JP2015031525A - Detector for optical measuring - Google Patents

Detector for optical measuring Download PDF

Info

Publication number
JP2015031525A
JP2015031525A JP2013159101A JP2013159101A JP2015031525A JP 2015031525 A JP2015031525 A JP 2015031525A JP 2013159101 A JP2013159101 A JP 2013159101A JP 2013159101 A JP2013159101 A JP 2013159101A JP 2015031525 A JP2015031525 A JP 2015031525A
Authority
JP
Japan
Prior art keywords
light
detector
cavity
optical measurement
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013159101A
Other languages
Japanese (ja)
Inventor
諭 瀧澤
Satoshi Takizawa
諭 瀧澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK TOA Corp
Original Assignee
DKK TOA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK TOA Corp filed Critical DKK TOA Corp
Priority to JP2013159101A priority Critical patent/JP2015031525A/en
Publication of JP2015031525A publication Critical patent/JP2015031525A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a detector for optical measuring that can prevent deterioration of machining ease and assembling/wiring ease, which is an undesirable consequence of making optical measuring apparatuses more compact, and excels in freedom from fouling and in cleaning ease.SOLUTION: A detector for optical measuring 1 comprises a light-shielded detector body 4 provided with a plurality of hollows 2 and 3 having apertures 7 and 8 arranged with space between them; a light emitting element 5 arranged in at least one hollow 2 and emitting light in the direction of its aperture 7; and a light receiving element 6 arranged in at least the other hollow 3 and receiving light coming incident through its aperture 8. The hollows 2 and 3 between the elements 5 and 6 and the apertures 7 and 8 are filled with optically transparent resin 10.

Description

本発明は、光学測定用検出器に関するものである。   The present invention relates to an optical measurement detector.

従来、発光素子から照射された光を光学窓により光を集束させて測定液に入射させ、その光を受光素子で受光して光学測定を行う技術が知られている。(例えば、特許文献1,2参照。)   2. Description of the Related Art Conventionally, a technique is known in which light irradiated from a light emitting element is focused by an optical window and incident on a measurement liquid, and the light is received by a light receiving element to perform optical measurement. (For example, see Patent Documents 1 and 2.)

特許文献1には、発光ダイオードから照射された光を集束して測定液中に入射させ、その光が測定液中を移動して生じた散乱光を集束させ、集束された光をフォトダイオードで受光して濁度を検出する濁度センサが開示されている。この濁度センサは、発光ダイオードを内部に収容するチャネルと、フォトダイオードを内部に収容するチャネルとを水密なハウジングに別個に設けており、それぞれのチャネル内に設けた光を集束させる光学窓によって光を集束させている。   In Patent Document 1, light emitted from a light emitting diode is focused and incident on a measurement liquid, scattered light generated by the movement of the light in the measurement liquid is focused, and the focused light is collected by a photodiode. A turbidity sensor that detects turbidity by receiving light is disclosed. In this turbidity sensor, a channel for accommodating a light emitting diode and a channel for accommodating a photodiode are separately provided in a watertight housing, and an optical window for focusing the light provided in each channel is provided. The light is focused.

また、特許文献2には、光源から照射され、レンズを通過した光をセル本体の円柱状の空洞部内に貯留されている被検液に入射させ、被検液を透過した光をレンズに通過させて第1の受光素子で濁度または色度を検出し、被検液中を移動して生じた散乱光をレンズに通過させて第2の受光素子で濁度または色度を検出するフローセル装置が開示されている。このフローセル装置は、空洞部の中心軸周りに回転する回転アームと、該回転アームの先端に連結されたワイプ体とを備えており、回転アームを回転させると、ワイプ部がセル本体の周壁部および該周壁部に配置されている各レンズ部と接触して摩擦洗浄するようになっている。   In Patent Document 2, light irradiated from a light source and passed through a lens is incident on a test solution stored in a cylindrical cavity of a cell body, and light transmitted through the test solution is passed through the lens. The turbidity or chromaticity is detected by the first light receiving element, and the scattered light generated by moving through the test solution is passed through the lens, and the turbidity or chromaticity is detected by the second light receiving element. An apparatus is disclosed. This flow cell device includes a rotating arm that rotates about the central axis of the cavity, and a wipe body that is connected to the tip of the rotating arm. When the rotating arm is rotated, the wipe is a peripheral wall of the cell body. In addition, friction cleaning is performed in contact with each lens portion disposed on the peripheral wall portion.

特表2006−510015号公報JP-T-2006-510015 特開2002−131221号公報JP 2002-131221 A

しかしながら、特許文献1の濁度センサの構成では、光を集束させるための光学窓(以下、集光装置。)を有しており、窓部品が存在すると小型化に伴い窓部品も小さくなり、非常に繊細な作業を必要とし、加工性や組配作業性が悪いという問題がある。
また、特許文献2のフローセル装置の構成では、セル本体の周壁部に設けられたレンズ(以下、集光装置。)と周壁部との段差に汚れが付着しやすく、洗浄しにくいという問題がある。
However, in the configuration of the turbidity sensor of Patent Document 1, it has an optical window for focusing light (hereinafter referred to as a condensing device). There is a problem that very delicate work is required and workability and assembly workability are poor.
Moreover, in the structure of the flow cell apparatus of patent document 2, there is a problem that dirt easily adheres to a step between a lens (hereinafter referred to as a condensing device) provided on the peripheral wall portion of the cell body and the peripheral wall portion, and is difficult to clean. .

