JP2015028556A - Thin high-magnification zoom lens - Google Patents

Thin high-magnification zoom lens Download PDF

Info

Publication number
JP2015028556A
JP2015028556A JP2013158017A JP2013158017A JP2015028556A JP 2015028556 A JP2015028556 A JP 2015028556A JP 2013158017 A JP2013158017 A JP 2013158017A JP 2013158017 A JP2013158017 A JP 2013158017A JP 2015028556 A JP2015028556 A JP 2015028556A
Authority
JP
Japan
Prior art keywords
group
lens
negative
image side
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013158017A
Other languages
Japanese (ja)
Inventor
佐藤 新
Arata Sato
新 佐藤
貴嘉 横山
Takayoshi Yokoyama
貴嘉 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2013158017A priority Critical patent/JP2015028556A/en
Publication of JP2015028556A publication Critical patent/JP2015028556A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a zoom lens which offers high magnification, a wide view angle, and high performance and which is suitable for full-flat cameras.SOLUTION: A zoom lens includes, in order from the object side, a first group L1 having positive refractive power, a second group L2 having negative refractive power, a third group L3 having positive refractive power, and a succeeding lens group, where the succeeding lens group has a group L5 having positive refractive power on the most image side therein and the first group has a reflective member. The first group is stationary while the second and third groups move while zooming. The first group has a negative lens on the object side of the reflective member and two positive lenses on the image side of the reflective member, and the group on the most image side has two positive lenses and one negative lens. The zoom lens satisfies the following conditional expressions: 0.2<f1/ft<0.4...(1), (image)...(2), 0.15<fa/ft<0.4...(3).

Description

本発明は、デジタルカメラ、デジタル一眼レフカメラ、デジタルビデオカメラ等に関し、特にデジタルカメラに好適なズームレンズに関するものである。   The present invention relates to a digital camera, a digital single-lens reflex camera, a digital video camera, and the like, and more particularly to a zoom lens suitable for a digital camera.

近年、防水、防塵仕様のデジタルカメラが求められている。即ち、デジタルカメラは精密機器であり、水や塵が内部に浸入すると故障の要因となる。そのため、水や塵の進入経路を可能な限り少なくする工夫が必要となる。その一例として、撮影時に鏡筒がカメラ本体から飛び出さず、鏡筒から水や塵の入りにくい、フルフラット(撮影時にカメラ本体から鏡筒が飛び出さない)カメラが知られている。また、ユーザーの多様な用途に答えるため、カメラの更なる薄型化、広画角化、更なる高倍率化が求められている。   In recent years, waterproof and dustproof digital cameras have been demanded. That is, a digital camera is a precision device, and if water or dust enters inside, it becomes a cause of failure. For this reason, it is necessary to devise a method for reducing the water and dust entry paths as much as possible. As an example, there is known a full flat camera in which the lens barrel does not jump out of the camera body at the time of shooting and water or dust is difficult to enter from the lens barrel (the lens barrel does not jump out of the camera body at the time of shooting). In addition, in order to respond to various uses of users, there is a demand for further thinner cameras, wider angle of view, and higher magnification.

しかし、広画角のズームレンズは前玉径が増大する傾向がある。また、高倍率のズームレンズは、一般に撮影長が長くなるためにカメラの厚みが増大し、携帯性が損なわれてしまう。高倍率のズームレンズとして物体から順に、正群、負群、正群を有するタイプが知られているが、高倍率化に伴ってレンズ全長が一般に増大すること、広画角化に伴って前玉径が増大することが課題である。そのため、広画角かつ高倍率のフルフラットカメラは、ズームレンズの1群に反射部材を配置することで光路をカメラ内部で折り曲げ、カメラ厚を短縮するのが一般的である。   However, wide lens zoom lenses tend to increase the front lens diameter. In addition, a high-power zoom lens generally has a long photographing length, which increases the thickness of the camera and impairs portability. As a high-power zoom lens, a type having a positive group, a negative group, and a positive group in order from the object is known. However, the overall length of the lens generally increases as the magnification increases, and the front increases as the field angle increases. The problem is that the ball diameter increases. For this reason, a full flat camera with a wide field angle and a high magnification generally arranges a reflecting member in one group of zoom lenses to bend the optical path inside the camera and reduce the camera thickness.

しかしながら広画角化に伴って、ズームレンズの1群に配置した反射部材の有効径も増大し、大型化するためにカメラの薄型化を阻害する。   However, as the field of view increases, the effective diameter of the reflecting member arranged in one group of zoom lenses also increases, which obstructs the thinning of the camera in order to increase the size.

例えば、特許文献1、2では正の屈折力を有する1群、負の屈折力を有する2群、正の屈折力を有する3群を有し、1群に反射部材を有するズームレンズが開示されている。   For example, Patent Documents 1 and 2 disclose a zoom lens having one group having positive refracting power, two groups having negative refracting power, and three groups having positive refracting power, each having a reflecting member. ing.

特開2007−248952号公報JP 2007-248952 A 特開2009−236973号公報JP 2009-236973 A

しかしながら、反射部材をズームレンズ中に配置するためには、そのための空間が必要であり、また、折り曲げ後のカメラ厚を薄くするためには、よりレンズの前方に反射部材を挿入せねばならない。そのため、入射瞳位置が深くなり、反射部材挿入前より前玉径が大きくなってしまう。また広画角化を達成するために1群のパワーを強くすると、特に望遠端の軸上色収差が低下する。カメラの薄型化のためには、最も物体側に反射部材を配置するのが望ましいが、反射部材の有効径が増大し、大型化に繋がるために反射部材の物体側に負レンズを配置するのが一般的である。また1群の正レンズは、反射部材の像側に配置するのが一般的である。   However, in order to dispose the reflecting member in the zoom lens, a space for it is necessary, and in order to reduce the camera thickness after bending, the reflecting member must be inserted further in front of the lens. For this reason, the entrance pupil position becomes deep, and the front lens diameter becomes larger than before the reflection member is inserted. Further, when the power of one group is increased to achieve a wide angle of view, the axial chromatic aberration at the telephoto end is particularly reduced. In order to reduce the thickness of the camera, it is desirable to dispose the reflecting member closest to the object side. However, in order to increase the effective diameter of the reflecting member and increase the size, a negative lens is disposed on the object side of the reflecting member. Is common. In general, the positive lens group is disposed on the image side of the reflecting member.

また、1群中の負レンズと正レンズの間隔が増大するために、1群で発生する軸上色収差と倍率色収差を同時に補正することが困難となる。   Further, since the distance between the negative lens and the positive lens in one group increases, it is difficult to simultaneously correct axial chromatic aberration and lateral chromatic aberration generated in one group.

特許文献1は、広角端の半画角30°程度であり、本願の目標とする37°程度と比較すると小さく、十分な広画角化が達成できていない。   Patent Document 1 has a half angle of view of about 30 ° at the wide angle end, which is smaller than the target of about 37 ° of the present application, and has not achieved a sufficiently wide angle of view.

特許文献2では広画角化を実現しているが、小型化が十分ではない。小型化するためには各群のパワーを強くする必要があるが、1群で発生する軸上色収差、倍率色収差を補正する為に2群に低分散の異常分散ガラスを用いている。一般に低分散のガラスは屈折率が低いために、パワーを強くすると曲率半径が小さくなりすぎ、収差補正が困難となる。   Although Patent Document 2 achieves a wide angle of view, the size reduction is not sufficient. In order to reduce the size, it is necessary to increase the power of each group, but in order to correct axial chromatic aberration and lateral chromatic aberration that occur in one group, two groups use low dispersion anomalous dispersion glass. In general, low-dispersion glass has a low refractive index. Therefore, when the power is increased, the radius of curvature becomes too small, making it difficult to correct aberrations.

従来、この点に鑑みて高倍率でフルフラットカメラに用いるズームレンズに関して、1群中に反射部材を配置しながら、広画角化しつつ光学性能を維持する技術は提案されていない。   Conventionally, regarding a zoom lens used in a full-flat camera with a high magnification in view of this point, a technique for maintaining optical performance while widening the angle of view while arranging a reflecting member in one group has not been proposed.

本発明の目的は、反射部材を有していながら広画角で、高倍率かつ高性能なフルフラットカメラに好適なズームレンズを提供することである。   An object of the present invention is to provide a zoom lens suitable for a full flat camera having a wide angle of view, high magnification, and high performance while having a reflecting member.

本願では、広画角化するために1群の焦点距離を小さくしている。その際に発生する倍率色収差を、最も像側の正群をあえて倍率色収差を過補正にすることで補正している。また最も物体側の正群の焦点距離を小さくする事で、横倍率を小さくし、広画角化を図っている。   In the present application, the focal length of one group is reduced in order to widen the angle of view. The lateral chromatic aberration that occurs at that time is corrected by overcorrecting the lateral chromatic aberration with the positive group closest to the image side. Also, by reducing the focal length of the positive group closest to the object side, the lateral magnification is reduced and a wide angle of view is achieved.

物体側から順に、正の屈折力の1群、負の屈折力の2群、正の屈折力の3群、後続レンズ群を有し、後続レンズ群の中で最も像側の群が正の屈折力を有し、1群に反射部材を有し、変倍時に1群が固定で2群、3群は移動し、1群は反射部材よりも物体側に負レンズを有し、反射部材よりも像側に2枚の正レンズを有し、最も像側の群は2枚の正レンズと1枚の負レンズを有し、以下の条件式を満たすことを特徴とするズームレンズ。 In order from the object side, there are 1 group of positive refracting power, 2 groups of negative refracting power, 3 groups of positive refracting power, and subsequent lens group, and the most image side group among the following lens groups is positive It has refractive power, has a reflecting member in one group, 1 group is fixed at zooming, 2 groups, 3 groups move, 1 group has a negative lens closer to the object side than the reflecting member, and the reflecting member A zoom lens having two positive lenses closer to the image side, the most image side group having two positive lenses and one negative lens, satisfying the following conditional expression:

0.2<f1/ft<0.4 (1)        0.2 <f1 / ft <0.4 (1)

0.15<fa/ft<0.4 (3)
ただし
f1:1群の焦点距離
fa:最も像側の群の焦点距離
ft:望遠端の全系の焦点距離
νai:最も像側の群内のレンズのアッベ数
φai:最も像側の群内のレンズのパワー
φw:広角端の全系パワー
とする。
0.15 <fa / ft <0.4 (3)
However,
f1: 1 group focal length
fa: Focal length of the most image side group
ft: focal length of the entire system at the telephoto end νai: Abbe number of the lens in the most image side group φai: power of the lens in the most image side group φw: total system power at the wide angle end

本発明によれば高倍率、広画角かつ色収差の補正された、フルフラットカメラに好適なズームレンズを提供することができる。   According to the present invention, it is possible to provide a zoom lens suitable for a full flat camera with a high magnification, a wide angle of view, and chromatic aberration correction.

