion mode, it is important to control the compression end temperature close to the self-ignition induction temperature with high accuracy.

図3は、自着火誘発温度と、圧縮端温度をこの自着火誘発温度に昇温するための手段の内訳を模式的に示す図である。本実施形態の制御装置では、断熱圧縮と、既燃ガスの一部を内部EGRガスとしてシリンダ内に残留させる内部EGR制御による昇温と、火種発熱による昇温とを組み合わせることによって、圧縮端温度を自着火誘発温度まで上昇させる。   FIG. 3 is a diagram schematically showing the breakdown of the self-ignition induction temperature and the means for raising the compression end temperature to the self-ignition induction temperature. In the control device of the present embodiment, the compression end temperature is combined by combining adiabatic compression, temperature rise by internal EGR control in which a part of burned gas remains in the cylinder as internal EGR gas, and temperature rise by fire type heat generation. Is raised to the autoignition induction temperature.

より具体的には、火種HCCI燃焼モードでは、初めに吸気工程中にポートインジェクタPIにより吸気ポート12i内に所定量の燃料を噴射することによって、シリンダ内に希薄かつ均質な混合気を形成する。次に、圧縮工程中に直噴インジェクタDIによりシリンダ内に微量の火種用の燃料を噴射し、先に形成された均質混合気内に局所的に火種用混合気を形成する。次に、例えば点火プラグ15によって適切なタイミングで火花を発生させ、これを契機として火種用混合気に着火し、これを火種として周囲の均質混合気の圧縮自着火を誘発させる。火種HCCI燃焼モードでは、局所的に形成した火種用混合気を燃焼させることにより、圧縮端温度を上昇させるとともに周囲の均質混合気の圧縮自着火を誘発させる。なお、火種HCCI燃焼モードにおける吸気量制御及び燃料噴射制御では、シリンダ11a内に形成される混合気の空燃比は、上記SI燃焼モードと異なり理論空燃比よりもリーン(例えば、A/F=25程度)になるように調整される。なお、火種HCCI燃焼モード時における直噴インジェクタDIからの火種用燃料の噴射量や噴射時期を決定する火種量制御や、後述の目標火種着火時期に火種用混合気が着火するように火花プラグの点火時期を決定する点火制御等の詳細な説明は省略する。   More specifically, in the fire type HCCI combustion mode, a lean and homogeneous air-fuel mixture is formed in the cylinder by first injecting a predetermined amount of fuel into the intake port 12i by the port injector PI during the intake process. Next, during the compression process, a small amount of fire type fuel is injected into the cylinder by the direct injection injector DI, and a fire type mixture is locally formed in the previously formed homogeneous mixture. Next, for example, a spark is generated at an appropriate timing by the spark plug 15, and this is used as an opportunity to ignite the mixture for fire type, which is used as a fire type to induce compression auto-ignition of the surrounding homogeneous mixture. In the fire type HCCI combustion mode, the locally formed fire mixture is burned, thereby raising the compression end temperature and inducing compression auto-ignition of the surrounding homogeneous mixture. In the intake air amount control and the fuel injection control in the fire type HCCI combustion mode, the air-fuel ratio of the air-fuel mixture formed in the cylinder 11a is leaner than the stoichiometric air-fuel ratio (for example, A / F = 25) unlike the SI combustion mode. Degree). It should be noted that the spark plug control is used to determine the amount and timing of fuel injection from the direct injector DI in the fire type HCCI combustion mode, and the spark plug is ignited so that the mixture for the spark is ignited at the target spark ignition timing described later. Detailed explanations such as ignition control for determining the ignition timing are omitted.

図4は、火種HCCI燃焼モードにおける排気バルブ及び吸気バルブの動作例を示す図である。なお図4には、SI燃焼モードとの相違を明確にするため、SI燃焼モードにおけるこれらバルブの動作例を破線で示す。   FIG. 4 is a diagram illustrating an operation example of the exhaust valve and the intake valve in the fire type HCCI combustion mode. In FIG. 4, in order to clarify the difference from the SI combustion mode, an operation example of these valves in the SI combustion mode is indicated by a broken line.

火種HCCI燃焼モードでは、排気バルブの開弁時期と吸気バルブの開弁時期とに負の重複(NOL(Negative OverLap))が生じるように排気バルブの閉弁時期を早めることにより、既燃ガスをシリンダ内に閉じ込め、圧縮端温度を上記自着火誘発温度まで上昇させる。また火種HCCI燃焼モードでは、このように排気バルブの閉弁時期を早めると同時に吸気バルブの閉弁時期を遅らせることにより、ポンプロスを最小限にする。   In the fire type HCCI combustion mode, the burned gas is reduced by increasing the closing timing of the exhaust valve so that there is a negative overlap (NOL (Negative OverLap)) between the opening timing of the exhaust valve and the opening timing of the intake valve. It is confined in the cylinder, and the compression end temperature is raised to the self-ignition induction temperature. In the HCCI combustion mode, the pump loss is minimized by advancing the closing timing of the exhaust valve and delaying the closing timing of the intake valve at the same time.

