JP2015031260A - Solenoid spill valve control device - Google Patents

Solenoid spill valve control device Download PDF

Info

Publication number
JP2015031260A
JP2015031260A JP2013163885A JP2013163885A JP2015031260A JP 2015031260 A JP2015031260 A JP 2015031260A JP 2013163885 A JP2013163885 A JP 2013163885A JP 2013163885 A JP2013163885 A JP 2013163885A JP 2015031260 A JP2015031260 A JP 2015031260A
Authority
JP
Japan
Prior art keywords
solenoid
spill valve
electromagnetic spill
switch
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013163885A
Other languages
Japanese (ja)
Inventor
世明 山岸
Toshiaki Yamagishi
世明 山岸
朋洋 小泉
Tomohiro Koizumi
朋洋 小泉
康紀 志賀
Yasunori Shiga
康紀 志賀
達哉 古賀
Tatsuya Koga
達哉 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2013163885A priority Critical patent/JP2015031260A/en
Publication of JP2015031260A publication Critical patent/JP2015031260A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To collect flyback energy with a simple circuit configuration without requiring special control and a DCDC converter, and to reduce heat loss.SOLUTION: A solenoid spill valve control device includes: a switch (10) for supplying electric current to an upstream side of a solenoid of a solenoid spill valve from a power supply by being turned on; a switch (11) provided in series at a further downstream side than the solenoid (L1) of the solenoid spill valve, and operating the solenoid spill valve by flowing electric current to the solenoid by being turned on, during a drive period during which power is supplied to the solenoid; a diode (12) provided in parallel between the solenoid spill valve and the switch (11), and preventing backflow to the solenoid spill valve side: and a capacitor (13) provided at the downstream side of the diode (12), and collecting flyback energy of the solenoid occurring accompanying the turning-off of the switch (11). The downstream side of the capacitor (13) is connected with the same potential as the power supply.

Description

本発明は、高圧ポンプ内のスピル弁、特に筒内噴射エンジンシステムに用いられる高圧ポンプ内の電磁スピル弁を駆動する駆動回路に関する。   The present invention relates to a drive circuit for driving a spill valve in a high-pressure pump, in particular, an electromagnetic spill valve in a high-pressure pump used in a direct injection engine system.

排出ガス低減・燃費向上を目的として、従来から筒内噴射エンジンシステムを搭載したガソリンエンジン車の開発・製品化が進められてきた。筒内噴射エンジンシステムは、気筒の燃焼室内に直接、高圧の燃料噴射を行うものであり、従前のポート噴射よりも空燃比の調整がしやすい・圧縮比が高めやすいといった利点がある。   For the purpose of reducing exhaust gas and improving fuel efficiency, the development and commercialization of gasoline engine vehicles equipped with an in-cylinder injection engine system have been promoted. The in-cylinder injection engine system directly injects high-pressure fuel into the combustion chamber of the cylinder, and has the advantages that the air-fuel ratio is easier to adjust and the compression ratio is easier to increase than the conventional port injection.

