JP2015028458A - Electric specific resistance survey data acquisition method - Google Patents

Electric specific resistance survey data acquisition method Download PDF

Info

Publication number
JP2015028458A
JP2015028458A JP2013188554A JP2013188554A JP2015028458A JP 2015028458 A JP2015028458 A JP 2015028458A JP 2013188554 A JP2013188554 A JP 2013188554A JP 2013188554 A JP2013188554 A JP 2013188554A JP 2015028458 A JP2015028458 A JP 2015028458A
Authority
JP
Japan
Prior art keywords
value
resistance value
electrical resistivity
current
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013188554A
Other languages
Japanese (ja)
Other versions
JP5795358B2 (en
Inventor
ホ キム、ジョン
Jung Ho Kim
ホ キム、ジョン
サパー ロバート
Supper Robert
サパー ロバート
オトヴィツェ ディヴィット
Ottowitz David
オトヴィツェ ディヴィット
ヨッフム ビルギット
Jochum Birgit
ヨッフム ビルギット
ジョン イ、ミョン
Myeong Jong Yi
ジョン イ、ミョン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEOL SURVEY OF AUSTRIA
GEOLOGICAL SURVEY OF AUSTRIA
Korea Institute of Geoscience and Mineral Resources KIGAM
Original Assignee
GEOL SURVEY OF AUSTRIA
GEOLOGICAL SURVEY OF AUSTRIA
Korea Institute of Geoscience and Mineral Resources KIGAM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GEOL SURVEY OF AUSTRIA, GEOLOGICAL SURVEY OF AUSTRIA, Korea Institute of Geoscience and Mineral Resources KIGAM filed Critical GEOL SURVEY OF AUSTRIA
Publication of JP2015028458A publication Critical patent/JP2015028458A/en
Application granted granted Critical
Publication of JP5795358B2 publication Critical patent/JP5795358B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/18Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
    • G01V3/20Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with propagation of electric current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/02Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with propagation of electric current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/38Processing data, e.g. for analysis, for interpretation, for correction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations

Abstract

PROBLEM TO BE SOLVED: To provide a method for acquiring electric specific resistance survey data, in which an actual natural potential is previously measured without feeding current before transmitting a rectangular wave current for an electric specific resistance survey to a survey region, and the level of accuracy of survey data is increased so as to predict error characteristics and reliability by acquiring the electric specific resistance survey data by a system for acquiring an electric resistance in each of a normal direction and a reverse direction between a positive current transmission section and a negative current transmission section using this natural potential, thereby increasing accuracy and reliability in an underground electric specific resistance image to be actually acquired.SOLUTION: The electric specific resistance survey data acquisition method includes: (a) a step of measuring a natural potential of a survey region; (b) a step of adding a rectangular wave transmission current to the survey region and calculating a normal direction resistance value for a positive current transmission section and a reverse direction resistance value for a negative current transmission section; and (c) a step of calculating the average value between the normal direction resistance value and the reverse direction resistance value so as to use for an electric resistance value of electric specific resistance survey data.

Description

本発明は電気比抵抗探査資料獲得方法に関し、より詳しくは、探査領域に対して電気比抵抗探査のための矩形波の電流送信の前に電流供給無しで実際の自然電位を先に測定し、これを用いて正の電流送信区間及び負の電流送信区間で各々順方向及び逆方向電気抵抗を獲得する方式により電気比抵抗探査資料を獲得することによって、探査資料の正確度を高め、誤差特性及び信頼度を予測することができ、実際に獲得する地下電気比抵抗映像における正確度及び信頼度を高められる電気比抵抗探査資料獲得方法に関する。   The present invention relates to a method for acquiring electrical resistivity exploration data, and more specifically, an actual natural potential is first measured without current supply before a rectangular wave current transmission for electrical resistivity exploration to the exploration region, By using this to acquire electrical resistivity exploration data by acquiring forward and reverse electrical resistance in the positive current transmission section and negative current transmission section, respectively, the accuracy of the exploration data is improved, and the error characteristics Further, the present invention relates to a method for acquiring electrical resistivity exploration data, which can predict the reliability and can improve accuracy and reliability in an actually acquired underground electrical resistivity image.

電気比抵抗探査法は非破壊検査法であって、連続的な地下の電気比抵抗分布形態を提供することができる効果的な方法で、多様な分野に適用されてその効用性が立証されたことがある。   The electrical resistivity exploration method is a non-destructive inspection method that can provide a continuous form of electrical resistivity distribution in the underground, and its utility has been proven in various fields. Sometimes.

現在、大部分の電気比抵抗探査は、電気比抵抗探査時に自然電位値を除去するために(+)ON−OFF−(−)ON−OFF(または、(+)ON−(−)ON)のような送信電流波形(矩形波:square wave)を用いており、これに対して図1に示すように、(+)ON区間及び(−)ON区間で電位値を各々測定(各々順方向電位値Vと逆方向電位値V)し、これから測定電位値Vdcと自然電位値Vspは次のような数式<1>により計算できる。 Currently, most electrical resistivity surveys use (+) ON-OFF-(-) ON-OFF (or (+) ON-(-) ON) to remove the natural potential value during electrical resistivity survey. The transmission current waveform (square wave: square wave) as shown in FIG. 1 is used. On the other hand, as shown in FIG. 1, the potential values are measured in the (+) ON section and (-) ON section (each in the forward direction). The potential value V + and the reverse potential value V ), and the measured potential value V dc and the natural potential value V sp can be calculated from the following formula <1>.

図1で、上のグラフは電気比抵抗探査資料の獲得のための送信電流の波形であり、下のグラフは測定電位の波形を表すグラフである。   In FIG. 1, the upper graph is a waveform of a transmission current for acquiring electrical resistivity survey data, and the lower graph is a graph showing a waveform of a measured potential.

これから測定電気抵抗値は送信電流が(+)ON区間と(−)ON区間で同一であるという仮定(I=I(Forward Current)=I(Backward Current))の下に次の数式<2>の通り計算できる。 From this, under the assumption that the transmission current is the same in the (+) ON section and the (−) ON section (I = I + (Forward Current) = I (Backward Current)), 2> can be calculated.