図5は、ECU5において燃焼モードを選択する際に参照される制御マップを模式的に示す図である。燃焼モードは、エンジンの運転状態を特定する運転状態パラメータに基づいて、ECU5において所定の周期で決定される。ここで、運転状態パラメータとしては、具体的には図5に示すようにエンジン回転数及び要求トルクが挙げられる。図5に示す例によれば、エンジンの運転状態が低回転数かつ低負荷である場合にのみ、火種HCCI燃焼モードが燃焼モードとして決定され、エンジンの運転状態がそれ以外の場合は、SI燃焼モードが燃焼モードとして決定される。   FIG. 5 is a diagram schematically showing a control map that is referred to when the ECU 5 selects the combustion mode. The combustion mode is determined at a predetermined cycle in the ECU 5 based on an operating state parameter that specifies the operating state of the engine. Here, as the operating state parameter, specifically, as shown in FIG. 5, the engine speed and the required torque can be mentioned. According to the example shown in FIG. 5, the ignition type HCCI combustion mode is determined as the combustion mode only when the engine operating state is a low engine speed and a low load, and SI combustion is performed when the engine operating state is otherwise. The mode is determined as the combustion mode.

図6は、火種HCCI燃焼モード時における火種着火時期温度制御の具体的な手順を示すフローチャートである。上述のように、火種HCCI燃焼モードでは、圧縮工程中に所定のタイミングで火種用混合気に着火した後に、この火種用混合気の燃焼を利用して均質混合気を圧縮自着火させる。ここで、「火種着火時期温度」とは、火種用混合気が着火する時における筒内温度に相当する。図6に示す一連の処理は、燃焼モードとして火種HCCI燃焼モードが選択されている間に、燃焼サイクルごとにECU5において実行される。   FIG. 6 is a flowchart showing a specific procedure of the ignition type ignition timing temperature control in the ignition type HCCI combustion mode. As described above, in the fire type HCCI combustion mode, after igniting the mixture for fire type at a predetermined timing during the compression process, the homogeneous mixture is compressed and ignited by using the combustion of the mixture for fire type. Here, the “fire type ignition timing temperature” corresponds to the in-cylinder temperature when the mixture for fire type ignites. The series of processes shown in FIG. 6 is executed in the ECU 5 for each combustion cycle while the fire type HCCI combustion mode is selected as the combustion mode.

初めにS1では、以下の演算において必要となるエンジン回転数NE(k)及び要求トルクTRQ(k)を取得し、次ステップS2へ移る。なお、以下の説明では、今回の燃焼サイクルにおいて算出又は取得される値については、離散時刻を示す符号”k”を付す。これに対し、前回の燃焼サイクルにおいて算出又は取得された値については符号”k-1”を付す。   First, in S1, the engine speed NE (k) and the required torque TRQ (k) necessary for the following calculation are acquired, and the process proceeds to the next step S2. In the following description, a value “k” indicating discrete time is attached to a value calculated or acquired in the current combustion cycle. On the other hand, the sign “k-1” is attached to the value calculated or acquired in the previous combustion cycle.

S2では、以下の演算において必要となる筒内の状態を示す複数のパラメータ(実内部EGR率rEGR_act(k)、筒内吸入ガス温度推定値TA_cyl(k)、内部EGR温度推定値Tex_cyl(k)等)を取得し、S4に移る。   In S2, a plurality of parameters (actual internal EGR rate rEGR_act (k), in-cylinder intake gas temperature estimated value TA_cyl (k), internal EGR temperature estimated value Tex_cyl (k) indicating the in-cylinder state necessary for the following calculation are obtained. Etc.) and move to S4.

ここで、実内部EGR率rEGR_act(k)は、例えば排気バルブの閉弁タイミングにおける筒内容積及び筒内圧に基づいて既知の方法によって推定される。筒内吸入ガス温度推定値TA_cyl(k)は、新たに気筒内に導入されるガスの温度に相当し、例えば、吸気センサによって検出された吸気温度に基づいて既知の方法によって算出される。   Here, the actual internal EGR rate rEGR_act (k) is estimated by a known method, for example, based on the in-cylinder volume and the in-cylinder pressure at the closing timing of the exhaust valve. The in-cylinder intake gas temperature estimated value TA_cyl (k) corresponds to the temperature of the gas newly introduced into the cylinder, and is calculated by a known method, for example, based on the intake air temperature detected by the intake sensor.

内部EGR温度推定値Tex_cyl(k)は、内部EGR制御によって気筒内に閉じ込められる既燃ガスの温度に相当し、例えば、排気温度センサによって検出された排気温度に基づいて既知の方法によって算出される。例えば排気温度センサの検出箇所が排気ポートに近い場合、排気温度センサによって検出された排気温度を、気筒内に閉じ込められる既燃ガスの温度として近似できる。   The internal EGR temperature estimated value Tex_cyl (k) corresponds to the temperature of burned gas confined in the cylinder by the internal EGR control, and is calculated by a known method based on, for example, the exhaust temperature detected by the exhaust temperature sensor. . For example, when the detection location of the exhaust temperature sensor is close to the exhaust port, the exhaust temperature detected by the exhaust temperature sensor can be approximated as the temperature of burned gas confined in the cylinder.

S4では、S1で取得した回転数NE及び要求トルクTRQに基づいて図7に例示するマップを検索することにより、今回の燃焼サイクルにおける燃焼重心位置に対する目標に相当する目標燃焼重心位置MBF50_trg[deg.]を設定する。ここで燃焼重心位置とは、気筒内の混合気全体の質量に対する燃焼した部分の質量の割合が50%となる位置に相当する。なお、本実施形態では、燃焼重心位置に目標を設定する場合について説明するが、本発明はこれに限らない。例えば、燃焼重心位置の代わりに、筒内圧が最大となる位置に相当する筒内最大圧位置(Pmax位置)に目標を設定するようにしてもよい。燃焼重心位置と筒内最大圧位置とは概ね同じになることから、このようにしても同様の効果を奏すると考えられる。   In S4, a map illustrated in FIG. 7 is searched based on the rotational speed NE and the required torque TRQ acquired in S1, thereby obtaining a target combustion gravity center position MBF50_trg [deg.] Corresponding to a target with respect to the combustion gravity center position in the current combustion cycle. ] Is set. Here, the combustion center of gravity position corresponds to a position where the ratio of the mass of the burned portion to the mass of the entire air-fuel mixture in the cylinder is 50%. In addition, although this embodiment demonstrates the case where a target is set to a combustion gravity center position, this invention is not limited to this. For example, instead of the combustion center of gravity position, the target may be set at the in-cylinder maximum pressure position (Pmax position) corresponding to the position where the in-cylinder pressure becomes maximum. Since the combustion gravity center position and the in-cylinder maximum pressure position are substantially the same, it is considered that the same effect can be obtained even in this way.