図1に筒内噴射エンジンシステムの概略図を示す。図1に示すように、筒内噴射エンジンシステム1では、ECU100内の電磁スピル弁駆動回路106の指令により、高圧ポンプ102内の電磁弁103が開弁する。電磁弁103が開弁すると、フューエルタンク101から、電磁弁103を通り、高圧ポンプ102に燃料が入る。そして図示しないエンジンの回転エネルギーを利用してカムシャフト104が回転駆動することで、ピストン108が押され高圧ポンプ102内の燃圧が高められる。高圧の燃料は、デリバリーパイプ109を通り、インジェクタ105に供給される。インジェクタ駆動回路107の指令によりインジェクタ105は供給された高圧の燃料を筒内噴射する。電磁弁103は各インジェクタ105が噴射する度に失われた燃料を供給する必要がある。そのため、電磁スピル弁駆動回路106は、各インジェクタ105を駆動するインジェクタ駆動回路107よりも作動頻度が高く(インジェクタ105の気筒数倍)、熱的な成立性はインジェクタ105より厳しいという背景がある。   FIG. 1 shows a schematic diagram of a cylinder injection engine system. As shown in FIG. 1, in the cylinder injection engine system 1, the electromagnetic valve 103 in the high-pressure pump 102 is opened by a command from the electromagnetic spill valve drive circuit 106 in the ECU 100. When the solenoid valve 103 is opened, fuel enters the high-pressure pump 102 from the fuel tank 101 through the solenoid valve 103. Then, the camshaft 104 is rotationally driven using the rotational energy of the engine (not shown), whereby the piston 108 is pushed and the fuel pressure in the high-pressure pump 102 is increased. High-pressure fuel passes through the delivery pipe 109 and is supplied to the injector 105. Injector 105 injects the supplied high-pressure fuel into the cylinder in response to a command from injector drive circuit 107. The solenoid valve 103 needs to supply lost fuel every time each injector 105 injects. For this reason, the electromagnetic spill valve drive circuit 106 is operated more frequently than the injector drive circuit 107 that drives each injector 105 (multiple times the number of cylinders of the injector 105), and the thermal establishment is severer than the injector 105.

次に、筒内噴射エンジンシステムの電磁スピル弁駆動回路の構成例について図2を用いて説明する。   Next, a configuration example of the electromagnetic spill valve drive circuit of the cylinder injection engine system will be described with reference to FIG.

図2では以下のように動作する。まず、CPUやメモリで構成される制御回路201からの制御に基づいて例えばFETなどのトランジスタであるスイッチ211とスイッチ212がONし、電源+Bから、誘導性負荷である電磁弁の負荷221、抵抗R1にバッテリ電圧を供給して電流を流す。抵抗R1に流れる電流は電流検出回路223によって検出される。電磁弁が開弁するのに十分な電流が負荷221に流れたら、制御回路201はスイッチ211がON−OFFを繰り返す定電流制御を行う。この制御によって開弁状態が保持される。そして、制御回路201からの制御に基づいてスイッチ211・212がOFFされる、これによって負荷221の電流が遮断され、電磁弁が閉弁する。   In FIG. 2, the operation is as follows. First, based on control from the control circuit 201 constituted by a CPU and a memory, for example, a switch 211 and a switch 212, which are transistors such as FETs, are turned on, and a load 221 of an electromagnetic valve that is an inductive load, resistance A battery voltage is supplied to R1 to pass a current. The current flowing through the resistor R1 is detected by the current detection circuit 223. When a current sufficient to open the solenoid valve flows into the load 221, the control circuit 201 performs constant current control in which the switch 211 is repeatedly turned on and off. By this control, the valve open state is maintained. Then, the switches 211 and 212 are turned OFF based on the control from the control circuit 201, whereby the current of the load 221 is cut off and the electromagnetic valve is closed.

ここで、電磁弁の閉弁時、誘導性負荷である電磁弁221は電流を流し続けようとするためスイッチ212にサージ電圧が発生する。そこで、スイッチ212に並列に設けられたアクティブクランプ回路222が、サージ電圧が一定電圧以下になるように制御しながら電流を遮断する。しかし、この構成では電磁弁のフライバックエネルギーを閉弁時にスイッチ212で熱損失として発散させる構成のためスイッチ212での熱損失対策が課題となる。   Here, when the solenoid valve is closed, a surge voltage is generated in the switch 212 because the solenoid valve 221, which is an inductive load, keeps flowing current. Therefore, the active clamp circuit 222 provided in parallel with the switch 212 cuts off the current while controlling the surge voltage to be a certain voltage or less. However, in this configuration, since the flyback energy of the solenoid valve is dissipated as heat loss by the switch 212 when the valve is closed, countermeasures against heat loss in the switch 212 become a problem.