本発明は、このような事情に鑑みてなされたものであって、光学測定を行う装置の小型化に伴う加工性や組配作業性の低下を防止するとともに、汚れが付着しにくく、洗浄性がよい光学測定用検出器を提供することを目的とする。   The present invention has been made in view of such circumstances, and prevents deterioration in workability and assembly workability due to downsizing of an apparatus for performing optical measurement, and is less likely to cause dirt to adhere and is easy to clean. An object of the present invention is to provide a detector for optical measurement.

上記目的を達成するために、本発明は以下の手段を提供する。
本発明の一態様は、間隔を空けて配置された開口を備える複数の空洞部を備え、遮光性を有する検出器本体と、少なくとも1つの前記空洞部内に配置され、その開口方向に向かって光を射出する発光素子と、他の少なくとも1つの前記空洞部内に配置され、その開口から入射してきた光を受光する受光素子とを備え、前記発光素子および前記受光素子と各前記開口との間の前記空洞部内に光学的に透明な樹脂を充填してなる光学測定用検出器を提供する。
In order to achieve the above object, the present invention provides the following means.
One embodiment of the present invention includes a plurality of cavities having openings arranged at intervals, and has a light-shielding detector body, and is disposed in at least one of the cavities, and emits light toward the opening direction. A light-emitting element that emits light and a light-receiving element that is disposed in at least one other cavity and receives light incident from the opening, and the light-emitting element and a space between the light-receiving element and each of the openings An optical measurement detector is provided in which an optically transparent resin is filled in the cavity.

本態様によれば、発光素子から射出された光が光学的に透明な樹脂が充填された空洞部内を経由して試料液中を透過あるいは試料液中において散乱した光が、他の空洞部内に入射し、光学的に透明な樹脂が充填された空洞部内を経由して受光素子により受光されることにより、受光された光の光量に基づいて試料液の光学測定を行うことができる。   According to this aspect, the light emitted from the light emitting element is transmitted through the sample liquid through the cavity filled with the optically transparent resin, or the light scattered in the sample liquid enters the other cavity. Incident light is received by the light receiving element through the cavity filled with optically transparent resin, so that the optical measurement of the sample liquid can be performed based on the amount of received light.

この場合において、従来の濁度センサやフローセル装置のような、集光装置に代えて、空洞部内の各素子と開口との間を光学的に透明な樹脂で充填しているので、集光装置および集光装置を配置するための空洞部の精密な加工を行わずに済む。その結果、各部品の加工が容易となるとともに、装置の組配作業が簡便となり、かつ、光学測定用検出器の小型化を容易にすることができる。
また、空洞部内に充填される透明な樹脂によって、空洞部の内周壁と樹脂との隙間や、空洞部の開口縁近傍における段差を少なくして、光学測定用検出器に汚れが付着しにくくすることができ、光学測定用検出器の洗浄性も向上することができる。
In this case, instead of a light collecting device such as a conventional turbidity sensor or flow cell device, the space between each element in the cavity and the opening is filled with an optically transparent resin. Further, it is not necessary to precisely process the cavity for arranging the light collecting device. As a result, each part can be easily processed, the assembling work of the apparatus is simplified, and the optical measurement detector can be easily downsized.
In addition, the transparent resin filled in the cavity part reduces the gap between the inner peripheral wall of the cavity part and the resin and the step near the opening edge of the cavity part, making it difficult for dirt to adhere to the optical measurement detector. In addition, the cleaning properties of the optical measurement detector can be improved.

また、上記態様においては、前記空洞部内において、前記空洞部の内周壁を吸光色としてもよい。
このようにすることで、迷光が吸光色の空洞部の内周壁に入射すると吸収される。これにより、迷光が受光素子により検出されてしまうことを防止することができる。
Moreover, in the said aspect, it is good also considering the inner peripheral wall of the said cavity part as a light absorption color in the said cavity part.
In this way, stray light is absorbed when it enters the inner peripheral wall of the light absorbing color cavity. Thereby, it is possible to prevent stray light from being detected by the light receiving element.

また、上記態様においては、前記検出器本体が、試料の供給口と排出口とを有する試料を収容可能な収容部を備え、前記空洞部が、前記収容部に収容された試料に接する位置に前記開口を備えていてもよい。   Further, in the above aspect, the detector main body includes a storage unit that can store a sample having a sample supply port and a discharge port, and the cavity is in a position in contact with the sample stored in the storage unit. The opening may be provided.

本発明によれば、光学測定を行う装置の小型化に伴う加工性や組配作業性の低下を防止するとともに、汚れが付着しにくく、洗浄性がよい光学測定用検出器を提供することができる。   According to the present invention, it is possible to provide an optical measurement detector that prevents deterioration in workability and assembly workability associated with downsizing of an optical measurement apparatus, and that is not easily contaminated and has good cleaning properties. it can.