S5では、火種用混合気の着火時期(以下、「火種着火時期」という)に対する目標である目標火種着火時期AngleHidaneIGN_trg[deg.]を設定する。換言すれば、この目標火種着火時期AngleHidaneIGN_trgは、図示しない点火制御において、火種用混合気が着火する時期に相当する。より具体的には、この目標火種着火時期AngleHidaneIGN_trgは、下記式(1)に示すように、S4で算出した目標MBF50_trgから、火種用混合気が燃焼する時間に相当する火種燃焼期間AngleHidane[deg.]及び所定量の均質混合気が燃焼する時間に相当する主燃焼期間AngleMain[deg.]を減算することによって算出される。ここで、2つの期間AngleHidane,AngleMainは、図示しない処理によって燃焼サイクルごとに算出される。
In S5, a target fire type ignition timing AngleHidaneIGN_trg [deg.], Which is a target for the ignition timing of the mixture for fire type (hereinafter referred to as “fire type ignition timing”), is set. In other words, the target fire type ignition timing AngleHidaneIGN_trg corresponds to the timing at which the mixture for fire type ignites in the ignition control (not shown). More specifically, the target fire type ignition timing AngleHidaneIGN_trg is calculated from the target MBF50_trg calculated in S4, as shown in the following formula (1), the fire type combustion period AngleHidane [deg. ] And the main combustion period AngleMain [deg.] Corresponding to the time for which a predetermined amount of the homogeneous air-fuel mixture burns is subtracted. Here, the two periods AngleHidane and AngleMain are calculated for each combustion cycle by a process not shown.

S6では、S1で取得した回転数NE及び要求トルクTRQに基づいて図8に例示するようなマップを検索することにより、上記目標火種着火時期AngleHidaneIGN_trgにおける筒内温度の目標である目標火種着火時期温度Thidane_trg[K]を設定する。   In S6, a target ignition type ignition timing temperature that is the target of the in-cylinder temperature in the target ignition type ignition timing AngleHidaneIGN_trg by searching a map as illustrated in FIG. 8 based on the rotational speed NE and the required torque TRQ acquired in S1. Set Thidane_trg [K].

S7では、S1で取得した回転数NE及び要求トルクTRQに基づいて図9に例示するようなマップを検索することにより、後述の目標火種着火時期実効圧縮比εHidane_trg[-]の暫定値εHidane_trg0[-]を算出する。ここで目標火種着火時期実効圧縮比とは、火種着火時期における実効圧縮比に相当する。   In S7, a map as illustrated in FIG. 9 is searched based on the rotational speed NE and the demanded torque TRQ acquired in S1, thereby obtaining a provisional value εHidane_trg0 [− of a target fire type ignition timing effective compression ratio εHidane_trg [−] described later. ] Is calculated. Here, the target fire type ignition timing effective compression ratio corresponds to the effective compression ratio at the fire type ignition timing.

S8では、下記式(2)に基づいて目標火種着火時期工程容積Vhidane_trg[cc]を算出する。なお、下記式(2)において、”Offset”は、オフセット長さであり、”Stroke”は、ストローク長さであり、”Boa”は、ボア径であり、”l”は、コンロッド長さであり、”ε”は、理論圧縮比であり、それぞれ固定値である。また、”θ(k)”は、S5で設定した目標火種着火時期AngleHidaneIGN_trgの単位を[deg.]から[rad.]に変換したものであり、”L(k)”は、上記目標火種着火時期θ(k)を用いて算出したピストン移動量である。
In S8, the target fire type ignition timing process volume Vhidane_trg [cc] is calculated based on the following formula (2). In the following formula (2), “Offset” is the offset length, “Stroke” is the stroke length, “Boa” is the bore diameter, and “l” is the connecting rod length. Yes, “ε” is the theoretical compression ratio, which is a fixed value. “Θ (k)” is obtained by converting the unit of the target fire type ignition timing AngleHidaneIGN_trg set in S5 from [deg.] To [rad.], And “L (k)” is the above target fire type ignition. This is the piston movement amount calculated using the time θ (k).

S9では、下記式(3)に示すように、S7で算出した目標火種着火時期実効圧縮比の暫定値εHidane_trg0とS8で算出した目標火種着火時期工程容積Vhidane_trgを乗算することにより、後述の目標最大工程容積Vmax_trg[cc]に対する暫定値Vmax_trg0[cc]を算出する。
In S9, as shown in the following equation (3), the provisional maximum value εHidane_trg0 of the target fire type ignition timing effective compression ratio calculated in S7 is multiplied by the target fire type ignition timing process volume Vhidane_trg calculated in S8 to obtain the target maximum described later. A provisional value Vmax_trg0 [cc] for the process volume Vmax_trg [cc] is calculated.

