JP2015030026A - Casting method and casting mold - Google Patents

Casting method and casting mold Download PDF

Info

Publication number
JP2015030026A
JP2015030026A JP2013162750A JP2013162750A JP2015030026A JP 2015030026 A JP2015030026 A JP 2015030026A JP 2013162750 A JP2013162750 A JP 2013162750A JP 2013162750 A JP2013162750 A JP 2013162750A JP 2015030026 A JP2015030026 A JP 2015030026A
Authority
JP
Japan
Prior art keywords
casting
sand
gas
mold
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013162750A
Other languages
Japanese (ja)
Other versions
JP6300462B2 (en
Inventor
真幸 島田
Masayuki Shimada
真幸 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP2013162750A priority Critical patent/JP6300462B2/en
Publication of JP2015030026A publication Critical patent/JP2015030026A/en
Application granted granted Critical
Publication of JP6300462B2 publication Critical patent/JP6300462B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a casting method capable of properly cooling molten metal.SOLUTION: A casting method, for pouring molten metal into a casting mold 1 configured by filling sand in frames 15 and 19, cools the molten metal in a casting part 11 by supplying gas between sand grains at a lower part, a lateral part, and an upper part of the casting part 11 which is a gap where a casting is formed at these parts.

Description

本発明は、鋳造方法及び鋳型に関する。   The present invention relates to a casting method and a mold.

鋳型に溶湯(溶融状態の金属)を流し込む鋳造(重力鋳造)方法において、鋳型に注がれた溶湯を積極的に冷却する技術が知られている(例えば特許文献1及び2)。特許文献1では、空気又は空気と水との混合気流を鋳型内に設けた流路に供給する技術が開示されている。特許文献2では、鋳型を構成する砂に水を浸透させる技術が開示されている。   In a casting (gravity casting) method in which a molten metal (a molten metal) is poured into a mold, a technique for actively cooling the molten metal poured into the mold is known (for example, Patent Documents 1 and 2). Patent Document 1 discloses a technique for supplying air or a mixed airflow of air and water to a flow path provided in a mold. Patent Document 2 discloses a technique for infiltrating water into sand constituting a mold.

特公平4−45264号公報Japanese Examined Patent Publication No. 4-45264 特開平9−225621号公報JP-A-9-225621

しかし、特許文献1の技術は、鋳物(となる溶湯)を局部的に冷却するためのものであり、鋳造の効率化には寄与しない。また、特許文献2は、水を砂に浸透させることから、種々の不都合が生じる。例えば、鋳型を長期に亘って再利用することが困難である。また、溶湯が急冷されることから、鋳物の不良発生を抑制するために、A1変態温度直前までしか冷却を行えない。   However, the technique of Patent Document 1 is for locally cooling a casting (a molten metal to be formed), and does not contribute to the efficiency of casting. Moreover, since patent document 2 permeate | transmits water to sand, a various inconvenience arises. For example, it is difficult to reuse the mold for a long time. Further, since the molten metal is rapidly cooled, cooling can be performed only until just before the A1 transformation temperature in order to suppress the occurrence of casting defects.

従って、好適に溶湯を冷却できる鋳造方法及び鋳型が提供されることが望ましい。   Therefore, it is desirable to provide a casting method and mold that can cool the molten metal suitably.

本発明の一態様に係る鋳造方法は、枠に砂を詰めて構成された鋳型に溶湯を流し込む鋳造方法であって、鋳物が形成される空隙である鋳物部の下方、側方及び上方にて、砂粒間に気体を供給することにより前記鋳物部内の溶湯を冷却する。   A casting method according to an aspect of the present invention is a casting method in which molten metal is poured into a mold configured by filling sand into a frame, and is below, on a side, and above a casting part that is a void in which a casting is formed. The molten metal in the casting is cooled by supplying gas between the sand grains.

好適には、溶湯の温度がA1変態温度よりも高い温度から常温になるまで砂粒間への気体の供給を行う。   Preferably, the gas is supplied between the sand grains until the temperature of the molten metal reaches a room temperature from a temperature higher than the A1 transformation temperature.

好適には、溶湯の温度がA1変態温度に到達する前に砂粒間への気体の供給量を小さくする。   Preferably, the amount of gas supplied between the sand grains is reduced before the temperature of the molten metal reaches the A1 transformation temperature.

好適には、前記鋳型は、隙間を介して互いに対向するとともに、前記鋳物部側に面する1対の板状部材を有し、前記1対の板状部材のうち、少なくとも前記鋳物部側の板状部材は、前記砂に当接しているとともに複数の孔が形成されており、前記1対の板状部材間に気体を供給することにより、前記複数の孔から砂粒間に気体を供給する。   Preferably, the mold has a pair of plate-like members facing each other with a gap and facing the casting portion side, and at least of the pair of plate-like members on the casting portion side. The plate-like member is in contact with the sand and has a plurality of holes, and gas is supplied between the plurality of holes between the sand particles by supplying gas between the pair of plate-like members. .

好適には、前記1対の板状部材は、前記砂に埋設されている。   Preferably, the pair of plate-like members are embedded in the sand.

好適には、前記鋳型は、前記砂に埋設された管状部材を有し、前記管状部材には、内周面から外周面に貫通する複数の孔が形成されており、前記複数の孔から砂粒間に気体を供給する。   Preferably, the mold has a tubular member embedded in the sand, and the tubular member has a plurality of holes penetrating from an inner peripheral surface to an outer peripheral surface, and sand particles are formed from the plurality of holes. Gas is supplied between them.

本発明の一態様に係る鋳造方法は、枠に砂を詰めて構成された鋳型に溶湯を流し込む鋳造方法であって、溶湯の温度がA1変態温度よりも高い温度から常温になるまで砂粒間へ気体を供給して前記鋳物部内の溶湯を冷却する。   A casting method according to an aspect of the present invention is a casting method in which a molten metal is poured into a mold configured by filling sand into a frame, and the temperature of the molten metal is increased from a temperature higher than the A1 transformation temperature to normal temperature. Gas is supplied to cool the molten metal in the casting part.

本発明の一態様に係る鋳型は、枠と、前記枠に詰められ、鋳物が形成される空隙である鋳物部を構成する砂と、隙間を介して互いに対向するとともに、前記鋳物部側に面する1対の板状部材と、を有し、前記1対の板状部材のうち、少なくとも前記鋳物部側の板状部材は、前記砂に当接しているとともに複数の孔が形成されている。   A mold according to an aspect of the present invention is a frame, sand that forms a casting part that is a gap formed in the frame and in which a casting is formed, and is opposed to each other through a gap, and faces the casting part side. A pair of plate-like members, and among the pair of plate-like members, at least the plate-like member on the casting part side is in contact with the sand and has a plurality of holes formed therein. .

本発明の一態様に係る鋳型は、枠と、前記枠に詰められ、鋳物が形成される空隙である鋳物部を構成する砂と、前記砂に埋設され、内周面から外周面に貫通する複数の孔が形成された管状部材と、を有する。   A mold according to an aspect of the present invention includes a frame, sand that forms a casting portion that is packed in the frame and in which a casting is formed, and is embedded in the sand and penetrates from an inner peripheral surface to an outer peripheral surface. And a tubular member having a plurality of holes formed therein.

本発明によれば、溶湯を好適に冷却できる。   According to the present invention, the molten metal can be suitably cooled.