反射部材を用いたズームレンズの模式図Schematic diagram of a zoom lens using a reflective member 数値実施例1の広角端での断面図Sectional view at the wide-angle end of Numerical Example 1 数値実施例1の広角端での収差図Aberration diagram at the wide-angle end in Numerical Example 1 数値実施例1の望遠端での収差図Aberration diagram at the telephoto end in Numerical Example 1 数値実施例2の広角端での断面図Sectional view at the wide-angle end of Numerical Example 2 数値実施例2の広角端での収差図Aberration diagram at the wide-angle end in Numerical Example 2 数値実施例2の望遠端での収差図Aberration diagram at the telephoto end in Numerical Example 2 数値実施例3の広角端での断面図Sectional view at the wide-angle end of Numerical Example 3 数値実施例3の広角端での収差図Aberration diagram at the wide-angle end in Numerical Example 3 数値実施例3の望遠端での収差図Aberration diagram at the telephoto end in Numerical Example 3 数値実施例4の広角端での断面図Sectional view at the wide-angle end of Numerical Example 4 数値実施例4の広角端での収差図Aberration diagram at the wide-angle end in Numerical Example 4 数値実施例4の望遠端での収差図Aberration diagram at the telephoto end in Numerical Example 4 数値実施例5の広角端での断面図Sectional view at the wide-angle end of Numerical Example 5 数値実施例5の広角端での収差図Aberration diagram at the wide-angle end in Numerical Example 5 数値実施例5の望遠端での収差図Aberration diagram at the telephoto end in Numerical Example 5

以下に、本発明の好ましい実施の形態を、添付の図面に基づいて詳細に説明する。図1は反射部材を用いたズームレンズの模式図である。図2、5、8、11、14は、本発明の実施形態にかかわる数値実施例1〜5の広角端での断面図である。図3、6、9、12、15は、本発明の実施形態にかかわる数値実施例1〜5の広角端での収差図である。図4、7、10、13、16は、本発明の実施形態にかかわる数値実施例1〜5の望遠端での収差図である。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic diagram of a zoom lens using a reflecting member. 2, 5, 8, 11, and 14 are cross-sectional views at the wide-angle end of Numerical Examples 1 to 5 according to the embodiment of the present invention. 3, 6, 9, 12, and 15 are aberration diagrams at the wide-angle end of Numerical Examples 1 to 5 according to the embodiment of the present invention. 4, 7, 10, 13, and 16 are aberration diagrams at the telephoto end of Numerical Examples 1 to 5 according to the embodiment of the present invention.

図1に示すような構造にすることで、光路を垂直方向に折り曲げ、カメラ厚を短縮している。数値実施例1〜5について図2、5、8、11、14では実際に光路を折り曲げているようには記載していないが、実際に作製する際には図1と同様の構造となり、カメラ厚は短縮される。   With the structure shown in FIG. 1, the optical path is bent in the vertical direction to reduce the camera thickness. Although numerical examples 1 to 5 are not described in FIGS. 2, 5, 8, 11, and 14 as if the optical path is actually bent, the structure is the same as that in FIG. The thickness is shortened.

各レンズ断面図において、PRは反射部材であるプリズム、GBはガラスブロック、SPは絞り、IPは像面をあらわしている。   In each lens cross-sectional view, PR represents a prism as a reflecting member, GB represents a glass block, SP represents a diaphragm, and IP represents an image plane.

各収差図において、d、gは各々d線及びg線、ΔM、ΔSはメリジオナル像面、サジタル像面を表している。倍率色収差はg線であらわしている。   In each aberration diagram, d and g represent d-line and g-line, respectively, and ΔM and ΔS represent a meridional image plane and a sagittal image plane. The lateral chromatic aberration is represented by the g-line.

実施例1〜5は、物体側から順に正群、負群、正群、負群、正群から構成され、1群に反射部材を用いており、1群の反射部材よりも物体側に負レンズを配置している。   Examples 1 to 5 are composed of a positive group, a negative group, a positive group, a negative group, and a positive group in order from the object side. The reflecting member is used in one group, and is more negative on the object side than the first group of reflecting members. A lens is placed.

本願では、広画角化するために1群の焦点距離を小さくしている。また、1群中の反射部材よりも物体側に負レンズを配置する事で、反射部材の有効径の小型化を図っている。その際に発生する倍率色収差を、最も像側の正群をあえて倍率色収差を過補正にすることで補正している。   In the present application, the focal length of one group is reduced in order to widen the angle of view. Further, the effective diameter of the reflecting member is reduced by disposing a negative lens on the object side of the reflecting member in the first group. The lateral chromatic aberration that occurs at that time is corrected by overcorrecting the lateral chromatic aberration with the positive group closest to the image side.

また最も像側の正群の焦点距離を小さくする事で、横倍率を小さくし、広角化を図っている。高倍率、広画角、色収差の補正された、フルフラットカメラに好適なズームレンズを達成している。   In addition, by reducing the focal length of the positive group closest to the image side, the lateral magnification is reduced and the wide angle is achieved. A zoom lens suitable for a full flat camera with high magnification, wide angle of view, and chromatic aberration is achieved.

以下、各実施形態について1つずつ説明する。   Hereinafter, each embodiment will be described one by one.

[実施例1]
以下、図1を参照して、本発明の第1の実施例による、レンズ構成について説明する。図1に示す実施例1は、物体側から順に、第1正レンズ群L1、第2負レンズ群L2、絞りSP、第3正レンズ群L3、第4負レンズ群L4、第5正レンズ群L5、ガラスブロックGB、から構成されている。
[Example 1]
Hereinafter, a lens configuration according to the first embodiment of the present invention will be described with reference to FIG. In Example 1 shown in FIG. 1, in order from the object side, the first positive lens unit L1, the second negative lens unit L2, the stop SP, the third positive lens unit L3, the fourth negative lens unit L4, and the fifth positive lens unit. L5 and glass block GB.

1群の焦点距離と望遠端の全系焦点距離は以下の条件式を満たす。   The focal length of one group and the total focal length at the telephoto end satisfy the following conditional expression.

0.2<f1/ft<0.4 (1)
条件式(1)は1群の焦点距離と望遠端の焦点距離の比を規定している。このパワー配置にする事で広画角化に寄与している。
0.2 <f1 / ft <0.4 (1)
Conditional expression (1) defines the ratio of the focal length of one group to the focal length at the telephoto end. This power arrangement contributes to a wider angle of view.

上限値を超えると、1群の焦点距離が大きくなりすぎ、広画角化が困難になるために好ましくない。   Exceeding the upper limit is not preferable because the focal length of one group becomes too large and it becomes difficult to widen the angle of view.

下限値を超えると、1群の焦点距離が小さくなり、1群中の正レンズのパワーが強くなり過ぎ、1群内で発生する軸上色収差、球面収差を補正することが困難になるために好ましくない。   If the lower limit is exceeded, the focal length of the first group becomes small, the power of the positive lens in the first group becomes too strong, and it becomes difficult to correct axial chromatic aberration and spherical aberration that occur in the first group. It is not preferable.

更に好ましくは条件式(1a)を満たすと、広画角化と倍率色収差の補正が、更に良好にできるので良い。   More preferably, when the conditional expression (1a) is satisfied, the wide angle of view and the lateral chromatic aberration can be corrected more satisfactorily.

0.25<f1/ft<0.4 (1a)
最も像側の群のレンズは以下の条件式を満たす。
0.25 <f1 / ft <0.4 (1a)
The lens in the most image side group satisfies the following conditional expression.

条件式(2)は、最も像側の群の、色消しの条件を規定している。最も像側の群は正群であり、通常であれば(2)式の値は正符号になる。1群の負レンズで発生する広角端の倍率色収差を、1群内の正レンズで補正しようとすると軸上色収差を補正することが困難となる。そのため、軸上色収差を補正した状態で、絞りよりも像側の、最も像側の正群を過補正にあえてする事で倍率色収差を補正している。 Conditional expression (2) defines the achromatic condition of the most image side group. The most image side group is a positive group, and normally the value of the expression (2) is a positive sign. If it is attempted to correct the lateral chromatic aberration at the wide-angle end generated by the negative lens in the first group by using the positive lens in the first group, it is difficult to correct the longitudinal chromatic aberration. Therefore, in the state where axial chromatic aberration is corrected, lateral chromatic aberration is corrected by overcorrecting the most image side positive group on the image side of the stop.

上限値を超えると、最も像側の群の色消し力が小さくなり、1群で発生した倍率色収差を補正することが困難になるために好ましくない。   Exceeding the upper limit is not preferable because the achromatic power of the group closest to the image side becomes small and it becomes difficult to correct lateral chromatic aberration generated in one group.

下限値を超えると、最も像側の群の色消し力が大きくなり、1群で発生する倍率色収差の補正が過剰となるために好ましくない。   Exceeding the lower limit is not preferable because the achromatic power of the group closest to the image side becomes large and correction of lateral chromatic aberration occurring in one group becomes excessive.

更に好ましくは条件式(2a)を満たすと、倍率色収差を更に良好に補正できるので良い。   More preferably, when the conditional expression (2a) is satisfied, the lateral chromatic aberration can be corrected more satisfactorily.