S10では、S9で算出した目標最大工程容積の暫定値Vmax_trg0に基づいて図10に例示するようなテーブルを検索することにより、後述のIN側VTCの目標位相角INVTC_trg[deg.]に対する暫定値INVTC_trg0[deg.]を算出する。   In S10, a table such as that illustrated in FIG. 10 is searched based on the provisional value Vmax_trg0 of the target maximum process volume calculated in S9, whereby a provisional value INVTC_trg0 for a target phase angle INVTC_trg [deg.] Of the IN-side VTC described later is obtained. [deg.] is calculated.

S11では、前回の燃焼サイクル時に後述のS19において算出される目標火種着火時期温度Thidane_trg(k-1)と予測火種着火時期温度Thidane_pre(k-1)との差分値ΔThidane(k-1)に基づいて図11に例示するテーブルを検索することにより、フィードバックゲインrEGRn_gain(k)を算出する。   In S11, based on the difference value ΔThidane (k-1) between the target fire type ignition timing temperature Thidane_trg (k-1) calculated in S19 described later during the previous combustion cycle and the predicted fire type ignition timing temperature Thidane_pre (k-1). Thus, the feedback gain rEGRn_gain (k) is calculated by searching the table illustrated in FIG.

S12では、下記式(4)に示すような積分演算によって後述の目標内部EGR率rEGRn_trg[-]に対するフィードバック補正値ΔrEGRn_fb[-]を算出する。
In S12, a feedback correction value ΔrEGRn_fb [−] for a target internal EGR rate rEGRn_trg [−], which will be described later, is calculated by an integral calculation as shown in the following equation (4).

S13では、下記式(5)に示すように、S2で取得した実内部EGR率rEGR_act(k)とS12で算出したフィードバック補正値ΔrEGRn_fb(k)とを合算することによって、差分値ΔThidane(k-1)が0に収束するように内部EGR率に対する目標である目標内部EGR率rEGRn_trg(k)[-]を設定する。
In S13, the difference value ΔThidane (k−) is obtained by adding the actual internal EGR rate rEGR_act (k) acquired in S2 and the feedback correction value ΔrEGRn_fb (k) calculated in S12 as shown in the following equation (5). The target internal EGR rate rEGRn_trg (k) [-], which is the target for the internal EGR rate, is set so that 1) converges to 0.

S14では、S13において確定した目標内部EGR率rEGRn_trgに基づいて、ポンプロスが最小になるようにIN側VTCの目標位相角INVTC_trgに対する補正量に相当する位相角ずらし量ΔINVTC[deg.]を算出し(下記式(6−1)参照)、さらにこの補正値ΔINVTCと暫定値INVTC_trg0とを合算することにより、IN側VTCの目標位相角INVTC_trgを設定する(下記式(6−2)参照)。なお、下記式(6−1)では、IN側VTCの位相角1[deg.]と内部EGR率1[%]とが対応するとの仮定のもとで、ポンプロスが最小になるようなずらし量ΔINVTCを設定したが、本発明はこれに限るものではない。
In S14, based on the target internal EGR rate rEGRn_trg determined in S13, a phase angle shift amount ΔINVTC [deg.] Corresponding to the correction amount for the target phase angle INVTC_trg of the IN side VTC is calculated so that the pump loss is minimized ( The target phase angle INVTC_trg of the IN-side VTC is set by adding the correction value ΔINVTC and the provisional value INVTC_trg0 (see the following formula (6-1)) (see the following formula (6-2)). In the following equation (6-1), the shift amount that minimizes the pump loss is assumed on the assumption that the phase angle 1 [deg.] Of the IN-side VTC corresponds to the internal EGR rate 1 [%]. Although ΔINVTC is set, the present invention is not limited to this.

S15では、S14において、目標内部EGR率rEGRn_trgが実現されかつポンプロスが最小になるように確定したIN側VTCの目標位相角INVTC_trg(k)に基づいて、図12に例示するようなテーブルを検索することによって、目標最大工程容積Vmax_trg(k)を設定する。   In S15, a table as illustrated in FIG. 12 is searched based on the target phase angle INVTC_trg (k) of the IN-side VTC that is determined so that the target internal EGR rate rEGRn_trg is realized and the pump loss is minimized in S14. Thus, the target maximum process volume Vmax_trg (k) is set.

S16では、S15で確定した目標最大工程容積Vmax_trg(k)及び目標火種着火時期工程容積Vhidane_trg(k)に基づいて、下記式(7)によって目標火種着火時期実効圧縮比εHidane_trgを設定する。
In S16, the target fire type ignition timing effective compression ratio εHidane_trg is set by the following equation (7) based on the target maximum process volume Vmax_trg (k) and the target fire type ignition timing process volume Vhidane_trg (k) determined in S15.

S17では、S2で取得した筒内吸入ガス温度推定値TA_cylと、内部EGR温度推定値Tex_cylと、S13で設定した目標内部EGR率rEGRn_trgとに基づいて、下記式(8)によって圧縮初期における筒内温度の予測値に相当する予測圧縮初期温度T1_preを算出する。
In S17, based on the in-cylinder intake gas temperature estimated value TA_cyl, the internal EGR temperature estimated value Tex_cyl acquired in S2, and the target internal EGR rate rEGRn_trg set in S13, the in-cylinder at the initial stage of compression is expressed by the following equation (8). A predicted compression initial temperature T1_pre corresponding to the predicted temperature value is calculated.