ここで、サージによる熱対策として、インジェクタ駆動回路では閉弁時のフライバックエネルギーをインジェクタ駆動用の高電圧コンデンサに回収して次回の開弁時に再利用する手法が知られている。(例えば特許文献1を参照)   Here, as a countermeasure against heat due to surge, a method is known in which, in an injector drive circuit, flyback energy at the time of valve closing is collected in a high voltage capacitor for driving the injector and reused at the next valve opening. (For example, see Patent Document 1)

特開2008−63993号公報JP 2008-63993 A

しかし、特許文献1においては、インジェクタ駆動用の高電圧コンデンサでフライバックエネルギーを回収する構成をとっており、この構成を単純に電磁スピル弁に応用しようとすると回路構成の複雑化するという問題がある。また、制御に関しても、エネルギー回収回路と高電圧コンデンサ用のDCDCコンバータとの協調制御が必要になるなど複雑化する。制御の複雑化はCPUの計算負荷増加に繋がり、ハードリアルタイム処理が求められるエンジンECUにおいて望ましいことではないという問題があった。   However, Patent Document 1 adopts a configuration in which flyback energy is recovered by a high voltage capacitor for driving an injector, and if this configuration is simply applied to an electromagnetic spill valve, the circuit configuration becomes complicated. is there. Further, the control is complicated, such as the need for cooperative control between the energy recovery circuit and the DCDC converter for the high voltage capacitor. Complicated control leads to an increase in the calculation load of the CPU, which is not desirable in an engine ECU that requires hard real-time processing.

本発明は、従来の問題を解決するためになされたもので、特別な制御やDCDCコンバータを必要とせず簡便な回路構成・少ない部品点数でフライバックエネルギーを回収して熱損失を低減することができる電磁スピル弁制御装置を提供することを目的とする。   The present invention has been made to solve the conventional problems, and does not require special control or a DCDC converter, and can recover flyback energy with a simple circuit configuration and a small number of parts to reduce heat loss. An object of the present invention is to provide an electromagnetic spill valve control device.

上記目的を達成するため、本発明の電磁スピル弁制御装置は、第2のスイッチング素子のオフに伴い発生するソレノイドのフライバックエネルギーを回収するエネルギー回収手段を備え、エネルギー回収手段の下流側が電源と同電位に接続されたことを特徴とした。   In order to achieve the above object, the electromagnetic spill valve control device of the present invention includes energy recovery means for recovering solenoid flyback energy generated when the second switching element is turned off, and the downstream side of the energy recovery means is a power source. It was characterized by being connected to the same potential.

本発明の電磁スピル弁制御装置によれば、特別な制御やDCDCコンバータを必要とせず簡便な回路構成でフライバックエネルギーを回収して熱損失を低減することができる。   According to the electromagnetic spill valve control device of the present invention, it is possible to recover flyback energy and reduce heat loss with a simple circuit configuration without requiring special control or a DCDC converter.

筒内噴射エンジンシステムの概略図Schematic diagram of in-cylinder injection engine system 筒内噴射エンジンシステムの電磁スピル弁駆動回路の構成例を説明する図The figure explaining the structural example of the electromagnetic spill valve drive circuit of a cylinder injection engine system 本実施形態における電磁スピル弁制御装置の回路図Circuit diagram of electromagnetic spill valve control device in this embodiment

以下、本発明の実施形態に係る電磁スピル弁制御装置について図3を用いて説明する。   Hereinafter, an electromagnetic spill valve control apparatus according to an embodiment of the present invention will be described with reference to FIG.