本発明の第1の実施形態に係る光学測定用検出器の縦断面を示す一部を破断した全体構成図である。It is the whole block diagram which fractured | ruptured a part which shows the longitudinal cross-section of the detector for optical measurement which concerns on the 1st Embodiment of this invention. 図1の光学測定用検出器の発光素子を示す拡大図である。It is an enlarged view which shows the light emitting element of the detector for optical measurements of FIG. 本発明の第2の実施形態に係る光学測定用検出器の縦断面図を示す一部を破断した全体構成図である。It is the whole block diagram which fractured | ruptured a part which shows the longitudinal cross-sectional view of the detector for optical measurement which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態の変形例に係る光学測定用検出器の縦断面図を示す一部を破断した全体構成図である。It is the whole block diagram which fractured | ruptured a part which shows the longitudinal cross-sectional view of the detector for optical measurements which concerns on the modification of the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る光学測定用検出器の縦断面図を示す一部を破断した全体構成図である。It is the whole block diagram which fractured | ruptured a part which shows the longitudinal cross-sectional view of the detector for optical measurement which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態の変形例に係る光学測定用検出器の縦断面図を示す一部を破断した全体構成図である。It is the whole block diagram which fractured | ruptured a part which shows the longitudinal cross-sectional view of the detector for optical measurements which concerns on the modification of the 3rd Embodiment of this invention.

本発明の第1の実施形態に係る光学測定用検出器について、図1,図2を参照して以下に説明する。
本実施形態に係る光学測定用検出器は、90度散乱方式の濁度検出器1である。
濁度検出器(光学測定用検出器)1は、図1に示されるように、2つの空洞部2,3を有する検出器本体4と、該検出器本体4の一方の空洞部2内に配置された発光素子5と、他方の空洞部3内に配置された受光素子6とを備えている。
An optical measurement detector according to a first embodiment of the present invention will be described below with reference to FIGS.
The optical measurement detector according to the present embodiment is a 90-degree scattering turbidity detector 1.
As shown in FIG. 1, a turbidity detector (optical measurement detector) 1 includes a detector body 4 having two cavities 2 and 3 and one cavity 2 of the detector body 4. The light emitting element 5 arranged and the light receiving element 6 arranged in the other cavity 3 are provided.

検出器本体4は、遮光性を有する材質からなっている。検出器本体4に設けられた2つの空洞部2,3は、検出器本体4の一端面4aに間隔を空けて隣接配置された開口7,8を備えている。
各空洞部2,3は、図1に示されるように、上述した一端面4aに対して傾いており、一方の空洞部2の長手軸と他方の空洞部3の長手軸とが略直角をなして交差している。
The detector body 4 is made of a light-shielding material. The two cavities 2 and 3 provided in the detector body 4 are provided with openings 7 and 8 that are arranged adjacent to each other at one end surface 4a of the detector body 4 with a space therebetween.
As shown in FIG. 1, each of the cavities 2 and 3 is inclined with respect to the one end face 4a described above, and the longitudinal axis of one cavity 2 and the longitudinal axis of the other cavity 3 are substantially perpendicular. Crossed.

発光素子5は、一方の空洞部2内にその開口7方向に向かって光を射出するよう配置されている発光ダイオードである。発光素子5は、光を発生する半導体素子9をエポキシ樹脂でモールドし砲弾型に形成されている。砲弾型の頭部5aが球面状に構成されることにより、半導体素子9から所定の角度範囲θに発せられた光が頭部5aで集光されて高強度の光が射出されるようになっている。   The light-emitting element 5 is a light-emitting diode arranged to emit light in the direction of the opening 7 in one cavity 2. The light emitting element 5 is formed in a bullet shape by molding a semiconductor element 9 that generates light with an epoxy resin. By forming the bullet-shaped head 5a into a spherical shape, the light emitted from the semiconductor element 9 in a predetermined angle range θ is condensed by the head 5a, and high-intensity light is emitted. ing.

受光素子6は、他方の空洞部3内にその開口8から入射してきた光を受光するよう配置されているフォトダイオードである。
また、各素子5,6は、図示しない配線により、濁度を測定する測定部(図示省略)や電源(図示省略)等に接続されている。
The light receiving element 6 is a photodiode disposed so as to receive the light incident from the opening 8 in the other cavity 3.
The elements 5 and 6 are connected to a measuring unit (not shown) for measuring turbidity, a power source (not shown), and the like by wiring not shown.

各開口7,8は、発光素子5から射出された光が直接光として開口8に入射して受光素子6により受光されないように、間隔(例えば、1.0mm以上。)を空けて隣接配置されている。
各素子5,6と各開口7,8との間の空洞部2,3内は、光学的に透明な樹脂10が充填されている樹脂充填部11,12となっている。例えば、硬化前のエポキシ樹脂を樹脂充填部11,12に注入し、硬化させた後、一端面4aと開口7,8との段差がなくなるように研磨する。
The openings 7 and 8 are arranged adjacent to each other with an interval (for example, 1.0 mm or more) so that light emitted from the light emitting element 5 enters the opening 8 as direct light and is not received by the light receiving element 6. ing.
In the hollow portions 2 and 3 between the elements 5 and 6 and the openings 7 and 8, resin filled portions 11 and 12 filled with an optically transparent resin 10 are formed. For example, the epoxy resin before curing is poured into the resin filling portions 11 and 12 and cured, and then polished so that there is no step between the one end surface 4a and the openings 7 and 8.