本発明の第1の実施形態に係る鋳型の構成を示す模式的な断面図。1 is a schematic cross-sectional view showing a configuration of a mold according to a first embodiment of the present invention. 図1の鋳型の板状部材を示す斜視図。The perspective view which shows the plate-shaped member of the casting_mold | template of FIG. 図1の鋳型における冷却工程を説明する図。The figure explaining the cooling process in the casting_mold | template of FIG. 本発明の第2の実施形態に係る鋳型の構成を示す模式的な断面図。The typical sectional view showing the composition of the mold concerning the 2nd embodiment of the present invention. 図4の鋳型の管状部材を示す斜視図。The perspective view which shows the tubular member of the casting_mold | template of FIG.

<第1の実施形態>
図1は、本発明の第1の実施形態に係る鋳型1の構成を示す断面図である。なお、図1は、模式的なものであり、必ずしも同一断面を示してはいない。
<First Embodiment>
FIG. 1 is a cross-sectional view showing a configuration of a mold 1 according to the first embodiment of the present invention. FIG. 1 is schematic and does not necessarily show the same cross section.

鋳型1は、例えば、下型3と、下型3の上に配置される上型5と、これらの間に配置される中子7と、上型5の上に配置される湯溜め9とを有している。これらの部材の内部乃至は部材間には、例えば、鋳物が形成される空隙部である鋳物部11と、鋳物部11に溶湯を導くための湯口系統13とが構成されている。   The mold 1 includes, for example, a lower mold 3, an upper mold 5 disposed on the lower mold 3, a core 7 disposed therebetween, and a sump 9 disposed on the upper mold 5. have. Between these members or between the members, for example, a cast portion 11 which is a void portion in which a casting is formed, and a gate system 13 for guiding the molten metal to the cast portion 11 are configured.

鋳型1は、いわゆる砂型である。すなわち、下型3は、枠15と、枠15内に配置された砂部17とを有している。同様に、上型5は、枠19と、枠19内に配置された砂部21とを有している。中子7は、砂部からなる。湯溜め9は、枠23と、枠23内に配置された砂部25とを有している。   The mold 1 is a so-called sand mold. That is, the lower mold 3 has a frame 15 and a sand portion 17 disposed in the frame 15. Similarly, the upper mold 5 includes a frame 19 and a sand portion 21 disposed in the frame 19. The core 7 consists of a sand part. The hot water reservoir 9 has a frame 23 and a sand portion 25 disposed in the frame 23.

枠15、19及び23は、例えば、金属又は木材からなる。砂部17、21及び25並びに中子7は、例えば、砂と、砂を結合する粘結剤とからなる。砂は、例えば、珪砂である。粘結剤は、例えば、粘土、樹脂又は水ガラスである。特に図示しないが、公知のように、砂部17、21及び25並びに中子7において、砂粒間には隙間が形成されており、気体が流れ込むことが可能となっている。   The frames 15, 19 and 23 are made of metal or wood, for example. The sand parts 17, 21, and 25 and the core 7 are made of, for example, sand and a binder that binds the sand. The sand is, for example, silica sand. The binder is, for example, clay, resin, or water glass. Although not particularly illustrated, as is well known, in the sand portions 17, 21 and 25 and the core 7, gaps are formed between the sand grains, and gas can flow in.

鋳物部11は、下型3の砂部17及び上型5の砂部21(並びに中子7)に囲まれた隙間により構成されている。なお、鋳物部11の形状は、中子7を必要としないものであってもよい。図1では、下型3のみに凹部が形成され、その凹部に中子7が配置された簡単な形状の鋳物部11を模式的に示している。当然に、実際の鋳物の具体的な形状に応じて、下型3、上型5及び中子7のそれぞれにおいて、凹部及び/又は凸部が適宜に形成されてよい。   The casting part 11 is constituted by a gap surrounded by the sand part 17 of the lower mold 3 and the sand part 21 (and the core 7) of the upper mold 5. In addition, the shape of the casting part 11 may not require the core 7. FIG. 1 schematically shows a cast part 11 having a simple shape in which a recess is formed only in the lower mold 3 and a core 7 is arranged in the recess. Naturally, in each of the lower mold 3, the upper mold 5 and the core 7, a concave portion and / or a convex portion may be appropriately formed according to the specific shape of the actual casting.

湯口系統13は、例えば、砂部17及び砂部21に形成された空隙、並びに/又は、砂部17と砂部21との隙間により構成されている。なお、陶管等の管状部材が砂部17又は21に埋設されることにおり、湯口系統13の一部が構成されていてもよい。湯口系統13の形状は適宜に構成されてよく、図1では、いわゆる押上げ方式の湯口系統を例示している。   The gate system 13 is configured by, for example, a gap formed in the sand portion 17 and the sand portion 21 and / or a gap between the sand portion 17 and the sand portion 21. In addition, tubular members, such as a ceramic pipe, are to be embed | buried in the sand part 17 or 21, and a part of the gate system 13 may be comprised. The shape of the gate system 13 may be appropriately configured, and FIG. 1 illustrates a so-called push-up system gate system.

鋳型1は、溶湯を冷却するための気体が流れる複数の流路27を有している。複数の流路27は、例えば、鋳物部11に対して上方、下方及び側方(例えば4つの側方全部)に設けられ、合計6つ設けられている。なお、複数の流路27は、適宜に接続されていてもよい。   The mold 1 has a plurality of flow paths 27 through which a gas for cooling the molten metal flows. For example, the plurality of flow paths 27 are provided above, below, and laterally (for example, all four sides) with respect to the casting part 11, and a total of six channels 27 are provided. In addition, the some flow path 27 may be connected suitably.

各流路27は、例えば、鋳型1の外部から鋳型1の内部(より詳細には砂部17及び21の内部)へ気体を導く通路部29と、導かれた気体を砂部17及び21内にて分散させるための分散部31とを有している。   Each flow path 27 includes, for example, a passage portion 29 that guides gas from the outside of the mold 1 to the inside of the mold 1 (more specifically, the inside of the sand portions 17 and 21), and the guided gas inside the sand portions 17 and 21. And a dispersing portion 31 for dispersing at.

通路部29は、鋳型1の外部に開口するとともに鋳型1の内部(より詳細には砂部17及び21の内部)に延びている。通路部29は、湯口系統13等と同様に構成されてよい。例えば、通路部29は、砂部17及び21に空隙が形成されることにより構成されてもよいし、陶管等の管状部材が砂部17又は21に埋設されることにより構成されてもよい。図1では、管状部材が砂部21に埋設されることにより構成されている場合を例示している。   The passage portion 29 opens to the outside of the mold 1 and extends to the inside of the mold 1 (more specifically, the inside of the sand portions 17 and 21). The passage part 29 may be configured similarly to the gate system 13 or the like. For example, the passage portion 29 may be configured by forming a gap in the sand portions 17 and 21, or may be configured by embedding a tubular member such as a ceramic pipe in the sand portion 17 or 21. . In FIG. 1, the case where the tubular member is comprised by being embed | buried under the sand part 21 is illustrated.

図2は、分散部31の構成を示す模式的な斜視図である。   FIG. 2 is a schematic perspective view showing the configuration of the dispersing unit 31.