図3の回路図に示される電磁スピル弁制御装置は、図1の電磁スピル弁駆動回路に相当する。図3において、FETなどのトランジスタであるスイッチ10、11、14のON−OFF制御は図示しない制御回路(図2の制御回路201に相当)の命令によって行われる。まず、電磁スピル弁の開弁制御として、スイッチ10とスイッチ11がONされる。これによって電源+Bから、誘導性負荷である電磁スピル弁のソレノイドL1、スイッチ11とグランドGNDの間に直列接続された抵抗Rにバッテリ電圧が供給され、電流が流れる。なお、ソレノイドL1とスイッチ10、ソレノイドL1とスイッチ11との間には電源+B側への逆流を防止するダイオードD2、D3がそれぞれ直列に接続されている。   The electromagnetic spill valve control device shown in the circuit diagram of FIG. 3 corresponds to the electromagnetic spill valve drive circuit of FIG. In FIG. 3, ON / OFF control of the switches 10, 11, and 14 which are transistors such as FETs is performed by a command from a control circuit (not shown) (corresponding to the control circuit 201 in FIG. 2). First, as the valve opening control of the electromagnetic spill valve, the switch 10 and the switch 11 are turned on. As a result, the battery voltage is supplied from the power source + B to the solenoid R1 of the electromagnetic spill valve, which is an inductive load, and the resistor R connected in series between the switch 11 and the ground GND, and a current flows. Diodes D2 and D3 that prevent backflow to the power source + B side are connected in series between the solenoid L1 and the switch 10 and between the solenoid L1 and the switch 11, respectively.

電磁弁が開弁するのに十分な電流が電磁スピル弁のソレノイドL1に流れたら、スイッチ10がON−OFFを繰り返す定電流制御が行われる。この制御によって開弁状態が保持される。ソレノイドL1とダイオードD2、D3の間にはフライホイールダイオードD4が設けられ、スイッチ10がOFFされたときにソレノイドL1に生じる誘導起電力がグランドGNDを介して流される。スイッチ10がOFFされたときは少なくともスイッチ14も同期してOFFされる。これによって、コンデンサ13に蓄えられているエネルギーが低下するのを防止することができる。なお、スイッチ10がONのとき、スイッチ
14は必ずしも同期してONしなくてもよいが、同期してONする場合は、スイッチ10と14の制御を容易にすることができる。
When a current sufficient to open the solenoid valve flows to the solenoid L1 of the solenoid spill valve, constant current control is performed in which the switch 10 is repeatedly turned on and off. By this control, the valve open state is maintained. A flywheel diode D4 is provided between the solenoid L1 and the diodes D2 and D3, and an induced electromotive force generated in the solenoid L1 when the switch 10 is turned off flows through the ground GND. When the switch 10 is turned off, at least the switch 14 is also turned off in synchronization. As a result, it is possible to prevent the energy stored in the capacitor 13 from being lowered. Note that when the switch 10 is ON, the switch 14 does not necessarily have to be turned ON synchronously. However, when the switch 10 is turned ON synchronously, the control of the switches 10 and 14 can be facilitated.

そして、電磁スピル弁の閉弁に際しては、スイッチ10、11がOFFされる。これによってソレノイドL1への電流は遮断され、電磁スピル弁は閉弁する。電磁スピル弁の閉弁時には、誘導性負荷であるソレノイドL1は電流を流し続けようとする。ここで、ソレノイドL1とスイッチ11との間には、電磁スピル弁のソレノイドL1側への逆流を防止するダイオード12が並列に設けられている。コンデンサ13はこのダイオード12の下流側に設けられ、スイッチ10、11のオフに伴い発生するソレノイドL1のフライバックエネルギーを回収する。これによって、スイッチ11でのサージ電圧による熱損失を低減することができる。また、スイッチ10、11に同期してスイッチ14もOFFされる。   When the electromagnetic spill valve is closed, the switches 10 and 11 are turned off. As a result, the current to the solenoid L1 is cut off, and the electromagnetic spill valve is closed. When the electromagnetic spill valve is closed, the solenoid L1, which is an inductive load, tries to keep current flowing. Here, a diode 12 is provided in parallel between the solenoid L1 and the switch 11 to prevent backflow of the electromagnetic spill valve to the solenoid L1 side. The capacitor 13 is provided on the downstream side of the diode 12 and collects the flyback energy of the solenoid L1 generated when the switches 10 and 11 are turned off. Thereby, the heat loss due to the surge voltage in the switch 11 can be reduced. Further, the switch 14 is also turned OFF in synchronization with the switches 10 and 11.