しかしながら、電気比抵抗探査資料獲得時、電流送信波形と測定電位波形を検討すれば、上のような仮定が成立しない場合がよく表れ、(+)ON区間と(−)ON区間で獲得する電気抵抗値が互いに異なる値を見せるようになる。   However, when acquiring the electrical resistivity survey data, if the current transmission waveform and the measured potential waveform are examined, the above assumptions often do not hold, and the electricity acquired in the (+) ON section and (-) ON section Resistance values show different values.

電気比抵抗探査で電流送信時に上記数式<1>により計算されるVspを予測SP(estimated SP:SPr)とし、電流送信のない状態での自然電位値を測定SP(measured SP:SPm)とする時、古典的な電気比抵抗探査資料獲得方法において、予測SP(SPr)は測定SP(SPm)と同一でなければならない。しかしながら、図2に示すように、電気比抵抗探査過程で獲得する予測SP(SPr)の値は電流送信源からの相対的な距離によって変化しており、これは予測SP(SPr)が送信電流に関係がない電位値でなく、したがって、測定SP(SPm)とは異なるということを見せる。図2は、双極子配列方式の電気比抵抗探査において、電流送信双極子から電位測定双極子の距離によって計算される自然電位値の変化を示すグラフであり、各曲線は同一な電位電極双極子に対して計算された予測自然電位の変化を示す。 V sp calculated by the above formula <1> at the time of current transmission in electrical resistivity survey is defined as SP (estimated SP: SPr), and the natural potential value without current transmission is measured SP (measured SP: SPm). In this case, the predicted SP (SPr) must be the same as the measured SP (SPm) in the classic method for acquiring electrical resistivity survey data. However, as shown in FIG. 2, the value of the predicted SP (SPr) acquired in the electrical resistivity exploration process varies depending on the relative distance from the current transmission source, and this is because the predicted SP (SPr) is the transmission current. It is shown that it is not a potential value that is not related to and thus is different from the measured SP (SPm). FIG. 2 is a graph showing a change in the natural potential value calculated by the distance from the current transmission dipole to the potential measurement dipole in the electric resistivity search of the dipole array method, and each curve is the same potential electrode dipole. Shows the change in predicted self-potential calculated for.

図3に示すように、予測SP(SPr)と測定SP(SPm)は多くの場合に一致しており、これは既存の探査資料獲得方法が有効であるという根拠を提供する。図3は、電流送信のない状態で測定した測定SP(SPm)と電気比抵抗測定資料から計算により獲得する予測SP(SPr)の関係を示すグラフである。しかしながら、図3に示すように、多くの部分でばかにならない程度の差も発生しており、これは既存の電気比抵抗探査プロトコルである数式<1>に実際と異なる予測SP(SPr)値を使用するようになることで、測定抵抗値は実際の地下の電気抵抗値と差を有するようになる問題点を有している。   As shown in FIG. 3, the predicted SP (SPr) and the measured SP (SPm) coincide in many cases, and this provides the basis that the existing search data acquisition method is effective. FIG. 3 is a graph showing the relationship between the measured SP (SPm) measured without current transmission and the predicted SP (SPr) obtained by calculation from the electrical resistivity measurement data. However, as shown in FIG. 3, there is a difference that does not become ridiculous in many parts. This is a predicted SP (SPr) value that is different from the actual value in Formula <1>, which is an existing electrical resistivity search protocol. Therefore, there is a problem that the measured resistance value has a difference from the actual underground electrical resistance value.

本発明は上記のような問題点を解決するために案出したものであって、その目的は、探査領域に対して電気比抵抗探査のための矩形波の電流送信の前に電流供給無しで実際の自然電位を先に測定し、これを用いて正の電流送信区間及び負の電流送信区間で各々順方向及び逆方向電気抵抗を獲得する方式により電気比抵抗探査資料を獲得することによって、探査資料の正確度を高めて、誤差特性及び信頼度を予測することができ、実際に獲得する地下電気比抵抗映像における正確度及び信頼度を高められる電気比抵抗探査資料獲得方法を提供することにある。   The present invention has been devised in order to solve the above-described problems, and its purpose is to provide a current without supplying a rectangular wave current for electric resistivity exploration to the exploration region. By measuring the actual natural potential first, and using this to obtain electrical resistivity exploration data by the method of acquiring the forward and reverse electrical resistance in the positive current transmission section and the negative current transmission section, respectively, To provide an electrical resistivity exploration data acquisition method that can improve the accuracy and reliability of exploration data, predict error characteristics and reliability, and increase the accuracy and reliability in the actual acquired electrical resistivity image. It is in.

本発明によれば、探査領域に対して電流電極と電位電極を通じて電気比抵抗探査を行う電気比抵抗探査資料獲得方法であって、(a)探査領域の自然電位値を測定するステップ、(b)探査領域に矩形波送信電流を加えて、正の電流送信区間に対する順方向抵抗値と負の電流送信区間に対する逆方向抵抗値を計算するステップ、及び(c)上記順方向抵抗値と逆方向抵抗値との平均値を計算して電気比抵抗探査資料の電気抵抗値に使用するステップを含むことを特徴とする、電気比抵抗探査資料獲得方法を提供する。   According to the present invention, there is provided an electrical resistivity exploration material acquisition method for conducting electrical resistivity exploration through a current electrode and a potential electrode for an exploration region, comprising: (a) measuring a natural potential value in the exploration region; ) Adding a rectangular wave transmission current to the exploration area to calculate a forward resistance value for a positive current transmission interval and a reverse resistance value for a negative current transmission interval; and (c) reverse to the forward resistance value. There is provided a method for acquiring electrical resistivity search data, comprising the step of calculating an average value of the resistance value and using it for the electrical resistance value of electrical resistivity search data.

好ましくは、上記(a)ステップは矩形波の電流送信の前に電流供給のない状態の探査領域に対して実際の自然電位を測定することを特徴とする。   Preferably, the step (a) is characterized in that an actual natural potential is measured for an exploration region in a state where no current is supplied before current transmission of a rectangular wave.