S18では、S17で算出した予測圧縮初期温度T1_pre及びS16で設定した目標火種着火時期実効圧縮比εHidane_trgに基づいて、下記式(9)によって火種着火時期における筒内温度の予測値に相当する予測火種着火時期温度Thidane_pre[K]を算出する。
In S18, based on the predicted compression initial temperature T1_pre calculated in S17 and the target fire type ignition timing effective compression ratio εHidane_trg set in S16, the predicted fire type corresponding to the predicted value of the in-cylinder temperature at the fire type ignition timing by the following equation (9). Ignition timing temperature Thidane_pre [K] is calculated.

S19では、下記式(10)に示すように、S6で設定した目標火種着火時期温度THidane_trgとS18で算出した予測火種着火時期温度THidane_preとの差分値ΔTHidaneを算出する。上述のように、ここで算出した差分値ΔTHidaneは、次回の燃焼サイクル時の演算におけるフィードバック制御の入力として用いられる。
In S19, as shown in the following formula (10), a difference value ΔTHidane between the target fire type ignition timing temperature THidane_trg set in S6 and the predicted fire type ignition timing temperature THidane_pre calculated in S18 is calculated. As described above, the difference value ΔTHidane calculated here is used as an input for feedback control in the calculation at the next combustion cycle.

S20では、S13で設定した目標内部EGR率rEGRn_trgとIN側VTCの目標位相角INVTC_trgとに基づいて、図13に例示するようなマップを検索することによって、EX側VTCの位相角に対する目標値に相当する目標位相角EXVTC_trg[deg.]を設定し、この処理を終了する。   In S20, by searching a map as illustrated in FIG. 13 based on the target internal EGR rate rEGRn_trg set in S13 and the target phase angle INVTC_trg of the IN side VTC, the target value for the phase angle of the EX side VTC is obtained. The corresponding target phase angle EXVTC_trg [deg.] Is set, and this process ends.

次に、以上のような火種着火時期温度制御の効果について説明する。
図14は、上記火種着火時期温度制御のシミュレーションによる結果を示す図である。図14の上段は火種着火時期温度の目標値(太破線)とシミュレーション上での実値(細実線)の変化を示し、中段は目標火種着火時期実効圧縮比(破線)と目標内部EGR率(実線)の変化を示し、下段はIN側VTCの目標位相角(破線)とEX側VTCの目標位相角(実線)の変化を示す。
Next, the effect of the above-described fire type ignition timing temperature control will be described.
FIG. 14 is a diagram showing a result of simulation of the above-described fire type ignition timing temperature control. The upper part of FIG. 14 shows the change of the target value (thick broken line) of the ignition type ignition timing temperature and the actual value (thin solid line) in the simulation, and the middle part shows the target ignition type effective compression ratio (dashed line) and the target internal EGR rate ( The lower row shows changes in the target phase angle (broken line) of the IN side VTC and the target phase angle (solid line) of the EX side VTC.

また図14には、エンジン回転数NEを一定(1500[rpm])に保持したまま、要求トルクTRQを火種HCCI燃焼モードの範囲内で増減させた場合を示す。より具体的には、時刻t0〜t1の間で要求トルクTRQを一定の割合で増加させ、その後時刻t2〜t3の間で要求トルクTRQを一定の割合で減少させた。   FIG. 14 shows a case where the required torque TRQ is increased or decreased within the range of the fire type HCCI combustion mode while the engine speed NE is kept constant (1500 [rpm]). More specifically, the required torque TRQ was increased at a constant rate between times t0 and t1, and thereafter the required torque TRQ was decreased at a constant rate between times t2 and t3.

図14に示すように、目標火種着火時期温度は、回転数を一定に保ったまま要求トルクTRQを増加させると高くなり、要求トルクTRQを減少させると低くなる。目標火種着火時期温度が変化すると、これに合わせて目標火種着火時期圧縮比及び目標内部EGR率が設定される。また、IN側VTCの目標位相角及びEX側VTCの目標位相角は、これら目標火種着火温度、目標火種着火時期圧縮比、及び目標内部EGR率が実現されるように決定される。   As shown in FIG. 14, the target fire type ignition timing temperature increases when the required torque TRQ is increased while the rotation speed is kept constant, and decreases when the required torque TRQ is decreased. When the target fire type ignition timing temperature changes, the target fire type ignition timing compression ratio and the target internal EGR rate are set accordingly. Further, the target phase angle of the IN-side VTC and the target phase angle of the EX-side VTC are determined so as to realize the target fire type ignition temperature, the target fire type ignition timing compression ratio, and the target internal EGR rate.

以上のように、目標火種着火時期温度が実現されるように目標内部EGR率及び目標火種着火時期圧縮比を同時に制御することによって実際の火種着火時期温度を、その目標に対して±10[K]の範囲内で精度良く制御することができる。   As described above, by simultaneously controlling the target internal EGR rate and the target fire type ignition timing compression ratio so that the target fire type ignition timing temperature is realized, the actual fire type ignition timing temperature is ± 10 [K with respect to the target. ] Can be controlled with high accuracy within the range.