光学的に透明な樹脂10としては、660〜960nmの波長範囲の光を透過するエポキシ樹脂である。エポキシ樹脂は発光素子5の頭部5aの表面に密着するように充填されることにより、界面における屈折率差をなくすようになっている。これにより、図2に示されるように、発光素子5の半導体素9から発せられた光が、発光素子5の頭部5aで屈折することなく直進するようになっている。   The optically transparent resin 10 is an epoxy resin that transmits light in the wavelength range of 660 to 960 nm. The epoxy resin is filled so as to be in close contact with the surface of the head portion 5a of the light emitting element 5, thereby eliminating the refractive index difference at the interface. As a result, as shown in FIG. 2, the light emitted from the semiconductor element 9 of the light emitting element 5 travels straight without being refracted by the head 5 a of the light emitting element 5.

空洞部2,3の内周壁2a,3aは、少なくとも樹脂充填部11,12における空洞部2,3の内周壁11a,12aが、吸光色である黒色で着色されている。これにより、発光素子5から発せられた光の内、空洞部2,3の内周壁11a,12aに入射する光は、内周壁11a,12aによって反射されることなく吸光されるようになっている。   The inner peripheral walls 2a, 3a of the cavities 2, 3 are colored with black, which is a light absorption color, at least the inner peripheral walls 11a, 12a of the cavities 2, 3 in the resin filling portions 11, 12. As a result, of the light emitted from the light emitting element 5, the light incident on the inner peripheral walls 11a and 12a of the cavities 2 and 3 is absorbed without being reflected by the inner peripheral walls 11a and 12a. .

このように構成された本実施形態に係る濁度検出器1の作用について説明する。
本実施形態に係る濁度検出器1を用いて、試料液の濁度を検出するには、試料液中に検出器本体4の一端面4aを浸漬させた状態で、発光素子5から光を射出させる。発光素子5から発せられた光は発光素子5の頭部5a前方の空間を埋めるように充填されている空洞部2内のエポキシ樹脂からなる樹脂充填部11を経由して開口7から試料液中に射出される。試料液中に射出された光は試料液中の濁質において散乱され、その一部の散乱光が開口8から空洞部3内のエポキシ樹脂からなる樹脂充填部12を経由して受光素子6により受光される。その結果、受光素子6により受光された光量に基づいて試料液中の濁度を90度散乱方式により検出することができる。
The operation of the turbidity detector 1 according to this embodiment configured as described above will be described.
In order to detect the turbidity of the sample liquid using the turbidity detector 1 according to the present embodiment, light is emitted from the light emitting element 5 while the one end surface 4a of the detector main body 4 is immersed in the sample liquid. Let it fire. Light emitted from the light emitting element 5 enters the sample liquid from the opening 7 via the resin filling portion 11 made of epoxy resin in the cavity 2 filled so as to fill the space in front of the head 5 a of the light emitting element 5. Is injected into. The light emitted into the sample liquid is scattered by the turbidity in the sample liquid, and a part of the scattered light is transmitted from the opening 8 through the resin filling portion 12 made of epoxy resin in the cavity 3 by the light receiving element 6. Received light. As a result, the turbidity in the sample liquid can be detected by the 90-degree scattering method based on the amount of light received by the light receiving element 6.

本実施形態に係る濁度検出器1の構造によれば、従来の濁度検出器のような、集光装置に代えて、各空洞部2,3内の各素子5,6と各開口7,8との間の空間を光学的に透明な樹脂10で充填しているので、集光装置および集光装置を配置するための空洞部の精密な加工を行わずに済むという利点がある。その結果、各部品の加工が容易となるとともに、装置の組配作業が簡便となり、かつ、濁度検出器1の小型化を容易にすることができるという利点がある。
また、空洞部2,3内を光学的に透明な樹脂10で充填した後、一端面4aとの段差がなくなるように研磨するため、濁度検出器1に汚れを付着しにくくすることができ、光学測定用検出器の洗浄性も向上することができるという利点もある。
According to the structure of the turbidity detector 1 according to the present embodiment, each element 5, 6 and each opening 7 in each cavity 2, 3 in place of the light collecting device as in the conventional turbidity detector. , 8 is filled with the optically transparent resin 10, so that there is an advantage that precise processing of the condensing device and the cavity for arranging the condensing device is not required. As a result, there is an advantage that each part can be easily processed, the assembling work of the apparatus is simplified, and the turbidity detector 1 can be easily reduced in size.
In addition, since the cavities 2 and 3 are filled with the optically transparent resin 10 and then polished so as not to have a step with the one end surface 4a, it is possible to make it difficult to attach dirt to the turbidity detector 1. There is also an advantage that the cleaning property of the optical measurement detector can be improved.

また、樹脂充填部11,12における空洞部2,3の内周壁11a,12aを吸光色である黒色で着色したことにより、発光素子5から発せられた光の内、空洞部2の長手方向に沿う狭い角度範囲の外側に発せられた光は吸光色の空洞部2,3の内周壁11a,12aに入射して吸収される。したがって、空洞部2の長手方向に沿う狭い角度範囲内に発せられた光のみが空洞部2の開口7から試料液中に射出される。   Further, by coloring the inner peripheral walls 11a and 12a of the cavities 2 and 3 in the resin filling portions 11 and 12 with black which is a light absorption color, in the longitudinal direction of the cavities 2 in the light emitted from the light emitting element 5 The light emitted outside the narrow angle range along the light enters the inner peripheral walls 11a and 12a of the light absorbing color cavities 2 and 3, and is absorbed. Therefore, only light emitted within a narrow angle range along the longitudinal direction of the cavity 2 is emitted from the opening 7 of the cavity 2 into the sample liquid.