好ましくは、上記(b)ステップは、(b−1)探査領域に矩形波送信電流を加えて、正の電流送信区間に対する電位値と送信電流量を測定し、負の電流送信区間に対する電位値と送信電流量を測定するステップ、及び(b−2)正の電流送信区間に対する電位値と上記自然電位値との差により順方向抵抗値を計算し、負の電流送信区間に対する電位値と自然電位値との差により逆方向抵抗値を計算するステップを含むことを特徴とする。   Preferably, in the step (b), (b-1) a rectangular wave transmission current is added to the search area, a potential value and a transmission current amount for a positive current transmission section are measured, and a potential value for a negative current transmission section. And (b-2) calculating a forward resistance value by the difference between the potential value for the positive current transmission section and the natural potential value, and calculating the potential value and the natural value for the negative current transmission section. The method includes a step of calculating a reverse resistance value based on a difference from the potential value.

好ましくは、上記(b−2)ステップで、上記順方向抵抗値と逆方向抵抗値は以下の数式<3>により計算されることを特徴とする。   Preferably, in the step (b-2), the forward resistance value and the reverse resistance value are calculated by the following formula <3>.

ここで、Rは順方向抵抗値、Vは正の電流送信区間に対する電位値、VSPmは自然電位値、Iは正の電流送信区間に対する送信電流量、Rは逆方向抵抗値、Vは負の電流送信区間に対する電位値、Iは負の電流送信区間に対する送信電流量である。 Here, R f is a forward resistance value, V + is a potential value for a positive current transmission section, V SPm is a natural potential value, I + is a transmission current amount for a positive current transmission section, and R b is a reverse resistance value. , V is a potential value for a negative current transmission section, and I is a transmission current amount for a negative current transmission section.

好ましくは、上記(c)ステップの以後に、(d)上記順方向抵抗値と逆方向抵抗値との差を平均抵抗値で割って資料誤差値を計算し、資料誤差値を資料加重値にして地下映像獲得のための逆算を遂行するステップをさらに含むことを特徴とする。   Preferably, after the step (c), (d) a material error value is calculated by dividing a difference between the forward resistance value and the reverse resistance value by an average resistance value, and the material error value is set as a material weight value. The method further includes a step of performing a reverse calculation for acquiring the underground video.

好ましくは、上記(d)ステップで逆算の対象探査資料に対して上記資料誤差値に従う資料加重値は資料誤差値の大きさと反比例するように与えることを特徴とする。   Preferably, in the step (d), the material weighting value according to the material error value is given to the target search material for back calculation so as to be inversely proportional to the size of the material error value.

本発明によれば、探査領域に対して電気比抵抗探査のための矩形波の電流送信の前に電流供給無しで実際の自然電位を先に測定し、これを用いて正の電流送信区間及び負の電流送信区間で各々順方向及び逆方向電気抵抗を獲得する方式により電気比抵抗探査資料を獲得することによって、探査資料の正確度を高めて、誤差特性及び信頼度を予測することができ、実際に獲得する地下電気比抵抗映像における正確度及び信頼度を高められる効果がある。   According to the present invention, the actual natural potential is first measured without current supply before the current transmission of the rectangular wave for the electrical resistivity exploration with respect to the exploration region, and the positive current transmission interval and By acquiring electrical resistivity exploration materials by acquiring forward and reverse electrical resistance in the negative current transmission section respectively, it is possible to improve the accuracy of the exploration materials and predict error characteristics and reliability. In addition, there is an effect that the accuracy and reliability of the actually acquired underground electrical resistivity image can be improved.

特に、電気比抵抗探査資料獲得において、電流送信波形での正の電流と負の電流送信に従う2区間での送信電流大きさの変化と自然電位反応でない未知の原因による測定抵抗値の変化を効果的に考慮することができる効果もある。   In particular, in acquiring electrical resistivity survey data, the effect of the change in the measured resistance value due to unknown causes other than the spontaneous potential reaction and the change in the magnitude of the transmission current in two sections according to the positive current and negative current transmission in the current transmission waveform There is also an effect that can be taken into account.

従来の技術に従う電気比抵抗探査資料の獲得のための送信電流(上)及び測定電位(下)波形を示すグラフである。It is a graph which shows the transmission current (upper) and measurement electric potential (lower) waveform for acquisition of electrical resistivity survey data according to the conventional technology. 従来の技術に従う電気比抵抗探査(双極子配列)で電流送信双極子から電位測定双極子の距離によって計算される自然電位値の変化を示すグラフである。It is a graph which shows the change of the natural potential value calculated by the distance of an electric potential measurement dipole from the electric current transmission dipole in the electrical resistivity search (dipole arrangement) according to the prior art. 予測SP(SPr)と測定SP(SPm)との関係を説明するためのグラフである。It is a graph for demonstrating the relationship between prediction SP (SPr) and measurement SP (SPm). 本発明に従う電気比抵抗探査資料獲得方法が適用できるシステムの概略的な模式図である。1 is a schematic diagram of a system to which an electrical resistivity survey data acquisition method according to the present invention can be applied. 順方向電気抵抗と逆方向電気抵抗との関係を説明するためのグラフである。It is a graph for demonstrating the relationship between a forward direction electrical resistance and a reverse direction electrical resistance. 電気比抵抗逆算での資料誤差と2つの電気抵抗値の差を示すグラフである。It is a graph which shows the difference of the data error and two electric resistance values by the electrical specific resistance back calculation. 順方向と逆方向電気抵抗の差を用いた電気比抵抗逆算での資料加重値適用の効果を説明するための図である。It is a figure for demonstrating the effect of the data weight value application by the electrical resistivity reverse calculation using the difference of a forward direction and a reverse direction electrical resistance. 本発明に従う電気比抵抗探査資料獲得方法を説明するためのフローチャートである。5 is a flowchart for explaining a method for acquiring electrical resistivity search data according to the present invention.

以下、本発明に従う電気比抵抗探査資料獲得方法に対して添付した図面を参考して詳細に説明する。   Hereinafter, a method for acquiring electrical resistivity search data according to the present invention will be described in detail with reference to the accompanying drawings.

図4は、本発明に従う電気比抵抗探査資料獲得方法が適用できるシステムの概略的な模式図である。   FIG. 4 is a schematic diagram of a system to which the electrical resistivity search data acquisition method according to the present invention can be applied.