分散部31は、隙間を介して互いに対向する第1板状部材33A及び第2板状部材33B(以下、両者を区別せずに、単に「板状部材33」ということがある。)を有している。1対の板状部材33は、図1に示すように、鋳物部11に面している。第1板状部材33Aは、鋳物部11側に位置し、第2板状部材33Bは、鋳物部11とは反対側に位置している。   The dispersion part 31 has a first plate-like member 33A and a second plate-like member 33B that are opposed to each other with a gap (hereinafter, simply referred to as “plate-like member 33” without distinguishing both). doing. As shown in FIG. 1, the pair of plate-like members 33 faces the casting portion 11. The first plate member 33A is located on the casting part 11 side, and the second plate member 33B is located on the opposite side to the casting part 11.

図2に示すように、第1板状部材33Aには、複数の孔35が形成されている。また、通路部29は、1対の板状部材33の間の隙間と、鋳型1の外部とを連通している。従って、鋳型1の外部から通路部29に気体を供給すると、その気体は、複数の孔35から鋳物部11側へ送出される。送出された気体は、砂部17及び21の砂粒間の隙間を流れる。これにより、砂部17及び21が冷却される。また、砂部17及び21を通過して鋳物部11に到達した気体は、溶湯に触れて溶湯を冷却する。   As shown in FIG. 2, a plurality of holes 35 are formed in the first plate-like member 33A. Further, the passage portion 29 communicates the gap between the pair of plate-like members 33 and the outside of the mold 1. Therefore, when gas is supplied to the passage portion 29 from the outside of the mold 1, the gas is sent from the plurality of holes 35 to the casting portion 11 side. The delivered gas flows through the gap between the sand grains of the sand portions 17 and 21. Thereby, the sand parts 17 and 21 are cooled. Further, the gas that has passed through the sand parts 17 and 21 and reached the casting part 11 touches the molten metal to cool the molten metal.

1対の板状部材33の形状、面積、厚み、板間の間隔、対の数及び配置等は適宜に設定されてよい。例えば、図1では、鋳物部11を囲む直方体状の箱が概ね構成されるように6対の板状部材33が設けられている。すなわち、概ね矩形の平板状の板状部材33により1対の板状部材33が構成され、6対の板状部材33が鋳物部11の上方、下方及び4つの側方に、これら6方位に概ね直交するように配置されている。さらに、下方及び4つの側方に配置された5対の板状部材33は、互いに当接している。また、例えば、下方及び4つの側方に位置する5対の板状部材33は下型3に設けられ、上方の1対の板状部材33は上型5に設けられている。なお、上型5において鋳物部11の側方に板状部材33(流路27)を設け、鋳物部11を囲む面積を更に大きくすることも可能である。   The shape, area, thickness, distance between the plates, the number of pairs, the arrangement, and the like of the pair of plate members 33 may be set as appropriate. For example, in FIG. 1, six pairs of plate-like members 33 are provided so that a rectangular parallelepiped box surrounding the casting part 11 is generally configured. That is, a pair of plate-like members 33 is constituted by a substantially rectangular plate-like plate-like member 33, and six pairs of plate-like members 33 are arranged in the six directions above, below and four sides of the casting portion 11. They are arranged so as to be substantially orthogonal. Further, the five pairs of plate-like members 33 arranged on the lower side and the four sides are in contact with each other. Further, for example, the five pairs of plate-like members 33 positioned on the lower side and the four sides are provided on the lower die 3, and the upper pair of plate-like members 33 are provided on the upper die 5. In addition, in the upper mold 5, it is possible to provide a plate-like member 33 (flow path 27) on the side of the casting part 11 to further increase the area surrounding the casting part 11.

1対の板状部材33の外周は、他の部材により塞がれていてもよいし、塞がれずに砂部17及び21に気体を供給可能であってもよい。また、他の部材により塞がれる場合、その部材は気体を砂部17及び21に供給するための複数の孔が形成されていてもよい。図1では、塞がれている場合を例示している。   The outer peripheries of the pair of plate-like members 33 may be closed by other members, or gas may be supplied to the sand portions 17 and 21 without being closed. Further, when the member is closed by another member, the member may have a plurality of holes for supplying gas to the sand portions 17 and 21. In FIG. 1, the case where it is blocked is illustrated.

複数の孔35の開口面積、形状、数、配置範囲及び配列方法等は適宜に設定されてよい。また、複数の孔35は、開口面積及び形状等が互いに同一であってもよいし、互いに異なっていてもよい。例えば、図1及び図2では、同一形状の複数の孔35が第1板状部材33Aの全体に亘って均等に分布している。   The opening area, shape, number, arrangement range, arrangement method, and the like of the plurality of holes 35 may be set as appropriate. The plurality of holes 35 may have the same opening area, shape, or the like, or may be different from each other. For example, in FIG.1 and FIG.2, the several hole 35 of the same shape is distributed uniformly over the whole 1st plate-shaped member 33A.

板状部材33の材料は、鋳造の際の熱によって焼失乃至は溶解しないものであればよい。例えば、板状部材33は、鋼等の金属又はセラミックにより形成されている。   The material of the plate-like member 33 may be any material that is not burned out or melted by heat during casting. For example, the plate-like member 33 is formed of a metal such as steel or a ceramic.

通路部29と分散部31との接続位置は適宜に設定されてよい。例えば、通路部29は、第2板状部材33B(分散部31の鋳物部11とは反対側の面)に形成された開口を介して1対の板状部材33間の隙間に通じている。この開口は、第2板状部材33Bの中央や角部付近等の適宜な位置に形成されてよい。また、一の分散部31に接続される通路部29の数も適宜に設定されてよい。図1では、一の分散部31につき2つの通路部29が接続されている場合を例示している。   The connection position between the passage portion 29 and the dispersion portion 31 may be set as appropriate. For example, the passage portion 29 communicates with a gap between the pair of plate-like members 33 through an opening formed in the second plate-like member 33B (a surface of the dispersion portion 31 on the side opposite to the casting portion 11). . This opening may be formed at an appropriate position such as the center of the second plate-shaped member 33B or near the corner. Moreover, the number of the passage parts 29 connected to the one dispersion | distribution part 31 may be set suitably. In FIG. 1, the case where the two channel | path parts 29 are connected per one dispersion | distribution part 31 is illustrated.

通路部29及び分散部31を利用した鋳型1における気体の流れは、適宜に設定されてよい。   The gas flow in the mold 1 using the passage portion 29 and the dispersion portion 31 may be set as appropriate.

例えば、全ての通路部29に所定の圧力で気体が供給されてよい。この場合、全ての分散部31が複数の孔35から気体を送出する。送出された気体は、砂部17及び21の砂粒間(の隙間)を通り、鋳型1の上面等の砂部17及び21が外部に露出する部分から鋳型1の外部へ排出される。砂部17及び21から気体を好適に排出するために、枠15及び19に砂部17及び21を露出させるための開口が適宜に形成されてもよい。   For example, the gas may be supplied to all the passage portions 29 at a predetermined pressure. In this case, all the dispersion parts 31 send out gas from the plurality of holes 35. The delivered gas passes between (the gaps between) the sand grains of the sand portions 17 and 21 and is discharged to the outside of the mold 1 from the portion where the sand portions 17 and 21 such as the upper surface of the mold 1 are exposed to the outside. In order to suitably discharge gas from the sand portions 17 and 21, openings for exposing the sand portions 17 and 21 may be appropriately formed in the frames 15 and 19.

また、例えば、各分散部31に接続された複数の通路部29のうち、一部の通路部29にのみ所定の圧力で気体が供給されてよい。この場合、基本的には上記と同様に、全ての分散部31は砂部17及び21へ気体を送出する。ただし、気体を砂部17及び21に送出する圧力は低下する。その一方で、分散部31の内部で温度が上昇した気体を、気体が供給されない通路部29から早期に排出して、より低い温度の気体を砂部17及び21へ供給できる。なお、排出用の通路部29は、供給用の通路部29よりも、流れに直交する断面積が小さいことが好ましい。   Further, for example, gas may be supplied at a predetermined pressure only to some of the passage portions 29 among the plurality of passage portions 29 connected to the respective dispersion portions 31. In this case, basically, all the dispersing portions 31 send gas to the sand portions 17 and 21 as described above. However, the pressure at which gas is delivered to the sand parts 17 and 21 decreases. On the other hand, the gas whose temperature has risen inside the dispersion part 31 can be discharged early from the passage part 29 to which no gas is supplied, and the gas having a lower temperature can be supplied to the sand parts 17 and 21. The discharge passage portion 29 preferably has a smaller cross-sectional area perpendicular to the flow than the supply passage portion 29.

また、例えば、複数の流路27(通路部29及び分散部31)のうち、一部のみに気体を供給するようにしてもよい。この場合、一部の流路27は砂部17及び21に気体を送出し、他の流路27は、砂部17及び21からの気体を排出する。これにより、例えば、砂部17及び21に任意の気体の流れを生じさせることができる。   Further, for example, gas may be supplied to only a part of the plurality of flow paths 27 (passage section 29 and dispersion section 31). In this case, some of the flow paths 27 send gas to the sand portions 17 and 21, and the other flow paths 27 discharge the gas from the sand portions 17 and 21. Thereby, for example, an arbitrary gas flow can be generated in the sand portions 17 and 21.

気体は、空気でもよいし、不活性ガス(窒素等)等の他の気体であってもよい。また、気体は、急激な冷却を避ける等の観点からはミストを含んでいないことが好ましいが、ミストを含んでいてもよい。気体を鋳型1(通路部29)に供給する手段は、適宜に構成されてよい。例えば、工場においては、機器等の冷却用乃至は機器等の駆動用に空気を送出するための設備が常備されているから、これを鋳型1への空気の供給に利用してよい。もちろん、鋳型1への気体の供給のためだけに、ポンプ等が設けられてもよい。   The gas may be air or another gas such as an inert gas (such as nitrogen). Moreover, although it is preferable that gas does not contain mist from a viewpoint of avoiding rapid cooling etc., it may contain mist. The means for supplying the gas to the mold 1 (passage 29) may be appropriately configured. For example, in a factory, equipment for sending air for cooling equipment or driving equipment is always available, and this may be used for supplying air to the mold 1. Of course, a pump or the like may be provided only for supplying gas to the mold 1.

図3は、鋳型1を用いた鋳造方法(冷却工程)の手順を説明する図である。   FIG. 3 is a diagram for explaining the procedure of a casting method (cooling step) using the mold 1.

横軸は時間を示し、縦軸は溶湯(鋳物)の温度及び流路27への気体の供給量を示している。線Ltは鋳造中の溶湯の温度の変化を示し、線Lwは鋳造中の流路27への気体の供給量の変化を示している。なお、この図は、温度及び供給量の変化態様(パターン)の概略を模式的に示すものであり、線Lt及び線Lwに示される温度及び供給量の変化量や変化速度等は必ずしも現実のものとは一致しない。   The horizontal axis represents time, and the vertical axis represents the temperature of the molten metal (casting) and the amount of gas supplied to the flow path 27. A line Lt indicates a change in the temperature of the molten metal during casting, and a line Lw indicates a change in the amount of gas supplied to the flow path 27 during casting. This diagram schematically shows an outline of a change mode (pattern) of the temperature and the supply amount, and the change amount and change rate of the temperature and supply amount shown in the line Lt and the line Lw are not necessarily actual. Does not match.

まず、鋳型1に溶湯が供給される。そして、溶湯が鋳型1に供給された直後(例えば溶湯の供給完了から5分以内)、流路27への気体の供給が開始される(時刻t1)。このときの気体の供給量は、比較的大きいV1とされる。従って、溶湯は比較的急激に冷却される。   First, molten metal is supplied to the mold 1. Then, immediately after the molten metal is supplied to the mold 1 (for example, within 5 minutes from the completion of the molten metal supply), the supply of gas to the flow path 27 is started (time t1). At this time, the gas supply amount is set to a relatively large V1. Therefore, the molten metal is cooled relatively rapidly.

次に、溶湯の温度がA1変態温度(図中A1)に近づくと、気体の供給量は比較的小さいV2とされる。これにより、溶湯の温度変化は緩やかになる。ただし、気体を全く供給しない場合(鋳型1を大気下にて自然冷却する場合)に比較して、溶湯の温度の低下速度は速い。   Next, when the temperature of the molten metal approaches the A1 transformation temperature (A1 in the figure), the gas supply amount is set to V2, which is relatively small. Thereby, the temperature change of a molten metal becomes loose. However, compared with the case where no gas is supplied at all (when the mold 1 is naturally cooled in the atmosphere), the temperature decrease rate of the molten metal is faster.

その後、溶湯の温度は、A1変態温度よりも低くなり、さらには、室温RT(常温)に到達する。室温RTは、例えば、日本工業規格が定める常温20℃±15℃(5℃以上35℃以下)である。   Thereafter, the temperature of the molten metal becomes lower than the A1 transformation temperature, and further reaches room temperature RT (normal temperature). The room temperature RT is, for example, a room temperature of 20 ° C. ± 15 ° C. (5 ° C. or more and 35 ° C. or less) defined by Japanese Industrial Standards.

なお、溶湯の温度がA1変態温度よりも低くなった後、点線Lwmで示すように、再度流路27への気体の供給量を大きくしてもよい。この場合、溶湯の温度は、より早く室温RTに到達する。   In addition, after the temperature of a molten metal becomes lower than A1 transformation temperature, as shown by the dotted line Lwm, you may enlarge the supply amount of the gas to the flow path 27 again. In this case, the temperature of the molten metal reaches the room temperature RT sooner.

上記のような溶湯の温度に応じた送風量の調整は、温度センサにより溶湯の温度を検出し、その検出温度に基づいて行われてもよいし、実験や経験に基づいて、注湯からの時間に基づいて行われてもよい。   The adjustment of the air flow rate according to the temperature of the molten metal as described above may be performed based on the detected temperature by detecting the temperature of the molten metal with a temperature sensor, or based on experiments and experience, It may be performed based on time.

以上のとおり、本実施形態では、枠15及び19に砂を詰めて構成された鋳型1に溶湯を流し込む鋳造方法は、鋳物が形成される空隙である鋳物部11の下方、側方及び上方にて、砂粒間に気体を供給することにより鋳物部11内の溶湯を冷却する工程を有する。   As described above, in this embodiment, the casting method in which the molten metal is poured into the mold 1 configured by filling the frames 15 and 19 with sand is below, to the side, and above the casting portion 11 that is a void in which the casting is formed. And it has the process of cooling the molten metal in the casting part 11 by supplying gas between sand grains.

従って、鋳物(溶湯)を全体的に冷却して、鋳造を効率化することができる。また、空冷であることから、例えば、水冷に比較して、鋳型1の再利用が容易化され、また、溶湯が急激に冷却されることが抑制される。   Therefore, the casting (molten metal) can be cooled as a whole, and the casting can be made efficient. Moreover, since it is air cooling, compared with water cooling, for example, reuse of the casting_mold | template 1 is facilitated and it is suppressed that a molten metal is cooled rapidly.

溶湯が急激に冷却されることが抑制されるから、例えば、A1変態温度以下の温度領域において、鋳物の寸法不良、変形乃至は割れが発生することが抑制される。すなわち、注湯完了直後から溶湯の温度が室温に至るまで冷却を行うことができる。別の観点では、溶湯の温度がA1変態温度よりも高い温度から低い温度になるまで砂粒間への気体の供給を継続することができる。従って、注湯から鋳物を取り出すまでの鋳造全体において、水冷よりも効率化されることが期待される。   Since the molten metal is suppressed from being cooled rapidly, for example, in the temperature region below the A1 transformation temperature, it is possible to suppress the occurrence of defective dimensions or deformation or cracking of the casting. That is, cooling can be performed immediately after pouring is completed until the temperature of the molten metal reaches room temperature. In another aspect, the gas supply between the sand grains can be continued until the temperature of the molten metal is changed from a temperature higher than the A1 transformation temperature to a lower temperature. Therefore, it is expected that the entire casting until the casting is taken out from the pouring will be more efficient than water cooling.

また、本実施形態では、溶湯の温度がA1変態温度に到達する前に砂粒間への気体の供給量を小さくする。   Moreover, in this embodiment, before the temperature of a molten metal reaches | attains A1 transformation temperature, the supply amount of the gas between sand grains is made small.

従って、溶湯の温度がA1変態温度に到達する前においては急激に溶湯を冷却して鋳造の効率化を図ることができ、その一方で、溶湯の温度がA1変態温度を通過するときは溶湯の冷却速度を緩やかにして不良の発生を抑制することができる。   Therefore, before the temperature of the molten metal reaches the A1 transformation temperature, the molten metal can be rapidly cooled to increase the efficiency of casting. On the other hand, when the molten metal temperature passes the A1 transformation temperature, It is possible to suppress the occurrence of defects by slowing the cooling rate.

また、本実施形態では、鋳型1は、隙間を介して互いに対向するとともに、鋳物部11側に面する1対の板状部材33を有している。1対の板状部材33のうち、少なくとも鋳物部11側の板状部材33は、砂に当接しているとともに複数の孔35が形成されている。そして、冷却工程では、1対の板状部材33間に気体を供給することにより、複数の孔35から砂粒間に気体を供給する。   Moreover, in this embodiment, the casting_mold | template 1 has a pair of plate-shaped member 33 which faces each other via a clearance gap, and faces the casting part 11 side. Of the pair of plate-like members 33, at least the plate-like member 33 on the casting part 11 side is in contact with sand and has a plurality of holes 35. In the cooling step, gas is supplied between the sand grains from the plurality of holes 35 by supplying gas between the pair of plate-like members 33.

従って、簡便な構成で砂部17及び19に対して広い範囲で気体を供給することができ、効率的に鋳物部11を全体的に冷却することができる。また、1対の板状部材33は、砂に埋設されていることから、砂部17及び19の補強に寄与することも期待される。   Therefore, gas can be supplied in a wide range to the sand portions 17 and 19 with a simple configuration, and the casting portion 11 can be efficiently cooled as a whole. In addition, since the pair of plate-like members 33 are embedded in the sand, it is expected to contribute to the reinforcement of the sand portions 17 and 19.

なお、本発明者は、数十トンの大型鋳物の鋳造において、本実施形態の鋳造方法(冷却)を実施した。従来は、この大型鋳物の鋳造においては、注湯直後から鋳型を2日間放置(自然冷却)し、その後、上型を取り除いて鋳物及び下型を5日間放置することにより、鋳物の温度を室温にしていた。すなわち、注湯から鋳物の取り出しまで、合計で7日間を要していた。しかし、本実施形態(乃至は後述する第2の実施形態)の鋳造方法を実施したところ、注湯から鋳物の取り出しまでの期間を4日乃至は4日半とすることができた。   In addition, this inventor implemented the casting method (cooling) of this embodiment in casting of a large sized casting of several dozen tons. Conventionally, in casting of this large casting, the mold is allowed to stand for 2 days (natural cooling) immediately after pouring, and then the upper mold is removed and the casting and the lower mold are allowed to stand for 5 days to bring the casting temperature to room temperature. I was doing. That is, it took 7 days in total from pouring to taking out the casting. However, when the casting method of this embodiment (or the second embodiment described later) was carried out, the period from pouring to removal of the casting could be 4 days or 4 and a half days.

<第2の実施形態>
図4は、第2の実施形態に係る鋳型201の構成を示す図1と同様の断面図である。なお、鋳型201において、第1の実施形態の鋳型1の構成と同一又は類似の構成については、第1の実施形態の符号と同一の符号を付し、説明を省略することがある。
<Second Embodiment>
FIG. 4 is a cross-sectional view similar to FIG. 1 showing the configuration of the mold 201 according to the second embodiment. In the mold 201, the same or similar configuration as the configuration of the mold 1 of the first embodiment may be denoted by the same reference numeral as that of the first embodiment, and description thereof may be omitted.

鋳型201は、第1の実施形態と同様に、砂部17及び21に気体を供給することにより鋳物部11の溶湯を冷却可能に構成されてる。ただし、そのための流路227の構成が第1の実施形態の流路27の構成と異なる。具体的には、以下のとおりである。   As in the first embodiment, the mold 201 is configured to be able to cool the molten metal of the casting portion 11 by supplying gas to the sand portions 17 and 21. However, the configuration of the flow path 227 for that purpose is different from the configuration of the flow path 27 of the first embodiment. Specifically, it is as follows.

鋳型201の流路227は、例えば、管状部材229が砂部17及び21に埋設されることにより構成されている。管状部材229の断面形状、断面積、平面形状、長さ、厚み、数、配置間隔及び配置範囲等は適宜に設定されてよい。   The flow path 227 of the mold 201 is configured, for example, by embedding a tubular member 229 in the sand portions 17 and 21. The cross-sectional shape, cross-sectional area, planar shape, length, thickness, number, arrangement interval, arrangement range, and the like of the tubular member 229 may be appropriately set.

例えば、図4では、管状部材229は、断面円形であり、直線状に延びており、鋳物部11に亘る長さを有している。そして、複数の管状部材229は、鋳物部11を囲む6方向(6面)に設けられている。各面において、複数の管状部材229は、鋳物部11全体に亘って配列されている。すなわち、鋳物部11は、複数の管状部材229によって囲まれている。   For example, in FIG. 4, the tubular member 229 has a circular cross section, extends linearly, and has a length extending over the casting portion 11. The plurality of tubular members 229 are provided in six directions (six surfaces) surrounding the casting portion 11. On each surface, the plurality of tubular members 229 are arranged over the entire casting portion 11. That is, the casting part 11 is surrounded by a plurality of tubular members 229.

なお、管状部材229の材料は、板状部材33と同様に、鋳造の際の熱によって焼失乃至は溶解しないものであればよい。例えば、管状部材229は、鋼等の金属又はセラミックにより形成されている。   The material of the tubular member 229 may be any material that is not burned out or melted by the heat during casting, like the plate-like member 33. For example, the tubular member 229 is made of metal such as steel or ceramic.