電磁スピル弁では開弁のためにインジェクタのような高電圧を必要としないため、電源電圧+Bでの駆動が可能である。そのためDCDCコンバータのような昇圧回路を設ける必要がなく、それにかかわる電圧制御も不要となる。一方で、従来の回路構成ではDCDCコンバータによる定電圧制御によって閉弁時間が制御可能であったが、本実施形態では閉弁時間をコンデンサ13の容量値で設定する必要がある。コンデンサ13の容量値は電磁スピル弁のソレノイドL1のインダクタンス(L)と所望の遮断時間(T)に応じた値によって選択する必要がある。ここでコンデンサ13の容量値を大きくしすぎると電磁弁の電流遮断時間の劣化につながる。電磁スピル弁のインダクタンス(L)を数mH、遮断時間(T)を数100μsecとすると、下式の関係よりフライバックエネルギー吸収用のコンデンサ13の容量(C)は、高々数10μFあれば十分である。   Since the electromagnetic spill valve does not require a high voltage like an injector for opening the valve, it can be driven with the power supply voltage + B. Therefore, it is not necessary to provide a booster circuit such as a DCDC converter, and voltage control related to it is not necessary. On the other hand, in the conventional circuit configuration, the valve closing time can be controlled by the constant voltage control by the DCDC converter, but in the present embodiment, the valve closing time needs to be set by the capacitance value of the capacitor 13. The capacitance value of the capacitor 13 needs to be selected according to the value according to the inductance (L) of the solenoid L1 of the electromagnetic spill valve and the desired cutoff time (T). Here, if the capacitance value of the capacitor 13 is increased too much, the current cutoff time of the solenoid valve is deteriorated. Assuming that the inductance (L) of the electromagnetic spill valve is several mH and the cutoff time (T) is several hundred μsec, it is sufficient that the capacity (C) of the capacitor 13 for absorbing the flyback energy is at most several tens μF from the relationship of the following equation. is there.

ここで、数10μFの容量を有するコンデンサ13としては、ESR・耐リプル電流・寿命の観点からセラミックコンデンサが最適である。さらに、無極性のセラミックコンデンサでは負極をグランドGND以外(ここでは電源電圧+B)に接続することでセラミックコンデンサの端子間電圧を緩和し、DCバイアス効果による容量低下を抑える事ができる。これにより、セラミックコンデンサの容量を節約できるため、比較的高価な部品である高耐圧セラミックコンデンサの部品点数を減らすことができる。   Here, as the capacitor 13 having a capacitance of several tens of μF, a ceramic capacitor is optimal from the viewpoint of ESR, ripple current resistance, and life. Further, in a nonpolar ceramic capacitor, the voltage between terminals of the ceramic capacitor can be relaxed by connecting the negative electrode to other than the ground GND (here, the power supply voltage + B), and the capacity reduction due to the DC bias effect can be suppressed. Thereby, since the capacity of the ceramic capacitor can be saved, the number of parts of the high voltage ceramic capacitor which is a relatively expensive part can be reduced.

エネルギー回収後、ソレノイドL1のフライバックエネルギーによってコンデンサ13に蓄えられたエネルギーは次回の電磁スピル弁の開弁時に開弁用のエネルギーとして再利用されることになる。スイッチ10のONに同期して、コンデンサ13の上流側に設けられたスイッチ14がONされると、電磁スピル弁のソレノイドL1の上流側には、まずコンデンサ13が回収したエネルギーに基づく電流が供給される。そして、コンデンサ13に蓄えられたエネルギーが放出され終わると、スイッチ10から電源電圧+Bに基づく電流が供給される。   After the energy recovery, the energy stored in the capacitor 13 by the flyback energy of the solenoid L1 is reused as the opening energy when the electromagnetic spill valve is opened next time. When the switch 14 provided on the upstream side of the capacitor 13 is turned on in synchronization with the switch 10 being turned on, the current based on the energy recovered by the capacitor 13 is first supplied to the upstream side of the solenoid L1 of the electromagnetic spill valve. Is done. When the energy stored in the capacitor 13 has been released, a current based on the power supply voltage + B is supplied from the switch 10.