図4を参照すると、電気比抵抗探査システムは、2つ以上の電流電極(C1、C2)と電位電極(P1、P2)を有し、全体的に送信電流管理部10、電位測定部20、探査資料計算部30、探査制御部40、及び逆算処理部50を含んで構成できる。   Referring to FIG. 4, the electrical resistivity survey system has two or more current electrodes (C1, C2) and potential electrodes (P1, P2), and the transmission current management unit 10, the potential measurement unit 20, The search material calculation unit 30, the search control unit 40, and the reverse calculation processing unit 50 can be included.

電気比抵抗探査は、地下の電気比抵抗分布を突き止めて地下構造を糾明するためのものであって、通常的に電流電極から流してくれた電流により引起こされる特定地点の間の電位差を用いて地下の電気的物性を推定するようになる。   The electrical resistivity survey is to identify the electrical resistivity distribution in the underground and clarify the underground structure, and usually uses the potential difference between specific points caused by the current flowing from the current electrode. Thus, the electrical properties of the underground will be estimated.

このために、電源と連結された送信電流管理部10では電流電極(C1、C2)に電源を供給して探査領域に対して電流を送信するようになり、電位電極(P1、P2)と連結されている電位計を含む探査電位測定部20では電位差を測定し、電位差を流してくれた電流で割った値、即ち抵抗値を読み取るようになる。   For this reason, the transmission current management unit 10 connected to the power supply supplies power to the current electrodes (C1, C2) to transmit current to the search region, and is connected to the potential electrodes (P1, P2). The exploration potential measuring unit 20 including the electrometer that has been measured measures the potential difference and reads the value divided by the current that caused the potential difference to flow, that is, the resistance value.

このような電気比抵抗探査は、地下に一定の電流を流した後、電位差を測定して見かけ比抵抗を求めて、これを解釈して地下の地質構造、破砕帯や亀裂帯、地下水などの分布を把握するようになるが、この電気比抵抗探査に使われる電極配列法は、単極(Pole-Pole)、単極−双極子(Pole-Dipole)、双極子(Dipole-Dipole)、シュラムベルジェ (Schlumberger)、ウェナー(Wenner)、変形された単極(Modified Pole-Pole)、及び変形された双極子(Modified Dipole-Dipole)配列などが可能である。   In such electrical resistivity exploration, after flowing a certain current underground, the potential difference is measured to determine the apparent resistivity, and this is interpreted to interpret the subsurface geological structure, fracture zone, crack zone, groundwater, etc. The electrode arrangement method used for the electrical resistivity survey is as follows: monopole (Pole-Pole), monopole-dipole (Pole-Dipole), dipole (Dipole-Dipole), shram Schlumberger, Wenner, modified Pole-Pole, and modified Dipole-Dipole arrays are possible.

現在、大部分の電気比抵抗探査は電気比抵抗探査時に自然電位値を除去するために(+)ON−OFF−(−)ON−OFF(または、(+)ON−(−)ON)のような送信電流波形(矩形波:square wave)を用いているが、電気比抵抗探査時、電流送信波形と測定電位波形を検討すれば、送信電流が(+)ON区間と(−)ON区間で同一であるという仮定(I=I=I)が成立しない場合が頻繁に表れて、(+)ON区間と(−)ON区間で獲得する電気抵抗値が互いに異なる値を見せるようになる。 Currently, most electrical resistivity surveys use (+) ON-OFF-(-) ON-OFF (or (+) ON-(-) ON) to remove the natural potential value during electrical resistivity survey. The transmission current waveform (rectangular wave: square wave) is used, but when exploring the electrical resistivity, if the current transmission waveform and the measured potential waveform are examined, the transmission current is (+) ON section and (-) ON section In many cases, the assumption that they are the same (I = I + = I ) does not hold, and the electrical resistance values acquired in the (+) ON section and the (−) ON section show different values. Become.

本発明は、これを改善するためのものであって、自然電位(SP)資料を電気比抵抗探査資料獲得の直前に獲得し、これに基づいて(+)ON電流送信区間に対する順方向抵抗(forward resistance)と(−)ON電流送信区間に対する逆方向抵抗(backward resistance)を獲得する方法を取る。   The present invention is to improve this, and the self-potential (SP) material is acquired immediately before acquiring the electrical resistivity survey data, and based on this, the forward resistance (+) for the ON current transmission section ( The forward resistance and the backward resistance for the (−) ON current transmission interval are acquired.

即ち、本発明に従う電気比抵抗探査方法は、図8に示すように説明できる。   That is, the electrical resistivity search method according to the present invention can be described as shown in FIG.

まず、ステップS10で、探査領域の自然電位(SP)を測定して自然電位値を獲得するようになる。この際、該当探査領域は電気比抵抗探査のための電流送信のない状態のものが好ましい。ここで、獲得された自然電位を測定SPm(measured SP)といい、VSPmは図1の電流波形を送信する直前に電流送信のない状態で測定する自然電位値を示す。 First, in step S10, the natural potential (SP) of the exploration area is measured to acquire the natural potential value. At this time, it is preferable that the corresponding search area has no current transmission for electrical resistivity search. Here, the acquired natural potential is referred to as a measured SPm (measured SP), and V SPm indicates a natural potential value measured in a state without current transmission immediately before transmitting the current waveform of FIG.

次に、ステップS20で、自然電位値を獲得した探査領域に対して上記電流電極を通じて矩形波送信電流(図1参照)を送信する。   Next, in step S20, a rectangular wave transmission current (see FIG. 1) is transmitted through the current electrode to the search region that has acquired the natural potential value.

次に、ステップS30で、矩形波送信電流の正の電流送信区間に対する順方向抵抗(forward resistance)と負の電流送信区間に対する逆方向抵抗(backward resistance)を計算するようになる。   Next, in step S30, the forward resistance for the positive current transmission interval of the rectangular wave transmission current and the backward resistance for the negative current transmission interval are calculated.

より詳しくは、上記ステップS30は探査領域に矩形波送信電流を加えて、正の電流送信区間に対する電位値(V)と送信電流量(I)を測定し、負の電流送信区間に対する電位値(V)と送信電流量(I)を測定するステップと、正の電流送信区間に対する電位値と上記自然電位値との差により順方向抵抗値を計算し、負の電流送信区間に対する電位値と自然電位値との差により逆方向抵抗値を計算するステップを含むようになる。 More specifically, in step S30, a rectangular wave transmission current is added to the search region, a potential value (V + ) and a transmission current amount (I + ) for a positive current transmission interval are measured, and a potential for a negative current transmission interval is measured. The forward resistance value is calculated from the step of measuring the value (V ) and the transmission current amount (I ), the difference between the potential value for the positive current transmission interval and the natural potential value, and for the negative current transmission interval. A step of calculating a reverse resistance value according to a difference between the potential value and the natural potential value is included.

したがって、図1で正の電流と負の電流送信に対する測定電気抵抗を順方向抵抗と逆方向抵抗として定義し、順方向抵抗値(R)と逆方向抵抗値(R)を次のような数式<3>により計算するようになる。 Therefore, in FIG. 1, the measured electrical resistances for positive current and negative current transmission are defined as forward resistance and reverse resistance, and the forward resistance value (R f ) and reverse resistance value (R b ) are as follows: The numerical formula <3> is used.

ここで、VSPmは図1の電流波形を送信する直前に電流送信のない状態で測定する自然電位値を表し、VとVは各々正の電流(I)と負の電流(I)送信区間で測定する電位値を表す。このような2つ電気抵抗値の差は電気比抵抗探査で自然電位(SP)の以外の原因による探査資料歪みを表すようになる。 Here, V SPm represents a natural potential value measured in the absence of current transmission immediately before transmitting the current waveform of FIG. 1, and V + and V are positive current (I + ) and negative current (I, respectively). - ) Represents the potential value measured in the transmission interval. Such a difference between the two electric resistance values represents the distortion of the search data due to causes other than the natural potential (SP) in the electrical resistivity search.

次に、ステップS40で、上記順方向抵抗値と逆方向抵抗値との平均値を計算して電気比抵抗探査資料の電気抵抗値に使用するようになる。実際の電気比抵抗探査で測定値は上記順方向抵抗値と逆方向抵抗値の平均を取って使用し、ここに使用電極配列に従う幾何学的係数(Geometrical Factor)を掛けて見かけ電気比抵抗値(Apparent resistivity)を探査資料にするようになる。   Next, in step S40, an average value of the forward resistance value and the reverse resistance value is calculated and used as the electrical resistance value of the electrical resistivity search data. In the actual electrical resistivity survey, the measured value is the average of the above forward resistance value and reverse resistance value, and is multiplied by the geometric factor according to the electrode arrangement used, and the apparent electrical resistivity value is used. (Apparent thermally) will be used as exploration data.

また、ステップS50で、上記順方向抵抗値と逆方向抵抗値との差を前述した平均抵抗値で割って資料誤差値を計算し、資料誤差値を資料加重値にして地下映像獲得のための逆算を遂行するようになる。   Also, in step S50, the material error value is calculated by dividing the difference between the forward resistance value and the reverse resistance value by the average resistance value described above, and the material error value is used as the material weight value to acquire the underground image. Perform reverse calculations.

より詳しくは、このような2つの測定値の平均値を電気比抵抗探査資料にし、2つの抵抗値の差を前述した平均抵抗値で割って資料誤差値を算出し、この資料誤差を資料加重値(data weighting)にして逆算を遂行することによって、結果的に、より精密な地下構造映像が獲得できるようになる。ここで、上記順方向抵抗と逆方向抵抗との平均値は既存の抵抗値(R=(V−V)/(I+I))とほとんど類似することを確認することができた。 More specifically, the average value of these two measured values is used as the electrical resistivity survey data, and the difference between the two resistance values is divided by the above-mentioned average resistance value to calculate the data error value. As a result, it is possible to acquire a more precise underground structure image by performing a reverse calculation using values (data weighting). Here, it can be confirmed that the average value of the forward resistance and the reverse resistance is almost similar to the existing resistance value (R O = (V + −V ) / (I + + I )). It was.

即ち、本発明は地下探査に普遍的に用いる電気比抵抗探査方法に対するものであって、詳しくは、電気比抵抗探査資料獲得時に電流を送信する直前に自然電位(Self-Potential)を測定し、(+)ON−OFF−(−)ON−OFF(または、(+)ON−(−)ON)からなる通常的な電気比抵抗探査での電流送信波形に対して正の電流((+)ON)を加える時の電位と送信電流量を測定して順方向抵抗(Forward Resistance)を計算し、負の電流送信((−)ON)による電位と送信電流量を測定して逆方向抵抗(Backward Resistance)を計算し、これを探査資料に使用する方式に従う。   That is, the present invention relates to a method of exploring electrical resistivity universally used for underground exploration. Specifically, a self-potential is measured immediately before transmitting current when acquiring electrical resistivity exploration data, A positive current ((+) with respect to a current transmission waveform in a normal electrical resistivity search consisting of (+) ON-OFF-(-) ON-OFF (or (+) ON-(-) ON) ON) is measured and the forward current (Forward Resistance) is calculated by measuring the potential and the transmission current amount, and the reverse resistance ((−) ON) is measured by measuring the potential and the transmission current amount. Calculate Backward Resistance and use it for exploration data.

この際、探査資料は2つの抵抗値の平均を使用し、ここに付加して順方向及び逆方向抵抗の差から電気比抵抗探査資料の誤差を定量化し、このような定量化した誤差値を探査資料の逆算に活用して、より正確な地下映像が獲得できるようになる。   At this time, the exploration data uses the average of the two resistance values, and is added here to quantify the error in the electrical resistivity exploration data from the difference between the forward and reverse resistances. It can be used for backward calculation of exploration materials, and more accurate underground images can be acquired.

このような方式により測定した探査資料の例は図5に示し、図3で多数の資料が予測SP(SPr)と測定SP(SPm)が類似する値を表していることと類似するように2つの抵抗値が類似するように表れているが、相当の部分で2つ値に大きい差が発生していることを確認することができる。   An example of exploration data measured by such a method is shown in FIG. 5, and in FIG. 3, a large number of data 2 is similar to the prediction SP (SPr) and measurement SP (SPm) representing similar values. Although the two resistance values appear to be similar, it can be confirmed that there is a large difference between the two values in a considerable portion.

このような2つの抵抗値の差を起こす歪みには電気比抵抗探査資料獲得で考慮できない原因を含み、探査資料獲得で発生する機械的な問題または時変化特性を有する雑音などを含むようになる。したがって、このような2つの電気抵抗値の差を用いて電気比抵抗探査資料の歪みまたは信頼度が評価できるようになる。   The distortion that causes the difference between the two resistance values includes causes that cannot be taken into account when acquiring electrical resistivity survey data, and includes mechanical problems that occur during acquisition of search data or noise with time-varying characteristics. . Therefore, the distortion or reliability of the electrical resistivity search data can be evaluated using the difference between the two electrical resistance values.

ここで、本発明に従う探査方法が実際的であるには、2つの電気抵抗値の差を起こす原因に関わらず資料の歪みの大きい資料の場合には電気比抵抗逆算で探査資料と理論資料との間の誤差が大きく表れなければならず、図6には電気比抵抗逆算での資料誤差(data misfits)と2つの電気抵抗値の差(Discrepancies)を図示した。2つの抵抗値の差が少ない場合には資料誤差と2つの抵抗値の差との間に相関性がよく見えないが、2つの電気抵抗値の差が大きくなるにつれて資料誤差が増加する傾向を見せているので、2つの電気抵抗値の差が資料に含まれる誤差を反映することと解釈することができる。   Here, in order for the exploration method according to the present invention to be practical, in the case of a material with a large distortion of the material regardless of the cause of the difference between the two electrical resistance values, FIG. 6 shows data errors (data misfits) and differences between two electrical resistance values (Discrepancies) in the reverse calculation of electrical resistivity. When the difference between the two resistance values is small, the correlation between the document error and the difference between the two resistance values cannot be seen well, but the document error tends to increase as the difference between the two electrical resistance values increases. Since it is shown, it can be interpreted that the difference between the two electric resistance values reflects the error included in the material.

これによって、電気比抵抗逆算過程で資料誤差が大きくなる順方向抵抗と逆方向抵抗との差が大きい資料には低い加重値を与え、これらの差が少ない場合には高い加重値を与えることによって、逆算結果の精度を向上させることができる。   As a result, a low weighting value is given to a material with a large difference between the forward resistance and the reverse resistance, which causes a material error to increase in the reverse calculation process of the electrical resistivity, and a high weighting value is given when these differences are small. The accuracy of the back calculation result can be improved.

即ち、以下の数式<4>のように資料誤差を最小化する目的関数を用いるようになる。   That is, an objective function that minimizes the data error is used as in the following formula <4>.

ここで、mはモデルベクトル、Eは資料誤差ベクトル、Wは対角行列である資料加重値行列(即ち、W=diag(w))である(pは、1または2)。 Here, m is a model vector, E is a material error vector, and W is a material weight matrix that is a diagonal matrix (that is, W = diag (w i )) (p is 1 or 2).

このような資料誤差を用いて上記数式<4>のWのような資料加重値行列を作って、この資料加重値行列を使用して探査資料の誤差特性を反映した逆算が可能になる。上記数式<4>は資料誤差を最小化する目的関数であって、逆算過程ではこれを最小化しようとするが、やはり探査資料に加重値を与えて、より重要で、信頼度の高い資料(順方向抵抗と逆方向抵抗との差が少ない資料)には高い加重値を与え、反対の場合には低い加重値を与えるようになる。   Using such a material error, a material weight matrix such as W in the above formula <4> is created, and the back calculation reflecting the error characteristics of the search material can be performed using this material weight matrix. The above formula <4> is an objective function for minimizing the material error, and it tries to minimize it in the reverse calculation process. However, the exploration material is given a weight value, and more important and highly reliable material ( A high weighting value is given to a material which has a small difference between the forward resistance and the reverse resistance, and a low weighting value is given in the opposite case.

このような方式により獲得した探査資料に対する逆算実験を遂行し、図7はその結果を示す。図7は、電気比抵抗逆算で順方向と逆方向電気抵抗の差を用いた資料加重値適用の効果を説明するための図である。   A back-calculation experiment was performed on the exploration data obtained by such a method, and FIG. 7 shows the result. FIG. 7 is a diagram for explaining the effect of applying the material weight value using the difference between the forward and reverse electrical resistances in the reverse calculation of the electrical resistivity.

図7で、(a)は探査資料に資料編集が遂行されない場合であり、(b)は探査資料で誤差が大きい資料を除いて逆算を遂行した結果を示す。そして、左側は資料に加重値を与えない場合であり、右側は資料に加重値を適用した逆算結果を示す。資料誤差が大きい資料を除外しない場合にも資料加重値の適用を通じて最終逆算結果でのRMS誤差が遥かに小さく計算されて、より信頼度の高い地下構造映像を提供することが分かる。   In FIG. 7, (a) shows a case in which no material editing is performed on the exploration material, and (b) shows a result of performing the reverse calculation except for the exploration material with a large error. The left side shows a case where no weight value is given to the material, and the right side shows a reverse calculation result obtained by applying the weight value to the material. It can be seen that the RMS error in the final back calculation result is calculated to be much smaller through the application of the material weight value even when the material having a large material error is not excluded, thereby providing a more reliable underground structure image.

本発明に従う電気比抵抗探査資料獲得方法は、電気比抵抗探査における正の電流と負の電流とを交互に送信する送信電流波形(矩形波)を用いて自然電位を除去した電気比抵抗探査資料を獲得する方式に対して電流送信の前に電流供給無しで実際の自然電位を測定し、これを用いて正の電流送信区間及び負の電流送信区間で各々順方向及び逆方向電気抵抗を獲得する方式に従う。このように、順方向電気抵抗と逆方向電気抵抗を共に測定することによって、探査資料の誤差特性及び信頼度を予測することができ、これを探査資料の逆算過程に資料加重値を適用する基準に使用して実際に獲得する地下電気比抵抗映像の正確度及び信頼度を高められるようになる。また、探査資料獲得時、実際の自然電位の値を直接測定して従来の方式で電流送信中に測定される電位値から計算により獲得する自然電位探査資料に比べて正確な自然電位測定が可能である。   The electrical resistivity search data acquisition method according to the present invention is an electrical resistivity search data obtained by removing a natural potential using a transmission current waveform (rectangular wave) that alternately transmits positive current and negative current in electrical resistivity search. Measures the actual natural potential without current supply before current transmission, and uses this to acquire forward and reverse electrical resistance in the positive current transmission section and negative current transmission section, respectively. Follow the method. In this way, by measuring both forward and reverse electrical resistance, it is possible to predict the error characteristics and reliability of the exploration data, and this is the basis for applying the material weight value to the reverse calculation process of the exploration data. It is possible to improve the accuracy and reliability of the underground electrical resistivity image that is actually acquired by using the above. Also, when acquiring exploration data, it is possible to directly measure the actual natural potential value and to measure the natural potential more accurately than the natural potential exploration data obtained by calculation from the potential value measured during current transmission using the conventional method. It is.