図15及び16は、上記火種着火時期温度制御の実機による結果を示す図である。図15の上段はトルクの変化を示し、中段は推定火種着火時期温度(濃い実線)及び目標火種着火時期温度(薄い実線)の変化を示し、下段は火種着火時期圧縮比(破線)及び実内部EGR率(実線)の変化を示す。図16の上段はIN側VTCの実位相角(実線)及びEX側VTCの実位相角(太破線)の変化を示し、下段は目標筒内最大圧位置(太実線)及び実筒内最大圧位置(細実線)の変化を示す。なお、上述のように目標筒内最大圧位置は、目標燃焼重心位置の代わりとなり得るパラメータである。また、図15及び16には、エンジン回転数NEを一定(1500[rpm])に保ったまま図15の上段に示すように間欠的に要求トルクTRQを上下に変化させた場合の結果を示す。   FIGS. 15 and 16 are diagrams showing the results of the above-mentioned fire type ignition timing temperature control by the actual machine. The upper part of FIG. 15 shows the change of torque, the middle part shows the change of the estimated ignition type ignition timing temperature (dark solid line) and the target ignition type ignition timing temperature (thin solid line), and the lower part shows the ignition type compression timing compression ratio (broken line) and the actual internal A change in the EGR rate (solid line) is shown. The upper part of FIG. 16 shows changes in the actual phase angle of the IN side VTC (solid line) and the actual phase angle of the EX side VTC (thick broken line), and the lower part shows the target in-cylinder maximum pressure position (thick solid line) and the actual in-cylinder maximum pressure. The change in position (thin solid line) is shown. As described above, the target in-cylinder maximum pressure position is a parameter that can be used instead of the target combustion gravity center position. 15 and 16 show the results when the required torque TRQ is intermittently changed up and down as shown in the upper part of FIG. 15 while keeping the engine speed NE constant (1500 [rpm]). .

図15の中段に示すように、本発明によれば、火種着火時期温度をその目標火種着火時期温度へ±10[K]の範囲内の高い精度で制御できることが、シミュレーションだけでなく実機でも検証された。また、図16の下段に示すように、本発明によれば火種着火時期温度をその目標に精度良く制御することにより、火種混合気を適切に燃焼させ、さらに筒内最大圧位置をその目標へ±5[deg.]の範囲内で高い精度で制御できることが検証された。   As shown in the middle of FIG. 15, according to the present invention, it is verified not only by simulation but also by an actual machine that the ignition type ignition timing temperature can be controlled to the target ignition type ignition timing temperature with high accuracy within a range of ± 10 [K]. It was done. In addition, as shown in the lower part of FIG. 16, according to the present invention, the ignition type ignition timing temperature is accurately controlled to the target, so that the ignition mixture is appropriately combusted, and the in-cylinder maximum pressure position is set to the target. It was verified that control can be performed with high accuracy within a range of ± 5 [deg.].

以上本発明の一実施形態について説明したが、本発明はこれに限らない。例えば、上記実施形態では、火種HCCI燃焼モードでは、火花プラグを利用して火種用混合気に着火する場合について説明したが、本発明はこれに限らない。火種用混合気は火花プラグを利用せずとも圧縮によって自着火する場合もあり、本発明はこのような場合にも適用できる。   Although one embodiment of the present invention has been described above, the present invention is not limited to this. For example, in the above-described embodiment, the case where the spark type mixture is ignited using the spark plug in the fire type HCCI combustion mode has been described, but the present invention is not limited thereto. In some cases, the air-fuel mixture for sparks is self-ignited by compression without using a spark plug, and the present invention can be applied to such a case.

1…エンジン(内燃機関)
14i…吸気バルブ
14e…排気バルブ
18i…IN側VTC(可変動弁機構)
18e…EX側VTC(可変動弁機構)
5…ECU(目標火種着火時期温度設定手段、火種着火時期温度予測手段、差分値算出手段、制御手段、気筒内状態検出手段)
61…筒内圧センサ(気筒内状態検出手段)
66…吸気センサ(気筒内状態検出手段)
67…排気温度センサ(気筒内状態検出手段)
1. Engine (internal combustion engine)
14i ... Intake valve 14e ... Exhaust valve 18i ... IN side VTC (Variable valve mechanism)
18e ... EX side VTC (Variable valve mechanism)
5 ... ECU (target fire type ignition timing temperature setting means, fire type ignition timing temperature prediction means, difference value calculation means, control means, in-cylinder state detection means)
61 ... In-cylinder pressure sensor (in-cylinder state detection means)
66. Intake sensor (in-cylinder state detection means)
67 ... Exhaust temperature sensor (in-cylinder state detection means)

Claims (3)