最も像側の群と望遠端の焦点距離は以下の条件式を満たす。
0.15<fa/ft<0.4 (3)
条件式(3)は最も像側の群と望遠端の焦点距離の比を規定している。最も像側の正群の焦点距離を小さくする事で、横倍率を小さくし、広画角化に寄与している。
上限値を超えると、最も像側の群の焦点距離が大きくなり、広画角化することが困難になるために好ましくない。
The focal length of the most image side group and the telephoto end satisfies the following conditional expression.
0.15 <fa / ft <0.4 (3)
Conditional expression (3) defines the ratio of the focal distance between the most image side group and the telephoto end. By reducing the focal length of the positive group closest to the image side, the lateral magnification is reduced, which contributes to a wider angle of view.
Exceeding the upper limit is not preferable because the focal length of the group closest to the image side becomes large and it becomes difficult to widen the angle of view.

下限値を超えると、最も像側の群の焦点距離が小さくなり、最も像側の群で色消しを過補正にすることが困難になるために好ましくない。以上で本発明の目的は達成可能である。
更に好ましくは条件式(3a)を満たすと、広画角化と倍率色収差の補正を、更に良好に行えるので良い。
0.18<fa/ft<0.4 (3a)
以上で本発明の目的は達成可能である。望ましくは以下の条件式を満たすと倍率色収差が良好に補正できるため良い。
Exceeding the lower limit is not preferable because the focal length of the group closest to the image side becomes small, and it becomes difficult to overcorrect the achromatism in the group closest to the image side. Thus, the object of the present invention can be achieved.
More preferably, when the conditional expression (3a) is satisfied, the wide angle of view and the lateral chromatic aberration can be corrected more satisfactorily.
0.18 <fa / ft <0.4 (3a)
Thus, the object of the present invention can be achieved. Desirably, the following conditional expression is satisfied because the lateral chromatic aberration can be satisfactorily corrected.

ただし
φn1:1群の最もパワーの強い負レンズのパワー
vn1:1群の最もパワーの強い負レンズのアッべ数
とする。
条件式(4)は1群の負レンズと最も像側の群の色消しのバランスを規定している。上限値を超えると、1群の負レンズで発生する倍率色収差が、最も像側の群の倍率色収差に比べて大きくなり、補正することが困難になるために好ましくない。
However, the power of the strongest negative lens of φn1: 1 group
vn1: The Abbe number of the strongest negative lens in the 1 group.
Conditional expression (4) regulates the balance between the achromatic lens of the first lens group and the most achromatic group. Exceeding the upper limit is not preferable because the lateral chromatic aberration generated in the negative lens of one group becomes larger than the lateral chromatic aberration of the most image side group and it becomes difficult to correct.

下限値を超えると、最も像側の群の色消しが過剰補正になりすぎ、倍率色収差を補正することが困難になるために好ましくない。   Exceeding the lower limit is not preferable because the achromaticity of the group closest to the image side is excessively corrected and it becomes difficult to correct lateral chromatic aberration.

更に好ましくは条件式(4a)を満たすと、倍率色収差を更に良好に補正できるので良い。   More preferably, when the conditional expression (4a) is satisfied, the lateral chromatic aberration can be corrected more satisfactorily.

1群で発生した倍率色収差を最も像側の正群を過補正にして補正する手法についてこれまで述べた。絞りよりも像側の負レンズの色消し作用を高めると補正できるので、最も像側の群だけでなく、その物体側の群中の負レンズで倍率色収差補正を分担しても良い。本実施例では、最も像側の負群にも倍率色収差補正を分担させている。   So far, the method for correcting the lateral chromatic aberration generated in one group by overcorrecting the positive group closest to the image side has been described. Since correction can be made by increasing the achromatic action of the negative lens on the image side relative to the stop, correction of chromatic aberration of magnification may be shared not only by the most image side group but also by the negative lens in the object side group. In this embodiment, the lateral chromatic aberration correction is shared by the negative group closest to the image side.

望ましくは以下の条件式を満たすと倍率色収差が良好に補正できるため良い。
30<vnb<50 (5)
ただし
vnb: 最も像側の負群の最もパワーの強い負レンズのアッベ数
とする。
Desirably, the following conditional expression is satisfied because the lateral chromatic aberration can be satisfactorily corrected.
30 <vnb <50 (5)
However,
vnb: Abbe number of the most powerful negative lens in the negative group closest to the image side.

条件式(5)は負レンズの色消し作用を高めるのに適切なアッベ数の範囲を規定している。
上限値を超えると、負レンズの色消し作用が小さくなり、倍率色収差補正への寄与が小さくなるために好ましくない。
Conditional expression (5) defines an appropriate Abbe number range to enhance the achromatic action of the negative lens.
Exceeding the upper limit is not preferable because the achromatic action of the negative lens is reduced and the contribution to the lateral chromatic aberration correction is reduced.

下限値を超えると、負レンズの色消し作用が大きくなり、過剰補正になるために好ましくない。   Exceeding the lower limit is not preferable because the achromatic action of the negative lens increases and overcorrection occurs.

更に好ましくは条件式(5a)を満たすと、倍率色収差を更に良好に補正できるので良い。
32<vnb<48 (5a)
望ましくは以下の条件式を満たすと倍率色収差が良好に補正できるため良い。
-0.3<fb/ft<-0.1 (6)
ただし
fb:最も像側の負群の焦点距離
とする
上限値を超えると、負群の焦点距離が大きくなり、負群の色消し力が小さくなり、倍率色収差を補正することが困難になるために好ましくない。
More preferably, when the conditional expression (5a) is satisfied, the lateral chromatic aberration can be corrected more satisfactorily.
32 <vnb <48 (5a)
Desirably, the following conditional expression is satisfied because the lateral chromatic aberration can be satisfactorily corrected.
-0.3 <fb / ft <-0.1 (6)
However,
fb: The focal length of the negative group closest to the image side If the upper limit is exceeded, the focal length of the negative group increases, the achromatic power of the negative group decreases, and it becomes difficult to correct lateral chromatic aberration. It is not preferable.

下限値を超えると、負群の焦点距離が小さくなり、負群の色消し力が過剰になり、倍率色収差を補正することが困難になるために好ましくない。   Exceeding the lower limit is not preferable because the focal length of the negative group becomes small, the achromatic power of the negative group becomes excessive, and it becomes difficult to correct lateral chromatic aberration.

更に好ましくは条件式(6a)を満たすと、倍率色収差を更に良好に補正できるので良い。
-0.3<fb/ft<-0.12 (6a)
物体側から順に、正の屈折力を有する1群、負の屈折力の2群、正の屈折力を有する3群、負の屈折力を有する4群、正の屈折力を有する5群から構成されることで各群のパワー配置を適切に設定できる。
More preferably, when the conditional expression (6a) is satisfied, the lateral chromatic aberration can be corrected more satisfactorily.
-0.3 <fb / ft <-0.12 (6a)
In order from the object side, it consists of 1 group with positive refractive power, 2 groups with negative refractive power, 3 groups with positive refractive power, 4 groups with negative refractive power, and 5 groups with positive refractive power By doing so, the power arrangement of each group can be set appropriately.

[実施例2]
以下、図4を参照して、本発明の第2の実施例による、レンズ構成について説明する。図4に示す実施例2は、物体側から順に、第1正レンズ群L1、第2負レンズ群L2、絞り、第3正レンズ群L3、第4負レンズ群L4、第5正レンズ群L5、ガラスブロックGB、から構成されている。
[Example 2]
Hereinafter, a lens configuration according to the second embodiment of the present invention will be described with reference to FIG. In Example 2 shown in FIG. 4, in order from the object side, the first positive lens unit L1, the second negative lens unit L2, the stop, the third positive lens unit L3, the fourth negative lens unit L4, and the fifth positive lens unit L5. It consists of a glass block, GB.

実施例2は実施例1と比較して望遠端のF値を5.6と暗くしている。本数値例では1群中の正レンズの有効径は、望遠端のF値によって決定されている。暗くすることで有効径を小さくし、小型化を図っている。また、L1とL4、L5のパワーを小さくしている。   In Example 2, compared with Example 1, the F value at the telephoto end is darkened to 5.6. In this numerical example, the effective diameter of the positive lens in one group is determined by the F value at the telephoto end. By making it dark, the effective diameter is reduced to achieve miniaturization. In addition, the power of L1, L4, and L5 is reduced.

[実施例3]
以下、図7を参照して、本発明の第3の実施例による、レンズ構成について説明する。図7に示す実施例3は、物体側から順に、第1正レンズ群L1、第2負レンズ群L2、絞り、第3正レンズ群L3、第4負レンズ群L4、第5正レンズ群L5、ガラスブロックGB、から構成されている。
[Example 3]
Hereinafter, the lens configuration according to the third embodiment of the present invention will be described with reference to FIG. In Example 3 shown in FIG. 7, in order from the object side, the first positive lens unit L1, the second negative lens unit L2, the stop, the third positive lens unit L3, the fourth negative lens unit L4, and the fifth positive lens unit L5. It consists of a glass block, GB.

実施例3は実施例1と比較して、L1とL5のパワーを強くしている。L5のパワーを強くしつつも、L5の色消し作用は高めている。   In the third embodiment, the powers of L1 and L5 are made stronger than in the first embodiment. While increasing the power of L5, the achromatic effect of L5 is enhanced.

[実施例4]
以下、図10を参照して、本発明の第4の実施例による、レンズ構成について説明する。図10に示す実施例4は、物体側から順に、第1正レンズ群L1、第2負レンズ群L2、絞り、第3正レンズ群L3、第4負レンズ群L4、第5正レンズ群L5、ガラスブロックGB、から構成されている。
[Example 4]
Hereinafter, the lens configuration according to the fourth embodiment of the present invention will be described with reference to FIG. In Example 4 shown in FIG. 10, in order from the object side, the first positive lens unit L1, the second negative lens unit L2, the stop, the third positive lens unit L3, the fourth negative lens unit L4, and the fifth positive lens unit L5. It consists of a glass block, GB.

実施例4は実施例1と比較してL5のパワーが強い。最も像側の群であるL5で倍率色収差を補正している。   The power of L5 is stronger in Example 4 than in Example 1. The lateral chromatic aberration is corrected by L5, which is the most image side group.