以上のように、本実施形態の電磁スピル弁制御装置によれば、特別な制御やDCDCコンバータを必要とせず簡便な回路構成でフライバックエネルギーを回収して熱損失を低減することができる。   As described above, according to the electromagnetic spill valve control device of this embodiment, it is possible to recover flyback energy and reduce heat loss with a simple circuit configuration without requiring special control or a DCDC converter.

本発明に係る電磁スピル弁制御装置は、高圧ポンプ内の電磁スピル弁、特に筒内噴射エ
ンジンシステムに用いられる高圧ポンプ内の電磁スピル弁を駆動する駆動回路として有用である。
The electromagnetic spill valve control device according to the present invention is useful as a drive circuit for driving an electromagnetic spill valve in a high-pressure pump, particularly an electromagnetic spill valve in a high-pressure pump used in a direct injection engine system.

10、11、14 スイッチ
12 ダイオード
13 コンデンサ
L1 ソレノイド
10, 11, 14 Switch 12 Diode 13 Capacitor L1 Solenoid

Claims (4)

電源に接続され、オンすることにより前記電源から電磁スピル弁のソレノイド(L1)の上流側に電流を供給する第1のスイッチング手段(10)と、
前記電磁スピル弁のソレノイドよりも下流側に直列に設けられ、前記ソレノイドに通電すべき駆動期間の間、オンすることにより、前記ソレノイドに電流を流して前記電磁スピル弁を作動させる第2のスイッチング手段(11)と、
前記電磁スピル弁と前記第2のスイッチング手段との間に並列に設けられ、前記電磁スピル弁側への逆流を防止する逆流防止手段(12)と、
この逆流防止手段の下流側に設け、前記第2のスイッチング素子のオフに伴い発生する前記ソレノイドのフライバックエネルギーを回収するエネルギー回収手段(13)と、を備え、
前記エネルギー回収手段の下流側は前記電源と同電位に接続されたことを特徴とする電磁スピル弁制御装置。
A first switching means (10) connected to a power source and supplying current to the upstream side of the solenoid (L1) of the electromagnetic spill valve from the power source by turning on;
Second switching is provided in series downstream of the solenoid of the electromagnetic spill valve, and is turned on during a drive period in which the solenoid is energized, thereby causing the solenoid to pass current and actuate the electromagnetic spill valve. Means (11);
Backflow prevention means (12) provided in parallel between the electromagnetic spill valve and the second switching means for preventing backflow to the electromagnetic spill valve side;
An energy recovery means (13) provided downstream of the backflow prevention means, for recovering the flyback energy of the solenoid that is generated when the second switching element is turned off;
The electromagnetic spill valve control device, wherein the downstream side of the energy recovery means is connected to the same potential as the power source.
前記エネルギー回収手段はセラミックコンデンサであることを特徴とする請求項1に記載の電磁スピル弁制御装置。   2. The electromagnetic spill valve control device according to claim 1, wherein the energy recovery means is a ceramic capacitor. 前記エネルギー回収手段の上流側に設けられ、オンすることにより前記エネルギー回収手段が回収したエネルギーに基づいて前記電磁スピル弁のソレノイドの上流側に電流を供給する第3のスイッチング手段(14)をさらに備えたことを特徴とする請求項1または2に記載の電磁スピル弁制御装置。   A third switching means (14) provided on the upstream side of the energy recovery means and supplying current to the upstream side of the solenoid of the electromagnetic spill valve based on the energy recovered by the energy recovery means by turning on; The electromagnetic spill valve control device according to claim 1, wherein the electromagnetic spill valve control device is provided. 前記第1のスイッチング手段(11)と前記第3のスイッチング手段(14)とは同期してオンされることを特徴とする請求項3に記載の電磁スピル弁制御装置。   4. The electromagnetic spill valve control device according to claim 3, wherein the first switching means (11) and the third switching means (14) are turned on in synchronization.
JP2013163885A 2013-08-07 2013-08-07 Solenoid spill valve control device Pending JP2015031260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013163885A JP2015031260A (en) 2013-08-07 2013-08-07 Solenoid spill valve control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013163885A JP2015031260A (en) 2013-08-07 2013-08-07 Solenoid spill valve control device

