JP2015032774A - Manufacturing method for solar battery - Google Patents

Manufacturing method for solar battery Download PDF

Info

Publication number
JP2015032774A
JP2015032774A JP2013163104A JP2013163104A JP2015032774A JP 2015032774 A JP2015032774 A JP 2015032774A JP 2013163104 A JP2013163104 A JP 2013163104A JP 2013163104 A JP2013163104 A JP 2013163104A JP 2015032774 A JP2015032774 A JP 2015032774A
Authority
JP
Japan
Prior art keywords
light absorption
copper
absorption layer
layer
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013163104A
Other languages
Japanese (ja)
Inventor
康之 石井
Yasuyuki Ishii
康之 石井
廣田 亮
Ryo Hirota
亮 廣田
俊介 小西
Shunsuke Konishi
俊介 小西
健太郎 松永
Kentaro Matsunaga
健太郎 松永
寛幸 後藤
Hiroyuki Goto
寛幸 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2013163104A priority Critical patent/JP2015032774A/en
Publication of JP2015032774A publication Critical patent/JP2015032774A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Weting (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method for solar battery, capable of enhancing power generation performance by lowering, to a suitable range, a copper/group-III element ratio of a surface layer of a light absorption layer of a chalcopyrite light absorption layer by selenide method.SOLUTION: A light absorption layer is immersed into ammonia aqueous solution containing a trace quantity of zinc sulfate. Copper and group-III element of a surface layer are removed by ammonia, however, removal of the group-III element is suppressed by zinc sulfate and thus copper/group-III element ratio can be lowered to achieve a suitable value.

Description

本発明は、カルコパイライト型光吸収層を主要素とする太陽電池の製造方法に関する。   The present invention relates to a method for manufacturing a solar cell having a chalcopyrite light absorption layer as a main element.

火力発電や原子力発電を補う発電技術の一つが太陽光発電である。太陽光発電では太陽光を太陽電池で電気エネルギーに変換する。太陽電池はシリコン結晶やシリコンアモルファスを基本とするものや、化合物半導体を基本とするものが知られている。   One power generation technology that supplements thermal power generation and nuclear power generation is solar power generation. In solar power generation, sunlight is converted into electrical energy by a solar cell. Solar cells based on silicon crystals or silicon amorphous and those based on compound semiconductors are known.

そして、化合物半導体として、Cu(In、Ga)Seなどのカルコパイライト型化合物を光吸収層とする太陽電池の製造方法が提案されてきた(例えば、特許文献1参照)。 Then, as the compound semiconductor, Cu (In, Ga) method of manufacturing a solar cell according to the light absorbing layer a chalcopyrite-type compound, such as Se 2 has been proposed (e.g., see Patent Document 1).

特許文献1に記載されるように、カルコパイライト型光吸収層の形成法として、表面電極上に金属プリカーサを形成した後、セレン化水素雰囲気中で熱処理を行い、前記金属プリカーサをセレン化することでカルコパイライト型光吸収層を形成する、所謂セレン化法が知られている。この方法は、蒸着など他の方法に比べ量産性に優れる特徴を有する。   As described in Patent Document 1, as a method for forming a chalcopyrite type light absorption layer, after forming a metal precursor on a surface electrode, heat treatment is performed in a hydrogen selenide atmosphere to selenize the metal precursor. A so-called selenization method for forming a chalcopyrite type light absorption layer is known. This method has a feature that is superior in mass productivity compared to other methods such as vapor deposition.

上述のようにカルコパイライト型光吸収層を形成した後、さらに化学浴堆積法などの方法により硫化カドミウムや硫化インジウムなどのバッファ層を積層する。バッファ層はn型半導体、カルコパイライト型光吸収層はp型半導体であり、光吸収層とバッファ層の界面でpn接合が形成されることになる。バッファ層に次いで、アルミニウム添加酸化亜鉛等の透明電極層が形成される。   After the chalcopyrite type light absorption layer is formed as described above, a buffer layer such as cadmium sulfide or indium sulfide is further laminated by a method such as chemical bath deposition. The buffer layer is an n-type semiconductor, the chalcopyrite light absorption layer is a p-type semiconductor, and a pn junction is formed at the interface between the light absorption layer and the buffer layer. After the buffer layer, a transparent electrode layer such as aluminum-added zinc oxide is formed.