また、空洞部3の長手方向に沿って開口8から空洞部3内に入射された範囲内の光のみが、受光素子6により受光される。
これにより、従来のような集光装置を空洞部2,3内に設けなくても、迷光の影響を排除することができ、試料水からの散乱光を精度よく検出することができる。
In addition, only the light within the range incident in the cavity 3 from the opening 8 along the longitudinal direction of the cavity 3 is received by the light receiving element 6.
Thereby, even if it does not provide the conventional condensing apparatus in the cavity parts 2 and 3, the influence of a stray light can be excluded and the scattered light from sample water can be detected accurately.

なお、本実施形態においては、空洞部2,3にエポキシ樹脂を充填することとしたが、これに代えて、他の任意の光学的に透明な樹脂10を充填することにしてもよい。
また、本実施形態においては、2つの空洞部2,3を備える90度散乱方式の濁度検出器を例示したが、これに限られるものではない。例えば、さらに空洞部を備え、少なくとも3つの空洞部を有するような光学測定用検出器であってもよい。
In the present embodiment, the cavities 2 and 3 are filled with the epoxy resin, but instead, any other optically transparent resin 10 may be filled.
Moreover, in this embodiment, although the 90 degree scattering type turbidity detector provided with the two cavity parts 2 and 3 was illustrated, it is not restricted to this. For example, the optical measurement detector may further include a cavity and have at least three cavities.

また、発光素子5から出射された光は、発光素子5の頭部5aや従来の集光装置の屈折率が大きかったため、光が反射されて散乱および拡散する問題があった。しかし、従来の集光装置に代えて採用された光学的に透明な樹脂10を空洞部2,3内において各素子5,6と開口7,8との間に充填することにより、発光素子5の頭部5aから一端面4aまでおよび一端面4aから受光素子6までの間の屈折率にほぼ差がなくなるため、光の反射が少なくなり、光の散乱および拡散を減少させることができる。   Further, the light emitted from the light emitting element 5 has a problem that the light is reflected and scattered and diffused because the refractive index of the head 5a of the light emitting element 5 and the conventional light collecting device is large. However, the optically transparent resin 10 employed in place of the conventional condensing device is filled between the elements 5 and 6 and the openings 7 and 8 in the cavities 2 and 3, whereby the light emitting element 5. Since there is almost no difference in the refractive index from the head 5a to the one end face 4a and from the one end face 4a to the light receiving element 6, light reflection is reduced, and light scattering and diffusion can be reduced.

次に、本発明の第2の実施形態に係る光学測定用検出器について、図3,図4を参照して以下に説明する。
本実施形態の説明において、上述した第1の実施形態に係る光学測定用検出器(濁度検出器1)と構成を共通とする箇所には同一符号を付して説明を省略する。
本実施形態に係る光学測定用検出器は、検出器本体が、凹部を有する点において、第1の実施形態に係る光学測定用検出器と相違している。
Next, an optical measurement detector according to a second embodiment of the present invention will be described below with reference to FIGS.
In the description of the present embodiment, the same reference numerals are given to portions having the same configuration as the optical measurement detector (turbidity detector 1) according to the first embodiment described above, and the description thereof is omitted.
The optical measurement detector according to this embodiment is different from the optical measurement detector according to the first embodiment in that the detector main body has a recess.

第2の実施形態に係る光学測定用検出器として濁度検出器13を例示して説明する。
濁度検出器13は、図3に示されるように、4つの空洞部14,15,16,17を有する検出器本体18と、該検出器本体18の空洞部14,15内にそれぞれ配置された発光素子5と、該発光素子5が配置される空洞部14,15とは別個に、空洞部16,17内に配置された受光素子6とを備えている。
The turbidity detector 13 will be exemplified and described as an optical measurement detector according to the second embodiment.
As shown in FIG. 3, the turbidity detector 13 is disposed in a detector body 18 having four cavities 14, 15, 16, and 17 and in the cavities 14 and 15 of the detector body 18. The light emitting element 5 and the light receiving element 6 disposed in the cavities 16 and 17 are provided separately from the cavities 14 and 15 in which the light emitting element 5 is disposed.

検出器本体18は、図3に示されるように、凹部19を備え、該凹部19には開口20を有しており、検出器本体18が試料液に浸漬されると、凹部19に試料液が満たされ、開口20が試料液に接するようになっている。
空洞部14,15,16,17は、図3に示されるように、開口20を有する検出器本体18の壁面18aに設けられており、発光素子5が配置される空洞部14の長手軸と受光素子6が配置される空洞部16の長手軸とが同一直線上にある、または発光素子5が配置される空洞部15の長手軸と受光素子6が配置される空洞部17の長手軸とが略直角をなして交差する。
As shown in FIG. 3, the detector body 18 includes a recess 19, and the recess 19 has an opening 20. When the detector body 18 is immersed in the sample solution, the sample solution is placed in the recess 19. And the opening 20 comes into contact with the sample solution.
As shown in FIG. 3, the cavity portions 14, 15, 16, and 17 are provided on the wall surface 18 a of the detector body 18 having the opening 20, and the longitudinal axis of the cavity portion 14 in which the light emitting element 5 is disposed. The longitudinal axis of the cavity 16 in which the light receiving element 6 is disposed is collinear or the longitudinal axis of the cavity 15 in which the light emitting element 5 is disposed and the longitudinal axis of the cavity 17 in which the light receiving element 6 is disposed. Intersect at an approximately right angle.