既燃ガスの一部を内部EGRガスとして気筒内に残留させるとともに、当該気筒内に形成された均質混合気内に火種用の燃料を噴射及び着火し、これを火種として均質混合気を圧縮着火によって燃焼させる火種補助圧縮着火式の内燃機関の制御装置であって、
内部EGR率及び実効圧縮比を変更可能な排気バルブ及び吸気バルブの可変動弁機構と、
火種用混合気の着火時期における筒内温度の目標である目標火種着火時期温度を設定する目標火種着火時期温度設定手段と、
前記目標火種着火時期温度が実現されるように、内部EGR率の目標である目標内部EGR率及び前記着火時期における実効圧縮比の目標である目標火種着火時期実効圧縮比を設定し、これら目標内部EGR率及び目標火種着火時期実効圧縮比に基づいて前記可変動弁機構を制御する制御手段と、を備えることを特徴とする内燃機関の制御装置。
A part of the burned gas is left in the cylinder as internal EGR gas, and the fuel for the fire type is injected and ignited in the homogeneous mixture formed in the cylinder, and the homogeneous mixture is compressed and ignited using this as a fire type. A control device for a combustion type auxiliary compression ignition type internal combustion engine to be burned by
A variable valve mechanism for an exhaust valve and an intake valve capable of changing an internal EGR rate and an effective compression ratio;
A target fire type ignition timing temperature setting means for setting a target fire type ignition timing temperature which is a target of the in-cylinder temperature at the ignition timing of the mixture for the fire type;
A target internal EGR rate that is a target of the internal EGR rate and a target fire type ignition timing effective compression ratio that is a target of the effective compression ratio at the ignition timing are set so that the target fire type ignition timing temperature is realized, And a control means for controlling the variable valve mechanism based on an EGR rate and a target ignition type ignition timing effective compression ratio.
前記気筒内の状態を検出する気筒内状態検出手段と、
前記気筒内状態検出手段の出力に基づいて前記着火時期における筒内温度の予測値である予測火種着火時期温度を算出する火種着火時期温度予測手段と、
前記目標火種着火時期温度と前記予測火種着火時期温度との差分値を算出する差分値算出手段と、をさらに備え、
前記制御手段は、前回の燃焼サイクル時に算出された前記差分値に基づくフィードバック制御によって前記目標内部EGR率及び前記目標火種着火時期実効圧縮比を設定することを特徴とする請求項1に記載の内燃機関の制御装置。
An in-cylinder state detecting means for detecting a state in the cylinder;
Fire type ignition timing temperature prediction means for calculating a predicted ignition type ignition timing temperature that is a predicted value of the in-cylinder temperature at the ignition timing based on the output of the in-cylinder state detection means;
A difference value calculating means for calculating a difference value between the target fire type ignition timing temperature and the predicted fire type ignition timing temperature;
2. The internal combustion engine according to claim 1, wherein the control unit sets the target internal EGR rate and the target fire type ignition timing effective compression ratio by feedback control based on the difference value calculated during the previous combustion cycle. Engine control device.
前記制御手段は、積分項を含むフィードバック制御アルゴリズムによって前記差分値が0に収束するように目標内部EGR率を設定し、当該目標内部EGR率に基づいてポンプロスが最小になるように目標火種着火時期実効圧縮比を設定することを特徴とする請求項2に記載の内燃機関の制御装置。   The control means sets a target internal EGR rate so that the difference value converges to 0 by a feedback control algorithm including an integral term, and a target fire type ignition timing so as to minimize the pump loss based on the target internal EGR rate. The control apparatus for an internal combustion engine according to claim 2, wherein an effective compression ratio is set.
JP2013164578A 2013-08-07 2013-08-07 Control device for internal combustion engine Expired - Fee Related JP6249667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013164578A JP6249667B2 (en) 2013-08-07 2013-08-07 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013164578A JP6249667B2 (en) 2013-08-07 2013-08-07 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2015034474A true JP2015034474A (en) 2015-02-19
JP6249667B2 JP6249667B2 (en) 2017-12-20

Family

ID=52543194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013164578A Expired - Fee Related JP6249667B2 (en) 2013-08-07 2013-08-07 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP6249667B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015034475A (en) * 2013-08-07 2015-02-19 本田技研工業株式会社 Control device of internal combustion engine
CN109154272A (en) * 2016-05-27 2019-01-04 日立汽车系统株式会社 Combustion engine control
DE102017222693A1 (en) * 2017-12-14 2019-06-19 Bayerische Motoren Werke Aktiengesellschaft Method for operating an internal combustion engine
CN110513211A (en) * 2018-05-22 2019-11-29 马自达汽车株式会社 The control device of compression ignition formula engine
CN110513200A (en) * 2018-05-22 2019-11-29 马自达汽车株式会社 The control device of compression ignition formula engine
CN110513207A (en) * 2018-05-22 2019-11-29 马自达汽车株式会社 The control device of compression ignition formula engine
CN110513208A (en) * 2018-05-22 2019-11-29 马自达汽车株式会社 The control device of compression ignition formula engine
CN110778410A (en) * 2018-07-26 2020-02-11 马自达汽车株式会社 Control device for compression ignition engine
CN111065807A (en) * 2017-08-25 2020-04-24 马自达汽车株式会社 Premixed compression ignition engine with supercharging system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10767577B2 (en) 2018-05-22 2020-09-08 Mazda Motor Corporation Method of implementing control logic of compression-ignition engine
JP6992675B2 (en) 2018-05-22 2022-01-13 マツダ株式会社 How to design the control logic of a compression ignition engine
JP7077769B2 (en) 2018-05-22 2022-05-31 マツダ株式会社 Compression ignition engine controller
JP2020070770A (en) * 2018-11-01 2020-05-07 マツダ株式会社 Control device for engine
JP2020070769A (en) * 2018-11-01 2020-05-07 マツダ株式会社 Control device for engine
JP7298282B2 (en) * 2019-05-08 2023-06-27 マツダ株式会社 engine controller

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289092A (en) * 2000-04-03 2001-10-19 Nissan Motor Co Ltd Compression self-ignition type internal combustion engine
JP2008163869A (en) * 2006-12-28 2008-07-17 Honda Motor Co Ltd Control device for internal combustion engine
JP2009197740A (en) * 2008-02-22 2009-09-03 Mazda Motor Corp Intake exhaust control method and intake exhaust control device for engine
JP2010144558A (en) * 2008-12-17 2010-07-01 Mazda Motor Corp Control method and control device for engine
JP2011153562A (en) * 2010-01-27 2011-08-11 Mazda Motor Corp Control device of spark ignition engine
JP2011153554A (en) * 2010-01-27 2011-08-11 Mazda Motor Corp Method and apparatus for controlling engine
JP2011153553A (en) * 2010-01-27 2011-08-11 Mazda Motor Corp Method and apparatus for controlling engine with supercharger
JP2011220121A (en) * 2010-04-05 2011-11-04 Honda Motor Co Ltd Internal combustion engine control device
JP2011252471A (en) * 2010-06-04 2011-12-15 Honda Motor Co Ltd Control device of internal combustion engine
JP2015034475A (en) * 2013-08-07 2015-02-19 本田技研工業株式会社 Control device of internal combustion engine