Publications (1)

Publication Number Publication Date
JP2015031260A true JP2015031260A (en) 2015-02-16

Family

ID=52516783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013163885A Pending JP2015031260A (en) 2013-08-07 2013-08-07 Solenoid spill valve control device

Country Status (1)

Country Link
JP (1) JP2015031260A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016202638A1 (en) 2015-02-20 2016-08-25 Omron Automotive Electronics Co., Ltd. Voltage converter device
JP2021175302A (en) * 2020-04-28 2021-11-01 三菱電機株式会社 Inductive load drive circuit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192817A (en) * 1987-10-02 1989-04-12 Diesel Kiki Co Ltd Driving circuit
JP2001050093A (en) * 1999-08-09 2001-02-23 Denso Corp Solenoid valve driving system
JP2002015916A (en) * 2000-06-27 2002-01-18 Mitsubishi Electric Corp Solenoid drive device
JP2003007530A (en) * 2001-06-27 2003-01-10 Denso Corp Electromagnetic valve drive unit
JP2008063993A (en) * 2006-09-06 2008-03-21 Denso Corp Solenoid valve driving device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192817A (en) * 1987-10-02 1989-04-12 Diesel Kiki Co Ltd Driving circuit
JP2001050093A (en) * 1999-08-09 2001-02-23 Denso Corp Solenoid valve driving system
JP2002015916A (en) * 2000-06-27 2002-01-18 Mitsubishi Electric Corp Solenoid drive device
JP2003007530A (en) * 2001-06-27 2003-01-10 Denso Corp Electromagnetic valve drive unit
JP2008063993A (en) * 2006-09-06 2008-03-21 Denso Corp Solenoid valve driving device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016202638A1 (en) 2015-02-20 2016-08-25 Omron Automotive Electronics Co., Ltd. Voltage converter device
JP2021175302A (en) * 2020-04-28 2021-11-01 三菱電機株式会社 Inductive load drive circuit

Similar Documents

Publication Publication Date Title
JP5470294B2 (en) Injector drive circuit
JP4600370B2 (en) Solenoid valve drive
US7578284B2 (en) Internal combustion engine controller
JP5023172B2 (en) Solenoid valve drive circuit
US8081498B2 (en) Internal combustion engine controller
JP2008115848A (en) Internal combustion engine control device
CN103899427A (en) Driving circuit of high pressure common rail oil atomizer
JP2015105605A (en) Solenoid valve drive device
JP2006336568A (en) Injector driving device
JP2015031260A (en) Solenoid spill valve control device
CN1651742A (en) Integrated bivoltage electromagnet valve driven circuit
JP5926159B2 (en) Solenoid valve drive
JP2013064363A (en) Fuel injection device of internal combustion engine
KR20200020920A (en) Ignition
JP6398601B2 (en) Ignition device for internal combustion engine
JP2010216278A (en) Boosting circuit for driving fuel injection valve
KR101498809B1 (en) Driving circuit for electromagnetic valve
US20110017178A1 (en) Canister purge control valve control systems
CN110206651B (en) Peak/current-holding drive circuit
CN108412627B (en) Intelligent driving device and method for diesel engine electric control common rail system
JP2012184686A (en) Engine control unit
CN105927437B (en) The driving structure of piezo injector with energy regenerating
CN218216686U (en) Voltage clamping and overvoltage protection circuit for natural gas engine ECU
JP2018178940A (en) Injection control device
JP6193042B2 (en) Solenoid valve drive circuit

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160218

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160531