このように構成された本実施形態に係る濁度検出器13の作用について以下に説明する。
本実施形態に係る濁度検出器13によれば、凹部19に満たされた試料液に各開口20が試料液に接する状態で、空洞部15の発光素子5から照射された光は、濁度検出器1と同様に、試料液中の濁質による90度散乱光を空洞部17の受光素子6が受光して、試料液の濁度を検出している。また、空洞部14の発光素子5から光学的に透明な樹脂10であるエポキシ樹脂を介して試料液中に射出された光が、試料液中を透過して空洞部16に入射され、エポキシ樹脂を介して受光素子6にて受光されて試料液の透過度を検出する。その結果、例えば、濁度検出器13は、90度散乱光および透過光による透過散乱方式の濁度を測定したり、発光素子5の波長を異なるものとし、90度散乱方式の濁度と色度とを同時に測定することができる。
The operation of the turbidity detector 13 according to this embodiment configured as described above will be described below.
According to the turbidity detector 13 according to the present embodiment, the light irradiated from the light emitting element 5 in the cavity 15 in a state where each opening 20 is in contact with the sample liquid filled in the recess 19 is turbidity. Similar to the detector 1, the light receiving element 6 in the cavity 17 receives 90-degree scattered light due to turbidity in the sample liquid, and detects the turbidity of the sample liquid. Further, light emitted from the light emitting element 5 in the cavity portion 14 through the epoxy resin, which is an optically transparent resin 10, passes through the sample solution and enters the cavity portion 16, and the epoxy resin. And the light transmittance of the sample liquid is detected. As a result, for example, the turbidity detector 13 measures the turbidity of the transmission / scattering method using 90-degree scattered light and transmitted light, or changes the wavelength of the light-emitting element 5, so The degree can be measured simultaneously.

なお、本実施形態に係る濁度検出器13においては、発光素子5と受光素子6との素子の数が必ずしも同一である必要はない。例えば、濁度検出器13は、図4に示されるように、検出器本体18が、空洞部15の長手軸と空洞部21の長手軸とが同一直線上にあり、かつ空洞部15の長手軸と受光素子6が配置される空洞部17の長手軸とが略直角をなして交差するように空洞部15,17,21を備えていてもよい。   In the turbidity detector 13 according to this embodiment, the number of elements of the light emitting element 5 and the light receiving element 6 is not necessarily the same. For example, as shown in FIG. 4, the turbidity detector 13 includes a detector body 18 in which the longitudinal axis of the cavity 15 and the longitudinal axis of the cavity 21 are collinear and the length of the cavity 15 is long. Cavities 15, 17, and 21 may be provided so that the axis and the longitudinal axis of the cavity 17 where the light receiving element 6 is disposed intersect at a substantially right angle.

次に、本発明の第3の実施形態に係る光学測定用検出器について、図5,図6を参照して以下に説明する。
本実施形態の説明において、上述した第2の実施形態に係る光学測定用検出器(濁度検出器13)と構成を共通とする箇所には同一符号を付して説明を省略する。
Next, an optical measurement detector according to a third embodiment of the present invention will be described below with reference to FIGS.
In the description of the present embodiment, parts having the same configuration as those of the optical measurement detector (turbidity detector 13) according to the second embodiment described above are denoted by the same reference numerals and description thereof is omitted.

本実施形態に係る光学測定用検出器は、フローセル装置22である。
フローセル装置22は、図5に示されるように、検出器本体23が、該検出器本体23内部に試料液を収容可能な空間からなる収容部24と、該収容部24に外部から試料液を供給する供給口25と、収容部24に収容される試料液を検出器本体23外部へと排出する排出口26とを備えている。
The optical measurement detector according to the present embodiment is a flow cell device 22.
As shown in FIG. 5, the flow cell device 22 includes a detector body 23 having a space 24 in which the sample liquid can be stored in the detector body 23, and a sample liquid from the outside in the storage section 24. A supply port 25 for supplying and a discharge port 26 for discharging the sample liquid stored in the storage unit 24 to the outside of the detector main body 23 are provided.

本実施形態においては、空洞部27,29は、図5に示されるように、収容部24の対向する内壁面23a,23bに同軸に設けられている。空洞部27は内壁面23aに開口28を有し、内部に発光素子5を収容している。空洞部29は内壁面23bに開口30を有し、内部に受光素子6を収容している。   In the present embodiment, as shown in FIG. 5, the hollow portions 27 and 29 are provided coaxially on the inner wall surfaces 23 a and 23 b facing the accommodating portion 24. The cavity 27 has an opening 28 in the inner wall surface 23a, and houses the light emitting element 5 therein. The cavity 29 has an opening 30 in the inner wall surface 23b, and accommodates the light receiving element 6 therein.

供給口25は、図5に示されるように、検出器本体23において、各開口28,30よりも下方に設けられている。また、排出口26は、図5に示されるように、各開口28,30よりも上方に設けられている。すなわち、供給口25から収容部24内に供給された試料液は収容部24内を流動した後に排出口26から排出されるようになっている。   As shown in FIG. 5, the supply port 25 is provided below the openings 28 and 30 in the detector main body 23. Moreover, the discharge port 26 is provided above each opening 28 and 30 as FIG. 5 shows. That is, the sample liquid supplied from the supply port 25 into the storage unit 24 flows through the storage unit 24 and then is discharged from the discharge port 26.