特に図示しないが、管状部材229の内部は、鋳型201の外部に通じており、鋳型201の外部から気体を供給可能とされている。例えば、管状部材229は、その一端又は両端が枠15及び19から突出している。   Although not particularly illustrated, the inside of the tubular member 229 communicates with the outside of the mold 201, and gas can be supplied from the outside of the mold 201. For example, one end or both ends of the tubular member 229 protrude from the frames 15 and 19.

なお、複数の管状部材229(複数の流路227)は、互いに連通されていてもよい。例えば、複数の管状部材229は、端部同士が交互に連通されてジグザグの流路を構成したり、一端又は両端が順次連通されてマニホールド状の流路を構成したりしてもよい。この場合、その複数の管状部材229の一部のみが直接的に鋳型1の外部に通じていればよい。   The plurality of tubular members 229 (the plurality of flow paths 227) may be communicated with each other. For example, the ends of the plurality of tubular members 229 may be alternately communicated to form a zigzag flow path, or one or both ends may be sequentially communicated to form a manifold-shaped flow path. In this case, only a part of the plurality of tubular members 229 needs to communicate directly with the outside of the mold 1.

図5は、管状部材229を示す模式的な斜視図である。   FIG. 5 is a schematic perspective view showing the tubular member 229.

管状部材229には、内周面から外周面に貫通する複数の孔235が形成されている。従って、管状部材229に気体が供給されると、複数の孔235から気体が送出される。これにより、第1の実施形態と同様に、砂部17及び21の砂粒間に気体を供給することができる。   The tubular member 229 is formed with a plurality of holes 235 penetrating from the inner peripheral surface to the outer peripheral surface. Therefore, when a gas is supplied to the tubular member 229, the gas is sent out from the plurality of holes 235. Thereby, gas can be supplied between the sand grains of the sand portions 17 and 21 as in the first embodiment.

複数の孔235の開口面積、形状、数、配置範囲及び配列方法等は適宜に設定されてよい。例えば、図5では、複数の孔235が、鋳物部11側において管状部材229の長手方向に沿って1列で設けられている場合を例示している。   The opening area, shape, number, arrangement range, arrangement method, and the like of the plurality of holes 235 may be set as appropriate. For example, FIG. 5 illustrates a case where the plurality of holes 235 are provided in one row along the longitudinal direction of the tubular member 229 on the casting part 11 side.

流路227(管状部材229)における気体の流れは、第1の実施形態と同様に、適宜に設定されてよい。例えば、管状部材229は、一端が塞がれた状態で他端から気体が供給され、又は、両端から気体が供給され、気体が供給されるのみでもよい。また、例えば、管状部材229は、一端から気体が供給され、管状部材229にて熱せられた気体を他端から排出してもよい。また、例えば、複数の管状部材229のうち、一部は気体の供給に、他は気体の排出に用いられてもよい。   The gas flow in the flow path 227 (tubular member 229) may be set appropriately as in the first embodiment. For example, the tubular member 229 may be supplied with gas from the other end with one end closed, or supplied with gas from both ends, and only supplied with gas. Further, for example, the tubular member 229 may be supplied with gas from one end and discharge the gas heated by the tubular member 229 from the other end. Further, for example, some of the plurality of tubular members 229 may be used for supplying gas, and others for discharging gas.

鋳造方法(冷却工程)の手順も、第1の実施形態と同様に、図3を参照して説明した手順とされてよい。   The procedure of the casting method (cooling step) may also be the procedure described with reference to FIG. 3 as in the first embodiment.

以上のとおり、本実施形態の鋳造方法も、第1の実施形態と同様に、鋳物が形成される空隙である鋳物部11の下方、側方及び上方にて、砂粒間に気体を供給することにより鋳物部11内の溶湯を冷却する工程を有する。従って、第1の実施形態と同様に、鋳造の効率化、鋳型201の再利用の容易化、溶湯の急冷の抑制等の効果が奏される。   As described above, the casting method of the present embodiment also supplies gas between the sand grains below, on the side, and above the casting portion 11 that is a gap in which the casting is formed, as in the first embodiment. The process which cools the molten metal in the casting part 11 by this. Accordingly, as in the first embodiment, effects such as improved casting efficiency, easy reuse of the mold 201, and suppression of rapid quenching of the molten metal are exhibited.

また、本実施形態では、鋳型201は、砂に埋設された管状部材229を有している。管状部材229には、内周面から外周面に貫通する複数の孔235が形成されている。そして、冷却工程では、複数の孔235から砂粒間に気体を供給する。   Moreover, in this embodiment, the casting_mold | template 201 has the tubular member 229 embed | buried under sand. The tubular member 229 is formed with a plurality of holes 235 penetrating from the inner peripheral surface to the outer peripheral surface. In the cooling step, gas is supplied from the plurality of holes 235 between the sand grains.

従って、板状部材33を設けた場合と同様に、簡便な構成で砂部17及び19に対して広い範囲で気体を供給することができ、効率的に鋳物部11を全体的に冷却することができる。また、1対の管状部材229により砂部17及び19が補強されることも期待される。   Therefore, similarly to the case where the plate-shaped member 33 is provided, gas can be supplied in a wide range to the sand portions 17 and 19 with a simple configuration, and the casting portion 11 can be efficiently cooled as a whole. Can do. It is also expected that the sand portions 17 and 19 are reinforced by the pair of tubular members 229.

本発明は、以上の実施形態に限定されず、種々の態様で実施されてよい。   The present invention is not limited to the above embodiment, and may be implemented in various aspects.

図1に示した鋳型の全体構成は、一例に過ぎない。鋳物部の形状及び湯口系統の形状、並びに、これらの形成に係る下型、上型及び中子の役割分担は適宜に変更されてよい。例えば、湯溜めに代えて受口が設けられてもよい。押上げ湯口に代えて見切り線湯口が採用されてもよい。押湯が設けられてもよい。   The overall configuration of the mold shown in FIG. 1 is merely an example. The shape of the casting part and the shape of the gate system, and the division of roles of the lower mold, the upper mold and the core related to the formation thereof may be appropriately changed. For example, a receiving port may be provided instead of the hot water reservoir. A parting line gate may be employed instead of the boost gate. A hot water may be provided.

溶湯は、A1変態温度が定義されない金属(例えば純鉄)であってもよい。   The molten metal may be a metal (for example, pure iron) whose A1 transformation temperature is not defined.

気体の供給量は、供給開始から供給停止まで一定であってもよい。また、供給量を変化させる場合、その変化は実施形態のようにステップ状のものであってもよいし、漸近的なものであってもよい。   The supply amount of gas may be constant from the start of supply to the stop of supply. When the supply amount is changed, the change may be stepped as in the embodiment or may be asymptotic.

また、本発明は、溶湯の温度がA1変態温度付近であるときにも溶湯の冷却を継続することを可能とするが、溶湯の温度がA1変態温度になる前に気体の供給を停止してもよい。この場合、溶湯の温度がA1変態温度よりも低下した後、再度気体の供給を開始してもよいし、開始しなくてもよい。   Further, the present invention makes it possible to continue cooling the molten metal even when the temperature of the molten metal is near the A1 transformation temperature. However, the gas supply is stopped before the molten metal reaches the A1 transformation temperature. Also good. In this case, after the temperature of the molten metal is lower than the A1 transformation temperature, the gas supply may be started again or may not be started again.

鋳物部の上方、側方及び下方において砂粒間に気体を供給するための流路は、適宜に構成されてよく、板状部材又は管状部材を砂に埋設して構成されるものに限定されない。例えば、流路として、湯口系統と同様に、砂部に鋳型の外部と通じる空隙を形成するだけであってもよい。この流路の内周面は、砂によって構成されているから、この流路に気体が供給されれば、当然に砂粒間に気体が供給される。   The flow path for supplying gas between the sand grains above, on the side and below the casting part may be appropriately configured, and is not limited to the one configured by embedding a plate-like member or a tubular member in the sand. For example, as in the case of the gate system, the gap may be formed only in the sand portion as a flow path communicating with the outside of the mold. Since the inner peripheral surface of the flow path is made of sand, if gas is supplied to the flow path, the gas is naturally supplied between the sand grains.

ただし、本実施形態のように、板状部材又は管状部材を配置すれば、種々の効果が奏される。   However, if a plate-like member or a tubular member is arranged as in the present embodiment, various effects are achieved.

例えば、砂部の強度を損なうことなく、鋳物部を囲む広い範囲に亘って流路を形成することができる。例えば、板状部材を埋設せずに、第1の実施形態のように、鋳物部を囲む箱形状の空隙を形成することは、砂部の強度を確保する観点からは困難である。   For example, the flow path can be formed over a wide range surrounding the casting portion without impairing the strength of the sand portion. For example, it is difficult to form a box-shaped gap surrounding the casting part as in the first embodiment without embedding the plate-like member from the viewpoint of securing the strength of the sand part.

また、例えば、板状部材又は管状部材に形成される複数の孔の大きさを互いに異ならせたり、複数の孔の分布の密度を変化させたりすることにより、流路における流入側と流出側との圧力差(例えば管状部材の両端の圧力差)に関わらず、広い範囲に亘って一様に砂粒間に気体を供給したり、逆に、鋳物部の形状に応じて冷却速度を変化させたりすることができる。   Further, for example, by changing the sizes of the plurality of holes formed in the plate-like member or the tubular member, or changing the density of the distribution of the plurality of holes, the inflow side and the outflow side in the flow path Regardless of the pressure difference (for example, the pressure difference between both ends of the tubular member), the gas is supplied uniformly between the sand grains over a wide range, or conversely, the cooling rate is changed according to the shape of the casting part. can do.

1対の板状部材は、砂に埋設されるものではなく、枠に兼用されるものであってもよい。ただし、砂に埋設されるものであれば、枠の設計変更等が少なく、簡便に実現される。また、砂に埋設される1対の板状部材において、鋳物部とは反対側の板状部材にも複数の孔が設けられてもよい。板状部材は、平板状のものに限定されず、曲面状のものであってもよい。板状部材の複数の孔は、砂が入り込むことを防止する網で塞がれていてもよい。   The pair of plate-like members may not be embedded in the sand but may also be used as a frame. However, as long as it is embedded in sand, the design of the frame is not changed, and it is easily realized. Further, in the pair of plate-like members embedded in the sand, a plurality of holes may be provided in the plate-like member on the side opposite to the casting part. The plate-like member is not limited to a flat plate shape, and may be a curved shape. The plurality of holes of the plate-like member may be closed with a net that prevents sand from entering.

管状部材は、鋳物部側だけでなく、鋳物部とは反対側やその他の方向にも複数の孔が形成されてもよい。また、管状部材は、直線状に延びるものに限定されず、適宜に屈曲するものであってもよい。   The tubular member may be formed with a plurality of holes not only on the casting part side but also on the opposite side of the casting part and in other directions. Further, the tubular member is not limited to one extending linearly, and may be bent appropriately.

第1の実施形態と第2の実施形態とは適宜に組み合わされてよい。例えば、板状部材を鋳物部を囲むように設けて鋳物部を全体的に冷却しつつ、特に冷却したい部分に管状部材を設けてもよい。また、板状部材及び管状部材は、鋳物部に対して6方向に設けられる必要はない。   The first embodiment and the second embodiment may be appropriately combined. For example, a tubular member may be provided at a portion that is particularly desired to be cooled while the plate-like member is provided so as to surround the casting portion to cool the casting portion as a whole. Further, the plate-like member and the tubular member need not be provided in six directions with respect to the casting part.

1…鋳型、11…鋳物部、15…枠、17…砂部、19…枠、21…砂部。   DESCRIPTION OF SYMBOLS 1 ... Mold, 11 ... Casting part, 15 ... Frame, 17 ... Sand part, 19 ... Frame, 21 ... Sand part.

Claims (9)

枠に砂を詰めて構成された鋳型に溶湯を流し込む鋳造方法であって、
鋳物が形成される空隙である鋳物部の下方、側方及び上方にて、砂粒間に気体を供給することにより前記鋳物部内の溶湯を冷却する
鋳造方法。
A casting method in which molten metal is poured into a mold configured by filling sand into a frame,
A casting method in which the molten metal in the casting part is cooled by supplying a gas between sand grains below, on the side and above the casting part which is a void in which the casting is formed.
溶湯の温度がA1変態温度よりも高い温度から常温になるまで砂粒間への気体の供給を行う
請求項1に記載の鋳造方法。
The casting method according to claim 1, wherein the gas is supplied between the sand grains until the temperature of the molten metal reaches a room temperature from a temperature higher than the A1 transformation temperature.
溶湯の温度がA1変態温度に到達する前に砂粒間への気体の供給量を小さくする
請求項2に記載の鋳造方法。
The casting method according to claim 2, wherein the gas supply amount between the sand grains is reduced before the temperature of the molten metal reaches the A1 transformation temperature.
前記鋳型は、隙間を介して互いに対向するとともに、前記鋳物部側に面する1対の板状部材を有し、
前記1対の板状部材のうち、少なくとも前記鋳物部側の板状部材は、前記砂に当接しているとともに複数の孔が形成されており、
前記1対の板状部材間に気体を供給することにより、前記複数の孔から砂粒間に気体を供給する
請求項1〜3のいずれか1項に記載の鋳造方法。
The mold has a pair of plate-like members facing each other with a gap and facing the casting part side,
Of the pair of plate-like members, at least the plate-like member on the casting part side is in contact with the sand and has a plurality of holes formed therein.
The casting method according to any one of claims 1 to 3, wherein gas is supplied between the plurality of holes by supplying gas between the pair of plate-like members.
前記1対の板状部材は、前記砂に埋設されている
請求項4に記載の鋳造方法。
The casting method according to claim 4, wherein the pair of plate-like members are embedded in the sand.
前記鋳型は、前記砂に埋設された管状部材を有し、
前記管状部材には、内周面から外周面に貫通する複数の孔が形成されており、
前記複数の孔から砂粒間に気体を供給する
請求項1〜5のいずれか1項に記載の鋳造方法。
The mold has a tubular member embedded in the sand,
The tubular member is formed with a plurality of holes penetrating from the inner peripheral surface to the outer peripheral surface,
The casting method according to any one of claims 1 to 5, wherein gas is supplied between sand grains from the plurality of holes.
枠に砂を詰めて構成された鋳型に溶湯を流し込む鋳造方法であって、
溶湯の温度がA1変態温度よりも高い温度から常温になるまで砂粒間へ気体を供給して前記鋳物部内の溶湯を冷却する
鋳造方法。
A casting method in which molten metal is poured into a mold configured by filling sand into a frame,
A casting method in which a gas is supplied between sand grains until the temperature of the molten metal is higher than the A1 transformation temperature to room temperature to cool the molten metal in the casting part.
枠と、
前記枠に詰められ、鋳物が形成される空隙である鋳物部を構成する砂と、
隙間を介して互いに対向するとともに、前記鋳物部側に面する1対の板状部材と、
を有し、
前記1対の板状部材のうち、少なくとも前記鋳物部側の板状部材は、前記砂に当接しているとともに複数の孔が形成されている
鋳型。
Frame,
Sand that forms a casting part that is a gap formed in the frame and in which a casting is formed, and
A pair of plate-like members facing each other through a gap and facing the casting part side;
Have
Of the pair of plate-like members, at least the plate-like member on the casting part side is in contact with the sand and has a plurality of holes formed therein.
枠と、
前記枠に詰められ、鋳物が形成される空隙である鋳物部を構成する砂と、
前記砂に埋設され、内周面から外周面に貫通する複数の孔が形成された管状部材と、
を有する
鋳型。
Frame,
Sand that forms a casting part that is a gap formed in the frame and in which a casting is formed, and
A tubular member embedded in the sand and formed with a plurality of holes penetrating from the inner peripheral surface to the outer peripheral surface;
Having a mold.
JP2013162750A 2013-08-05 2013-08-05 Casting method and mold Active JP6300462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013162750A JP6300462B2 (en) 2013-08-05 2013-08-05 Casting method and mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013162750A JP6300462B2 (en) 2013-08-05 2013-08-05 Casting method and mold