上述のカルコパイライト型光吸収層を持つ太陽電池は、光エネルギーにより励起された電子やホールを電力として取り出すが、光吸収層中の欠陥により前記励起した電子とホールが再結合してしまい、取り出せる電力が減少してしまうことがあった。前記再結合の要因の一つとして、光吸収層の成分である銅とIII族元素の含有比率(モル比)が関係し、よって銅/III族元素比率を約0.9〜1.1にすることが望ましいとされる。しかし、上述のセレン化法でカルコパイライト型光吸収層を形成した場合、表層の銅(Cu)/III族元素比率が、1.1より大きくなり易いという傾向があった。   The solar cell having the above chalcopyrite type light absorption layer takes out electrons and holes excited by light energy as electric power, but the excited electrons and holes are recombined due to defects in the light absorption layer and can be taken out. The power may decrease. As one of the factors of the recombination, the content ratio (molar ratio) of copper and the group III element, which are components of the light absorption layer, is related, so that the copper / group III element ratio is about 0.9 to 1.1. It is desirable to do. However, when the chalcopyrite type light absorption layer is formed by the above selenization method, the copper (Cu) / III group element ratio of the surface layer tends to be larger than 1.1.

特開2003−282908号公報JP 2003-282908 A

本発明は、上述の問題に鑑み、カルコパイライト型光吸収層の表層の銅/III族元素比率を好適な範囲とし、発電性能を向上させる太陽電池の製造方法を提供することを課題とする。   This invention makes it a subject to provide the manufacturing method of the solar cell which makes the copper / III group element ratio of the surface layer of a chalcopyrite type light absorption layer into a suitable range, and improves electric power generation performance in view of the above-mentioned problem.

請求項1に係る発明は、成分として銅およびIII族元素を含むカルコパイライト型光吸収層を形成する光吸収層形成工程と、前記光吸収層の上にバッファ層を形成するバッファ層形成工程を含む太陽電池の製造方法において、
前記光吸収層形成工程の後で且つ前記バッファ層形成工程の前に、硫酸亜鉛及びアンモニアを含む水溶液に前記光吸収層を浸漬して前記光吸収層の表層の銅/III族元素比率を低減させる銅低減工程を介在させることを特徴とする。
The invention according to claim 1 includes a light absorption layer forming step of forming a chalcopyrite type light absorption layer containing copper and a group III element as components, and a buffer layer formation step of forming a buffer layer on the light absorption layer. In the manufacturing method of the solar cell including,
After the light absorbing layer forming step and before the buffer layer forming step, the light absorbing layer is immersed in an aqueous solution containing zinc sulfate and ammonia to reduce the copper / III group element ratio of the surface layer of the light absorbing layer. It is characterized by interposing a copper reduction step.

請求項2に係る発明では、III族元素は、インジウム及び/又はガリウムであることを特徴とする。   The invention according to claim 2 is characterized in that the group III element is indium and / or gallium.

請求項3に係る発明では、水溶液中の硫酸亜鉛の濃度は、1リットル当たり4〜10ミリモルであることを特徴とする。   The invention according to claim 3 is characterized in that the concentration of zinc sulfate in the aqueous solution is 4 to 10 mmol per liter.

請求項1に係る発明では、アンモニアに硫酸亜鉛を加えた水溶液に光吸収層を浸積するようにした。   In the invention according to claim 1, the light absorption layer is immersed in an aqueous solution in which zinc sulfate is added to ammonia.

定かなことは明らかではないが、実験から、アンモニアにより銅およびIII族元素が除去されるが、硫酸亜鉛の作用によりIII族元素の除去は抑制されることが確認できた。主として銅がエッチング除去され、III族元素が残るため、銅/III族元素比率が低下する。このようにして光吸収層の表層の銅/III族元素比率を好適な比率にすることができ、発電性能を向上させることができる。   Although it is not clear, it was confirmed from experiments that copper and group III elements are removed by ammonia, but removal of group III elements is suppressed by the action of zinc sulfate. Since copper is mainly removed by etching and the group III element remains, the copper / group III element ratio decreases. Thus, the copper / III group element ratio of the surface layer of the light absorption layer can be set to a suitable ratio, and the power generation performance can be improved.

請求項2に係る発明では、III族元素がインジウム及び/又はガリウムであるため、銅とインジウムとガリウムとセレンを主成分とする、発電性能が良好なCIGS太陽電池が得られる。   In the invention according to claim 2, since the group III element is indium and / or gallium, a CIGS solar cell having copper, indium, gallium, and selenium as main components and good power generation performance can be obtained.

請求項3に係る発明では、水溶液中の硫酸亜鉛の濃度は、1リットル当たり4〜10ミリモルとする。この範囲であると、III族元素の除去を抑制することができるとともに光吸収層中への亜鉛の進入が無く、光吸収層への亜鉛の影響を排除できる。   In the invention which concerns on Claim 3, the density | concentration of the zinc sulfate in aqueous solution shall be 4-10 mmol per liter. Within this range, removal of the group III element can be suppressed, and zinc does not enter the light absorption layer, so that the influence of zinc on the light absorption layer can be eliminated.

本発明に係る太陽電池の製造工程を説明するフロー図である。It is a flowchart explaining the manufacturing process of the solar cell which concerns on this invention. 銅/III族元素の比率を調べたグラフである。It is the graph which investigated the ratio of the copper / III group element. 開放電圧と電流密度の相関を調べたグラフである。It is the graph which investigated the correlation of an open circuit voltage and current density.

本発明の実施の形態を添付図に基づいて以下に説明する。なお、図面は符号の向きに見るものとする。   Embodiments of the present invention will be described below with reference to the accompanying drawings. The drawings are viewed in the direction of the reference numerals.

図1(a)に示すように、ガラス基板11上に裏電極12を成膜する。
次に、図1(b)に示すように、インジウムターゲット13を用いたスパッタリングにより、裏電極12上にインジウム層14を形成する。
次に、図1(c)に示すように、銅−ガリウム合金ターゲット15を用いたスパッタリングにより、インジウム層14上に銅−ガリウム合金層16を形成する。
As shown in FIG. 1A, a back electrode 12 is formed on a glass substrate 11.
Next, as shown in FIG. 1B, an indium layer 14 is formed on the back electrode 12 by sputtering using an indium target 13.
Next, as shown in FIG. 1C, a copper-gallium alloy layer 16 is formed on the indium layer 14 by sputtering using a copper-gallium alloy target 15.

次に、図1(d)に示すように、セレン化炉18に装入し、高温のセレン化水素雰囲気中でセレン化処理する。結果、銅、インジウム、ガリウム、セレンからなるカルコパイライト型光吸収層19が形成される(光吸収層形成工程)。   Next, as shown in FIG.1 (d), it inserts into the selenization furnace 18, and selenizes in a high temperature hydrogen selenide atmosphere. As a result, a chalcopyrite light absorption layer 19 made of copper, indium, gallium, and selenium is formed (light absorption layer forming step).

次に、図1(e)に示すように、硫酸亜鉛及びアンモニアを含む水溶液21を満たしたエッチング槽22に、光吸収層19などを浸積する。
水溶液21は、純水に、アンモニアと硫酸亜鉛をそれぞれ、400〜4000ミリモル/リットル(0.4〜4.0M/l)、4〜10ミリモル/リットルの濃度で溶解させたアルカリ性溶液である。室温(25℃)〜60℃の温度に保った水溶液21に光吸収層19などを1〜60分間浸積する。この条件で、図1(e)にて光吸収層19の表層を処理する。この処理により主として銅成分が除去される(銅低減工程)。
Next, as shown in FIG. 1E, the light absorption layer 19 and the like are immersed in an etching tank 22 filled with an aqueous solution 21 containing zinc sulfate and ammonia.
The aqueous solution 21 is an alkaline solution in which ammonia and zinc sulfate are dissolved in pure water at a concentration of 400 to 4000 mmol / liter (0.4 to 4.0 M / l) and 4 to 10 mmol / liter, respectively. The light absorption layer 19 and the like are immersed in the aqueous solution 21 maintained at room temperature (25 ° C.) to 60 ° C. for 1 to 60 minutes. Under this condition, the surface layer of the light absorption layer 19 is processed in FIG. This treatment mainly removes the copper component (copper reduction process).

次に、図1(f)に示すように、光吸収層19の上にn型のバッファ層23を形成し、図1(g)に示すように、バッファ層23の上にスパッタリングにより透明電極24を形成する。以上により、太陽電池10ができあがった。   Next, as shown in FIG. 1 (f), an n-type buffer layer 23 is formed on the light absorbing layer 19, and as shown in FIG. 1 (g), a transparent electrode is formed on the buffer layer 23 by sputtering. 24 is formed. Thus, the solar cell 10 was completed.

図1(e)で説明した銅低減工程を行った実施例と、行わなかった比較例を比較検討する。すなわち、図1(a)〜(g)の全てを実施するものを「実施例」、図1(e)が実施されず、図1(a)〜(d)及び(f)、(g)を実施するものを「比較例」と呼ぶ。   An example in which the copper reduction process described in FIG. 1E was performed and a comparative example in which the copper reduction process was not performed will be compared. That is, what implements all of FIG.1 (a)-(g) is an "Example", FIG.1 (e) is not implemented, FIG.1 (a)-(d) and (f), (g). What implements is called a “comparative example”.

先ず、光吸収層19における銅/III族元素比率を調査した。
図2に示すように、実施例・比較例とも光吸収層の表層において銅/III族元素比率が増加する傾向にある。しかし、比較例では銅/III族元素比率が1.25であったが、実施例では1.08と比較例よりも比率を低下させ、1.1以下とすることができた。
First, the copper / group III element ratio in the light absorption layer 19 was investigated.
As shown in FIG. 2, the copper / group III element ratio tends to increase in the surface layer of the light absorption layer in both the example and the comparative example. However, in the comparative example, the copper / III element ratio was 1.25, but in the example, the ratio was 1.08, which was lower than that of the comparative example, and could be 1.1 or less.

次いで、実施例と比較例の太陽電池を対象に、開放電圧と電流密度(電池単位面積当たりの出力電流)の測定からI−V特性を評価した。   Next, the IV characteristics were evaluated by measuring the open circuit voltage and current density (output current per unit area of the battery) for the solar cells of the example and the comparative example.

図3に実施例および比較例のI−V特性を示す。波線は比較例、実線は実施例である。
このI−V特性によれば、実施例の最大電力は点P1で得られ、比較例の最大電力はP2で得られる。実施例と比較例の最大電力を比較すると、実施例の方が比較例よりも3%出力が向上していた。
FIG. 3 shows the IV characteristics of the example and the comparative example. The wavy line is a comparative example, and the solid line is an example.
According to this IV characteristic, the maximum power of the example is obtained at the point P1, and the maximum power of the comparative example is obtained at P2. Comparing the maximum power of the example and the comparative example, the output of the example was improved by 3% compared to the comparative example.

この出力向上は、図2において、銅/III族元素比率1.25を、1.08に改善したことに基づくと考えられる。
本発明方法によれば、光吸収層の表層における銅成分を減少させつつもIII族元素の減少を抑制し、もって銅/III族元素比率を低減させて発電性能を向上させることができる。
This output improvement is considered to be based on the fact that the copper / III group element ratio of 1.25 in FIG. 2 is improved to 1.08.
According to the method of the present invention, it is possible to improve the power generation performance by reducing the group III element while reducing the copper component in the surface layer of the light absorption layer and thereby reducing the copper / group III element ratio.

尚、図1の工程図は好適例を示したものであって、本発明の工程以外は適宜変更可能である。   The process diagram of FIG. 1 shows a preferred example, and other than the process of the present invention can be changed as appropriate.

本発明は、カルコパイライト型光吸収層を主要素とする太陽電池の製造方法に好適である。   The present invention is suitable for a method for manufacturing a solar cell having a chalcopyrite light absorption layer as a main element.

10…太陽電池、19…カルコパイライト型光吸収層(光吸収層)、21…水溶液、23…バッファ層。   DESCRIPTION OF SYMBOLS 10 ... Solar cell, 19 ... Chalcopyrite type light absorption layer (light absorption layer), 21 ... Aqueous solution, 23 ... Buffer layer.

Claims (3)

成分として銅およびIII族元素を含むカルコパイライト型光吸収層を形成する光吸収層形成工程と、前記光吸収層の上にバッファ層を形成するバッファ層形成工程を含む太陽電池の製造方法において、
前記光吸収層形成工程の後で且つ前記バッファ層形成工程の前に、硫酸亜鉛及びアンモニアを含む水溶液に前記光吸収層を浸漬して前記光吸収層の表層の銅/III族元素比率を低減させる銅低減工程を介在させることを特徴とする太陽電池の製造方法。
In a solar cell manufacturing method including a light absorption layer forming step of forming a chalcopyrite type light absorption layer containing copper and a group III element as a component, and a buffer layer formation step of forming a buffer layer on the light absorption layer,
After the light absorbing layer forming step and before the buffer layer forming step, the light absorbing layer is immersed in an aqueous solution containing zinc sulfate and ammonia to reduce the copper / III group element ratio of the surface layer of the light absorbing layer. The manufacturing method of the solar cell characterized by interposing the copper reduction process to be made.
前記III族元素は、インジウム及び/又はガリウムであることを特徴とする請求項1記載の太陽電池の製造方法。   The method for manufacturing a solar cell according to claim 1, wherein the group III element is indium and / or gallium. 前記水溶液中の前記硫酸亜鉛の濃度は、1リットル当たり4〜10ミリモルであることを特徴とする請求項1又は請求項2記載の太陽電池の製造方法。   The method for manufacturing a solar cell according to claim 1 or 2, wherein the concentration of the zinc sulfate in the aqueous solution is 4 to 10 mmol per liter.
JP2013163104A 2013-08-06 2013-08-06 Manufacturing method for solar battery Pending JP2015032774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013163104A JP2015032774A (en) 2013-08-06 2013-08-06 Manufacturing method for solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013163104A JP2015032774A (en) 2013-08-06 2013-08-06 Manufacturing method for solar battery

Publications (1)

Publication Number Publication Date
JP2015032774A true JP2015032774A (en) 2015-02-16

Family

ID=52517831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013163104A Pending JP2015032774A (en) 2013-08-06 2013-08-06 Manufacturing method for solar battery

Country Status (1)

Country Link
JP (1) JP2015032774A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208792A (en) * 1999-01-14 2000-07-28 Matsushita Electric Ind Co Ltd Compound semiconductor thin film, its manufacture and solar cell using the same
JP2004015039A (en) * 2002-06-05 2004-01-15 Honda Motor Co Ltd Compound thin film solar cell and method for manufacturing the same
JP2011159651A (en) * 2010-01-29 2011-08-18 Fujifilm Corp Method of manufacturing photoelectric conversion device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208792A (en) * 1999-01-14 2000-07-28 Matsushita Electric Ind Co Ltd Compound semiconductor thin film, its manufacture and solar cell using the same
JP2004015039A (en) * 2002-06-05 2004-01-15 Honda Motor Co Ltd Compound thin film solar cell and method for manufacturing the same
JP2011159651A (en) * 2010-01-29 2011-08-18 Fujifilm Corp Method of manufacturing photoelectric conversion device

Similar Documents

Publication Publication Date Title
Wang Progress in thin film solar cells based on
Goetzberger et al. Photovoltaic materials, history, status and outlook
Feng et al. Theoretical simulations of the effects of the indium content, thickness, and defect density of the i-layer on the performance of pin InGaN single homojunction solar cells
Deligianni et al. The next frontier: electrodeposition for solar cell fabrication
KR101626248B1 (en) Silicon solar cell and method of manufacturing the same
US8871560B2 (en) Plasma annealing of thin film solar cells
US20110011451A1 (en) Integrated structure of cis based solar cell
US20110018089A1 (en) Stack structure and integrated structure of cis based solar cell
Chantana et al. Heterointerface recombination of Cu (In, Ga)(S, Se) 2‐based solar cells with different buffer layers
Chantana et al. Enhancement of photovoltaic performances of Cu (In, Ga)(S, Se) 2 solar cell through combination of heat‐light soaking and light soaking processes
CN105514182A (en) Method, material and application for solar energy battery surface passivation and current collection
JP2015508239A (en) Compound semiconductor solar cell
Wijesinghe et al. Defect engineering in antimony selenide thin film solar cells
Li et al. CZTSSe solar cells: insights into interface engineering
Tao Screen-printed front junction n-type silicon solar cells
Dang Nanostructured semiconductor device design in solar cells
KR101181095B1 (en) Solar cell and method for manufacturing the same
Ma et al. Effects of CuAlO2 on the heterojunction interface and performance of Cu2ZnSn (S, Se) 4 thin-film solar cells
JP2015032774A (en) Manufacturing method for solar battery
KR20090065894A (en) Tandem structure cigs solar cell and method for manufacturing the same
US20140315348A1 (en) Thin film solar cell
Buldu et al. A multi-stack Al 2 O 3/HfO 2 design with contact openings for front surface of Cu (In, Ga) Se 2 solar cells
KR102212042B1 (en) Solar cell comprising buffer layer formed by atomic layer deposition and method of fabricating the same
KR101459041B1 (en) Thin film solar cell and Method of fabricating the same
CN114744064B (en) Solar cell, production method and photovoltaic module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151126

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170228