このように構成された本実施形態に係るフローセル装置22の作用について以下に説明する。
本実施形態に係るフローセル装置22によれば、供給口25から収容部24内に供給された試料液が、収容部24内を流動し、排出口26を介して排出されている状態で、空洞部27の発光素子5から光を発することにより、発せられた光は試料液中を透過して空洞部29内の受光素子6によって受光される。これにより、受光された透過光が試料液中の濁質や色度成分等による吸収を受けて減衰する性質を利用して、試料液の濁度や色度を検出することができる。
The operation of the flow cell device 22 according to this embodiment configured as described above will be described below.
According to the flow cell device 22 according to the present embodiment, the sample liquid supplied from the supply port 25 into the storage unit 24 flows in the storage unit 24 and is discharged through the discharge port 26. By emitting light from the light emitting element 5 of the unit 27, the emitted light is transmitted through the sample solution and received by the light receiving element 6 in the cavity 29. Thereby, the turbidity and chromaticity of the sample liquid can be detected by utilizing the property that the received transmitted light is attenuated by being absorbed by the turbidity or chromaticity component in the sample liquid.

なお、本実施形態に係るフローセル装置22においては、図6に示されるように、検出器本体23の一つの内壁面23aに、互いに隣接する位置に開口28,30を有する2つの空洞部27,29を設け、内壁面23aに対向する内壁面23bに表面を鏡面加工してなる鏡面部31を設けることにしてもよい。空洞部27内の発光素子5から光が発せられてから、発せられた光が鏡面部31において反射され、空洞部29内の受光素子6によって受光されるまでの光路上に存在する試料液中の濁質や色度成分等による光の減衰に応じて、試料液の濁度や色度を検出することができる。
また、光路を折り返すことにより、装置を小型化しつつ、透過光の光学測定を行うために必要な光路長を十分に確保することができる。
In the flow cell device 22 according to the present embodiment, as shown in FIG. 6, two hollow portions 27, having openings 28, 30 at positions adjacent to each other on one inner wall surface 23 a of the detector body 23. 29 may be provided, and a mirror surface portion 31 formed by mirror-finishing the surface may be provided on the inner wall surface 23b facing the inner wall surface 23a. In the sample liquid existing on the optical path from the time when light is emitted from the light emitting element 5 in the cavity 27 until the emitted light is reflected by the mirror surface part 31 and received by the light receiving element 6 in the cavity 29. The turbidity and chromaticity of the sample liquid can be detected according to the attenuation of light due to the turbidity and chromaticity component of the liquid.
Further, by folding back the optical path, it is possible to sufficiently secure the optical path length necessary for optical measurement of transmitted light while downsizing the apparatus.

また、上述した実施形態においては、光学測定用検出器1,13,22が、開口7,8,20,28,30の表面に付着した汚れを摩擦洗浄する洗浄部を備えていてもよい。好ましくは、洗浄部は、樹脂等からなるワイプ体であり、ワイプ体が回転または揺動することにより開口7,8,20,28,30の表面を擦って洗浄するものである。その他、周知となっている洗浄方法として、水圧を利用するもの等を適用することができる。   In the above-described embodiment, the optical measurement detectors 1, 13, and 22 may include a cleaning unit that frictionally cleans dirt adhering to the surfaces of the openings 7, 8, 20, 28, and 30. Preferably, the cleaning unit is a wipe body made of resin or the like, and the surface of the openings 7, 8, 20, 28, 30 is rubbed and cleaned as the wipe body rotates or swings. In addition, as a well-known cleaning method, a method using water pressure or the like can be applied.

また、上述した実施形態においては、光学測定用検出器として、濁度検出器1,13およびフローセル装置22を例示したが、これらに限られるものではない。例えば、試料液の色度を検出する検出器や試料液中の有機物等の成分を測定する検出器に適用してもよい。   In the above-described embodiment, the turbidity detectors 1 and 13 and the flow cell device 22 are exemplified as the optical measurement detectors, but are not limited thereto. For example, the present invention may be applied to a detector that detects the chromaticity of a sample solution and a detector that measures components such as organic substances in the sample solution.

また、上述した実施形態においては、光学測定用検出器は、測定対象を液体として光学測定を行っているが、気体の光学測定に用いてもよい。   In the above-described embodiment, the optical measurement detector performs optical measurement using a measurement target as a liquid, but may be used for optical measurement of gas.