[実施例5]
以下、図13を参照して、本発明の第5の実施例による、レンズ構成について説明する。図13に示す実施例5は、物体側から順に、第1正レンズ群L1、第2負レンズ群L2、絞り、第3正レンズ群L3、第4負レンズ群L4、第5正レンズ群L5、ガラスブロックGB、から構成されている。
[Example 5]
Hereinafter, the lens configuration according to the fifth example of the present invention will be described with reference to FIG. In Example 5 shown in FIG. 13, in order from the object side, the first positive lens unit L1, the second negative lens unit L2, the stop, the third positive lens unit L3, the fourth negative lens unit L4, and the fifth positive lens unit L5. It consists of a glass block, GB.

実施例5は、実施例1と比較してL1のパワーが小さい。条件式(3)の数値が本数値実施例の中で最も小さく、最も像側の群であるL5のパワーが強い。また条件式(6)の数値が小さく、最も像側の群の物体側の群であるL4のパワーが強い。しかしながら条件式(2)の数値は数値実施例の中では小さい。以上より、L1のパワーを強めると共にL4、L5のパワーを強め、L5でL1の倍率色収差をしつつも、L4にも色消し分担を割り振っている。   In Example 5, compared with Example 1, the power of L1 is small. The numerical value of the conditional expression (3) is the smallest among the numerical examples, and the power of L5, which is the most image side group, is strong. In addition, the numerical value of conditional expression (6) is small, and the power of L4, which is the object side group of the most image side group, is strong. However, the numerical value of conditional expression (2) is small in the numerical examples. As described above, the power of L1 is strengthened and the power of L4 and L5 is strengthened, and while the chromatic aberration of magnification is L1 at L5, the achromatic share is also assigned to L4.

以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。   As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to these embodiment, A various deformation | transformation and change are possible within the range of the summary.

次に本発明の数値実施例を示す。   Next, numerical examples of the present invention will be shown.

数値実施例において、riは物体側より順に第i番目のレンズ面の曲率半径、diは第i番目のレンズ厚または空気間隔、ndiとvdiは第i番目のレンズの材質のd線の屈折率とアッベ数である。また、非球面形状はレンズ面の中心部の曲率半径をRとし、光軸方向をX軸とし、光軸と垂直方向をY軸とし、非球面係数をAi(i=1,2,3…)としたとき、
X= (1/R)Y2
1+{1―(K+1)(Y/R)2}1/2
+A4Y4+A6Y6+A8Y8+A10Y10+・・・
であらわされるものとする。
In the numerical example, ri is the radius of curvature of the i-th lens surface in order from the object side, di is the i-th lens thickness or air spacing, and ndi and vdi are the refractive indices of the d-line of the i-th lens material. And the Abbe number. The aspherical shape has a radius of curvature at the center of the lens surface as R, the optical axis direction as the X-axis, the direction perpendicular to the optical axis as the Y-axis, and the aspheric coefficient as Ai (i = 1, 2, 3... )
X = (1 / R) Y2
1+ {1- (K + 1) (Y / R) 2} 1/2
+ A4Y4 + A6Y6 + A8Y8 + A10Y10 + ...
It shall be represented by

表1には本発明の上述した条件式と数値実施例の関係を示す。   Table 1 shows the relationship between the above-described conditional expressions of the present invention and numerical examples.


数値実施例 1
単位 mm

面データ
面番号 r d nd vd 有効径
1 79.161 1.01 1.92286 20.9 18.05
2 15.900 2.50 15.84
3 ∞ 15.00 1.90366 31.3 15.62
4 ∞ 0.19 14.84
5 36.978 3.04 1.59282 68.6 15.37
6 -25.494 0.19 15.53
7* 25.555 1.95 1.69350 53.2 15.19
8* -345.688 (可変) 14.97
9 -26.381 0.44 1.85400 40.4 7.05
10* 10.355 1.36 6.82
11 -10.317 0.44 1.72916 54.7 6.87
12 42.257 0.16 7.37
13 41.585 1.18 1.92286 18.9 7.53
14 -27.078 (可変) 7.79
15(絞り) ∞ (可変) 8.12
16* 10.690 1.95 1.69350 53.2 8.57
17* 58.487 1.60 8.46
18 20.722 0.50 1.83481 42.7 8.48
19 8.251 2.61 1.49700 81.5 8.26
20 -11.103 (可変) 8.28
21 16.067 0.44 1.88300 40.8 5.64
22 6.325 (可変) 5.47
23 10.645 2.21 1.51742 52.4 8.86
24 -22.123 0.55 1.92286 20.9 8.78
25 18.121 0.16 8.79
26* 17.453 2.45 1.58313 59.4 8.89
27 -12.712 (可変) 9.06
28 ∞ 1.29 1.51633 64.2 20.00
29 ∞ (可変) 20.00
像面 ∞

非球面データ
第7面
K = 0.00000e+000 A 4= 3.71143e-006 A 6=-2.44162e-008 A 8=-3.73467e-009 A10= 1.91671e-011

第8面
K = 0.00000e+000 A 4= 9.06789e-006 A 6=-1.13302e-007 A 8=-3.27643e-009 A10= 2.51291e-011

第10面
K = 0.00000e+000 A 4=-1.40586e-004 A 6= 2.14541e-006 A 8= 1.11525e-008 A10=-4.75224e-009

第16面
K = 0.00000e+000 A 4= 5.95526e-005 A 6=-6.68120e-006 A 8= 2.64364e-007 A10=-1.32680e-008

第17面
K = 0.00000e+000 A 4= 3.53464e-004 A 6=-6.43741e-006 A 8= 1.90601e-007 A10=-1.28089e-008

第26面
K = 0.00000e+000 A 4=-3.74153e-005 A 6= 5.69321e-006 A 8=-2.71745e-007 A10= 4.25627e-009

各種データ
ズーム比 9.97
広角 中間 望遠
焦点距離 5.01 10.35 50.00
Fナンバー 3.61 4.50 5.00
画角 34.29 20.53 4.43
像高 3.42 3.88 3.88
レンズ全長 82.00 82.00 82.00
BF 1.36 1.36 1.36

d 8 0.38 6.72 13.35
d14 13.47 7.13 0.50
d15 8.45 6.70 0.19
d20 4.91 6.66 13.17
d22 7.08 6.35 10.73
d27 5.15 5.88 1.50
d29 1.36 1.36 1.36

入射瞳位置 12.38 18.18 28.25
射出瞳位置 138.57 1407.68 141.62
前側主点位置 17.58 28.60 96.07
後側主点位置 -3.65 -8.99 -48.64

ズームレンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 17.45 23.88 14.64 7.99
2 9 -6.92 3.57 0.18 -2.54
絞り 15 ∞ 0.00 0.00 -0.00
3 16 11.55 6.66 2.19 -3.23
4 21 -12.07 0.44 0.39 0.15
5 23 17.62 5.37 1.97 -1.79
GB 28 ∞ 1.29 0.42 -0.42

単レンズデータ
レンズ 始面 焦点距離
1 1 -21.72
2 3 0.00
3 5 25.92
4 7 34.39
5 9 -8.66
6 11 -11.33
7 13 17.92
8 16 18.55
9 18 -16.73
10 19 9.97
11 21 -12.07
12 23 14.22
13 24 -10.72
14 26 13.00
15 28 0.00

数値実施例 2
単位 mm

面データ
面番号 r d nd vd 有効径
1 108.061 1.01 1.92286 20.9 17.96
2 16.952 2.34 15.89
3 ∞ 15.00 1.90366 31.3 15.68
4 ∞ 0.19 13.70
5 38.395 2.84 1.59282 68.6 13.67
6 -26.903 0.19 13.46
7* 26.259 1.68 1.69350 53.2 13.21
8* -168.801 (可変) 13.02
9 -25.990 0.44 1.85400 40.4 6.98
10* 10.752 1.18 6.35
11 -10.072 0.44 1.72916 54.7 6.24
12 43.073 0.15 6.46
13 40.393 1.08 1.92286 18.9 6.59
14 -27.104 (可変) 6.82
15(絞り) ∞ (可変) 7.27
16* 10.300 2.19 1.69350 53.2 7.94
17* 58.367 1.91 7.74
18 23.527 0.50 1.83481 42.7 7.65
19 8.127 2.23 1.49700 81.5 7.46
20 -11.452 (可変) 7.47
21 15.025 0.44 1.88300 40.8 5.89
22 6.426 (可変) 5.70
23 11.956 2.09 1.51742 52.4 8.78
24 -22.421 0.55 1.92286 20.9 8.79
25 19.760 0.19 8.92
26* 18.249 2.50 1.58313 59.4 9.09
27 -12.783 (可変) 9.28
28 ∞ 1.29 1.51633 64.2 20.00
29 ∞ (可変) 20.00
像面 ∞

非球面データ
第7面
K = 0.00000e+000 A 4= 8.15995e-006 A 6=-8.14762e-008 A 8=-2.19361e-009 A10=-1.18258e-012

第8面
K = 0.00000e+000 A 4= 1.46986e-005 A 6=-1.56358e-007 A 8=-2.51962e-009 A10= 1.32712e-011

第10面
K = 0.00000e+000 A 4=-1.36094e-004 A 6= 2.30129e-006 A 8= 6.92089e-008 A10=-8.74253e-009

第16面
K = 0.00000e+000 A 4= 4.24228e-005 A 6=-3.63882e-006 A 8= 2.12998e-007 A10=-1.01398e-008

第17面
K = 0.00000e+000 A 4= 3.30095e-004 A 6=-3.82480e-006 A 8= 2.13981e-007 A10=-1.21624e-008

第26面
K = 0.00000e+000 A 4=-5.19504e-006 A 6= 4.87132e-006 A 8=-2.15386e-007 A10= 3.06326e-009

各種データ
ズーム比 9.51
広角 中間 望遠
焦点距離 5.15 10.35 49.00
Fナンバー 3.61 4.50 5.60
画角 33.59 20.53 4.52
像高 3.42 3.88 3.88
レンズ全長 83.50 83.50 83.50
BF 1.36 1.36 1.36

d 8 0.80 6.98 13.56
d14 13.76 7.58 1.00
d15 9.54 7.76 1.00
d20 4.95 6.73 13.49
d22 7.36 6.76 11.16
d27 5.30 5.90 1.50
d29 1.36 1.36 1.36

入射瞳位置 12.52 18.29 28.45
射出瞳位置 106.26 286.67 130.80
前側主点位置 17.92 29.01 96.00
後側主点位置 -3.79 -8.99 -47.64

ズームレンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 17.78 23.26 14.58 8.18
2 9 -7.02 3.28 0.16 -2.30
絞り 15 ∞ 0.00 0.00 -0.00
3 16 12.04 6.83 2.09 -3.57
4 21 -13.02 0.44 0.41 0.18
5 23 18.38 5.33 2.17 -1.54
GB 28 ∞ 1.29 0.42 -0.42

単レンズデータ
レンズ 始面 焦点距離
1 1 -21.90
2 3 0.00
3 5 27.12
4 7 32.88
5 9 -8.86
6 11 -11.16
7 13 17.71
8 16 17.70
9 18 -15.09
10 19 9.94
11 21 -13.02
12 23 15.39
13 24 -11.31
14 26 13.29
15 28 0.00


数値実施例 3
単位 mm

面データ
面番号 r d nd vd 有効径
1 41.055 1.00 1.92286 20.9 18.98
2 13.504 3.12 16.31
3 ∞ 15.00 1.90366 31.3 16.08
4 ∞ 0.20 13.87
5 99.600 2.38 1.59282 68.6 13.87
6 -24.727 0.20 13.80
7* 29.215 1.91 1.69350 53.2 12.94
8* -64.855 (可変) 12.58
9 -17.579 0.45 1.85400 40.4 7.42
10* 13.946 1.09 6.84
11 -11.057 0.45 1.72916 54.7 6.78
12 78.292 0.07 6.80
13 52.976 1.02 1.92286 18.9 6.82
14 -23.992 (可変) 6.81
15(絞り) ∞ (可変) 6.84
16* 9.329 2.12 1.69350 53.2 8.20
17* 112.351 2.00 7.92
18 94.827 0.50 1.88300 40.8 7.71
19 8.037 2.47 1.49700 81.5 7.58
20 -10.788 (可変) 7.71
21 20.179 0.45 1.91082 35.3 6.59
22 5.170 1.23 1.80809 22.8 6.34
23 7.765 (可変) 6.25
24 7.778 2.50 1.49700 81.6 8.27
25 -17.911 0.00 8.16
26 -17.911 0.50 1.92286 18.9 8.16
27 36.822 0.66 8.16
28* 98.028 1.07 1.58313 59.4 8.28
29 -18.442 (可変) 8.31
30 ∞ 1.29 1.51633 64.2 20.00
31 ∞ (可変) 20.00
像面 ∞

非球面データ
第7面
K = 0.00000e+000 A 4=-1.30581e-005 A 6=-6.50977e-009 A 8=-3.65803e-009 A10= 3.26510e-011

第8面
K = 0.00000e+000 A 4=-2.08951e-005 A 6=-3.41374e-008 A 8=-3.15099e-009 A10= 3.43401e-011

第10面
K = 0.00000e+000 A 4=-1.37868e-004 A 6= 7.78210e-006 A 8=-7.54029e-007 A10= 2.70248e-008

第16面
K = 0.00000e+000 A 4= 9.37161e-005 A 6= 5.32058e-006 A 8=-1.28408e-007 A10= 1.19439e-008

第17面
K = 0.00000e+000 A 4= 3.86335e-004 A 6= 5.74722e-006 A 8=-1.16724e-007 A10= 1.61236e-008

第28面
K = 0.00000e+000 A 4=-3.59684e-005 A 6= 2.34096e-005 A 8=-1.76175e-006 A10= 4.53994e-008

各種データ
ズーム比 9.79
広角 中間 望遠
焦点距離 5.01 10.56 49.00
Fナンバー 3.61 4.50 6.00
画角 33.35 20.16 4.52
像高 3.29 3.88 3.88
レンズ全長 84.96 84.96 84.96
BF 1.36 1.36 1.36

d 8 0.75 7.68 14.70
d14 14.89 7.97 0.94
d15 12.44 10.07 0.97
d20 6.87 9.24 18.34
d23 2.28 2.01 5.50
d29 4.67 4.95 1.45
d31 1.36 1.36 1.36

入射瞳位置 12.85 18.83 28.46
射出瞳位置 -98.03 -56.89 -69.32
前側主点位置 17.60 27.47 43.49
後側主点位置 -3.64 -9.19 -47.64

ズームレンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 18.62 23.82 15.57 9.39
2 9 -7.94 3.08 0.01 -2.28
絞り 15 ∞ 0.00 0.00 -0.00
3 16 14.00 7.09 1.44 -4.43
4 21 -13.21 1.68 1.32 0.37
5 24 19.00 4.73 0.65 -2.83
GB 30 ∞ 1.29 0.42 -0.42

単レンズデータ
レンズ 始面 焦点距離
1 1 -22.19
2 3 0.00
3 5 33.66
4 7 29.29
5 9 -9.05
6 11 -13.26
7 13 18.01
8 16 14.55
9 18 -9.97
10 19 9.69
11 21 -7.74
12 22 15.80
13 24 11.28
14 26 -13.00
15 28 26.71
16 30 0.00


実施例4
単位 mm

面データ
面番号 r d nd vd 有効径
1 135.231 1.00 1.92286 20.9 16.11
2 13.929 2.05 14.02
3 ∞ 15.00 1.90366 31.3 13.95
4 ∞ 0.20 13.12
5 55.472 2.63 1.59282 68.6 13.45
6 -22.564 0.20 13.73
7* 22.403 2.19 1.69350 53.2 13.74
8* -46.701 (可変) 13.61
9 -17.167 0.45 1.85400 40.4 6.82
10* 12.765 1.12 6.65
11 -10.093 0.45 1.72916 54.7 6.67
12 40.788 0.14 7.10
13 122.610 1.03 1.92286 18.9 7.13
14 -19.464 (可変) 7.36
15(絞り) ∞ (可変) 7.80
16* 9.388 2.75 1.69350 53.2 9.39
17* 1307.979 1.79 8.96
18 208.244 0.50 1.88300 40.8 8.63
19 7.967 2.81 1.49700 81.5 8.43
20 -10.577 (可変) 8.55
21 257.987 0.45 1.81600 46.6 7.12
22 5.684 1.29 1.80809 22.8 6.94
23 8.786 (可変) 6.86
24 8.809 2.50 1.49700 81.6 9.29
25 -26.729 0.00 9.19
26 -45.591 0.50 1.92286 18.9 9.13
27 14.027 0.13 8.99
28* 11.323 2.53 1.58313 59.4 9.11
29 -16.855 (可変) 9.21
30 ∞ 1.29 1.51633 64.2 20.00
31 ∞ (可変) 20.00
像面 ∞

非球面データ
第7面
K = 0.00000e+000 A 4=-2.35437e-005 A 6= 8.27235e-008 A 8=-5.97621e-009 A10= 1.55168e-012

第8面
K = 0.00000e+000 A 4=-1.12927e-005 A 6= 7.27507e-008 A 8=-5.14446e-009 A10= 6.41552e-012

第10面
K = 0.00000e+000 A 4=-2.80141e-004 A 6= 2.99815e-006 A 8=-6.48903e-007 A10= 3.03380e-008

第16面
K = 0.00000e+000 A 4= 2.67281e-005 A 6= 3.00213e-006 A 8=-1.43809e-007 A10= 7.78290e-009

第17面
K = 0.00000e+000 A 4= 3.11904e-004 A 6= 5.20903e-006 A 8=-3.20149e-007 A10= 1.51599e-008

第28面
K = 0.00000e+000 A 4=-2.01453e-004 A 6= 4.31874e-006 A 8=-3.48339e-007 A10= 6.85234e-009

各種データ
ズーム比 9.78
広角 中間 望遠
焦点距離 5.01 10.36 49.00
Fナンバー 3.61 4.50 6.00
画角 33.31 20.50 4.52
像高 3.29 3.88 3.88
レンズ全長 84.96 84.96 84.96
BF 1.36 1.36 1.36

d 8 0.77 5.61 10.17
d14 10.29 5.45 0.88
d15 13.49 10.87 0.84
d20 6.83 9.44 19.48
d23 2.67 3.03 7.60
d29 6.56 6.20 1.63
d31 1.36 1.36 1.36

入射瞳位置 10.83 14.70 20.23
射出瞳位置 111.61 338.95 78.17
前側主点位置 16.07 25.38 100.49
後側主点位置 -3.65 -9.00 -47.64

ズームレンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 13.00 23.28 12.93 7.76
2 9 -6.72 3.18 0.11 -2.28
絞り 15 ∞ 0.00 0.00 -0.00
3 16 13.91 7.86 1.55 -4.86
4 21 -11.11 1.74 0.98 0.02
5 24 14.14 5.66 1.49 -2.48
GB 30 ∞ 1.29 0.42 -0.42

単レンズデータ
レンズ 始面 焦点距離
1 1 -16.89
2 3 0.00
3 5 27.40
4 7 22.12
5 9 -8.51
6 11 -11.05
7 13 18.27
8 16 13.62
9 18 -9.39
10 19 9.63
11 21 -7.13
12 22 16.81
13 24 13.65
14 26 -11.58
15 28 12.01
16 30 0.00


実施例5
単位 mm

面データ
面番号 r d nd vd 有効径
1 101.743 1.00 1.92286 20.9 16.34
2 13.934 2.15 14.23
3 ∞ 15.00 1.90366 31.3 14.14
4 ∞ 0.20 12.95
5 55.359 2.03 1.59282 68.6 13.26
6 -23.845 0.20 13.41
7* 22.252 2.62 1.69350 53.2 13.45
8* -43.391 (可変) 13.24
9 -14.960 0.45 1.85400 40.4 6.59
10* 13.989 1.13 6.46
11 -10.928 0.45 1.72916 54.7 6.49
12 27.029 0.20 6.86
13 93.542 0.97 1.92286 18.9 6.90
14 -19.302 (可変) 7.10
15(絞り) ∞ (可変) 7.52
16* 9.485 2.73 1.69350 53.2 9.80
17* 126.747 1.35 9.34
18 72.753 0.50 1.88300 40.8 9.12
19 7.901 3.65 1.49700 81.5 8.86
20 -11.568 (可変) 9.08
21 -33.706 0.45 1.88300 40.8 6.89
22 6.786 1.54 1.80809 22.8 6.92
23 9.685 (可変) 7.04
24 8.630 2.50 1.49700 81.6 9.08
25 -20.565 0.00 9.10
26 -21.231 0.50 1.94595 18.0 9.09
27 26.989 -0.00 9.25
28* 10.287 2.41 1.65160 58.5 9.61
29 -14.664 (可変) 9.62
30 ∞ 1.29 1.51633 64.2 20.00
31 ∞ (可変) 20.00
像面 ∞

非球面データ
第7面
K = 0.00000e+000 A 4=-2.40130e-005 A 6=-4.17236e-008 A 8=-9.34210e-009 A10= 2.05758e-011

第8面
K = 0.00000e+000 A 4=-1.14644e-005 A 6=-1.93832e-007 A 8=-5.73500e-009 A10= 1.71049e-011

第10面
K = 0.00000e+000 A 4=-3.56628e-004 A 6= 5.28447e-006 A 8=-8.58656e-007 A10= 3.47701e-008

第16面
K = 0.00000e+000 A 4= 1.38639e-005 A 6= 3.80827e-006 A 8=-1.86125e-007 A10= 7.70178e-009

第17面
K = 0.00000e+000 A 4= 2.60588e-004 A 6= 6.33381e-006 A 8=-3.75373e-007 A10= 1.48541e-008

第28面
K = 0.00000e+000 A 4=-3.91934e-004 A 6= 1.09886e-005 A 8=-5.38232e-007 A10= 7.94789e-009

各種データ
ズーム比 9.51
広角 中間 望遠
焦点距離 5.15 10.35 49.00
Fナンバー 3.61 4.50 6.00
画角 32.59 20.53 4.52
像高 3.29 3.88 3.88
レンズ全長 84.96 84.96 84.96
BF 1.36 1.36 1.36

d 8 0.77 5.17 10.05
d14 10.17 5.77 0.89
d15 13.94 10.99 0.80
d20 10.84 13.78 23.97
d23 0.60 1.03 3.26
d29 3.96 3.53 1.30
d31 1.36 1.36 1.36

入射瞳位置 11.14 14.85 21.24
射出瞳位置 93.23 159.34 63.33
前側主点位置 16.58 25.87 108.98
後側主点位置 -3.79 -8.99 -47.64

ズームレンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 13.16 23.20 12.89 7.22
2 9 -6.62 3.19 0.11 -2.33
絞り 15 ∞ 0.00 0.00 -0.00
3 16 14.47 8.23 1.83 -4.76
4 21 -8.07 1.99 0.76 -0.31
5 24 10.00 5.41 1.70 -2.01
GB 30 ∞ 1.29 0.42 -0.42

単レンズデータ
レンズ 始面 焦点距離
1 1 -17.59
2 3 0.00
3 5 28.38
4 7 21.56
5 9 -8.41
6 11 -10.62
7 13 17.41
8 16 14.64
9 18 -10.07
10 19 10.07
11 21 -6.36
12 22 22.67
13 24 12.59
14 26 -12.50
15 28 9.65
16 30 0.00


Numerical example 1
Unit mm

Surface data surface number rd nd vd Effective diameter
1 79.161 1.01 1.92286 20.9 18.05
2 15.900 2.50 15.84
3 ∞ 15.00 1.90366 31.3 15.62
4 ∞ 0.19 14.84
5 36.978 3.04 1.59282 68.6 15.37
6 -25.494 0.19 15.53
7 * 25.555 1.95 1.69350 53.2 15.19
8 * -345.688 (variable) 14.97
9 -26.381 0.44 1.85400 40.4 7.05
10 * 10.355 1.36 6.82
11 -10.317 0.44 1.72916 54.7 6.87
12 42.257 0.16 7.37
13 41.585 1.18 1.92286 18.9 7.53
14 -27.078 (variable) 7.79
15 (Aperture) ∞ (Variable) 8.12
16 * 10.690 1.95 1.69350 53.2 8.57
17 * 58.487 1.60 8.46
18 20.722 0.50 1.83481 42.7 8.48
19 8.251 2.61 1.49700 81.5 8.26
20 -11.103 (variable) 8.28
21 16.067 0.44 1.88300 40.8 5.64
22 6.325 (variable) 5.47
23 10.645 2.21 1.51742 52.4 8.86
24 -22.123 0.55 1.92286 20.9 8.78
25 18.121 0.16 8.79
26 * 17.453 2.45 1.58313 59.4 8.89
27 -12.712 (variable) 9.06
28 ∞ 1.29 1.51633 64.2 20.00
29 ∞ (variable) 20.00
Image plane ∞

Aspheric data 7th surface
K = 0.00000e + 000 A 4 = 3.71143e-006 A 6 = -2.44162e-008 A 8 = -3.73467e-009 A10 = 1.91671e-011

8th page
K = 0.00000e + 000 A 4 = 9.06789e-006 A 6 = -1.13302e-007 A 8 = -3.27643e-009 A10 = 2.51291e-011

10th page
K = 0.00000e + 000 A 4 = -1.40586e-004 A 6 = 2.14541e-006 A 8 = 1.11525e-008 A10 = -4.75224e-009

16th page
K = 0.00000e + 000 A 4 = 5.95526e-005 A 6 = -6.68120e-006 A 8 = 2.64364e-007 A10 = -1.32680e-008

17th page
K = 0.00000e + 000 A 4 = 3.53464e-004 A 6 = -6.43741e-006 A 8 = 1.90601e-007 A10 = -1.28089e-008

26th page
K = 0.00000e + 000 A 4 = -3.74153e-005 A 6 = 5.69321e-006 A 8 = -2.71745e-007 A10 = 4.25627e-009

Various data Zoom ratio 9.97
Wide angle Medium telephoto focal length 5.01 10.35 50.00
F number 3.61 4.50 5.00
Angle of view 34.29 20.53 4.43
Image height 3.42 3.88 3.88
Total lens length 82.00 82.00 82.00
BF 1.36 1.36 1.36

d 8 0.38 6.72 13.35
d14 13.47 7.13 0.50
d15 8.45 6.70 0.19
d20 4.91 6.66 13.17
d22 7.08 6.35 10.73
d27 5.15 5.88 1.50
d29 1.36 1.36 1.36

Entrance pupil position 12.38 18.18 28.25
Exit pupil position 138.57 1407.68 141.62
Front principal point position 17.58 28.60 96.07
Rear principal point position -3.65 -8.99 -48.64

Zoom lens group data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 17.45 23.88 14.64 7.99
2 9 -6.92 3.57 0.18 -2.54
Aperture 15 ∞ 0.00 0.00 -0.00
3 16 11.55 6.66 2.19 -3.23
4 21 -12.07 0.44 0.39 0.15
5 23 17.62 5.37 1.97 -1.79
GB 28 ∞ 1.29 0.42 -0.42

Single lens Data lens Start surface Focal length
1 1 -21.72
2 3 0.00
3 5 25.92
4 7 34.39
5 9 -8.66
6 11 -11.33
7 13 17.92
8 16 18.55
9 18 -16.73
10 19 9.97
11 21 -12.07
12 23 14.22
13 24 -10.72
14 26 13.00
15 28 0.00

Numerical example 2
Unit mm

Surface data surface number rd nd vd Effective diameter
1 108.061 1.01 1.92286 20.9 17.96
2 16.952 2.34 15.89
3 ∞ 15.00 1.90366 31.3 15.68
4 ∞ 0.19 13.70
5 38.395 2.84 1.59282 68.6 13.67
6 -26.903 0.19 13.46
7 * 26.259 1.68 1.69350 53.2 13.21
8 * -168.801 (variable) 13.02
9 -25.990 0.44 1.85400 40.4 6.98
10 * 10.752 1.18 6.35
11 -10.072 0.44 1.72916 54.7 6.24
12 43.073 0.15 6.46
13 40.393 1.08 1.92286 18.9 6.59
14 -27.104 (variable) 6.82
15 (Aperture) ∞ (Variable) 7.27
16 * 10.300 2.19 1.69350 53.2 7.94
17 * 58.367 1.91 7.74
18 23.527 0.50 1.83481 42.7 7.65
19 8.127 2.23 1.49700 81.5 7.46
20 -11.452 (variable) 7.47
21 15.025 0.44 1.88300 40.8 5.89
22 6.426 (variable) 5.70
23 11.956 2.09 1.51742 52.4 8.78
24 -22.421 0.55 1.92286 20.9 8.79
25 19.760 0.19 8.92
26 * 18.249 2.50 1.58313 59.4 9.09
27 -12.783 (variable) 9.28
28 ∞ 1.29 1.51633 64.2 20.00
29 ∞ (variable) 20.00
Image plane ∞

Aspheric data 7th surface
K = 0.00000e + 000 A 4 = 8.15995e-006 A 6 = -8.14762e-008 A 8 = -2.19361e-009 A10 = -1.18258e-012

8th page
K = 0.00000e + 000 A 4 = 1.46986e-005 A 6 = -1.56358e-007 A 8 = -2.51962e-009 A10 = 1.32712e-011

10th page
K = 0.00000e + 000 A 4 = -1.36094e-004 A 6 = 2.30129e-006 A 8 = 6.92089e-008 A10 = -8.74253e-009

16th page
K = 0.00000e + 000 A 4 = 4.24228e-005 A 6 = -3.63882e-006 A 8 = 2.12998e-007 A10 = -1.01398e-008

17th page
K = 0.00000e + 000 A 4 = 3.30095e-004 A 6 = -3.82480e-006 A 8 = 2.13981e-007 A10 = -1.21624e-008

26th page
K = 0.00000e + 000 A 4 = -5.19504e-006 A 6 = 4.87132e-006 A 8 = -2.15386e-007 A10 = 3.06326e-009

Various data Zoom ratio 9.51
Wide angle Medium Telephoto focal length 5.15 10.35 49.00
F number 3.61 4.50 5.60
Angle of view 33.59 20.53 4.52
Image height 3.42 3.88 3.88
Total lens length 83.50 83.50 83.50
BF 1.36 1.36 1.36

d 8 0.80 6.98 13.56
d14 13.76 7.58 1.00
d15 9.54 7.76 1.00
d20 4.95 6.73 13.49
d22 7.36 6.76 11.16
d27 5.30 5.90 1.50
d29 1.36 1.36 1.36

Entrance pupil position 12.52 18.29 28.45
Exit pupil position 106.26 286.67 130.80
Front principal point position 17.92 29.01 96.00
Rear principal point position -3.79 -8.99 -47.64

Zoom lens group data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 17.78 23.26 14.58 8.18
2 9 -7.02 3.28 0.16 -2.30
Aperture 15 ∞ 0.00 0.00 -0.00
3 16 12.04 6.83 2.09 -3.57
4 21 -13.02 0.44 0.41 0.18
5 23 18.38 5.33 2.17 -1.54
GB 28 ∞ 1.29 0.42 -0.42

Single lens Data lens Start surface Focal length
1 1 -21.90
2 3 0.00
3 5 27.12
4 7 32.88
5 9 -8.86
6 11 -11.16
7 13 17.71
8 16 17.70
9 18 -15.09
10 19 9.94
11 21 -13.02
12 23 15.39
13 24 -11.31
14 26 13.29
15 28 0.00


Numerical example 3
Unit mm

Surface data surface number rd nd vd Effective diameter
1 41.055 1.00 1.92286 20.9 18.98
2 13.504 3.12 16.31
3 ∞ 15.00 1.90366 31.3 16.08
4 ∞ 0.20 13.87
5 99.600 2.38 1.59282 68.6 13.87
6 -24.727 0.20 13.80
7 * 29.215 1.91 1.69350 53.2 12.94
8 * -64.855 (variable) 12.58
9 -17.579 0.45 1.85400 40.4 7.42
10 * 13.946 1.09 6.84
11 -11.057 0.45 1.72916 54.7 6.78
12 78.292 0.07 6.80
13 52.976 1.02 1.92286 18.9 6.82
14 -23.992 (variable) 6.81
15 (Aperture) ∞ (Variable) 6.84
16 * 9.329 2.12 1.69350 53.2 8.20
17 * 112.351 2.00 7.92
18 94.827 0.50 1.88300 40.8 7.71
19 8.037 2.47 1.49700 81.5 7.58
20 -10.788 (variable) 7.71
21 20.179 0.45 1.91082 35.3 6.59
22 5.170 1.23 1.80809 22.8 6.34
23 7.765 (variable) 6.25
24 7.778 2.50 1.49700 81.6 8.27
25 -17.911 0.00 8.16
26 -17.911 0.50 1.92286 18.9 8.16
27 36.822 0.66 8.16
28 * 98.028 1.07 1.58313 59.4 8.28
29 -18.442 (variable) 8.31
30 ∞ 1.29 1.51633 64.2 20.00
31 ∞ (variable) 20.00
Image plane ∞

Aspheric data 7th surface
K = 0.00000e + 000 A 4 = -1.30581e-005 A 6 = -6.50977e-009 A 8 = -3.65803e-009 A10 = 3.26510e-011

8th page
K = 0.00000e + 000 A 4 = -2.08951e-005 A 6 = -3.41374e-008 A 8 = -3.15099e-009 A10 = 3.43401e-011

10th page
K = 0.00000e + 000 A 4 = -1.37868e-004 A 6 = 7.78210e-006 A 8 = -7.54029e-007 A10 = 2.70248e-008

16th page
K = 0.00000e + 000 A 4 = 9.37161e-005 A 6 = 5.32058e-006 A 8 = -1.28408e-007 A10 = 1.19439e-008

17th page
K = 0.00000e + 000 A 4 = 3.86335e-004 A 6 = 5.74722e-006 A 8 = -1.16724e-007 A10 = 1.61236e-008

28th page
K = 0.00000e + 000 A 4 = -3.59684e-005 A 6 = 2.34096e-005 A 8 = -1.76175e-006 A10 = 4.53994e-008

Various data Zoom ratio 9.79
Wide angle Medium Telephoto focal length 5.01 10.56 49.00
F number 3.61 4.50 6.00
Angle of view 33.35 20.16 4.52
Image height 3.29 3.88 3.88
Total lens length 84.96 84.96 84.96
BF 1.36 1.36 1.36

d 8 0.75 7.68 14.70
d14 14.89 7.97 0.94
d15 12.44 10.07 0.97
d20 6.87 9.24 18.34
d23 2.28 2.01 5.50
d29 4.67 4.95 1.45
d31 1.36 1.36 1.36

Entrance pupil position 12.85 18.83 28.46
Exit pupil position -98.03 -56.89 -69.32
Front principal point position 17.60 27.47 43.49
Rear principal point position -3.64 -9.19 -47.64

Zoom lens group data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 18.62 23.82 15.57 9.39
2 9 -7.94 3.08 0.01 -2.28
Aperture 15 ∞ 0.00 0.00 -0.00
3 16 14.00 7.09 1.44 -4.43
4 21 -13.21 1.68 1.32 0.37
5 24 19.00 4.73 0.65 -2.83
GB 30 ∞ 1.29 0.42 -0.42

Single lens Data lens Start surface Focal length
1 1 -22.19
2 3 0.00
3 5 33.66
4 7 29.29
5 9 -9.05
6 11 -13.26
7 13 18.01
8 16 14.55
9 18 -9.97
10 19 9.69
11 21 -7.74
12 22 15.80
13 24 11.28
14 26 -13.00
15 28 26.71
16 30 0.00


Example 4
Unit mm

Surface data surface number rd nd vd Effective diameter
1 135.231 1.00 1.92286 20.9 16.11
2 13.929 2.05 14.02
3 ∞ 15.00 1.90366 31.3 13.95
4 ∞ 0.20 13.12
5 55.472 2.63 1.59282 68.6 13.45
6 -22.564 0.20 13.73
7 * 22.403 2.19 1.69350 53.2 13.74
8 * -46.701 (variable) 13.61
9 -17.167 0.45 1.85400 40.4 6.82
10 * 12.765 1.12 6.65
11 -10.093 0.45 1.72916 54.7 6.67
12 40.788 0.14 7.10
13 122.610 1.03 1.92286 18.9 7.13
14 -19.464 (variable) 7.36
15 (Aperture) ∞ (Variable) 7.80
16 * 9.388 2.75 1.69350 53.2 9.39
17 * 1307.979 1.79 8.96
18 208.244 0.50 1.88300 40.8 8.63
19 7.967 2.81 1.49700 81.5 8.43
20 -10.577 (variable) 8.55
21 257.987 0.45 1.81600 46.6 7.12
22 5.684 1.29 1.80809 22.8 6.94
23 8.786 (variable) 6.86
24 8.809 2.50 1.49700 81.6 9.29
25 -26.729 0.00 9.19
26 -45.591 0.50 1.92286 18.9 9.13
27 14.027 0.13 8.99
28 * 11.323 2.53 1.58313 59.4 9.11
29 -16.855 (variable) 9.21
30 ∞ 1.29 1.51633 64.2 20.00
31 ∞ (variable) 20.00
Image plane ∞

Aspheric data 7th surface
K = 0.00000e + 000 A 4 = -2.35437e-005 A 6 = 8.27235e-008 A 8 = -5.97621e-009 A10 = 1.55168e-012

8th page
K = 0.00000e + 000 A 4 = -1.12927e-005 A 6 = 7.27507e-008 A 8 = -5.14446e-009 A10 = 6.41552e-012

10th page
K = 0.00000e + 000 A 4 = -2.80141e-004 A 6 = 2.99815e-006 A 8 = -6.48903e-007 A10 = 3.03380e-008

16th page
K = 0.00000e + 000 A 4 = 2.67281e-005 A 6 = 3.00213e-006 A 8 = -1.43809e-007 A10 = 7.78290e-009

17th page
K = 0.00000e + 000 A 4 = 3.11904e-004 A 6 = 5.20903e-006 A 8 = -3.20149e-007 A10 = 1.51599e-008

28th page
K = 0.00000e + 000 A 4 = -2.01453e-004 A 6 = 4.31874e-006 A 8 = -3.48339e-007 A10 = 6.85234e-009

Various data Zoom ratio 9.78
Wide angle Medium Telephoto focal length 5.01 10.36 49.00
F number 3.61 4.50 6.00
Angle of view 33.31 20.50 4.52
Image height 3.29 3.88 3.88
Total lens length 84.96 84.96 84.96
BF 1.36 1.36 1.36

d 8 0.77 5.61 10.17
d14 10.29 5.45 0.88
d15 13.49 10.87 0.84
d20 6.83 9.44 19.48
d23 2.67 3.03 7.60
d29 6.56 6.20 1.63
d31 1.36 1.36 1.36

Entrance pupil position 10.83 14.70 20.23
Exit pupil position 111.61 338.95 78.17
Front principal point position 16.07 25.38 100.49
Rear principal point position -3.65 -9.00 -47.64

Zoom lens group data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 13.00 23.28 12.93 7.76
2 9 -6.72 3.18 0.11 -2.28
Aperture 15 ∞ 0.00 0.00 -0.00
3 16 13.91 7.86 1.55 -4.86
4 21 -11.11 1.74 0.98 0.02
5 24 14.14 5.66 1.49 -2.48
GB 30 ∞ 1.29 0.42 -0.42

Single lens Data lens Start surface Focal length
1 1 -16.89
2 3 0.00
3 5 27.40
4 7 22.12
5 9 -8.51
6 11 -11.05
7 13 18.27
8 16 13.62
9 18 -9.39
10 19 9.63
11 21 -7.13
12 22 16.81
13 24 13.65
14 26 -11.58
15 28 12.01
16 30 0.00


Example 5
Unit mm

Surface data surface number rd nd vd Effective diameter
1 101.743 1.00 1.92286 20.9 16.34
2 13.934 2.15 14.23
3 ∞ 15.00 1.90366 31.3 14.14
4 ∞ 0.20 12.95
5 55.359 2.03 1.59282 68.6 13.26
6 -23.845 0.20 13.41
7 * 22.252 2.62 1.69350 53.2 13.45
8 * -43.391 (variable) 13.24
9 -14.960 0.45 1.85400 40.4 6.59
10 * 13.989 1.13 6.46
11 -10.928 0.45 1.72916 54.7 6.49
12 27.029 0.20 6.86
13 93.542 0.97 1.92286 18.9 6.90
14 -19.302 (variable) 7.10
15 (Aperture) ∞ (Variable) 7.52
16 * 9.485 2.73 1.69350 53.2 9.80
17 * 126.747 1.35 9.34
18 72.753 0.50 1.88300 40.8 9.12
19 7.901 3.65 1.49700 81.5 8.86
20 -11.568 (variable) 9.08
21 -33.706 0.45 1.88300 40.8 6.89
22 6.786 1.54 1.80809 22.8 6.92
23 9.685 (variable) 7.04
24 8.630 2.50 1.49700 81.6 9.08
25 -20.565 0.00 9.10
26 -21.231 0.50 1.94595 18.0 9.09
27 26.989 -0.00 9.25
28 * 10.287 2.41 1.65160 58.5 9.61
29 -14.664 (variable) 9.62
30 ∞ 1.29 1.51633 64.2 20.00
31 ∞ (variable) 20.00
Image plane ∞

Aspheric data 7th surface
K = 0.00000e + 000 A 4 = -2.40130e-005 A 6 = -4.17236e-008 A 8 = -9.34210e-009 A10 = 2.05758e-011

8th page
K = 0.00000e + 000 A 4 = -1.14644e-005 A 6 = -1.93832e-007 A 8 = -5.73500e-009 A10 = 1.71049e-011

10th page
K = 0.00000e + 000 A 4 = -3.56628e-004 A 6 = 5.28447e-006 A 8 = -8.58656e-007 A10 = 3.47701e-008

16th page
K = 0.00000e + 000 A 4 = 1.38639e-005 A 6 = 3.80827e-006 A 8 = -1.86125e-007 A10 = 7.70178e-009

17th page
K = 0.00000e + 000 A 4 = 2.60588e-004 A 6 = 6.33381e-006 A 8 = -3.75373e-007 A10 = 1.48541e-008

28th page
K = 0.00000e + 000 A 4 = -3.91934e-004 A 6 = 1.09886e-005 A 8 = -5.38232e-007 A10 = 7.94789e-009

Various data Zoom ratio 9.51
Wide angle Medium Telephoto focal length 5.15 10.35 49.00
F number 3.61 4.50 6.00
Angle of View 32.59 20.53 4.52
Image height 3.29 3.88 3.88
Total lens length 84.96 84.96 84.96
BF 1.36 1.36 1.36

d 8 0.77 5.17 10.05
d14 10.17 5.77 0.89
d15 13.94 10.99 0.80
d20 10.84 13.78 23.97
d23 0.60 1.03 3.26
d29 3.96 3.53 1.30
d31 1.36 1.36 1.36

Entrance pupil position 11.14 14.85 21.24
Exit pupil position 93.23 159.34 63.33
Front principal point position 16.58 25.87 108.98
Rear principal point position -3.79 -8.99 -47.64

Zoom lens group data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 13.16 23.20 12.89 7.22
2 9 -6.62 3.19 0.11 -2.33
Aperture 15 ∞ 0.00 0.00 -0.00
3 16 14.47 8.23 1.83 -4.76
4 21 -8.07 1.99 0.76 -0.31
5 24 10.00 5.41 1.70 -2.01
GB 30 ∞ 1.29 0.42 -0.42

Single lens Data lens Start surface Focal length
1 1 -17.59
2 3 0.00
3 5 28.38
4 7 21.56
5 9 -8.41
6 11 -10.62
7 13 17.41
8 16 14.64
9 18 -10.07
10 19 10.07
11 21 -6.36
12 22 22.67
13 24 12.59
14 26 -12.50
15 28 9.65
16 30 0.00

1 L1 1群
2 L2 2群
3 L3 3群
4 L4 4群
5 L5 5群
6 GB ガラスブロック
7 SP 絞り
8 IP 像面
9 PR プリズム
10 d d線
11 g g線
12 ΔS サジタル像面
13 ΔM メリディオナル像面
14 Fno Fナンバー
15 ω 半画角
1 L1 1 group
2 L2 2 groups
3 L3 3 groups
4 L4 4 groups
5 L5 5 groups
6 GB glass block
7 SP Aperture
8 IP image plane
9 PR prism
10 d d line
11g g line
12 ΔS Sagittal image plane
13 ΔM Meridional image plane
14 Fno F number
15 ω half angle of view

Claims (5)

物体側から順に、
正の屈折力の1群、負の屈折力の2群、正の屈折力の3群、後続レンズ群を有し、
後続レンズ群の中で最も像側の群が正の屈折力を有し、
1群に反射部材を有し、
変倍時に1群が固定で2群、3群は移動し、
1群は反射部材よりも物体側に負レンズを有し、
反射部材よりも像側に2枚の正レンズを有し、
最も像側の群は2枚の正レンズと1枚の負レンズを有し、
以下の条件式を満たすことを特徴とするズームレンズ。
0.2<f1/ft<0.4 (1)

0.15<fa/ft<0.4 (3)
ただし
f1:1群の焦点距離
fa:最も像側の群の焦点距離
ft:望遠端の全系の焦点距離
νai:最も像側の群内のレンズのアッベ数
φai:最も像側の群内のレンズのパワー
φw:広角端の全系パワー
とする。
From the object side,
It has 1 group of positive refractive power, 2 groups of negative refractive power, 3 groups of positive refractive power, and subsequent lens group,
Among the following lens groups, the most image side group has a positive refractive power,
One group has a reflective member,
When zooming, 1 group is fixed, 2 groups, 3 groups move,
The first group has a negative lens on the object side of the reflecting member,
Has two positive lenses on the image side of the reflecting member,
The most image side group has two positive lenses and one negative lens,
A zoom lens satisfying the following conditional expression:
0.2 <f1 / ft <0.4 (1)

0.15 <fa / ft <0.4 (3)
However,
f1: 1 group focal length
fa: Focal length of the most image side group
ft: focal length of the entire system at the telephoto end νai: Abbe number of the lens in the most image side group φai: power of the lens in the most image side group φw: total system power at the wide angle end
以下の条件式を満たすことを特徴とする請求項1に記載のズームレンズ。

ただし
φn1:1群の最もパワーの強い負レンズのパワー
vn1:1群の最もパワーの強い負レンズのアッべ数
2. The zoom lens according to claim 1, wherein the following conditional expression is satisfied.

However, the power of the strongest negative lens of φn1: 1 group
vn1: Abbe number of the most powerful negative lens in 1 group
以下の条件式を満たすことを特徴とする請求項1に記載のズームレンズ。
30<vnb<50 (5)
ただし
vnb:最も像側の負群の最もパワーの強い負レンズのアッベ数
とする。
2. The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
30 <vnb <50 (5)
However,
vnb: Abbe number of the most powerful negative lens in the negative group closest to the image side.
以下の条件式を満たすことを特徴とする請求項1に記載のズームレンズ。
-0.3<fb/ft<-0.1 (6)
ただし
fb:最も像側の負群の焦点距離
とする。
2. The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
-0.3 <fb / ft <-0.1 (6)
However,
fb: The focal length of the negative group closest to the image side.
物体側から順に、正の屈折力を有する1群、負の屈折力の2群、正の屈折力を有する3群、負の屈折力を有する4群、正の屈折力を有する5群から構成されることを特徴とする請求項1に記載のズームレンズ。 In order from the object side, it consists of 1 group with positive refractive power, 2 groups with negative refractive power, 3 groups with positive refractive power, 4 groups with negative refractive power, and 5 groups with positive refractive power 2. The zoom lens according to claim 1, wherein:
JP2013158017A 2013-07-30 2013-07-30 Thin high-magnification zoom lens Pending JP2015028556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013158017A JP2015028556A (en) 2013-07-30 2013-07-30 Thin high-magnification zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013158017A JP2015028556A (en) 2013-07-30 2013-07-30 Thin high-magnification zoom lens

Publications (1)

Publication Number Publication Date
JP2015028556A true JP2015028556A (en) 2015-02-12

Family

ID=52492291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013158017A Pending JP2015028556A (en) 2013-07-30 2013-07-30 Thin high-magnification zoom lens

Country Status (1)

Country Link
JP (1) JP2015028556A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017187629A (en) * 2016-04-06 2017-10-12 オリンパス株式会社 Variable power optical system and imaging apparatus including the same
US10120173B2 (en) 2016-08-09 2018-11-06 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus including the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017187629A (en) * 2016-04-06 2017-10-12 オリンパス株式会社 Variable power optical system and imaging apparatus including the same
US10120173B2 (en) 2016-08-09 2018-11-06 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus including the same

Similar Documents

Publication Publication Date Title
JP6261299B2 (en) Zoom lens and imaging apparatus having the same
WO2014129170A1 (en) Zoom lens system, interchangeable lens device, and camera system
JP5460228B2 (en) Zoom lens and imaging apparatus having the same
JP6314471B2 (en) Zoom lens system
JP5665489B2 (en) Zoom lens and imaging apparatus having the same
JP5959938B2 (en) Zoom lens and imaging apparatus having the same
JP2859734B2 (en) Zoom lens
JP5273172B2 (en) Zoom lens, optical device, and zoom lens manufacturing method
JP5582919B2 (en) LENS DEVICE AND IMAGING DEVICE
JP6164894B2 (en) Zoom lens and imaging apparatus having the same
JP2003050350A (en) Zoom lens and optical equipment
JP2014202806A5 (en)
JP2017037164A (en) Zoom lens and imaging device having the same
JP2017062302A (en) Zoom lens and imaging apparatus including the same
JP2012247758A (en) Zoom lens and imaging device including the same
JP2019061184A (en) Zoom lens
JP2019003074A (en) Converter lens and imaging apparatus having the same
JP2017215410A (en) Zoom lens and imaging device having the same
JP6137818B2 (en) Zoom lens and imaging apparatus having the same
JP2015028556A (en) Thin high-magnification zoom lens
JP5528157B2 (en) Zoom lens and imaging apparatus having the same
JP7140522B2 (en) Zoom lens and imaging device
JP7182886B2 (en) ZOOM LENS AND IMAGING DEVICE HAVING THE SAME
JP6173012B2 (en) Zoom lens and imaging apparatus having the same
JP2016191753A (en) Zoom lens