以上のように、図面及び明細書で最適の実施形態が開示された。ここで、特定の用語が使われたが、これは単に本発明を説明するための目的として使われたものであり、意味の限定や特許請求の範囲に記載された本発明の範囲を制限するために使われたものではない。したがって、本技術分野の通常の知識を有する者であれば、これから多様な変形及び均等な他の実施形態が可能であるという点を理解することができる。したがって、本発明の真の技術的保護範囲は添付した特許請求の範囲の技術的思想により定まるべきである。   As described above, the optimal embodiment has been disclosed in the drawings and specification. Although specific terms are used herein, they are merely used for the purpose of describing the present invention and limit the scope of the present invention as defined in the meaning or claims. It was not used for that purpose. Accordingly, those skilled in the art can understand that various modifications and other equivalent embodiments are possible from this. Therefore, the true technical protection scope of the present invention should be determined by the technical idea of the appended claims.

10 送信電流管理部
20 電位測定部
30 探査資料計算部
40 探査制御部
50 逆算処理部
DESCRIPTION OF SYMBOLS 10 Transmission current management part 20 Potential measurement part 30 Exploration material calculation part 40 Exploration control part 50 Back calculation process part

Claims (6)

探査領域に対して電流電極と電位電極を通じて電気比抵抗探査を実施する電気比抵抗探査資料獲得方法であって、
(a)探査領域の自然電位値を測定するステップと、
(b)探査領域に矩形波送信電流を加えて、正の電流送信区間に対する順方向抵抗値と負の電流送信区間に対する逆方向抵抗値を計算するステップと、
(c)前記順方向抵抗値と逆方向抵抗値との平均値を計算して電気比抵抗探査資料の電気抵抗値に使用するステップと、
を含むことを特徴とする、電気比抵抗探査資料獲得方法。
An electrical resistivity exploration data acquisition method for conducting electrical resistivity exploration through a current electrode and a potential electrode in an exploration area,
(A) measuring the natural potential value of the exploration area;
(B) adding a rectangular wave transmission current to the exploration region to calculate a forward resistance value for a positive current transmission interval and a reverse resistance value for a negative current transmission interval;
(C) calculating an average value of the forward resistance value and the reverse resistance value and using the average value for the electrical resistance value of the electrical resistivity survey data;
A method for acquiring electrical resistivity survey data, comprising:
前記(a)ステップは、矩形波の電流送信の前に電流供給のない状態の探査領域に対して実際の自然電位を測定することを特徴とする、請求項1に記載の電気比抵抗探査資料獲得方法。   2. The electrical resistivity search data according to claim 1, wherein the step (a) measures an actual natural potential with respect to a search area in the absence of current supply before current transmission of a rectangular wave. Acquisition method. 前記(b)ステップは、
(b−1)探査領域に矩形波送信電流を加えて、正の電流送信区間に対する電位値と送信電流量を測定し、負の電流送信区間に対する電位値と送信電流量を測定するステップと、
(b−2)正の電流送信区間に対する電位値と前記自然電位値との差により順方向抵抗値を計算し、負の電流送信区間に対する電位値と自然電位値との差により逆方向抵抗値を計算するステップと、
を含むことを特徴とする、請求項1に記載の電気比抵抗探査資料獲得方法。
The step (b)
(B-1) adding a rectangular wave transmission current to the exploration region, measuring a potential value and a transmission current amount for a positive current transmission section, and measuring a potential value and a transmission current amount for a negative current transmission section;
(B-2) The forward resistance value is calculated from the difference between the potential value for the positive current transmission section and the natural potential value, and the reverse resistance value is calculated from the difference between the potential value and the natural potential value for the negative current transmission section. A step of calculating
The method for acquiring electrical resistivity search data according to claim 1, wherein:
前記(b−2)ステップで、
前記順方向抵抗値と逆方向抵抗値は以下の数式<3>により計算されることを特徴とする、請求項3に記載の電気比抵抗探査資料獲得方法。

ここで、Rは順方向抵抗値、Vは正の電流送信区間に対する電位値、VSPmは自然電位値、Iは正の電流送信区間に対する送信電流量、Rは逆方向抵抗値、Vは負の電流送信区間に対する電位値、Iは負の電流送信区間に対する送信電流量である。
In the step (b-2),
The method for obtaining electrical resistivity search data according to claim 3, wherein the forward resistance value and the reverse resistance value are calculated by the following formula <3>.

Here, R f is a forward resistance value, V + is a potential value for a positive current transmission section, V SPm is a natural potential value, I + is a transmission current amount for a positive current transmission section, and R b is a reverse resistance value. , V is a potential value for a negative current transmission section, and I is a transmission current amount for a negative current transmission section.
前記(c)ステップの以後に、
(d)前記順方向抵抗値と逆方向抵抗値との差を平均抵抗値で割って資料誤差値を計算し、資料誤差値を資料加重値にして地下映像獲得のための逆算を遂行するステップをさらに含むことを特徴とする、請求項1に記載の電気比抵抗探査資料獲得方法。
After step (c),
(D) calculating a material error value by dividing a difference between the forward resistance value and the backward resistance value by an average resistance value, and performing a backward calculation for acquiring an underground image using the material error value as a material weight value; The electrical resistivity survey data acquisition method according to claim 1, further comprising:
前記(d)ステップで、逆算の対象探査資料に対して前記資料誤差値に従う資料加重値は資料誤差値の大きさと反比例するように与えることを特徴とする、請求項5に記載の電気比抵抗探査資料獲得方法。   6. The electrical resistivity according to claim 5, wherein, in the step (d), the material weight value according to the material error value is given to the target search material for back calculation so as to be inversely proportional to the size of the material error value. Exploration material acquisition method.
JP2013188554A 2013-07-30 2013-09-11 Electrical resistivity survey data acquisition method Expired - Fee Related JP5795358B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130090266A KR101328498B1 (en) 2013-07-30 2013-07-30 Method for acquiring resistivity survey data
KR10-2013-0090266 2013-07-30