Publications (2)

Publication Number Publication Date
JP2015030026A true JP2015030026A (en) 2015-02-16
JP6300462B2 JP6300462B2 (en) 2018-03-28

Family

ID=52515821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013162750A Active JP6300462B2 (en) 2013-08-05 2013-08-05 Casting method and mold

Country Status (1)

Country Link
JP (1) JP6300462B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105170904A (en) * 2015-07-16 2015-12-23 山东瑞浩机械有限公司 Metallurgical slag basin model-free casting method
CN105798232A (en) * 2016-03-29 2016-07-27 南通超达装备股份有限公司 Mold and casting method of evanescent mold casting part
CN108436034A (en) * 2018-04-23 2018-08-24 共享装备股份有限公司 Reduce the ventilation device of casting cooling time
CN108672656A (en) * 2018-08-08 2018-10-19 溧阳市新力机械铸造有限公司 A kind of casting method of turbo blade casting device and turbo blade
CN112157251A (en) * 2020-09-07 2021-01-01 马鞍山司匹诺机械科技有限公司 A auxiliary device for aluminium alloy is pour
CN114012071A (en) * 2021-09-26 2022-02-08 芜湖泓鹄材料技术有限公司 Method for solving abnormal molded surface of automobile stamping die casting based on air cooling technology
CN115138813A (en) * 2022-08-16 2022-10-04 眉山市博眉启明星铝业有限公司 Aluminum ingot mould circulative cooling system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114068A (en) * 1984-06-28 1986-01-22 Mazda Motor Corp Casting method of spheroidal graphite cast iron casting
JPH0484662A (en) * 1990-07-27 1992-03-17 Endo Jushi Mold:Kk Method for cooling casting
JPH09225621A (en) * 1996-02-21 1997-09-02 Kimura Chuzosho:Kk Method for cooling casting
JP2004017075A (en) * 2002-06-14 2004-01-22 Sintokogio Ltd Casting mold, method for manufacturing the same, and casting method using the mold
WO2013085401A1 (en) * 2011-12-05 2013-06-13 Przedsiębiorstwo Innowacyjne Odlewnictwa Specodlew - Sp. Z O. O. Cooling plate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114068A (en) * 1984-06-28 1986-01-22 Mazda Motor Corp Casting method of spheroidal graphite cast iron casting
JPH0484662A (en) * 1990-07-27 1992-03-17 Endo Jushi Mold:Kk Method for cooling casting
JPH09225621A (en) * 1996-02-21 1997-09-02 Kimura Chuzosho:Kk Method for cooling casting
JP2004017075A (en) * 2002-06-14 2004-01-22 Sintokogio Ltd Casting mold, method for manufacturing the same, and casting method using the mold
WO2013085401A1 (en) * 2011-12-05 2013-06-13 Przedsiębiorstwo Innowacyjne Odlewnictwa Specodlew - Sp. Z O. O. Cooling plate

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105170904A (en) * 2015-07-16 2015-12-23 山东瑞浩机械有限公司 Metallurgical slag basin model-free casting method
CN105798232A (en) * 2016-03-29 2016-07-27 南通超达装备股份有限公司 Mold and casting method of evanescent mold casting part
CN108436034A (en) * 2018-04-23 2018-08-24 共享装备股份有限公司 Reduce the ventilation device of casting cooling time
CN108672656A (en) * 2018-08-08 2018-10-19 溧阳市新力机械铸造有限公司 A kind of casting method of turbo blade casting device and turbo blade
CN112157251A (en) * 2020-09-07 2021-01-01 马鞍山司匹诺机械科技有限公司 A auxiliary device for aluminium alloy is pour
CN114012071A (en) * 2021-09-26 2022-02-08 芜湖泓鹄材料技术有限公司 Method for solving abnormal molded surface of automobile stamping die casting based on air cooling technology
CN114012071B (en) * 2021-09-26 2023-09-15 芜湖泓鹄材料技术有限公司 Method for solving abnormal molding surface of automobile stamping die casting based on air cooling technology
CN115138813A (en) * 2022-08-16 2022-10-04 眉山市博眉启明星铝业有限公司 Aluminum ingot mould circulative cooling system

Also Published As

Publication number Publication date
JP6300462B2 (en) 2018-03-28

Similar Documents

Publication Publication Date Title
JP6300462B2 (en) Casting method and mold
JP5935619B2 (en) Cooling method and cooling device for cast product made of Al alloy
EP2520385B1 (en) Casting method and casting device for cast-metal object
ES2557031T3 (en) Procedure for casting a cast iron with at least one passage opening
CN103978189A (en) Improved die cooling device
CN108472718A (en) The secondary cooling method and secondary cooling apparatus of continuously casting strand
WO2013085401A1 (en) Cooling plate
KR101679297B1 (en) Tun dish cover structure
CN113172216A (en) Method and device for enhancing cooling of casting in casting process
JP2006205196A (en) Cooling grid facility for continuous caster and method for producing continuously cast slab
CN110842150B (en) Assembled frog casting system and method
WO2020179698A1 (en) Method for continuous casting of slab
CN104325096B (en) Steel ingot casting device
JPH02149437A (en) Glass plate production device
KR102048571B1 (en) Molding device for manufacturing tetragonal product
JP2018024013A (en) Casting cooling device
CN104487190A (en) Up-drawing continuous casting apparatus and up-drawing continuous casting method
US9486856B2 (en) System and method for manufacturing railcar yokes
JP2020121329A (en) Mold and method for steel continuous casting
JP2020089895A (en) Method and system for molding
CN216607135U (en) Casting device and casting die for white iron plate
US1372673A (en) Method of and apparatus for casting
US20170200968A1 (en) Integrated metal-and-plastic molded article and method for manufacturing integrated metal-and-plastic molded article
KR100805043B1 (en) Submerged nozzle for continuous casting
JP2015221456A (en) Weir refractory construction method for induction heating type tundish and weir refractory repair method for weir refractory

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171024

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20171212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171212

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180227

R150 Certificate of patent or registration of utility model

Ref document number: 6300462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350