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289092A (en) * 2000-04-03 2001-10-19 Nissan Motor Co Ltd Compression self-ignition type internal combustion engine
JP2008163869A (en) * 2006-12-28 2008-07-17 Honda Motor Co Ltd Control device for internal combustion engine
JP2009197740A (en) * 2008-02-22 2009-09-03 Mazda Motor Corp Intake exhaust control method and intake exhaust control device for engine
JP2010144558A (en) * 2008-12-17 2010-07-01 Mazda Motor Corp Control method and control device for engine
JP2011153562A (en) * 2010-01-27 2011-08-11 Mazda Motor Corp Control device of spark ignition engine
JP2011153554A (en) * 2010-01-27 2011-08-11 Mazda Motor Corp Method and apparatus for controlling engine
JP2011153553A (en) * 2010-01-27 2011-08-11 Mazda Motor Corp Method and apparatus for controlling engine with supercharger
JP2011220121A (en) * 2010-04-05 2011-11-04 Honda Motor Co Ltd Internal combustion engine control device
JP2011252471A (en) * 2010-06-04 2011-12-15 Honda Motor Co Ltd Control device of internal combustion engine
JP2015034475A (en) * 2013-08-07 2015-02-19 本田技研工業株式会社 Control device of internal combustion engine

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015034475A (en) * 2013-08-07 2015-02-19 本田技研工業株式会社 Control device of internal combustion engine
CN109154272A (en) * 2016-05-27 2019-01-04 日立汽车系统株式会社 Combustion engine control
US10844826B2 (en) 2016-05-27 2020-11-24 Hitachi Automotive Systems, Ltd. Internal combustion engine control device
EP3467301A4 (en) * 2016-05-27 2020-01-22 Hitachi Automotive Systems, Ltd. Internal combustion engine control device
CN109154272B (en) * 2016-05-27 2020-08-28 日立汽车系统株式会社 Control device for internal combustion engine
EP3647574A4 (en) * 2017-08-25 2020-07-08 Mazda Motor Corporation Premixed compression ignition type engine with supercharging system
US10982616B2 (en) 2017-08-25 2021-04-20 Mazda Motor Corporation Premixed compression ignition type engine with supercharging system
CN111065807A (en) * 2017-08-25 2020-04-24 马自达汽车株式会社 Premixed compression ignition engine with supercharging system
DE102017222693A1 (en) * 2017-12-14 2019-06-19 Bayerische Motoren Werke Aktiengesellschaft Method for operating an internal combustion engine
DE102017222693B4 (en) * 2017-12-14 2021-03-18 Bayerische Motoren Werke Aktiengesellschaft Method for operating an internal combustion engine
CN110513200A (en) * 2018-05-22 2019-11-29 马自达汽车株式会社 The control device of compression ignition formula engine
CN110513208A (en) * 2018-05-22 2019-11-29 马自达汽车株式会社 The control device of compression ignition formula engine
CN110513207A (en) * 2018-05-22 2019-11-29 马自达汽车株式会社 The control device of compression ignition formula engine
CN110513211A (en) * 2018-05-22 2019-11-29 马自达汽车株式会社 The control device of compression ignition formula engine
CN110513211B (en) * 2018-05-22 2022-04-22 马自达汽车株式会社 Control device for compression ignition engine
CN110513207B (en) * 2018-05-22 2022-05-13 马自达汽车株式会社 Control device for compression ignition engine
CN110513200B (en) * 2018-05-22 2022-07-29 马自达汽车株式会社 Control device for compression ignition engine
CN110778410A (en) * 2018-07-26 2020-02-11 马自达汽车株式会社 Control device for compression ignition engine
CN110778410B (en) * 2018-07-26 2022-06-28 马自达汽车株式会社 Control device for compression ignition engine

Also Published As

Publication number Publication date
JP6249667B2 (en) 2017-12-20

Similar Documents

Publication Publication Date Title
JP6249667B2 (en) Control device for internal combustion engine
Fuerhapter et al. CSI-Controlled auto ignition—the best solution for the fuel consumption—versus emission trade-off?
US8165779B2 (en) Cascade control of HCCI phasing
US7370616B2 (en) Method for transition between controlled auto-ignition and spark ignition modes in direct fuel injection engines
JP5915472B2 (en) Spark ignition direct injection engine
JP4421607B2 (en) EGR control device for internal combustion engine
US9650984B2 (en) Control system for gasoline engine
US8469002B2 (en) Combustion phasing control in spark-assisted HCCI combustion mode
US9284906B2 (en) Combustion phasing control methodology in HCCI combustion
JP2008069785A (en) Engine system and method of controlling engine
JP2010236496A (en) Method and device for controlling internal combustion engine
JP2009097365A (en) Premixed compression-ignition engine
JP5055245B2 (en) Control device for compression self-ignition internal combustion engine
WO2009081644A1 (en) Ignition timing control device for internal-combustion engine
JP6249668B2 (en) Control device for internal combustion engine
JP4952732B2 (en) Internal combustion engine control method and internal combustion engine control system
JP2011153562A (en) Control device of spark ignition engine
JP4561694B2 (en) Premixed compression self-ignition internal combustion engine
JP2010236497A (en) Method and device for controlling internal combustion engine
JP6292408B2 (en) Engine control device
JP2007056798A (en) Controller for internal combustion engine
JP2009228510A (en) Internal egr control device for internal combustion engine
JP5552869B2 (en) Engine control device
JP2009250055A (en) Internal egr control device for internal combustion engine
JP2014185624A (en) Control device of spark ignition type engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171121

R150 Certificate of patent or registration of utility model

Ref document number: 6249667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees