JP2015032529A - Sulfide-based solid electrolyte - Google Patents

Sulfide-based solid electrolyte Download PDF

Info

Publication number
JP2015032529A
JP2015032529A JP2013162929A JP2013162929A JP2015032529A JP 2015032529 A JP2015032529 A JP 2015032529A JP 2013162929 A JP2013162929 A JP 2013162929A JP 2013162929 A JP2013162929 A JP 2013162929A JP 2015032529 A JP2015032529 A JP 2015032529A
Authority
JP
Japan
Prior art keywords
sulfide
solid electrolyte
based solid
lif
lii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013162929A
Other languages
Japanese (ja)
Inventor
重規 濱
Shigeki Hama
重規 濱
真由子 大崎
Mayuko Osaki
真由子 大崎
志寿香 増岡
Shizuka Masuoka
志寿香 増岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013162929A priority Critical patent/JP2015032529A/en
Publication of JP2015032529A publication Critical patent/JP2015032529A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a sulfide-based solid electrolyte in which the reduction in ion conductivity is suppressed.SOLUTION: A sulfide-based solid electrolyte comprises LiX (where X represents, of Cl, I, Br and F, two or more elements including F); LiF accounts for 15-25 mol% of the total amount of LiX.

Description

本発明は、硫化物系固体電解質に関する。   The present invention relates to a sulfide-based solid electrolyte.

難燃性の固体電解質を用いた固体電解質層を有する金属イオン二次電池(例えば、リチウムイオン二次電池等。以下において「全固体電池」ということがある。)は、安全性を確保するためのシステムを簡素化しやすい等の長所を有している。   A metal ion secondary battery having a solid electrolyte layer using a flame retardant solid electrolyte (for example, a lithium ion secondary battery, etc., hereinafter sometimes referred to as “all solid battery”) is used for ensuring safety. It has advantages such as easy to simplify the system.

このような全固体電池に関する技術として、例えば特許文献1には、硫化物系固体電解質に関する技術が開示されている。また、特許文献2には、LiF、LiIを用いた硫化物系固体電解質について開示されている。   As a technique related to such an all-solid battery, for example, Patent Document 1 discloses a technique related to a sulfide-based solid electrolyte. Patent Document 2 discloses a sulfide-based solid electrolyte using LiF and LiI.

特開2012−054212号公報JP 2012-054212 A 特開2012−243496号公報JP 2012-24396 A

特許文献1に開示されているような硫化物系固体電解は、水分が付着するとイオン伝導度が低下するという問題があった。特許文献2には、このようなイオン伝導度の低下を抑制する方法について記載されていない。   The sulfide-based solid electrolysis disclosed in Patent Document 1 has a problem that the ionic conductivity decreases when moisture adheres. Patent Document 2 does not describe a method for suppressing such a decrease in ion conductivity.

そこで本発明は、イオン伝導度の低下が抑制される硫化物系固体電解質を提供することを課題とする。   Then, this invention makes it a subject to provide the sulfide type solid electrolyte by which the fall of an ionic conductivity is suppressed.

上記課題を解決するために、本発明は以下の手段をとる。すなわち、
本発明は、LiX(ただし、XはCl、I、Br、FのうちFを含む2種以上)を含み、LiX全体のうち15mol%以上25mol%以下はLiFである、硫化物系固体電解質である。
In order to solve the above problems, the present invention takes the following means. That is,
The present invention relates to a sulfide-based solid electrolyte that contains LiX (where X is two or more of F containing Cl, I, Br, and F), and 15 mol% to 25 mol% of LiX is LiF. is there.

本発明によれば、イオン伝導度の低下が抑制される硫化物系固体電解質を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the sulfide type solid electrolyte by which the fall of ionic conductivity is suppressed can be provided.

Liのハロゲン化物について水和のしやすさを示したグラフである。It is the graph which showed the ease of hydration about the halide of Li. 硫化物系固体電解質に含まれるLiFの割合とイオン伝導度との関係を示したグラフである。It is the graph which showed the relationship between the ratio of LiF contained in sulfide type solid electrolyte, and ionic conductivity.

本発明の上記した作用及び利得は、次に説明する発明を実施するための形態から明らかにされる。以下本発明を図面に示す実施形態に基づき説明する。ただし本発明は当該実施形態に限定されるものではない。   The above-described operation and gain of the present invention will be clarified from embodiments for carrying out the invention described below. Hereinafter, the present invention will be described based on embodiments shown in the drawings. However, the present invention is not limited to the embodiment.

硫化物系固体電解質は水分の付着によってイオン伝導度が低下する。本発明者は、硫化物系固体電解質にLiFを所定量含有させることによって、水分の吸着を抑制し、イオン伝導度の低下を抑えられることを見出した。   The sulfide-based solid electrolyte has a reduced ionic conductivity due to adhesion of moisture. The present inventor has found that by containing a predetermined amount of LiF in the sulfide-based solid electrolyte, adsorption of moisture can be suppressed and a decrease in ionic conductivity can be suppressed.

硫化物系固体電解質に通常用いられるLiPSやLiIといった材料は水和しやすい。そのため、硫化物系固体電解質にLiI等を含有させると硫化物系固体電解質が水分を吸着しやすくなる。図1は、Liのハロゲン化物について水和のしやすさを示したグラフである。なお、図1には実験値と計算値を示している。 Materials such as Li 3 PS 4 and LiI that are usually used for sulfide-based solid electrolytes are easily hydrated. For this reason, when the sulfide-based solid electrolyte contains LiI or the like, the sulfide-based solid electrolyte easily adsorbs moisture. FIG. 1 is a graph showing the ease of hydration of Li halides. FIG. 1 shows experimental values and calculated values.

図1に示したように、LiIは水和しやすいのに対して、LiFは水和し難いことがわかる。そこで、本発明者は、硫化物系固体電解質に水和し難い材料であるLiFを所定量添加した。その結果、イオン伝導度の低下を抑制することができた。ただし、LiFは他のLiのハロゲン化物に比べてイオン伝導度が低い。そのため、LiFを過剰に添加すると硫化物系固体電解質のイオン伝導度を低下させる虞がある。これらの観点から、本発明の硫化物系固体電解質は、LiX(ただし、XはCl、I、Br、FのうちFを含む2種以上)を含み、LiX全体のうち15mol%以上25mol%以下はLiFである。   As shown in FIG. 1, it can be seen that LiI is easy to hydrate, whereas LiF is difficult to hydrate. Therefore, the present inventor added a predetermined amount of LiF, which is a material that is difficult to hydrate, to the sulfide-based solid electrolyte. As a result, a decrease in ionic conductivity could be suppressed. However, LiF has lower ionic conductivity than other Li halides. Therefore, if LiF is added excessively, the ionic conductivity of the sulfide-based solid electrolyte may be reduced. From these viewpoints, the sulfide-based solid electrolyte of the present invention contains LiX (where X is two or more of F containing Cl, I, Br, and F), and 15 mol% or more and 25 mol% or less of the entire LiX. Is LiF.

本発明の硫化物系固体電解質としては、LiPSを含有する硫化物系固体電解質を用いることができる。このような硫化物系固体電解質を用いることによって、Liイオンを伝導しやすくなる。また、本発明の硫化物系固体電解質は露点が−60℃以上の環境で作製されることが好ましい。このような環境で作製することによって、水分の付着を抑制できる。 As the sulfide-based solid electrolyte of the present invention, a sulfide-based solid electrolyte containing Li 3 PS 4 can be used. By using such a sulfide-based solid electrolyte, it becomes easier to conduct Li ions. The sulfide solid electrolyte of the present invention is preferably produced in an environment having a dew point of −60 ° C. or higher. By manufacturing in such an environment, adhesion of moisture can be suppressed.

上述した本発明の硫化物系固体電解質は、電池の電極、電解質層に用いることができる。すなわち、当該硫化物系固体電解質を用いて電極や電池(積層電池を含む。)を構成することができる。   The sulfide-based solid electrolyte of the present invention described above can be used for battery electrodes and electrolyte layers. That is, an electrode and a battery (including a laminated battery) can be configured using the sulfide-based solid electrolyte.

(実施例1)
LiS(日本化学工業社製)とP(アルドリッチ社製)とを出発原料として、LiSを0.5770g、Pを0.9305g、LiIを0.4762g、LiFを0.0163g秤量し、それらをメノウ乳鉢で5分間混合した。その後、ヘプタンを4g加え、遊星ボールミル(45cc、ZrOポット、φ5mmZrOボール53g)を用いて、500rpmで20時間メカニカルミリングした。その後、ホットプレートを用いて120℃で1時間加熱することによってヘプタンを除去し、硫化物系固体電解質を得た。なお、実施例1の硫化物系固体電解質では、LiIとLiFとの合計量に対するLiFの割合は15mol%である。
Example 1
Starting from Li 2 S (manufactured by Nippon Kagaku Kogyo Co., Ltd.) and P 2 S 5 (manufactured by Aldrich), Li 2 S is 0.5770 g, P 2 S 5 is 0.9305 g, LiI is 0.4762 g, LiF 0.0163 g was weighed and mixed in an agate mortar for 5 minutes. Thereafter, 4 g of heptane was added, and mechanical milling was performed at 500 rpm for 20 hours using a planetary ball mill (45 cc, ZrO 2 pot, φ5 mm ZrO 2 ball 53 g). Then, heptane was removed by heating at 120 ° C. for 1 hour using a hot plate to obtain a sulfide-based solid electrolyte. In the sulfide-based solid electrolyte of Example 1, the ratio of LiF to the total amount of LiI and LiF is 15 mol%.

(実施例2)
LiS(日本化学工業社製)とP(アルドリッチ社製)とを出発原料として、LiSを0.5904g、Pを0.9520g、LiIを0.4299g、LiFを0.0278g用いた以外は実施例1と同様にして硫化物系固体電解質を得た。なお、実施例2の硫化物系固体電解質では、LiIとLiFとの合計量に対するLiFの割合は25mol%である。
(Example 2)
Starting from Li 2 S (manufactured by Nippon Chemical Industry Co., Ltd.) and P 2 S 5 (manufactured by Aldrich), Li 2 S is 0.5904 g, P 2 S 5 is 0.9520 g, LiI is 0.4299 g, LiF A sulfide-based solid electrolyte was obtained in the same manner as in Example 1 except that 0.0278 g was used. In the sulfide-based solid electrolyte of Example 2, the ratio of LiF to the total amount of LiI and LiF is 25 mol%.

(比較例1)
LiS(日本化学工業社製)とP(アルドリッチ社製)とを出発原料として、LiSを0.55816g、Pを0.9000g、LiIを0.5419g用いた以外は実施例1と同様にして硫化物系固体電解質を得た。なお、比較例1の硫化物系固体電解質ではLiFを用いていない。
(Comparative Example 1)
Using Li 2 S (manufactured by Nippon Chemical Industry Co., Ltd.) and P 2 S 5 (manufactured by Aldrich) as starting materials, Li 2 S was used at 0.55816 g, P 2 S 5 at 0.9000 g, and LiI at 0.5419 g. Except for this, a sulfide-based solid electrolyte was obtained in the same manner as in Example 1. Note that the sulfide-based solid electrolyte of Comparative Example 1 does not use LiF.

(比較例2)
LiS(日本化学工業社製)とP(アルドリッチ社製)とを出発原料として、LiSを0.6266g、Pを1.010g、LiIを0.3042g、LiFを0.0590g用いた以外は実施例1と同様にして硫化物系固体電解質を得た。なお、比較例2の硫化物系固体電解質では、LiIとLiFとの合計量に対するLiFの割合は50mol%である。
(Comparative Example 2)
Starting from Li 2 S (manufactured by Nippon Chemical Industry Co., Ltd.) and P 2 S 5 (manufactured by Aldrich), Li 2 S is 0.6266 g, P 2 S 5 is 1.010 g, LiI is 0.3042 g, LiF A sulfide-based solid electrolyte was obtained in the same manner as in Example 1 except that 0.0590 g was used. In the sulfide solid electrolyte of Comparative Example 2, the ratio of LiF to the total amount of LiI and LiF is 50 mol%.

<イオン伝導度の評価>
上記のようにして作製した各例に係る硫化物系固体電解質について、200mg秤量してアルミニウム皿にのせ、−30℃露点下で1時間暴露して水分を吸着させた。その後、上記のように暴露した硫化物系固体電解質を100mg秤量し、4ton/cmでプレスすることでペレットを作製し、SUS電極を用いて評価セルを作製した。そして、この評価セルを用いて、交流インピーダンス法(ソーラートロン)によって硫化物系固体電解質のイオン伝導度を測定した。その結果を図2に示した。
<Evaluation of ion conductivity>
About 200 mg of the sulfide-based solid electrolyte according to each example produced as described above was weighed and placed on an aluminum dish, and exposed to −30 ° C. for 1 hour to adsorb moisture. Thereafter, 100 mg of the sulfide-based solid electrolyte exposed as described above was weighed and pressed at 4 ton / cm 2 to produce a pellet, and an evaluation cell was produced using a SUS electrode. And using this evaluation cell, the ionic conductivity of the sulfide-based solid electrolyte was measured by an alternating current impedance method (solartron). The results are shown in FIG.

図2に示した結果からわかるように、LiFの含有量を所定の範囲とすることによって、硫化物系固体電解質のイオン伝導度の低下を抑制することができた。   As can be seen from the results shown in FIG. 2, the decrease in ionic conductivity of the sulfide-based solid electrolyte could be suppressed by setting the LiF content within a predetermined range.

Claims (1)

LiX(ただし、XはCl、I、Br、FのうちFを含む2種以上)を含み、前記LiX全体のうち15mol%以上25mol%以下はLiFである、硫化物系固体電解質。   A sulfide-based solid electrolyte containing LiX (where X is two or more of F containing Cl, I, Br, and F), and 15 to 25 mol% of LiX as a whole is LiF.
JP2013162929A 2013-08-06 2013-08-06 Sulfide-based solid electrolyte Pending JP2015032529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013162929A JP2015032529A (en) 2013-08-06 2013-08-06 Sulfide-based solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013162929A JP2015032529A (en) 2013-08-06 2013-08-06 Sulfide-based solid electrolyte

Publications (1)

Publication Number Publication Date
JP2015032529A true JP2015032529A (en) 2015-02-16

Family

ID=52517679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013162929A Pending JP2015032529A (en) 2013-08-06 2013-08-06 Sulfide-based solid electrolyte

Country Status (1)

Country Link
JP (1) JP2015032529A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10283812B2 (en) 2015-09-08 2019-05-07 Toyota Jidosha Kabushiki Kaisha Sulfide solid-state cell
JPWO2018030436A1 (en) * 2016-08-10 2019-06-13 出光興産株式会社 Sulfide solid electrolyte
JPWO2018047566A1 (en) * 2016-09-12 2019-06-24 出光興産株式会社 Sulfide solid electrolyte
WO2019146218A1 (en) * 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 Solid electrolyte material and battery
US11411247B2 (en) 2018-01-05 2022-08-09 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11427477B2 (en) 2018-01-05 2022-08-30 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
WO2022186155A1 (en) * 2021-03-05 2022-09-09 三井金属鉱業株式会社 Solid electrolyte, and electrode mixture and battery containing the same
US11498850B2 (en) 2018-01-05 2022-11-15 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11498849B2 (en) 2018-01-05 2022-11-15 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11515565B2 (en) 2018-01-05 2022-11-29 Panasonic Intellectual Property Management Co., Ltd. Battery
US11524902B2 (en) 2018-01-05 2022-12-13 Panasonic Intellectual Property Management Co., Ltd. Positive electrode material and battery
US11560320B2 (en) 2018-01-05 2023-01-24 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11591236B2 (en) 2018-01-05 2023-02-28 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11637287B2 (en) 2018-01-26 2023-04-25 Panasonic Intellectual Property Management Co., Ltd. Positive electrode material and battery using same
US11652235B2 (en) 2018-01-26 2023-05-16 Panasonic Intellectual Property Management Co., Ltd. Battery
US11682764B2 (en) 2018-01-26 2023-06-20 Panasonic Intellectual Property Management Co., Ltd. Cathode material and battery using same
US11760649B2 (en) 2018-01-05 2023-09-19 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11784345B2 (en) 2018-01-05 2023-10-10 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11949064B2 (en) 2018-11-29 2024-04-02 Panasonic Intellectual Property Management Co., Ltd. Negative electrode material, battery, and method for producing battery
US11955599B2 (en) 2018-11-29 2024-04-09 Panasonic Intellectual Property Management Co., Ltd. Negative electrode material and battery

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10283812B2 (en) 2015-09-08 2019-05-07 Toyota Jidosha Kabushiki Kaisha Sulfide solid-state cell
JPWO2018030436A1 (en) * 2016-08-10 2019-06-13 出光興産株式会社 Sulfide solid electrolyte
JPWO2018047566A1 (en) * 2016-09-12 2019-06-24 出光興産株式会社 Sulfide solid electrolyte
JPWO2018047565A1 (en) * 2016-09-12 2019-07-11 出光興産株式会社 Sulfide solid electrolyte
US11591236B2 (en) 2018-01-05 2023-02-28 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11560320B2 (en) 2018-01-05 2023-01-24 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11411247B2 (en) 2018-01-05 2022-08-09 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11784345B2 (en) 2018-01-05 2023-10-10 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11427477B2 (en) 2018-01-05 2022-08-30 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11760649B2 (en) 2018-01-05 2023-09-19 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11498850B2 (en) 2018-01-05 2022-11-15 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11498849B2 (en) 2018-01-05 2022-11-15 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11515565B2 (en) 2018-01-05 2022-11-29 Panasonic Intellectual Property Management Co., Ltd. Battery
US11524902B2 (en) 2018-01-05 2022-12-13 Panasonic Intellectual Property Management Co., Ltd. Positive electrode material and battery
US11652235B2 (en) 2018-01-26 2023-05-16 Panasonic Intellectual Property Management Co., Ltd. Battery
WO2019146218A1 (en) * 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 Solid electrolyte material and battery
US11637287B2 (en) 2018-01-26 2023-04-25 Panasonic Intellectual Property Management Co., Ltd. Positive electrode material and battery using same
CN111566757A (en) * 2018-01-26 2020-08-21 松下知识产权经营株式会社 Solid electrolyte material and battery
US11682764B2 (en) 2018-01-26 2023-06-20 Panasonic Intellectual Property Management Co., Ltd. Cathode material and battery using same
CN111566757B (en) * 2018-01-26 2022-08-12 松下知识产权经营株式会社 Solid electrolyte material and battery
US11949064B2 (en) 2018-11-29 2024-04-02 Panasonic Intellectual Property Management Co., Ltd. Negative electrode material, battery, and method for producing battery
US11955599B2 (en) 2018-11-29 2024-04-09 Panasonic Intellectual Property Management Co., Ltd. Negative electrode material and battery
WO2022186155A1 (en) * 2021-03-05 2022-09-09 三井金属鉱業株式会社 Solid electrolyte, and electrode mixture and battery containing the same

Similar Documents

Publication Publication Date Title
JP2015032529A (en) Sulfide-based solid electrolyte
Zhang et al. The electrolyte comprising more robust water and superhalides transforms Zn‐metal anode reversibly and dendrite‐free
Zhang et al. Comprehensive review on zinc‐ion battery anode: challenges and strategies
Dewald et al. Experimental assessment of the practical oxidative stability of lithium thiophosphate solid electrolytes
Yadav et al. Breaking the 2 V barrier in aqueous zinc chemistry: creating 2.45 and 2.8 V MnO2–Zn aqueous batteries
Song et al. Advances in lithium‐containing anodes of aprotic Li–O2 batteries: challenges and strategies for improvements
Ji et al. Water-activated VOPO4 for magnesium ion batteries
Yu et al. Polysulfide‐shuttle control in lithium‐sulfur batteries with a chemically/electrochemically compatible NASICON‐type solid electrolyte
Ni et al. Non‐electrode components for rechargeable aqueous zinc batteries: Electrolytes, solid‐electrolyte‐interphase, current collectors, binders, and separators
Wood et al. Lithium metal anodes: toward an improved understanding of coupled morphological, electrochemical, and mechanical behavior
Ueno et al. Anionic effects on solvate ionic liquid electrolytes in rechargeable lithium–sulfur batteries
JP2017539051A5 (en)
JP2017517842A5 (en)
Yuan et al. A fully aqueous hybrid electrolyte rechargeable battery with high voltage and high energy density
KR20120091177A (en) Vanadium cell
EP3311442A1 (en) Water solvated glass/amorphous solid ionic conductors
Senthilkumar et al. Enhancing capacity performance by utilizing the redox chemistry of the electrolyte in a dual‐electrolyte sodium‐ion battery
JPWO2011065388A1 (en) Solid battery
WO2013109542A1 (en) Composite alkali ion conductive solid electrolyte
KR102139516B1 (en) Degradation protection of solid alkali ion conductive electrolyte membrane
KR20160136344A (en) Dendrite inhibiting electrolytes for metal-based batteries
ES2646124T3 (en) Production procedure for electrochemical batteries of a solid body battery
Guo et al. The electrolysis of anti‐perovskite Li2OHCl for prelithiation of high‐energy‐density batteries
Shi et al. Nanohybrid electrolytes for high-energy lithium-ion batteries: recent advances and future challenges
JP2009193803A (en) All-solid lithium secondary battery