1,13,22 光学測定用検出器
2,14,15,27 発光素子が配置される空洞部
2a,3a 空洞部の内周壁
3,16,17,21,29 受光素子が配置される空洞部
4,18,23 検出器本体
5 発光素子
6 受光素子
7,8,20,28,30 開口
10 樹脂
24 収容部
25 供給口
26 排出口
1, 13, 22 Optical measurement detectors 2, 14, 15, 27 Cavities where light emitting elements are arranged 2a, 3a Cavities inner peripheral walls 3, 16, 17, 21, 29 Cavities where light receiving elements are arranged 4, 18, 23 Detector body 5 Light-emitting element 6 Light-receiving element 7, 8, 20, 28, 30 Opening 10 Resin 24 Container 25 Supply port 26 Discharge port

Claims (3)

間隔を空けて配置された開口を備える複数の空洞部を備え、遮光性を有する検出器本体と、
少なくとも1つの前記空洞部内に配置され、その開口方向に向かって光を射出する発光素子と、
他の少なくとも1つの前記空洞部内に配置され、その開口から入射してきた光を受光する受光素子とを備え、
前記発光素子および前記受光素子と各前記開口との間の前記空洞部内に光学的に透明な樹脂を充填してなる光学測定用検出器。
A detector body having a plurality of cavities with openings arranged at intervals and having a light shielding property;
A light emitting element disposed in at least one of the cavities and emitting light toward the opening direction;
A light receiving element disposed in at least one other cavity and receiving light incident from the opening;
An optical measurement detector comprising an optically transparent resin filled in the cavity between the light emitting element and the light receiving element and the openings.
各前記空洞部内において、前記空洞部の内周壁を吸光色にしてなる請求項1に記載の光学測定用検出器。   The optical measurement detector according to claim 1, wherein an inner peripheral wall of the cavity portion is light-absorbing in each of the cavity portions. 前記検出器本体が、試料の供給口と排出口とを有する試料を収容可能な収容部を備え、
前記空洞部が、前記収容部に収容された試料に接する位置に前記開口を備える請求項1または請求項2に記載の光学測定用検出器。
The detector body includes a storage unit that can store a sample having a supply port and a discharge port for the sample,
3. The optical measurement detector according to claim 1, wherein the hollow portion includes the opening at a position in contact with a sample accommodated in the accommodating portion.
JP2013159101A 2013-07-31 2013-07-31 Detector for optical measuring Pending JP2015031525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013159101A JP2015031525A (en) 2013-07-31 2013-07-31 Detector for optical measuring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013159101A JP2015031525A (en) 2013-07-31 2013-07-31 Detector for optical measuring

Publications (1)

Publication Number Publication Date
JP2015031525A true JP2015031525A (en) 2015-02-16

Family

ID=52516968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013159101A Pending JP2015031525A (en) 2013-07-31 2013-07-31 Detector for optical measuring

Country Status (1)

Country Link
JP (1) JP2015031525A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102481417B1 (en) * 2021-12-02 2022-12-26 동우 화인켐 주식회사 Device for measuring particles
KR102482973B1 (en) * 2022-07-18 2022-12-29 동우 화인켐 주식회사 Device for measuring particles
KR102482974B1 (en) * 2022-07-18 2022-12-29 동우 화인켐 주식회사 Device for measuring particles
KR102482972B1 (en) * 2022-07-18 2022-12-29 동우 화인켐 주식회사 Device for measuring particles

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102481417B1 (en) * 2021-12-02 2022-12-26 동우 화인켐 주식회사 Device for measuring particles
WO2023101425A1 (en) * 2021-12-02 2023-06-08 동우화인켐 주식회사 Particle measurement device
KR102482973B1 (en) * 2022-07-18 2022-12-29 동우 화인켐 주식회사 Device for measuring particles
KR102482974B1 (en) * 2022-07-18 2022-12-29 동우 화인켐 주식회사 Device for measuring particles
KR102482972B1 (en) * 2022-07-18 2022-12-29 동우 화인켐 주식회사 Device for measuring particles
WO2024019249A1 (en) * 2022-07-18 2024-01-25 동우화인켐 주식회사 Particle measurement device
WO2024019250A1 (en) * 2022-07-18 2024-01-25 동우화인켐 주식회사 Particle measurement device
WO2024019248A1 (en) * 2022-07-18 2024-01-25 동우화인켐 주식회사 Particle measuring device

Similar Documents

Publication Publication Date Title
JP6275440B2 (en) Turbidimeter
US8604455B2 (en) Sensor arrangement
US7593107B2 (en) Method and system for diffusion attenuated total reflection based concentration sensing
JP2015031525A (en) Detector for optical measuring
CN105637342A (en) Nephelometric turbidimeter and method for detection of the contamination of a sample cuvette of a nephelometric turbidimeter
CN103547910A (en) Measuring unit and gas analyzer
US20110080583A1 (en) Microspectrometer
CN105974511A (en) Optical element, transmission probe, sample container, optical device, and immersion transmission measurement method
KR102522728B1 (en) Optical sensor with deposition sensor
JP2014522968A (en) Method for measuring scattered light of particles in a medium
JP2008191119A (en) Flow cell for fluid sample
EP3290907B1 (en) Device for measuring solution concentration
US20220128670A1 (en) Sensor device including a sensor element and a cover panel
US9188528B2 (en) Sensor for monitoring a medium
JP6710535B2 (en) Automatic analyzer
US20160377538A1 (en) Arrangement in connection with measuring window of refractometer, and refractometer
JP2008249363A (en) Turbidimeter
JP4563600B2 (en) Light scattering measurement probe
JP7205190B2 (en) Optical measuring instrument
TWI780846B (en) Can measure the concentration of liquid
JPH02259451A (en) Turbidity meter
JP2012093232A (en) Photosensor and level sensor
JP2007327802A (en) Optical water quality instrumentation
JP2010048638A (en) Infrared-spectroscopic probe
JP6291278B2 (en) Detection device