Publications (2)

Publication Number Publication Date
JP2015028458A true JP2015028458A (en) 2015-02-12
JP5795358B2 JP5795358B2 (en) 2015-10-14

Family

ID=49857553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013188554A Expired - Fee Related JP5795358B2 (en) 2013-07-30 2013-09-11 Electrical resistivity survey data acquisition method

Country Status (2)

Country Link
JP (1) JP5795358B2 (en)
KR (1) KR101328498B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110208868A (en) * 2019-05-10 2019-09-06 中南大学 A kind of two-dimentional electrical prospecting method based on composite profile
CN110208867A (en) * 2019-05-10 2019-09-06 中南大学 A kind of three-dimensional electrical prospecting method based on composite profile
CN111985090A (en) * 2020-07-28 2020-11-24 烟台南山学院 Visual mathematical model method for predicting resistance and response of conductive composite material
CN111983697A (en) * 2020-08-11 2020-11-24 自然资源部第二海洋研究所 Submarine electric field detection device applied to underwater robot and method for detecting polymetallic sulfide
CN113433595A (en) * 2021-07-08 2021-09-24 中南大学 Advanced prediction method based on natural electric field tunnel fracture water

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106873041B (en) * 2017-04-19 2019-05-31 中南大学 A method of apparent resistivity is obtained by any level electric field component
KR102561441B1 (en) * 2023-01-12 2023-07-31 (주) 다인이앤디 Prediction-based dipole-dipole array ground survey exploration method and system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3127088B2 (en) * 1994-11-28 2001-01-22 財団法人電力中央研究所 Specific resistance tomography method measuring device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100920424B1 (en) * 2007-12-31 2009-10-08 한국지질자원연구원 Apparatus and method for automatic control of current electrodes for electrical resistivity survey
KR101131826B1 (en) * 2009-10-29 2012-03-30 한국지질자원연구원 Wireless u-resistivity survey system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3127088B2 (en) * 1994-11-28 2001-01-22 財団法人電力中央研究所 Specific resistance tomography method measuring device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6014048657; 物理探査学会: 「物理探査ハンドブック」 p.259-260, 19990331, 物理探査学会 *
JPN6014048660; 物理探査学会: 「物理探査ハンドブック」 p.290-291, 19990331, 物理探査学会 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110208868A (en) * 2019-05-10 2019-09-06 中南大学 A kind of two-dimentional electrical prospecting method based on composite profile
CN110208867A (en) * 2019-05-10 2019-09-06 中南大学 A kind of three-dimensional electrical prospecting method based on composite profile
CN111985090A (en) * 2020-07-28 2020-11-24 烟台南山学院 Visual mathematical model method for predicting resistance and response of conductive composite material
CN111983697A (en) * 2020-08-11 2020-11-24 自然资源部第二海洋研究所 Submarine electric field detection device applied to underwater robot and method for detecting polymetallic sulfide
CN111983697B (en) * 2020-08-11 2022-06-10 自然资源部第二海洋研究所 Method for detecting polymetallic sulfide by using submarine electric field detection device
CN113433595A (en) * 2021-07-08 2021-09-24 中南大学 Advanced prediction method based on natural electric field tunnel fracture water
CN113433595B (en) * 2021-07-08 2022-07-01 中南大学 Advanced prediction method based on natural electric field tunnel crack water

Also Published As

Publication number Publication date
KR101328498B1 (en) 2013-11-20
JP5795358B2 (en) 2015-10-14

Similar Documents

Publication Publication Date Title
JP5795358B2 (en) Electrical resistivity survey data acquisition method
CN203531883U (en) Well logging equipment
CN108873083B (en) A kind of artificial field source frequency domain electromagnetism apparent resistivity measurement method
CN104612671B (en) A kind of array induction coil array for measuring vertical direction formation conductivity
CN110823962B (en) Three-dimensional imaging method and system for landslide mass
US7899622B2 (en) Sequential resistivity imaging with asymmetric electrode arrays
CN109946370A (en) A kind of dam leakage passage detection method and its device based on magnetic-field measurement
RU2012132301A (en) METHOD FOR LASTING MEASUREMENTS OF MICRO-RESISTANCE OF ANISOTROPIC MEDIUM USING MONOPOLAR INJECTING CURRENT ELECTRODE
Falco et al. Fracture characterisation using geoelectric null-arrays
CN105044790B (en) A kind of anomalous body orientation scanned based on circumferential electrode judges system and method
CN103760612B (en) A kind of oil field well specific retention visualization measurement method
KR20090081146A (en) System for streamer electrical resistivity survey and method for analysis of underground structure below a riverbed
JP2007285729A (en) Method for measuring resistivity in stratum
CN206348292U (en) Polluted Soil detection arrangement of measuring-line structure based on three-dimensional high-density resistivity method
KR101475155B1 (en) Method for predicting ground condition ahead of tunnel using electrical resistivity
JP6501128B2 (en) Metal pipe corrosion prediction system and method thereof
JP2010127851A (en) Apparatus and method for measuring earth resistivity for use in power distribution using three electrodes
JP2011191288A (en) Method and device for estimating current density of damaged coating portion of underground pipe, and method and device for controlling electric protection
CN110058318B (en) One-dimensional direction correction method of natural electric field based on measurement electrode coordinates
RU2351958C1 (en) Method of sea geo-electro-survey with electrical focusing (versions)
CN104808247A (en) Detection method of freezing effect
Qing et al. Compensation effect analysis in DIE method for through-casing measuring formation resistivity
JP6083251B2 (en) Distributed exploration system for obtaining electrical characteristics of underground and distributed exploration method using the same
JP2019144253A (en) Electrode for high frequency ac electrical exploration
Domenzain et al. 3D DC inversion, visualization, and processing of dense time-lapse data in fine domains applied to remediation monitoring

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150812

R150 Certificate of patent or registration of utility model

Ref document number: 5795358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees