JP2015026716A - Method of manufacturing photoelectric conversion element - Google Patents

Method of manufacturing photoelectric conversion element Download PDF

Info

Publication number
JP2015026716A
JP2015026716A JP2013155424A JP2013155424A JP2015026716A JP 2015026716 A JP2015026716 A JP 2015026716A JP 2013155424 A JP2013155424 A JP 2013155424A JP 2013155424 A JP2013155424 A JP 2013155424A JP 2015026716 A JP2015026716 A JP 2015026716A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conjugated polymer
electron
organic semiconductor
electron conjugated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013155424A
Other languages
Japanese (ja)
Inventor
雅典 三浦
Masanori Miura
雅典 三浦
拓也 稲垣
Takuya Inagaki
拓也 稲垣
寛政 澁谷
Hiromasa Shibuya
寛政 澁谷
靖 森原
Yasushi Morihara
靖 森原
明士 藤田
Akeshi Fujita
明士 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2013155424A priority Critical patent/JP2015026716A/en
Publication of JP2015026716A publication Critical patent/JP2015026716A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a photoelectric conversion element for forming ideal morphology of an organic photoelectric conversion layer for exhibiting excellent photoelectric conversion efficiency in a simple step.SOLUTION: A method of manufacturing a photoelectric conversion element includes a step (A) in which π electron conjugated polymer and electron accepting organic semiconductor are dissolved in organic solvent to provide an organic semiconductor solution, a step (B) in which at least two kinds of poor solvent of π electron conjugated polymer whose SP value is 18.1-26.5 are added to the organic semiconductor solution, and a step (C) in which the organic semiconductor solution obtained in the step (B) is film-formed by a coating method, so that a photoelectric conversion layer is formed.

Description

本発明は、有機光電変換層において、良好な相分離構造(モルフォロジ)を形成することができる光電変換素子の製造方法に関する。   The present invention relates to a method for producing a photoelectric conversion element capable of forming a good phase separation structure (morphology) in an organic photoelectric conversion layer.

太陽電池は環境に優しい有力なエネルギー源として注目されている。現在、太陽電池の光電変換素子としては、単結晶シリコン、多結晶シリコン及びアモルファスシリコンのようなシリコン系材料や、GaAs、CIGS及びCdTeのような化合物半導体材料などの無機物が使用されている。これらの光電変換素子は比較的高い光電変換効率を有するが、他の電源コストと比較して高価格なものである。コスト高の要因は、高真空かつ高温下で半導体薄膜を製造しなくてはならないプロセスにある。そこで、製造プロセスの簡略化が期待される半導体材料として、π電子共役重合体や有機結晶などの有機半導体や有機色素を用いた有機太陽電池が検討されている。これらの有機半導体材料は、塗布法や印刷法により製膜できるため、製造プロセスが簡便化し、大量生産が可能で安価な有機太陽電池を得ることが可能であるとして注目されている。   Solar cells are attracting attention as a powerful energy source that is friendly to the environment. At present, inorganic materials such as silicon-based materials such as single crystal silicon, polycrystalline silicon, and amorphous silicon, and compound semiconductor materials such as GaAs, CIGS, and CdTe are used as photoelectric conversion elements for solar cells. These photoelectric conversion elements have a relatively high photoelectric conversion efficiency, but are expensive compared to other power supply costs. The cause of the high cost is the process in which the semiconductor thin film must be manufactured under high vacuum and high temperature. Therefore, organic semiconductor cells using organic semiconductors and organic dyes such as π-electron conjugated polymers and organic crystals are being studied as semiconductor materials that are expected to simplify the manufacturing process. Since these organic semiconductor materials can be formed into a film by a coating method or a printing method, they are attracting attention because the manufacturing process is simplified, mass production is possible, and inexpensive organic solar cells can be obtained.

有機太陽電池は、2つの異種電極間に有機光電変換層を設けた構造をしている。一般に有機光電変換層は、電子供与性有機半導体と電子受容性有機半導体の混合物から形成されている。代表例としては、電子供与性有機半導体としてπ電子共役重合体であるポリ(3−ヘキシルチオフェン)と、電子受容性有機半導体としてフラーレン誘導体である [6,6]−フェニルC61酪酸メチルエステル(PC61BM)をそれぞれ含む組成物が挙げられる。 An organic solar cell has a structure in which an organic photoelectric conversion layer is provided between two different electrodes. Generally, the organic photoelectric conversion layer is formed from a mixture of an electron donating organic semiconductor and an electron accepting organic semiconductor. As typical examples, poly (3-hexylthiophene) which is a π-electron conjugated polymer as an electron-donating organic semiconductor, and [6,6] -phenyl C 61 butyric acid methyl ester which is a fullerene derivative as an electron-accepting organic semiconductor ( PC 61 BM).

有機太陽電池の課題は、光電変換効率を高めることであり、特に有機光電変換層のモルフォロジを変えることで光電変換効率の向上を図る報告がなされている。理想的な有機光電変換層のモルフォロジとは、電子供与性有機半導体と電子受容性有機半導体が相分離し、それぞれが100nm程度のドメインサイズを有していることを特徴とする。p/n相分離ドメインのいずれもが、この範囲のドメインサイズを有する場合、光吸収により内部に発生する励起子が失活前にp/n界面に到達する確率が高く、高い電流が得られる。また同時に、キャリア輸送抵抗を左右する相分離ドメインの連続性が高く得られやすく、p/n界面で発生したキャリアを効率的に電極まで取り出すことが出来るため、結果として高い変換効率が得られると期待されている。   The problem of the organic solar cell is to increase the photoelectric conversion efficiency, and in particular, reports have been made on improving the photoelectric conversion efficiency by changing the morphology of the organic photoelectric conversion layer. The ideal organic photoelectric conversion layer morphology is characterized in that the electron-donating organic semiconductor and the electron-accepting organic semiconductor are phase-separated and each has a domain size of about 100 nm. When any of the p / n phase separation domains has a domain size in this range, there is a high probability that excitons generated inside by light absorption reach the p / n interface before deactivation, and a high current is obtained. . At the same time, the continuity of the phase separation domain that affects carrier transport resistance is easily obtained, and carriers generated at the p / n interface can be efficiently taken out to the electrode, resulting in high conversion efficiency. Expected.

このような観点から、有機光電変換層のモルフォロジを変える方法として、熱や溶媒蒸気により処理する方法、π電子共役重合体やフラーレン誘導体を溶解させる溶媒を工夫する方法、溶媒の揮発速度を小さくする方法、π電子共役重合体の構造を制御する方法などが研究されている。例えば、特許文献1には、π電子共役ブロック共重合体を用いて有機光電変換層のモルフォロジを制御する方法が記載されている。特許文献2には、溶解度差を有する共役ポリマーを2種以上用いることでモルフォロジを制御する方法が記載されている。しかし、有機太陽電池の光電変換効率向上のためには、さらなる微細化された良好なモルフォロジの形成が必要であり、解決方法が求められている。   From this point of view, as a method of changing the morphology of the organic photoelectric conversion layer, a method of treating with heat or solvent vapor, a method of devising a solvent that dissolves a π-electron conjugated polymer or a fullerene derivative, or reducing the volatilization rate of the solvent Methods and methods for controlling the structure of π-electron conjugated polymers have been studied. For example, Patent Document 1 describes a method for controlling the morphology of an organic photoelectric conversion layer using a π-electron conjugated block copolymer. Patent Document 2 describes a method of controlling morphology by using two or more conjugated polymers having a solubility difference. However, in order to improve the photoelectric conversion efficiency of the organic solar cell, it is necessary to form a finer and better morphology, and a solution is required.

WO2013/005614パンフレットWO2013 / 005614 brochure WO2013/018853パンフレットWO2013 / 018853 brochure

本発明は、上記の課題を解決するためになされたものであり、簡便な工程で、理想的な有機光電変換層のモルフォロジを形成でき、優れた光電変換効率を発揮する光電変換素子の製造方法を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and is a method for producing a photoelectric conversion element that can form an ideal organic photoelectric conversion layer morphology in a simple process and that exhibits excellent photoelectric conversion efficiency. The purpose is to provide.

本発明者らは、上記の目的を達成すべく鋭意研究を重ねてきた。その結果、π電子共役重合体及び電子受容性有機半導体を含む光電変換層を形成する工程において、π電子共役重合体の貧溶媒を少なくとも2種添加することにより、上記課題を解決できることを見出し、本発明に至った。   The inventors of the present invention have intensively studied to achieve the above object. As a result, in the step of forming a photoelectric conversion layer containing a π-electron conjugated polymer and an electron-accepting organic semiconductor, it has been found that the above problem can be solved by adding at least two poor solvents for the π-electron conjugated polymer, The present invention has been reached.

即ち、前記の目的を達成するためになされた、特許請求の範囲の請求項1に記載された光電変換素子の製造方法は、少なくとも一方が光透過性を有する正極と負極との間に、π電子共役重合体及び電子受容性有機半導体を含む光電変換層を有する光電変換素子の製造方法であって、前記π電子共役重合体は、少なくとも一つのチオフェン環を化学構造の一部に含む縮環π共役骨格、カルバゾール骨格、ジベンゾシロール骨格、ジベンゾゲルモール骨格及びジケトピロロピロール骨格から選ばれる複素環骨格を少なくとも一つ有する単量体単位を含み、前記π電子共役重合体及び前記電子受容性有機半導体を有機溶媒に溶解させ、有機半導体溶液を得る工程(A)、該有機半導体溶液に、SP値が18.1以上26.5以下の範囲内である前記π電子共役重合体の貧溶媒を少なくとも2種添加する工程(B)、及び前記正極と負極との間に、工程(B)で得られた有機半導体溶液を塗布法により製膜して、前記光電変換層を形成する工程(C)、を含むことを特徴とする。   That is, the manufacturing method of the photoelectric conversion element according to claim 1, which has been made in order to achieve the above-described object, includes a method in which at least one of the positive electrode and the negative electrode having light transmissivity is π A method for producing a photoelectric conversion element having a photoelectric conversion layer comprising an electron conjugated polymer and an electron-accepting organic semiconductor, wherein the π-electron conjugated polymer includes a condensed ring containing at least one thiophene ring as a part of a chemical structure. a monomer unit having at least one heterocyclic skeleton selected from a π-conjugated skeleton, a carbazole skeleton, a dibenzosilole skeleton, a dibenzogermole skeleton, and a diketopyrrolopyrrole skeleton, and the π-electron conjugated polymer and the electron acceptor Step (A) of dissolving an organic semiconductor in an organic solvent to obtain an organic semiconductor solution, wherein the organic semiconductor solution has the SP value in the range of 18.1 to 26.5. A step (B) of adding at least two poor solvents for the conjugated polymer, and a step of forming the organic semiconductor solution obtained in the step (B) between the positive electrode and the negative electrode by a coating method; A step (C) of forming a conversion layer.

同じく請求項2に記載の光電変換素子の製造方法は、請求項1に記載されたものであって、前記工程(B)で用いられる貧溶媒は、前記π電子共役重合体の溶解度が1.0mg/mL以下であることを特徴とする。   Similarly, the method for producing a photoelectric conversion element according to claim 2 is the method according to claim 1, wherein the poor solvent used in the step (B) has a solubility of the π-electron conjugated polymer of 1. It is 0 mg / mL or less.

請求項3に記載の光電変換素子の製造方法は、請求項1または2に記載されたものであって、前記工程(B)で用いられる貧溶媒の少なくとも1種が、1,8−ジヨードオクタン、アニソール、安息香酸メチル、アニリン、1,2−ジブロモエタン、モルホリン、N,N−ジメチルホルムアミド及びN,N−ジメチルアセトアミドから選ばれるいずれかであることを特徴とする。   The method for producing a photoelectric conversion device according to claim 3 is the method according to claim 1 or 2, wherein at least one of the poor solvents used in the step (B) is 1,8-diiodine. It is any one selected from octane, anisole, methyl benzoate, aniline, 1,2-dibromoethane, morpholine, N, N-dimethylformamide and N, N-dimethylacetamide.

請求項4に記載の光電変換素子の製造方法は、請求項3に記載されたものであって、前記工程(B)で用いられる貧溶媒の少なくとも1種が1,8−ジヨードオクタンであり、少なくとも他の1種が、アニソール、安息香酸メチル、アニリン、1,2−ジブロモエタン、モルホリン、N,N−ジメチルホルムアミド及びN,N−ジメチルアセトアミドから選ばれるいずれかであることを特徴とする。   The method for producing a photoelectric conversion device according to claim 4 is the method according to claim 3, wherein at least one of the poor solvents used in the step (B) is 1,8-diiodooctane. , At least one other is any one selected from anisole, methyl benzoate, aniline, 1,2-dibromoethane, morpholine, N, N-dimethylformamide and N, N-dimethylacetamide .

請求項5に記載の光電変換素子の製造方法は、請求項1〜4の何れかに記載されたものであって、前記工程(B)で用いられる少なくとも2種の貧溶媒の添加量の合計が、前記有機半導体溶液の0.1vol%〜50.0vol%の範囲内であることを特徴とする。   The manufacturing method of the photoelectric conversion element of Claim 5 is described in any one of Claims 1-4, Comprising: The sum total of the addition amount of the at least 2 sort (s) of poor solvent used by the said process (B). Is in the range of 0.1 vol% to 50.0 vol% of the organic semiconductor solution.

本発明によれば、簡便な工程により、理想的な有機光電変換層のモルフォロジを形成できる光電変換素子の製造方法を提供することができる。本発明の製造方法によって得られる光電変換素子は、光電変換層中の電子供与性有機半導体と電子受容性有機半導体とが微細なモルフォロジを形成できるため、光吸収により発生する励起子の失活が少なく、高い電流が得られ、優れた光電変換効率を発揮することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the photoelectric conversion element which can form the morphology of an ideal organic photoelectric converting layer can be provided with a simple process. In the photoelectric conversion element obtained by the production method of the present invention, the electron-donating organic semiconductor and the electron-accepting organic semiconductor in the photoelectric conversion layer can form a fine morphology, so that the deactivation of excitons generated by light absorption is reduced. Less, a high current can be obtained, and excellent photoelectric conversion efficiency can be exhibited.

実施例2において得られた光電変換素子の断面のモルフォロジ画像である。3 is a morphology image of a cross section of the photoelectric conversion element obtained in Example 2. 実施例2において得られた光電変換素子の断面のモルフォロジ画像を2値化処理し得た画像である。6 is an image obtained by binarizing the morphology image of the cross section of the photoelectric conversion element obtained in Example 2. FIG. 比較例2において得られた光電変換素子の断面のモルフォロジ画像を2値化処理し得た画像である。6 is an image obtained by binarizing the morphology image of the cross section of the photoelectric conversion element obtained in Comparative Example 2. FIG. 比較例5において得られた光電変換素子の断面のモルフォロジ画像を2値化処理し得た画像である。It is an image obtained by binarizing the morphology image of the cross section of the photoelectric conversion element obtained in Comparative Example 5.

以下、本発明を実施するための形態について詳細に説明するが、本発明の範囲はこれらの形態に限定されるものではない。   Hereinafter, although the form for implementing this invention is demonstrated in detail, the scope of the present invention is not limited to these forms.

本発明は、少なくとも一方が光透過性を有する正極と負極との間に、π電子共役重合体及び電子受容性有機半導体を含む光電変換層を有する光電変換素子の製造方法に関する。   The present invention relates to a method for producing a photoelectric conversion element having a photoelectric conversion layer containing a π-electron conjugated polymer and an electron-accepting organic semiconductor between a positive electrode and a negative electrode, at least one of which is light transmissive.

前記π電子共役重合体は、少なくとも一つのチオフェン環を化学構造の一部に含む縮環π共役骨格、カルバゾール骨格、ジベンゾシロール骨格、ジベンゾゲルモール骨格及びジケトピロロピロール骨格から選ばれるいずれかの複素環骨格を少なくとも一つ有する単量体単位を含むポリマーである。これらの中でも、好ましい前記π電子共役重合体としては、少なくとも一つのチオフェン環を化学構造の一部に含む縮環π共役骨格を含有する単量体単位を含むものであり、例えば、シクロペンタジチオフェンジイル基、ジチエノピロールジイル基、ジチエノシロールジイル基、ジチエノゲルモールジイル基、ベンゾジチオフェンジイル基、ナフトジチオフェンジイル基、チエノチオフェンジイル基、チエノピロールジオンジイル基、ジケトピロロピロールジイル基などの複素環骨格を含有する単量体単位を含む重合体である。これらの複素環骨格(複素環基)は、単量体単位中に2種以上含まれていてもよい。   The π-electron conjugated polymer is any one selected from a condensed π-conjugated skeleton, a carbazole skeleton, a dibenzosilole skeleton, a dibenzogermole skeleton, and a diketopyrrolopyrrole skeleton containing at least one thiophene ring as part of the chemical structure. It is a polymer containing a monomer unit having at least one heterocyclic skeleton. Among these, a preferable π-electron conjugated polymer includes a monomer unit containing a condensed π-conjugated skeleton containing at least one thiophene ring as a part of the chemical structure. Thiophene diyl group, dithienopyrrole diyl group, dithienosilole diyl group, dithienogermol diyl group, benzodithiophene diyl group, naphthodithiophene diyl group, thienothiophene diyl group, thienopyrrole dione diyl group, diketopyrrolopyrrole It is a polymer containing a monomer unit containing a heterocyclic skeleton such as a diyl group. Two or more kinds of these heterocyclic skeletons (heterocyclic groups) may be contained in the monomer unit.

前記複素環骨格を単量体単位に有するπ電子共役重合体は、狭バンドギャップポリマーであるのが好ましい。狭バンドギャップポリマーとは、最高被占軌道(HOMO)準位と最低空軌道(LUMO)準位とのエネルギー差(バンドギャップ)が小さいポリマーのことであり、単量体単位中に、ドナー性の高い有機基とアクセプター性の高い有機基とを併せ持つポリマーである。例えば、前記で例示したシクロペンタジチオフェンジイル基やベンゾジチオフェンジイル基は、比較的ドナー性の高い複素環基であり、チエノチオフェンジイル基は比較的アクセプター性の高い複素環基であり、これらを組み合わせて1つの単量体単位としてもよい。狭バンドギャップポリマーは、太陽光スペクトルのうち、紫外領域から600nm以上の長波長領域に渡る広い波長領域の光を吸収可能である。よって、狭バンドギャップポリマーを光電変換層に含ませることにより、光利用効率に優れた有機太陽電池の製造が可能となる。   The π-electron conjugated polymer having a heterocyclic skeleton in a monomer unit is preferably a narrow band gap polymer. A narrow band gap polymer is a polymer with a small energy difference (band gap) between the highest occupied orbital (HOMO) level and the lowest unoccupied orbital (LUMO) level. It is a polymer having both a high organic group and a high acceptor organic group. For example, the cyclopentadithiophenediyl group and the benzodithiophenediyl group exemplified above are heterocyclic groups having a relatively high donor property, and the thienothiophenediyl group is a heterocyclic group having a relatively high acceptor property. May be combined into one monomer unit. The narrow band gap polymer can absorb light in a wide wavelength region from the ultraviolet region to a long wavelength region of 600 nm or more in the sunlight spectrum. Therefore, by including a narrow band gap polymer in the photoelectric conversion layer, it is possible to produce an organic solar cell excellent in light utilization efficiency.

π電子共役重合体は、そのポリマー主鎖に、置換されていてもよいアルキル基、アルコキシ基、アリール基、ヘテロアリール基、アルキルカルボニル基及びアルキルオキシカルボニル基から選ばれる少なくとも一つの側鎖を有することが好ましい。側鎖とは、π電子共役重合体を構成する主鎖から枝分かれしている炭素を有する置換基をいう。側鎖を有することにより、π電子共役重合体の有機溶媒に対する溶解度が向上し、光電変換層の形成に有利である。特に、炭素数3〜20のアルキル基、アルコキシ基またはアルキルカルボニル基を有するものが好ましい。また、これらの側鎖はさらに、ハロゲン原子、水酸基、アミノ基、チオール基、シリル基、アルコキシ基、エステル基、アリール基またはヘテロアリール基で置換されていてもよい。   The π-electron conjugated polymer has at least one side chain selected from an optionally substituted alkyl group, alkoxy group, aryl group, heteroaryl group, alkylcarbonyl group, and alkyloxycarbonyl group in the polymer main chain. It is preferable. The side chain refers to a substituent having carbon branched from the main chain constituting the π-electron conjugated polymer. By having a side chain, the solubility of the π-electron conjugated polymer in an organic solvent is improved, which is advantageous for forming a photoelectric conversion layer. In particular, those having an alkyl group having 3 to 20 carbon atoms, an alkoxy group or an alkylcarbonyl group are preferred. These side chains may be further substituted with a halogen atom, a hydroxyl group, an amino group, a thiol group, a silyl group, an alkoxy group, an ester group, an aryl group or a heteroaryl group.

前記アルキル基は直鎖状でも分岐鎖状でもよく、具体例としては、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基、n−ドデシル基、n−ヘキサデシル基、イソプロピル基、イソブチル基、sec−ブチル基、tert−ブチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基、イソヘキシル基、2−エチルヘキシル基、3−ヘプチル基、3,7−ジメチルオクチル基、2−ブチルオクチル基などが挙げられる。   The alkyl group may be linear or branched, and specific examples thereof include n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n -Nonyl group, n-decyl group, n-dodecyl group, n-hexadecyl group, isopropyl group, isobutyl group, sec-butyl group, tert-butyl group, isopentyl group, neopentyl group, tert-pentyl group, isohexyl group, 2 -Ethylhexyl group, 3-heptyl group, 3,7-dimethyloctyl group, 2-butyloctyl group, etc. are mentioned.

前記アルコキシ基は直鎖状でも分岐鎖状でもよく、具体例としては、n−プロピルオキシ基、n−ブチルオキシ基、n−ペンチルオキシ基、n−ヘキシルオキシ基、n−ヘプチルオキシ基、n−オクチルオキシ基、n−ノニルオキシ基、n−デシルオキシ基、n−ドデシルオキシ基、n−ヘキサデシルオキシ基、イソプロピルオキシ基、イソブチルオキシ基、sec−ブチルオキシ基、tert−ブチルオキシ基、イソペンチルオキシ基、ネオペンチルオキシ基、tert−ペンチルオキシ基、イソヘキシルオキシ基、2−エチルヘキシルオキシ基、3−ヘプチルオキシ基、3,7−ジメチルオクチルオキシ基、2−ブチルオクチルオキシ基などが挙げられる。   The alkoxy group may be linear or branched, and specific examples thereof include n-propyloxy group, n-butyloxy group, n-pentyloxy group, n-hexyloxy group, n-heptyloxy group, n- Octyloxy group, n-nonyloxy group, n-decyloxy group, n-dodecyloxy group, n-hexadecyloxy group, isopropyloxy group, isobutyloxy group, sec-butyloxy group, tert-butyloxy group, isopentyloxy group, Neopentyloxy group, tert-pentyloxy group, isohexyloxy group, 2-ethylhexyloxy group, 3-heptyloxy group, 3,7-dimethyloctyloxy group, 2-butyloctyloxy group and the like can be mentioned.

前記アルキルカルボニル基としては、前記のアルキル基にカルボニル基が結合したものが具体例として挙げられる。   Specific examples of the alkylcarbonyl group include those in which a carbonyl group is bonded to the alkyl group.

前記π電子共役重合体の数平均分子量は、特に限定されないが、ホール移動度や力学的物性の観点から、600〜100万g/モルであると好ましく、5000〜50万g/モルであるとより好ましく、1万〜20万g/モルであると最も好ましい。ここで、数平均分子量はゲルパーミエーションクロマトグラフィーによるポリスチレン換算の分子量を意味する。   The number-average molecular weight of the π-electron conjugated polymer is not particularly limited, but is preferably 600 to 1,000,000 g / mol and 5,000 to 500,000 g / mol from the viewpoint of hole mobility and mechanical properties. More preferred is 10,000 to 200,000 g / mol. Here, the number average molecular weight means a molecular weight in terms of polystyrene by gel permeation chromatography.

前記π電子共役重合体はランダム共重合体、ブロック共重合体、スター型重合体、グラフト共重合体のいずれの構造の重合体であってもよい。これらの中でランダム共重合体及びブロック共重合体が、モルフォロジ制御の観点からより好ましく、特にブロック共重合体が好ましい。ブロック共重合体の連結構造は、特に限定されるものではない。2種類の共役重合体ブロックを含有する場合は、例えば、A−B型ジブロック共重合体、A−B−A型トリブロック共重合体、A−B−A−B型テトラブロック共重合体、A−B−A−B−A型ペンタブロック共重合体などが挙げられる。3種類の共役重合体ブロックを含有する場合は、A−B−C型トリブロック共重合体、A−B−A−C型テトラブロック共重合体などが挙げられる。   The π-electron conjugated polymer may be a polymer having any structure of a random copolymer, a block copolymer, a star polymer, and a graft copolymer. Among these, a random copolymer and a block copolymer are more preferable from the viewpoint of morphology control, and a block copolymer is particularly preferable. The connection structure of the block copolymer is not particularly limited. In the case of containing two kinds of conjugated polymer blocks, for example, an AB type diblock copolymer, an AB type triblock copolymer, an AB type AB block tetrablock copolymer And A-B-A-B-A type pentablock copolymer. In the case of containing three types of conjugated polymer blocks, examples include an ABC type triblock copolymer and an ABAC type tetrablock copolymer.

ブロック共重合体の場合、共役ブロック共重合体の結合様式は特に制限されるものではない。結合様式としては、共役重合体ブロックの末端同士が結合したリニアな共役ブロック共重合体や、共役重合体ブロックの末端と共役重合体ブロックの末端以外とが結合したT型の共役ブロック共重合体であってもよい。また結合部位は、π共役で連結されていてもよく、非共役構造で結合されていてもよい。   In the case of a block copolymer, the bonding mode of the conjugated block copolymer is not particularly limited. As the bonding mode, a linear conjugated block copolymer in which the ends of the conjugated polymer block are bonded to each other, or a T-type conjugated block copolymer in which the end of the conjugated polymer block is bonded to other than the end of the conjugated polymer block. It may be. The binding sites may be linked by π conjugation or may be bound by a non-conjugated structure.

ブロック共重合体を製造する第一の方法としては、各ブロックを構成する少なくとも2種類の共役重合体ブロック、例えば共役重合体ブロックA及び共役重合体ブロックBを別々に合成しておき、それらを連結する方法(以下、「連結法」と称することがある)がある。第二の方法としては、擬リビング重合により共役重合体ブロックA及び共役重合体ブロックBを逐次重合する方法(以下、「逐次重合法」と称することがある)がある。第三の方法としては、共役重合体ブロックA存在下に共役ブロックBを重合する方法(以下、「マクロイニシエーター法」と称することがある)がある。連結法、逐次重合及びマクロイニシエーター法は、合成するπ電子共役重合体によって最適な方法が使用できる。   As a first method for producing a block copolymer, at least two kinds of conjugated polymer blocks constituting each block, for example, conjugated polymer block A and conjugated polymer block B are synthesized separately, There is a method of connection (hereinafter sometimes referred to as “connection method”). As a second method, there is a method in which the conjugated polymer block A and the conjugated polymer block B are sequentially polymerized by pseudo-living polymerization (hereinafter sometimes referred to as “sequential polymerization method”). As a third method, there is a method of polymerizing the conjugated block B in the presence of the conjugated polymer block A (hereinafter sometimes referred to as “macroinitiator method”). As the linking method, sequential polymerization, and macroinitiator method, an optimum method can be used depending on the π-electron conjugated polymer to be synthesized.

電子受容性有機半導体としては、フラーレンまたはフラーレン誘導体が好ましい。好適に用いられるフラーレン誘導体は、C60、C70、C76、C78、C82、C84、C90、C94を始めとする無置換のものと、[6,6]−フェニルC61ブチリックアシッドメチルエステル([6,6]−C61−PCBM)、[5,6]−フェニルC61ブチリックアシッドメチルエステル、[6,6]−フェニルC61ブチリックアシッドn−ブチルエステル、[6,6]−フェニルC61ブチリックアシッドi−ブチルエステル、[6,6]−フェニルC61ブチリックアシッドヘキシルエステル、[6,6]−フェニルC61ブチリックアシッドドデシルエステル、[6,6]−ジフェニルC62ビス(ブチリックアシッドメチルエステル)([6,6]−C62−bis−PCBM)、[6,6]−フェニルC71ブチリックアシッドメチルエステル([6,6]−C71−PCBM)をはじめとする置換誘導体などが挙げられる。 As the electron-accepting organic semiconductor, fullerene or a fullerene derivative is preferable. Suitable fullerene derivatives include unsubstituted ones such as C 60 , C 70 , C 76 , C 78 , C 82 , C 84 , C 90 , C 94 and [6,6] -phenyl C 61. butyric acid methyl ester ([6,6] -C 61 -PCBM) , [5,6] - phenyl C 61 butyric acid methyl ester, [6,6] - phenyl C 61 butyric acid n- butyl ester, [6,6] -phenyl C 61 butyric acid i-butyl ester, [6,6] -phenyl C 61 butyric acid hexyl ester, [6,6] -phenyl C 61 butyric acid dodecyl ester, [6 6] - diphenyl C 62 bis (butyric acid methyl ester) ([6,6] -C 62 -bis -PCBM), [6,6 - and substituted derivatives including phenyl C 71 butyric acid methyl ester ([6,6] -C 71 -PCBM) and the like.

前記フラーレン誘導体は、単独またはそれらの混合物として用いることができるが、有機溶媒に対する溶解性の観点から、[6,6]−C61−PCBM、[6,6]−C62−bis−PCBM)、[6,6]−C71−PCBMが好適に用いられる。 The fullerene derivatives can be used alone or as a mixture thereof, but [6,6] -C 61 -PCBM, [6,6] -C 62 -bis-PCBM) from the viewpoint of solubility in organic solvents. [6,6] -C 71 -PCBM is preferably used.

本発明の光電変換素子の製造方法は、前記π電子共役重合体及び前記電子受容性有機半導体を有機溶媒に溶解させ、有機半導体溶液を得る工程(A)、該有機半導体溶液に、SP値が18.1以上26.5以下の範囲内である前記π電子共役重合体の貧溶媒を少なくとも2種添加する工程(B)、及び、正極と負極との間に、工程(B)で得られた有機半導体溶液を塗布法により製膜して、前記光電変換層を形成する工程(C)、を含むことを特徴とする。以下、それぞれの工程について述べる。   In the method for producing a photoelectric conversion element of the present invention, the π-electron conjugated polymer and the electron-accepting organic semiconductor are dissolved in an organic solvent to obtain an organic semiconductor solution (A), and the organic semiconductor solution has an SP value. The step (B) of adding at least two poor solvents for the π-electron conjugated polymer within the range of 18.1 to 26.5, and the step (B) between the positive electrode and the negative electrode. A step (C) of forming the photoelectric conversion layer by forming the organic semiconductor solution into a film by a coating method. Hereinafter, each process will be described.

前記工程(A)において使用される有機溶媒は、π電子共役重合体及び電子受容性有機半導体の大部分が溶解する溶媒であれば特に限定されない。溶媒としては、具体的に、ジエチルエーテル、テトラヒドロフラン、ジイソプロピルエーテル、ジオキサン、ジメトキシエタン、ジブチルエーテルなどのエーテル類;メチレンクロライド、クロロホルムなどのハロゲン溶媒;ベンゼン、トルエン、オルトキシレン、メタキシレン、クロロベンゼン、ブロモベンゼン、ヨードベンゼン、オルトジクロロベンゼン、ピリジンなどの芳香族系溶媒などが挙げられる。これらの溶媒は単独で用いてもよく、2種類以上混合して用いてもよいが、π電子共役重合体及び電子受容性有機半導体の両方の溶解度が高いオルトジクロロベンゼン、クロロベンゼン、ブロモベンゼン、ヨードベンゼン、クロロホルム、オルトキシレン、及びこれらの混合物が好ましい。特に好ましくは、オルトジクロロベンゼン、クロロベンゼン、クロロホルム及びこれらの混合物である。   The organic solvent used in the step (A) is not particularly limited as long as it is a solvent in which most of the π-electron conjugated polymer and the electron-accepting organic semiconductor are dissolved. Specific examples of the solvent include ethers such as diethyl ether, tetrahydrofuran, diisopropyl ether, dioxane, dimethoxyethane, and dibutyl ether; halogen solvents such as methylene chloride and chloroform; benzene, toluene, orthoxylene, metaxylene, chlorobenzene, and bromo. Aromatic solvents such as benzene, iodobenzene, orthodichlorobenzene, pyridine and the like can be mentioned. These solvents may be used singly or in combination of two or more, but ortho-dichlorobenzene, chlorobenzene, bromobenzene, iodo having high solubility of both the π-electron conjugated polymer and the electron-accepting organic semiconductor. Benzene, chloroform, ortho-xylene, and mixtures thereof are preferred. Particularly preferred are orthodichlorobenzene, chlorobenzene, chloroform and mixtures thereof.

π電子共役重合体及び電子受容性有機半導体を前記有機溶媒に溶解させた後、混合して有機半導体溶液を得ることができる。混合方法は、特に限定されるものではなく、例えば、所望の比率で溶媒に添加した後、加熱、撹拌、超音波照射などの方法を1種または複数種組み合わせて溶媒中に溶解・混合させる方法が挙げられる。   The π-electron conjugated polymer and the electron-accepting organic semiconductor are dissolved in the organic solvent and then mixed to obtain an organic semiconductor solution. The mixing method is not particularly limited. For example, after adding to a solvent in a desired ratio, a method of heating, stirring, ultrasonic irradiation or the like is used in one or a combination of a plurality of methods to dissolve and mix in the solvent. Is mentioned.

有機半導体溶液中における前記π電子共役重合体及び電子受容性有機半導体の含有割合は、π電子共役重合体100質量部に対して、電子受容性有機半導体が10〜1000質量部であると好ましく、50〜500質量部であるとより好ましい。また、π電子共役重合体と電子受容性有機半導体との含有量の和(溶質量)は、前記有機溶媒の100質量部に対して0.1〜50質量部であることが好ましく、0.1〜30質量部であることがより好ましく、0.5〜20質量部であることがさらに好ましい。   The content ratio of the π electron conjugated polymer and the electron accepting organic semiconductor in the organic semiconductor solution is preferably 10 to 1000 parts by mass of the electron accepting organic semiconductor with respect to 100 parts by mass of the π electron conjugated polymer. More preferably, it is 50-500 mass parts. Moreover, it is preferable that the sum (solution mass) of content of the π-electron conjugated polymer and the electron-accepting organic semiconductor is 0.1 to 50 parts by mass with respect to 100 parts by mass of the organic solvent. The amount is more preferably 1 to 30 parts by mass, and further preferably 0.5 to 20 parts by mass.

前記工程(B)において使用される貧溶媒は、SP値が18.1以上26.5以下の範囲内の溶媒である。本発明においてSP値とは、溶解度パラメーターを指し、物質に固有の値である。本発明では、SP値は“Polymer Hand Book (4th) Edition, (1999)、Wiley-Interscience”に記載の数値を用いた。SP値は実験的に測定することや、分子構造を元に経験的な近似を用いて推算することが可能である。実験的に測定する手法としては、例えば、蒸発詮熱から推算する方法、表面張力から推算する方法、屈折率から推算する方法が挙げられる。また、分子構造を元に経験的な近似を用いて推算する手法としては、例えば、Bicerano法、Hildebrand法、Small法、Fedors法、Van Krevelen法、Hansen法、Hoy法、Ascadskii法、沖津法などが挙げられる。前記貧溶媒のSP値が“Polymer Hand Book (4th) Edition, (1999)、Wiley-Interscience”に記載のない場合、これらいずれの方法を用いて算出しても良いが、簡便且つその有用性が実証されているという観点から、Fedors法を用いて算出することが好ましい。その場合、SP値の単位はMPa1/2である。 The poor solvent used in the step (B) is a solvent having an SP value in the range of 18.1 to 26.5. In the present invention, the SP value refers to a solubility parameter and is a value unique to a substance. In the present invention, the SP value is a numerical value described in “Polymer Hand Book (4th) Edition, (1999), Wiley-Interscience”. The SP value can be measured experimentally or estimated using empirical approximation based on the molecular structure. Examples of the experimental measurement method include a method of estimating from the evaporation heat, a method of estimating from the surface tension, and a method of estimating from the refractive index. In addition, as a method of estimating using empirical approximation based on the molecular structure, for example, Bicerano method, Hildebrand method, Small method, Fedors method, Van Krevelen method, Hansen method, Hoy method, Ascadskii method, Okitsu method, etc. Is mentioned. When the SP value of the poor solvent is not described in “Polymer Hand Book (4th) Edition, (1999), Wiley-Interscience”, it may be calculated using any of these methods, but it is simple and useful. From the viewpoint of being proven, it is preferable to calculate using the Fedors method. In that case, the unit of SP value is MPa 1/2 .

本発明の工程(B)において使用される貧溶媒は、25℃におけるπ電子共役重合体の溶解度が1.0mg/mL以下であるものが好ましい。また、工程(A)で用いられる有機溶媒よりも沸点が高いものであることがより好ましい。このような貧溶媒としては、例えば、1,8−ジヨードオクタン、アニソール、安息香酸メチル、アニリン、1,2−ジブロモエタン、モルホリン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等が挙げられる。これらの中でも、少なくとも1種の貧溶媒は1,8−ジヨードオクタンであることが好ましい。また、少なくとも他の1種が、アニソール、安息香酸メチル、アニリン、1,2−ジブロモエタン、モルホリン、N,N−ジメチルホルムアミド又はN,N−ジメチルアセトアミドであることがより好ましく、安息香酸メチル、N,N−ジメチルホルムアミドまたはN,N−ジメチルアセトアミドであることがさらに好ましい。   The poor solvent used in the step (B) of the present invention is preferably one in which the solubility of the π-electron conjugated polymer at 25 ° C. is 1.0 mg / mL or less. Moreover, it is more preferable that it is a thing whose boiling point is higher than the organic solvent used at a process (A). Examples of such poor solvents include 1,8-diiodooctane, anisole, methyl benzoate, aniline, 1,2-dibromoethane, morpholine, N, N-dimethylformamide, N, N-dimethylacetamide and the like. Can be mentioned. Among these, at least one poor solvent is preferably 1,8-diiodooctane. More preferably, at least the other one is anisole, methyl benzoate, aniline, 1,2-dibromoethane, morpholine, N, N-dimethylformamide or N, N-dimethylacetamide, methyl benzoate, More preferred is N, N-dimethylformamide or N, N-dimethylacetamide.

前記で例示した各貧溶媒のSP値は次の通りである;1,8−ジヨードオクタン(20.4)、アニソール(19.4)、安息香酸メチル(21.5)、アニリン(21.1)、1,2−ジブロモエタン(21.3)、モルホリン(22.1)、N,N−ジメチルホルムアミド(24.9)、N,N−ジメチルアセトアミド(22.1)。   The SP value of each of the poor solvents exemplified above is as follows: 1,8-diiodooctane (20.4), anisole (19.4), methyl benzoate (21.5), aniline (21. 1), 1,2-dibromoethane (21.3), morpholine (22.1), N, N-dimethylformamide (24.9), N, N-dimethylacetamide (22.1).

有機光電変換層に用いるπ電子共役重合体に求められる機能の一つとして、高いホール移動度が挙げられる。ホールはπ電子共役重合体がπ平面上に重なり合って形成されるπ−πスタック構造を通じて伝導する。一般的に、強く相互作用し合うπ−πスタック構造の方が、ホールが移動しやすく、その相互作用は重なり合うπ電子共役重合体の最低被占有軌道(HOMO)の重なり積分が大きいほど大きい。即ち、π電子共役重合体のホール移動度を向上させるための一つの手段として、結晶性もしくは凝集性を高める方向に分子構造を変化させることが有効である。しかしながら、高い結晶性もしくは凝集性を有するπ電子共役重合体は、概してフラーレン誘導体等の電子受容性有機半導体と相溶しにくい。その理由として、π電子共役重合体は、その結晶性や凝集性を高めるために、長鎖アルキル基の導入や、フッ素等のSP値を下げる置換基の導入が行われる。これらはいずれもSP値を下げる方向にπ電子共役重合体の化学構造を変化させるが、一般にπ電子共役重合体よりもフラーレン誘導体(SP値:約21)の方が高いSP値を有するため、このような化学修飾を施す事により、両者のSP値の差はより大きくなり、結果としてπ電子共役重合体とフラーレン誘導体は相溶しにくくなるからである。その結果、高い結晶性もしくは高い凝集性を狙った設計に基づいて得られたπ電子共役重合体は、p/n相分離ドメインが肥大化し、100nm以上のp/n相分離構造を形成するため、電流の低下が見られ高い変換効率が得られないと考えられる。   One of the functions required for the π-electron conjugated polymer used in the organic photoelectric conversion layer is high hole mobility. The holes are conducted through a π-π stack structure formed by overlapping π electron conjugated polymers on the π plane. In general, a strongly interacting π-π stack structure facilitates movement of holes, and the interaction increases as the overlap integral of the lowest occupied orbitals (HOMO) of overlapping π-electron conjugated polymers increases. That is, as one means for improving the hole mobility of the π-electron conjugated polymer, it is effective to change the molecular structure in the direction of improving crystallinity or cohesion. However, a π-electron conjugated polymer having high crystallinity or aggregation is generally difficult to be compatible with an electron-accepting organic semiconductor such as a fullerene derivative. The reason is that in the π-electron conjugated polymer, a long-chain alkyl group or a substituent that lowers the SP value, such as fluorine, is introduced in order to improve the crystallinity and cohesion. These all change the chemical structure of the π-electron conjugated polymer in the direction of decreasing the SP value, but generally the fullerene derivative (SP value: about 21) has a higher SP value than the π-electron conjugated polymer. By applying such chemical modification, the difference in SP value between the two becomes larger, and as a result, the π-electron conjugated polymer and the fullerene derivative are hardly compatible. As a result, the π-electron conjugated polymer obtained based on the design aiming at high crystallinity or high cohesiveness has an enlarged p / n phase separation domain and forms a p / n phase separation structure of 100 nm or more. It is considered that high conversion efficiency cannot be obtained due to a decrease in current.

本発明の製造方法においては、π電子共役重合体と電子受容性有機半導体とを混合する際に、SP値が18.1以上26.5以下の範囲内にあるπ電子共役重合体の貧溶媒を少なくとも2種添加することにより、上記問題を解決することができる。すなわち、特定のSP値の貧溶媒を2種以上添加することにより、SP値差が大きくp/n相分離ドメインが肥大化しやすいπ電子共役重合体と電子受容性有機半導体との組み合わせにおいても、強制的にこれらを相溶させ、得られる光電変換層のモルフォロジを微細化することができる。この働きにより、本発明の製造方法で得られる光電変換素子は、高い変換効率を達成できる。本発明の製造方法は、特に狭バンドギャップポリマーを含む光電変換層を有する光電変換素子の製造において効果的である。本発明の製造方法において、電子受容性有機半導体としてフラーレン誘導体を用いる場合、π電子共役重合体のSP値は、特に限定されるものではないが、好ましくは16.0〜21.5であり、より好ましくは16.3〜21.4である。   In the production method of the present invention, when the π-electron conjugated polymer and the electron-accepting organic semiconductor are mixed, the poor solvent for the π-electron conjugated polymer having an SP value in the range of 18.1 to 26.5. The above problem can be solved by adding at least two kinds. That is, by adding two or more poor solvents having a specific SP value, even in a combination of a π-electron conjugated polymer and an electron-accepting organic semiconductor, in which the SP value difference is large and the p / n phase separation domain is likely to be enlarged, These are compulsorily compatibilized, and the morphology of the obtained photoelectric conversion layer can be refined. With this function, the photoelectric conversion element obtained by the production method of the present invention can achieve high conversion efficiency. The production method of the present invention is particularly effective in the production of a photoelectric conversion element having a photoelectric conversion layer containing a narrow band gap polymer. In the production method of the present invention, when a fullerene derivative is used as the electron-accepting organic semiconductor, the SP value of the π-electron conjugated polymer is not particularly limited, but is preferably 16.0 to 21.5, More preferably, it is 16.3 to 21.4.

本発明の製造方法において、用いられる2種以上の貧溶媒は、各々のSP値差が0.1以上あるものが好ましい。SP値差がほとんどない或いは全くない場合には、上記のモルフォロジ微細化効果が十分に得られない場合がある。好ましい貧溶媒の組み合わせは、特に限定されるものではないが、例えば、1,8−ジヨードオクタンとアニソール、1,8−ジヨードオクタンと安息香酸メチル、1,8−ジヨードオクタンとアニリン、1,8−ジヨードオクタンと1,2−ジブロモエタン、1,8−ジヨードオクタンとモルホリン、1,8−ジヨードオクタンとN,N−ジメチルホルムアミド、1,8−ジヨードオクタンとN,N−ジメチルアセトアミド等が挙げられる。   In the production method of the present invention, the two or more poor solvents used preferably have a difference in SP value of 0.1 or more. When there is little or no difference in SP value, the above morphological refinement effect may not be sufficiently obtained. Preferred antisolvent combinations are not particularly limited, and examples thereof include 1,8-diiodooctane and anisole, 1,8-diiodooctane and methyl benzoate, 1,8-diiodooctane and aniline, 1,8-diiodooctane and 1,2-dibromoethane, 1,8-diiodooctane and morpholine, 1,8-diiodooctane and N, N-dimethylformamide, 1,8-diiodooctane and N, N-dimethylacetamide etc. are mentioned.

前記貧溶媒の添加量の合計は、一概に定めることは困難であるが、有機半導体溶液の0.1vol%〜50.0vol%の範囲が好ましい。より好ましくは0.1vol%〜40.0vol%であり、さらに好ましくは0.1vol%〜30.0vol%であり、特に好ましくは0.5vol%〜30.0vol%である。添加量の合計が50.0vol%より多すぎると、π電子共役重合体が十分に溶解せず光電変換活性層の製膜不良が発生したり、π電子共役重合体と電子受容性有機半導体のマクロ相分離が発生する場合がある。前記2種以上の貧溶媒の各々の添加量は特に制限されるものではないが、各成分の含有量の下限が、貧溶媒の全体量を100vol%とした場合に、5vol%以上であることが好ましい。例えば、貧溶媒を2種用いる場合、各々の貧溶媒の体積比は、5:95〜95:5であることが好ましく、20:80〜80:20であることがより好ましい。   The total addition amount of the poor solvent is difficult to determine in general, but is preferably in the range of 0.1 vol% to 50.0 vol% of the organic semiconductor solution. More preferably, it is 0.1 vol%-40.0 vol%, More preferably, it is 0.1 vol%-30.0 vol%, Most preferably, it is 0.5 vol%-30.0 vol%. When the total amount of addition is more than 50.0 vol%, the π-electron conjugated polymer is not sufficiently dissolved, resulting in poor film formation of the photoelectric conversion active layer, or between the π-electron conjugated polymer and the electron-accepting organic semiconductor. Macro phase separation may occur. The addition amount of each of the two or more poor solvents is not particularly limited, but the lower limit of the content of each component is 5 vol% or more when the total amount of the poor solvent is 100 vol%. Is preferred. For example, when two poor solvents are used, the volume ratio of each poor solvent is preferably 5:95 to 95: 5, and more preferably 20:80 to 80:20.

前記貧溶媒を有機半導体溶液に添加後、当該有機半導体溶液は、撹拌、超音波照射など行って貧溶媒を拡散させてもよい。また、工程(A)及び工程(B)は、同時に行ってもよい。例えば、少なくとも2種の貧溶媒を予め加えた有機溶媒に、π電子共役重合体及び電子受容性有機半導体を加え、溶解させて有機半導体溶液を作製してもよい。   After the poor solvent is added to the organic semiconductor solution, the organic semiconductor solution may be diffused by performing stirring, ultrasonic irradiation, or the like. Moreover, you may perform a process (A) and a process (B) simultaneously. For example, an organic semiconductor solution may be prepared by adding and dissolving a π-electron conjugated polymer and an electron-accepting organic semiconductor in an organic solvent to which at least two kinds of poor solvents have been added in advance.

工程(A)及び工程(B)で得られた有機半導体溶液には、本発明の効果を阻害しない範囲において、界面活性剤、バインダー樹脂、フィラーなどの他の添加物成分を含んでいてもよい。これら第3成分の含有量は、光電変換素子の性能の観点から、π電子共役重合体及び電子受容性有機半導体の総和の質量に対して、30質量%以下であると好ましく、10質量%以下であるとより好ましい。   The organic semiconductor solution obtained in the step (A) and the step (B) may contain other additive components such as a surfactant, a binder resin, and a filler as long as the effects of the present invention are not impaired. . The content of these third components is preferably 30% by mass or less with respect to the total mass of the π-electron conjugated polymer and the electron-accepting organic semiconductor from the viewpoint of the performance of the photoelectric conversion element, and is 10% by mass or less. Is more preferable.

前記工程(C)において、工程(B)で得られた有機半導体溶液を塗布法により製膜する方法としては、例えば、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、スロットダイコート法、バーコート法、ロールコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ノズルコート法、キャピラリーコート法など、公知の手法を用いることができる。塗布法により製膜後、乾燥させることで光電変換層を形成することができる。   In the step (C), examples of the method for forming the organic semiconductor solution obtained in the step (B) by coating include spin coating, casting, micro gravure coating, gravure coating, and slot die coating. Well-known methods such as a bar coating method, a roll coating method, a dip coating method, a spray coating method, a screen printing method, a flexographic printing method, an offset printing method, an ink jet printing method, a nozzle coating method, and a capillary coating method can be used. . A photoelectric conversion layer can be formed by drying after film formation by a coating method.

光電変換層を形成する際には、必要に応じて熱又は溶媒アニールを行ってもよい。アニール処理を施すことで、光電変換層の材料の結晶性と、π電子共役重合体と電子受容性有機半導体との相分離構造を変化させ、光電変換特性に優れる素子を得ることができる。   When forming the photoelectric conversion layer, heat or solvent annealing may be performed as necessary. By performing the annealing treatment, the crystallinity of the material of the photoelectric conversion layer and the phase separation structure between the π-electron conjugated polymer and the electron-accepting organic semiconductor can be changed, and an element having excellent photoelectric conversion characteristics can be obtained.

前記の熱アニールは、前記光電変換層を製膜した基板を所望の温度で保持して行う。熱アニールは減圧下又は不活性ガス雰囲気下で行ってもよく、好ましい温度は40℃〜150℃、より好ましくは70℃〜150℃である。温度が低いと十分な効果が得られず、温度が高すぎると光電変換層が酸化及び/又は分解し、十分な光電変換特性を得ることができない。   The thermal annealing is performed by holding the substrate on which the photoelectric conversion layer is formed at a desired temperature. Thermal annealing may be performed under reduced pressure or in an inert gas atmosphere, and a preferable temperature is 40 ° C to 150 ° C, more preferably 70 ° C to 150 ° C. If the temperature is low, a sufficient effect cannot be obtained, and if the temperature is too high, the photoelectric conversion layer is oxidized and / or decomposed, and sufficient photoelectric conversion characteristics cannot be obtained.

前記の溶媒アニールは、前記光電変換層を製膜した基板を溶媒雰囲気下で所望の時間保持することで行う。このときのアニール溶媒は特に限定されないが、前記光電変換層に対する良溶媒であることが好ましい。溶媒アニールは、光電変換層を構成する有機半導体組成物を、基板上に塗布して、当該組成物中に溶媒が残存した状態で行ってもよい。   The solvent annealing is performed by holding the substrate on which the photoelectric conversion layer is formed in a solvent atmosphere for a desired time. The annealing solvent at this time is not particularly limited, but is preferably a good solvent for the photoelectric conversion layer. The solvent annealing may be performed in a state where the organic semiconductor composition constituting the photoelectric conversion layer is applied onto the substrate and the solvent remains in the composition.

光電変換層の膜厚は、目的とする用途により一概に定めることは困難であるが、通常、1nm〜1000nmであり、好ましくは2nm〜1000nmであり、より好ましくは5nm〜500nmであり、さらに好ましくは20nm〜300nmである。膜厚が薄すぎると光が十分に吸収されず、逆に厚すぎるとキャリアが電極へ到達し難くなり、高い変換効率が得られない。   Although it is difficult to determine the film thickness of the photoelectric conversion layer according to the intended application, it is usually 1 nm to 1000 nm, preferably 2 nm to 1000 nm, more preferably 5 nm to 500 nm, and still more preferably. Is 20 nm to 300 nm. If the film thickness is too thin, the light is not sufficiently absorbed. Conversely, if the film thickness is too thick, it becomes difficult for the carriers to reach the electrode, and high conversion efficiency cannot be obtained.

前記工程(C)において用いられる電極材料としては、一方の電極には仕事関数の大きな導電性素材、もう一方の電極には仕事関数の小さな導電性素材を使用することが好ましい。仕事関数の大きな導電性素材を用いた電極は正極となる。この仕事関数の大きな導電性素材としては金、白金、クロム、ニッケルなどの金属のほか、透明性を有するインジウム、スズなどの金属酸化物、複合金属酸化物(インジウムスズ酸化物(ITO)、インジウム亜鉛酸化物(IZO)、フッ素ドープ酸化スズ(FTO)など)が好ましく用いられる。ここで、正極に用いられる導電性素材は、光電変換層とオーミック接合するものであることが好ましい。   As the electrode material used in the step (C), it is preferable to use a conductive material having a high work function for one electrode and a conductive material having a low work function for the other electrode. An electrode using a conductive material having a large work function is a positive electrode. Conductive materials with a large work function include metals such as gold, platinum, chromium and nickel, transparent metal oxides such as indium and tin, composite metal oxides (indium tin oxide (ITO), indium Zinc oxide (IZO), fluorine-doped tin oxide (FTO), etc.) are preferably used. Here, the conductive material used for the positive electrode is preferably an ohmic junction with the photoelectric conversion layer.

仕事関数の小さな導電性素材を用いた電極は負極となるが、この仕事関数の小さな導電性素材としては、アルカリ金属やアルカリ土類金属、具体的にはリチウム、マグネシウム、カルシウムが使用される。また、錫や銀、アルミニウムも好ましく用いられる。さらに、前記の金属からなる合金や前記の金属の積層体からなる電極も好ましく用いられる。また、負極と後述する電子輸送層との界面にフッ化リチウムやフッ化セシウムなどの金属フッ化物を導入することで、取り出し電流を向上させることも可能である。ここで、負極に用いられる導電性素材は、光電変換層とオーミック接合するものであることが好ましい。さらに、電子輸送層を用いた場合においては、負極に用いられる導電性素材は電子輸送層とオーミック接合するものであることが好ましい。なお、本発明において電極層とは電極または下記に説明する正孔輸送層や電子輸送層や無機層を備える電極を意味する。   An electrode using a conductive material having a low work function serves as a negative electrode. As the conductive material having a low work function, alkali metal or alkaline earth metal, specifically, lithium, magnesium, or calcium is used. Tin, silver, and aluminum are also preferably used. Furthermore, an electrode made of an alloy made of the above metal or a laminate of the above metal is also preferably used. Further, it is possible to improve the extraction current by introducing a metal fluoride such as lithium fluoride or cesium fluoride at the interface between the negative electrode and the electron transport layer described later. Here, the conductive material used for the negative electrode is preferably an ohmic junction with the photoelectric conversion layer. Furthermore, when the electron transport layer is used, it is preferable that the conductive material used for the negative electrode is in ohmic contact with the electron transport layer. In the present invention, the electrode layer means an electrode or an electrode provided with a hole transport layer, an electron transport layer, or an inorganic layer described below.

光電変換素子の電極は、正極または負極の何れかに光透過性を有する。電極の光透過性は、光電変換層に入射光が到達して起電力が発生する程度であれば、特に限定されるものではない。電極の厚さは、光透過性や導電性を有する範囲であればよく、電極素材によって異なるが20nm〜300nmが好ましい。なお、一方の電極が光透過性を有する場合、もう一方の電極において導電性を有していれば必ずしも光透過性を有する必要はない。さらに、この電極の厚さは特に限定されるものではない。   The electrode of the photoelectric conversion element has light transmittance in either the positive electrode or the negative electrode. The light transmittance of the electrode is not particularly limited as long as incident light reaches the photoelectric conversion layer and electromotive force is generated. The thickness of an electrode should just be the range which has a light transmittance and electroconductivity, and although it changes with electrode materials, 20 nm-300 nm are preferable. Note that in the case where one electrode has light transparency, the light transmission property is not necessarily required as long as the other electrode has conductivity. Furthermore, the thickness of this electrode is not particularly limited.

本発明の製造方法で得られる光電変換素子は、基板上に作製することが好ましい。この基板は、電極を形成し、光電変換層を形成する際に変化しないものであればよい。基板の材料としては、例えば、無アルカリガラス、石英ガラスなどの無機材料、アルミニウムなどの金属フィルム、またポリエステル、ポリカーボネート、ポリオレフィン、ポリアミド、ポリイミド、ポリフェニレンスルフィド、ポリパラキシレン、エポキシ樹脂やフッ素系樹脂などの有機材料から任意の方法によって作製されたフィルムや板が使用可能である。不透明な基板を用いる場合には、反対の電極即ち、基板から遠い方の電極が透明または半透明でなければならない。基板の膜厚は特に限定されないが、通常1μm〜10mmの範囲である。   The photoelectric conversion element obtained by the production method of the present invention is preferably produced on a substrate. This substrate may be any substrate that does not change when an electrode is formed and a photoelectric conversion layer is formed. Examples of substrate materials include inorganic materials such as non-alkali glass and quartz glass, metal films such as aluminum, polyester, polycarbonate, polyolefin, polyamide, polyimide, polyphenylene sulfide, polyparaxylene, epoxy resin, fluorine resin, and the like. A film or plate produced from any organic material by any method can be used. If an opaque substrate is used, the opposite electrode, i.e. the electrode far from the substrate, must be transparent or translucent. Although the film thickness of a board | substrate is not specifically limited, Usually, it is the range of 1 micrometer-10 mm.

基板上の電極層の濡れ性を向上させるため、また光電変換層や正孔輸送層や電子輸送層と基板上の電極との界面密着性を向上させるために、紫外線オゾン処理、コロナ放電処理、プラズマ処理などの物理的な手段により、電極層の表面の洗浄や改質を施すことが好ましい。また、固体基材表面に、シラン系カップリング剤、チタネート系カップリング剤、自己組織化単分子膜などの化学修飾を施す方法も同様に効果的である。   In order to improve the wettability of the electrode layer on the substrate, and to improve the interfacial adhesion between the photoelectric conversion layer, the hole transport layer and the electron transport layer and the electrode on the substrate, ultraviolet ozone treatment, corona discharge treatment, It is preferable to clean or modify the surface of the electrode layer by physical means such as plasma treatment. A method of chemically modifying the surface of the solid substrate such as a silane coupling agent, a titanate coupling agent, or a self-assembled monolayer is also effective.

本発明の光電変換素子の製造方法は、必要に応じて正極と光電変換層との間に正孔輸送層を設ける工程を含んでいてもよい。正孔輸送層を形成する材料としては、ポリチオフェン系π電子共役重合体、ポリ−p−フェニレンビニレン系π電子共役重合体、ポリフルオレン系π電子共役重合体などの導電性高分子や、フタロシアニン(Pc)誘導体(HPc、CuPc、ZnPcなど)、ポルフィリン誘導体などのp型半導体特性を示す低分子有機化合物が好ましく用いられる。特に、ポリチオフェン系π電子共役重合体であるポリエチレンジオキシチオフェン(PEDOT)やPEDOTにポリスチレンスルホネート(PSS)が添加されたものが好ましく用いられる。正孔輸送層を用いる場合においては、前述した正極に用いられる導電性素材は正孔輸送層とオーミック接合するものであることが好ましい。正孔輸送層は5nm〜600nmの厚さが好ましく、より好ましくは20nm〜300nmである。 The manufacturing method of the photoelectric conversion element of this invention may include the process of providing a positive hole transport layer between a positive electrode and a photoelectric converting layer as needed. Examples of the material for forming the hole transport layer include conductive polymers such as polythiophene-based π-electron conjugated polymers, poly-p-phenylene vinylene-based π-electron conjugated polymers, polyfluorene-based π-electron conjugated polymers, phthalocyanine ( Pc) derivatives (H 2 Pc, CuPc, ZnPc, etc.), low molecular organic compounds exhibiting p-type semiconductor properties such as porphyrin derivatives are preferably used. In particular, polyethylenedioxythiophene (PEDOT), which is a polythiophene-based π-electron conjugated polymer, or PEDOT in which polystyrene sulfonate (PSS) is added is preferably used. In the case of using a hole transport layer, the conductive material used for the positive electrode described above is preferably an ohmic junction with the hole transport layer. The hole transport layer preferably has a thickness of 5 nm to 600 nm, more preferably 20 nm to 300 nm.

また、本発明の光電変換素子の製造方法は、必要に応じて負極と光電変換層との間に電子輸送層を設ける工程を含んでいてもよい。電子輸送層を形成する材料としては、バソキュプロイン等のフェナントレン系化合物、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等の電子受容性有機半導体材料、及び酸化チタン、酸化亜鉛、酸化ガリウム等のn型無機酸化物及びフッ化リチウム、フッ化ナトリウム、フッ化セシウム等のアルカリ金属化合物等を用いることができる。また、光電変換層に用いた電子受容性有機半導体材料単体からなる層を用いることもできる。   Moreover, the manufacturing method of the photoelectric conversion element of this invention may include the process of providing an electron carrying layer between a negative electrode and a photoelectric converting layer as needed. The material for forming the electron transport layer includes electron-accepting organic semiconductor materials such as phenanthrene compounds such as bathocuproine, naphthalenetetracarboxylic acid anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, and perylenetetracarboxylic acid diimide , And n-type inorganic oxides such as titanium oxide, zinc oxide, and gallium oxide, and alkali metal compounds such as lithium fluoride, sodium fluoride, and cesium fluoride can be used. Moreover, the layer which consists of an electron-accepting organic-semiconductor material single-piece | unit used for the photoelectric converting layer can also be used.

正極と光電変換層との間に正孔輸送層を作製する場合、例えば溶媒に可溶な導電性高分子の場合には浸漬コーティング法、スプレーコーティング法、インクジェット法、エアロゾルジェット法、スピンコーティング法、ビードコーティング法、ワイヤーバーコーティング法、ブレードコーティング法、ローラーコーティング法、カーテンコーティング法、スリットダイコーター法、グラビアコーター法、スリットリバースコーター法、マイクログラビア法、コンマコーター法などで塗布することができる。フタロシアニン誘導体やポルフィリン誘導体などの低分子有機材料を使用する場合には、真空蒸着機を用いた蒸着法を適用することが好ましい。電子輸送層についても同様にして作製することができる。   When preparing a hole transport layer between the positive electrode and the photoelectric conversion layer, for example, in the case of a conductive polymer soluble in a solvent, a dip coating method, a spray coating method, an inkjet method, an aerosol jet method, a spin coating method Can be applied by bead coating method, wire bar coating method, blade coating method, roller coating method, curtain coating method, slit die coater method, gravure coater method, slit reverse coater method, micro gravure method, comma coater method, etc. . When using a low molecular weight organic material such as a phthalocyanine derivative or a porphyrin derivative, it is preferable to apply a vapor deposition method using a vacuum vapor deposition machine. The electron transport layer can be similarly produced.

また、本発明の光電変換素子の製造方法は、さらに無機層を設ける工程を含んでいてもよい。該無機層に含まれる材料としては、例えば、酸化チタン、酸化スズ、酸化亜鉛、酸化鉄、酸化タングステン、酸化ジルコニウム、酸化ハフニウム、酸化ストロンチウム、酸化インジウム、酸化セリウム、酸化イットリウム、酸化ランタン、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化ガリウム、酸化ニッケル、チタン酸ストロンチウム、チタン酸バリウム、ニオブ酸カリウム、タンタル酸ナトリウムなどの金属酸化物;ヨウ化銀、臭化銀、ヨウ化銅、臭化銅、フッ化リチウムなどの金属ハロゲン化物;硫化亜鉛、硫化チタン、硫化インジウム、硫化ビスマス、硫化カドミウム、硫化ジルコニウム、硫化タンタル、硫化モリブデン、硫化銀、硫化銅、硫化スズ、硫化タングステン、硫化アンチモンなどの金属硫化物;セレン化カドミウム、セレン化ジルコニウム、セレン化亜鉛、セレン化チタン、セレン化インジウム、セレン化タングステン、セレン化モリブデン、セレン化ビスマス、セレン化鉛などの金属セレン化物;テルル化カドミウム、テルル化タングステン、テルル化モリブデン、テルル化亜鉛、テルル化ビスマスなどの金属テルル化物;リン化亜鉛、リン化ガリウム、リン化インジウム、リン化カドミウムなどの金属リン化物;ガリウム砒素、銅−インジウム−セレン化物、銅−インジウム−硫化物、シリコン、ゲルマニウムなどが挙げられ、また、これらの2種以上の混合物であってもよい。混合物としては、例えば酸化亜鉛と酸化スズとの混合物、及び酸化スズと酸化チタンとの混合物などが挙げられる。これら無機層を含める場所は特に限定されないが、正極と負極で挟まれた薄膜のいずれかの場所に含まれている事が好ましい。これらの無機層を形成する方法は特に限定されないが、任意の膜厚を制御する観点から真空蒸着機を用いた蒸着法を適用することが好ましい。   Moreover, the manufacturing method of the photoelectric conversion element of this invention may include the process of providing an inorganic layer further. Examples of the material contained in the inorganic layer include titanium oxide, tin oxide, zinc oxide, iron oxide, tungsten oxide, zirconium oxide, hafnium oxide, strontium oxide, indium oxide, cerium oxide, yttrium oxide, lanthanum oxide, and vanadium oxide. , Metal oxides such as niobium oxide, tantalum oxide, gallium oxide, nickel oxide, strontium titanate, barium titanate, potassium niobate, sodium tantalate; silver iodide, silver bromide, copper iodide, copper bromide, Metal halides such as lithium fluoride; metals such as zinc sulfide, titanium sulfide, indium sulfide, bismuth sulfide, cadmium sulfide, zirconium sulfide, tantalum sulfide, molybdenum sulfide, silver sulfide, copper sulfide, tin sulfide, tungsten sulfide, and antimony sulfide Sulfide; Cadmium selenide Metal selenides such as zirconium selenide, zinc selenide, titanium selenide, indium selenide, tungsten selenide, molybdenum selenide, bismuth selenide, lead selenide; cadmium telluride, tungsten telluride, molybdenum telluride, tellurium Metal tellurides such as zinc phosphide and bismuth telluride; metal phosphides such as zinc phosphide, gallium phosphide, indium phosphide and cadmium phosphide; gallium arsenide, copper-indium selenide, copper-indium sulfide, Examples thereof include silicon and germanium, and a mixture of two or more of these may be used. Examples of the mixture include a mixture of zinc oxide and tin oxide, a mixture of tin oxide and titanium oxide, and the like. Although the place including these inorganic layers is not particularly limited, it is preferable that the inorganic layer is included in any place of the thin film sandwiched between the positive electrode and the negative electrode. Although the method for forming these inorganic layers is not particularly limited, it is preferable to apply a vapor deposition method using a vacuum vapor deposition machine from the viewpoint of controlling an arbitrary film thickness.

本発明の製造方法で得られる光電変換素子は、光電変換機能、光整流機能(photo diode)などを利用した種々の光電変換デバイスへの応用が可能である。例えば、有機太陽電池などの光電池、光センサ、光スイッチ、フォトトランジスタなど電子素子、光メモリなど光記録材に有用である。よって、本発明の光電変換素子の製造方法は、有機薄膜を含有する有機太陽電池や各種光センサ等の製造方法として汎用的に利用可能である。   The photoelectric conversion element obtained by the production method of the present invention can be applied to various photoelectric conversion devices using a photoelectric conversion function, an optical rectification function (photo diode), and the like. For example, it is useful for optical recording materials such as photovoltaic cells such as organic solar cells, optical elements such as optical sensors, optical switches, and phototransistors, and optical memories. Therefore, the manufacturing method of the photoelectric conversion element of this invention can be utilized universally as manufacturing methods, such as an organic solar cell containing an organic thin film, and various optical sensors.

以下、本発明の実施例を詳細に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。   Examples of the present invention will be described in detail below, but the scope of the present invention is not limited to these examples.

本発明の実施例、比較例に用いたπ電子共役重合体、及び共役ブロック共重合体の合成に関する記述を重合例1〜3に記す。本発明の適用内の製造方法を用いて光電変換素子を作製した詳細を実施例1〜4に示す。また、本発明の適用外を比較例1〜10に示す。   The description regarding the synthesis | combination of the (pi) electron conjugated polymer used for the Example of this invention and the comparative example, and the conjugated block copolymer is described in the polymerization examples 1-3. The detail which produced the photoelectric conversion element using the manufacturing method within the application of this invention is shown in Examples 1-4. Comparative examples 1 to 10 show that the present invention is not applicable.

<重合体の精製>
重合体の精製には分取用のGPCカラムを用いて精製を行なった。用いた装置は、日本分析工業株式会社製のRecycling Preparative HPLC LC−908を用いた。なお、カラムの種類は、日本分析工業株式会社製のスチレン系ポリマーカラム 2H−40および2.5H−40を2本直列に接続したものである。また、溶出溶媒はクロロホルムを用いた。
<Purification of polymer>
The polymer was purified using a preparative GPC column. As the apparatus used, Recycling Preparative HPLC LC-908 manufactured by Nippon Analytical Industrial Co., Ltd. was used. In addition, the kind of column connects the two styrene-type polymer columns 2H-40 and 2.5H-40 by Nippon Analysis Industry Co., Ltd. in series. Further, chloroform was used as an elution solvent.

<溶媒のSP値>
以下の実施例及び比較例において、溶媒のSP値は“Polymer Hand Book (4th) Edition, (1999)、Wiley-Interscience”に記載の数値を用いた。
<SP value of solvent>
In the following examples and comparative examples, the SP values of the solvents used were those described in “Polymer Hand Book (4th) Edition, (1999), Wiley-Interscience”.

(重合例1)
下記反応式(1)に従いπ電子共役重合体A1の合成を行った。なお、以降の反応式中、置換基である3−ヘプチル基を3−HepまたはHep−3と略記する。また、以降の反応式中、置換基であるメチル基をMeと略記する。
(Polymerization example 1)
The π-electron conjugated polymer A1 was synthesized according to the following reaction formula (1). In the following reaction formulas, the 3-heptyl group as a substituent is abbreviated as 3-Hep or Hep-3. In the following reaction formulas, a methyl group as a substituent is abbreviated as Me.

Figure 2015026716
Figure 2015026716

窒素雰囲気下、100mL三口フラスコにπ電子共役重合体A1を構成する単量体として、2,6−ビス(トリメチルチン)−4,8−ジドデシルベンゾ[1,2−b:4,5−b’]ジチオフェン(0.74g、0.87mmol)、1−(4,6−ジブロモチエノ[3,4−b]チオフェン−2−イル)−2−エチルヘキサン−1−オン(0.32g、0.75mmol)、DMF(1.1mL)、トルエン(4.3mL)、テトラキス(トリフェニルホスフィン)パラジウム(0)(9.2mg、7.8μmol)を加え、115℃で1時間30分加熱した。次に、末端処理剤として2,5−ジブロモチオフェン(1.84g,7.6mmol)を加え、115℃で8時間加熱した。反応終了後、反応溶液をメタノール(500mL)に注ぎ、析出した固体を濾取し、得られた固体を減圧乾燥することで粗生成物を得た。粗生成物を、ソックスレー抽出機を用いてアセトン(200mL)、ヘキサン(200mL)で洗浄した後に、クロロホルム(200mL)で抽出した。有機層を濃縮乾固し、得られた黒紫色の固体を、クロロホルム(30mL)に溶解させ、メタノール(300mL)で再沈殿した。得られた固体を濾取した後に減圧乾燥することで黒紫色の固体としてπ電子共役重合体A1(0.51g、86%)を得た。   As a monomer constituting the π-electron conjugated polymer A1 in a 100 mL three-necked flask under a nitrogen atmosphere, 2,6-bis (trimethyltin) -4,8-didodecylbenzo [1,2-b: 4,5- b ′] dithiophene (0.74 g, 0.87 mmol), 1- (4,6-dibromothieno [3,4-b] thiophen-2-yl) -2-ethylhexane-1-one (0.32 g, 0 .75 mmol), DMF (1.1 mL), toluene (4.3 mL), tetrakis (triphenylphosphine) palladium (0) (9.2 mg, 7.8 μmol) were added, and the mixture was heated at 115 ° C. for 1 hour 30 minutes. Next, 2,5-dibromothiophene (1.84 g, 7.6 mmol) was added as a terminal treating agent and heated at 115 ° C. for 8 hours. After completion of the reaction, the reaction solution was poured into methanol (500 mL), the precipitated solid was collected by filtration, and the obtained solid was dried under reduced pressure to obtain a crude product. The crude product was washed with acetone (200 mL) and hexane (200 mL) using a Soxhlet extractor and then extracted with chloroform (200 mL). The organic layer was concentrated to dryness, and the resulting black purple solid was dissolved in chloroform (30 mL) and reprecipitated with methanol (300 mL). The obtained solid was collected by filtration and dried under reduced pressure to obtain π-electron conjugated polymer A1 (0.51 g, 86%) as a black purple solid.

重量平均分子量(Mw)および数平均分子量(Mn)は、いずれもGPC装置として、Waters製のGPC/V2000を用い、カラムとして、昭和電工株式会社製のShodex AT−G806MSの2本を直列に繋いだものを用いた。また、カラムおよびインジェクターは145℃とし、溶出溶媒として、o−ジクロロベンゼンを用いた。得られたπ電子共役重合体A1の重量平均分子量は45,000、数平均分子量は18,000、多分散度は2.5であった。
H−NMR (270MHz,CDCl): δ =7.60‐7.30 (br、 3H),3.30‐3.00 (br、 5H),2.00‐1.10 (br、 52H),1.00‐0.70 (br、12H)。
この理化学分析結果は、前記反応式(1)に示される化学構造を支持する。
As for the weight average molecular weight (Mw) and the number average molecular weight (Mn), both GPC / V2000 manufactured by Waters is used as a GPC device, and two Shodex AT-G806MS manufactured by Showa Denko KK are connected in series as a column. I used it. The column and injector were 145 ° C., and o-dichlorobenzene was used as an elution solvent. The obtained π-electron conjugated polymer A1 had a weight average molecular weight of 45,000, a number average molecular weight of 18,000, and a polydispersity of 2.5.
1 H-NMR (270 MHz, CDCl 3 ): δ = 7.60-7.30 (br, 3H), 3.30-3.00 (br, 5H), 2.00-1.10 (br, 52H ), 1.00-0.70 (br, 12H).
This physicochemical analysis result supports the chemical structure shown in the reaction formula (1).

(重合例2)
下記反応式に従いπ電子共役重合体A2の合成を行った。
(Polymerization example 2)
A π-electron conjugated polymer A2 was synthesized according to the following reaction formula.

Figure 2015026716
Figure 2015026716

充分に乾燥させアルゴン置換したナスフラスコAに、脱水及び過酸化物除去処理を行なったテトラヒドロフラン(THF)25mLと、2−ブロモ−5−ヨ−ド−3−ヘキシルチオフェン1.865g(5mmol)と、i−プロピルマグネシウムクロリドの2.0M溶液2.5mLを加えて、0℃で30分攪拌し、上記反応式中の化学式(a1)で示す有機マグネシウム化合物の溶液を合成した。
乾燥させたアルゴン置換したナスフラスコBに、脱水及び過酸化物除去処理を行なったTHF25mLとNiCl(dppp)27mg(0.05mmol)を加えて35℃に加熱した後、有機マグネシウム化合物溶液(a1)を添加した。35℃で1.5時間加熱攪拌した後、5M塩酸50mLを加えて室温で1時間攪拌した。この反応液をクロロホルム450mLで抽出し、有機層を重曹水100mL、蒸留水100mLの順で洗浄し、有機層を無水硫酸ナトリウムで乾燥後、濃縮乾固した。得られた黒紫色の固体を、クロロホルムの30mLに溶かし、メタノ−ルの300mLに再沈殿し、充分に乾燥したものを、分取用GPCカラムを用いて精製することによりπ電子共役重合体A2(690mg)を得た。なお、溶媒であるTHFは、和光純薬工業社製の脱水テトラヒドロフラン(安定剤不含)を、金属ナトリウム存在下蒸留精製を行なった後、和光純薬工業社製のモレキュラーシーブス5Aに一日以上接触させることで、精製を行ったものを用いた。
To an eggplant flask A thoroughly dried and purged with argon, 25 mL of tetrahydrofuran (THF) subjected to dehydration and peroxide removal treatment, 1.865 g (5 mmol) of 2-bromo-5-iodo-3-hexylthiophene, Then, 2.5 mL of a 2.0M solution of i-propylmagnesium chloride was added and stirred at 0 ° C. for 30 minutes to synthesize an organomagnesium compound solution represented by the chemical formula (a1) in the above reaction formula.
To the dried argon-substituted eggplant flask B, 25 mL of THF and 27 mg (0.05 mmol) of dehydrated and peroxide-removed treatment and 27 mg (0.05 mmol) of NiCl 2 (dppp) were added and heated to 35 ° C. Then, the organic magnesium compound solution (a1 ) Was added. After stirring with heating at 35 ° C. for 1.5 hours, 50 mL of 5M hydrochloric acid was added and stirred at room temperature for 1 hour. This reaction solution was extracted with 450 mL of chloroform, and the organic layer was washed with 100 mL of sodium bicarbonate water and 100 mL of distilled water in this order. The organic layer was dried over anhydrous sodium sulfate and concentrated to dryness. The obtained black-purple solid was dissolved in 30 mL of chloroform, reprecipitated into 300 mL of methanol, and sufficiently dried, and purified using a preparative GPC column to obtain a π-electron conjugated polymer A2. (690 mg) was obtained. In addition, THF as a solvent was purified by distillation of dehydrated tetrahydrofuran (without stabilizer) manufactured by Wako Pure Chemical Industries, Ltd. in the presence of metallic sodium, and then on molecular sieves 5A manufactured by Wako Pure Chemical Industries, Ltd. for one day or more. What was refine | purified by making it contact was used.

重量平均分子量(Mw)および数平均分子量(Mn)は、いずれも、ゲル・パーミエーション・クロマトグラフィー(GPC)による測定に基づき、ポリスチレン換算値で求められたものである。GPC装置として、東ソー(株)製のHLC−8020(品番)を用い、カラムとして、東ソー(株)製のTSKgel Multipore HZの2本を直列に繋いだものを用いて測定した。カラム及びインジェクター内の測定温度は40℃とし、溶媒はクロロホルムを用いた。得られたπ電子共役重合体A2の重量平均分子量は24,150g/mol、数平均分子量は21,000g/mol、多分散度は1.15であった。
H−NMR:δ=6.97(s、1H)、2.80(t、J=8.0Hz、2H)、1.89−1.27(m、10H)、0.91(t、J=6.8Hz、3H)。
この理化学分析結果は、前記反応式(2)に示される化学構造を支持する。
The weight average molecular weight (Mw) and the number average molecular weight (Mn) are both determined in terms of polystyrene based on measurement by gel permeation chromatography (GPC). The measurement was performed using an HLC-8020 (product number) manufactured by Tosoh Corporation as the GPC apparatus, and a TSKgel Multipore HZ manufactured by Tosoh Corporation connected in series as the column. The measurement temperature in the column and the injector was 40 ° C., and chloroform was used as the solvent. The obtained π-electron conjugated polymer A2 had a weight average molecular weight of 24,150 g / mol, a number average molecular weight of 21,000 g / mol, and a polydispersity of 1.15.
1 H-NMR: δ = 6.97 (s, 1H), 2.80 (t, J = 8.0 Hz, 2H), 1.89-1.27 (m, 10H), 0.91 (t, J = 6.8 Hz, 3H).
This physicochemical analysis result supports the chemical structure shown in the reaction formula (2).

(重合例3)
下記反応式に従いπ電子共役ブロック共重合体B1の合成を行った。なお、以降の反応式中、EtHexは2−エチルヘキシル基を表す。
(Polymerization Example 3)
The π-electron conjugated block copolymer B1 was synthesized according to the following reaction formula. In the following reaction formulas, EtHex represents a 2-ethylhexyl group.

Figure 2015026716
Figure 2015026716

窒素雰囲気下、50mLフラスコにπ電子共役重合体A1(160.0mg,0.12mol)、重合体ブロックBを構成する2種類の単量体として2,6−ビス(トリメチルチン)−4,8−ビス(2−エチルヘキシロキシ)ベンゾ[1,2−b:4,5−b’]ジチオフェン(113.0mg,0.16mmol)、2,6−ビス(トリメチルチン)−4,8−ジプロピルベンゾ[1,2−b:4,5−b’]ジチオフェン(40.9mg,0.07mmol)および1−(4,6−ジブロモチエノ[3,4−b]チオフェン−2−イル)−2−エチルヘキサン−1−オン(86.0mg,0.20mmol)、DMF(3.0mL)、トルエン(12mL)、テトラキス(トリフェニルホスフィン)パラジウム(0)(30mg、26μmol)を加え、容器内をアルゴンガスで20分間バブリングした後に、110℃で10時間加熱した。反応終了後、反応溶液をメタノール(300mL)に注ぎ、析出した固体を濾取し、得られた固体を減圧乾燥することで粗生成物を得た。粗生成物を、ソックスレー抽出機を用いてアセトン(200mL)、ヘキサン(200mL)で洗浄した後に、クロロホルム(200mL)で抽出した。得られた溶液を濃縮し、メタノール(300mL)に注ぎ、析出した固体を濾取した後に減圧乾燥することで黒紫色の固体としてπ電子共役ブロック共重合体B1を得た(221.0mg,75.4%)。   In a 50 mL flask under nitrogen atmosphere, π-electron conjugated polymer A1 (160.0 mg, 0.12 mol) and 2,6-bis (trimethyltin) -4,8 as two types of monomers constituting polymer block B -Bis (2-ethylhexyloxy) benzo [1,2-b: 4,5-b '] dithiophene (113.0 mg, 0.16 mmol), 2,6-bis (trimethyltin) -4,8-di Propylbenzo [1,2-b: 4,5-b ′] dithiophene (40.9 mg, 0.07 mmol) and 1- (4,6-dibromothieno [3,4-b] thiophen-2-yl) -2 -Ethylhexane-1-one (86.0 mg, 0.20 mmol), DMF (3.0 mL), toluene (12 mL), tetrakis (triphenylphosphine) palladium (0) (30 mg, 26 μmo) ) Was added and the vessel was bubbled 20 minutes with argon gas, and heated at 110 ° C. 10 hours. After completion of the reaction, the reaction solution was poured into methanol (300 mL), the precipitated solid was collected by filtration, and the obtained solid was dried under reduced pressure to obtain a crude product. The crude product was washed with acetone (200 mL) and hexane (200 mL) using a Soxhlet extractor and then extracted with chloroform (200 mL). The obtained solution was concentrated, poured into methanol (300 mL), and the precipitated solid was collected by filtration and dried under reduced pressure to obtain a π-electron conjugated block copolymer B1 as a black purple solid (221.0 mg, 75 .4%).

重合例1と同様の方法を用いて、重量平均分子量(Mw)および数平均分子量(Mn)を求めた。得られた共役ブロック共重合体B1の重量平均分子量は86,400、数平均分子量は28,800、多分散度は2.99であった。
H−NMR(270MHz,CDCl):δ=7.60−7.30(br,3H)、4.40−4.00(br,4H)、3.30−3.00(br,4H)、2.00−0.60(br,51H)。
この理化学分析結果は、前記反応式(3)に示される化学構造を支持する。
Using the same method as in Polymerization Example 1, the weight average molecular weight (Mw) and the number average molecular weight (Mn) were determined. The resulting conjugated block copolymer B1 had a weight average molecular weight of 86,400, a number average molecular weight of 28,800, and a polydispersity of 2.99.
1 H-NMR (270 MHz, CDCl 3 ): δ = 7.60-7.30 (br, 3H), 4.40-4.00 (br, 4H), 3.30-3.00 (br, 4H) ), 2.00-0.60 (br, 51H).
This physicochemical analysis result supports the chemical structure shown in the reaction formula (3).

(添加溶媒に対するπ電子共役重合体の溶解度測定)
重合例1から3で得た重合体をクロロベンゼンに溶解させ、1.0×10−5mol/Lの希薄溶液を調整した。調整した希薄溶液を孔径0.45μmのPTFEシリンジフィルターでろ過し、得られたろ液を光路長1cmの石英セルに入れ、クロロベンゼンをリファレンス溶液として紫外可視近赤外分光光度計(株式会社島津製作所SolidSpec−3700)を用いて300〜1000nmの吸収スペクトルを測定した。得られた吸収スペクトルから、500〜700nmの範囲にある極大吸収波長の吸光度を用いて、π電子共役重合体のモル吸光係数を算出した。次に、重合例1から3で得たπ電子共役重合体を、実施例及び比較例で用いる添加溶媒1mLに10mg加え、80℃で3時間攪拌し、次いで25℃にて3時間攪拌して分散または溶解させた。調整した溶液を孔径0.45μmのPTFEシリンジフィルターでろ過し、得られたろ液を光路長20μmの石英セルに入れ、クロロベンゼンをリファレンス溶液として吸収スペクトルを測定した。モル吸光係数を算出した波長における吸光度と、希薄溶液で得たモル吸光係数を用いて、各溶媒に対するπ電子共役重合体の溶解度を測定した。
(Measurement of solubility of π-electron conjugated polymer in added solvent)
The polymers obtained in Polymerization Examples 1 to 3 were dissolved in chlorobenzene to prepare a dilute solution of 1.0 × 10 −5 mol / L. The prepared diluted solution is filtered through a PTFE syringe filter having a pore diameter of 0.45 μm, and the obtained filtrate is put into a quartz cell having an optical path length of 1 cm. -3700), an absorption spectrum of 300 to 1000 nm was measured. From the obtained absorption spectrum, the molar extinction coefficient of the π-electron conjugated polymer was calculated using the absorbance at the maximum absorption wavelength in the range of 500 to 700 nm. Next, 10 mg of the π-electron conjugated polymer obtained in Polymerization Examples 1 to 3 was added to 1 mL of the additive solvent used in Examples and Comparative Examples, and stirred at 80 ° C. for 3 hours, and then stirred at 25 ° C. for 3 hours. Dispersed or dissolved. The adjusted solution was filtered with a PTFE syringe filter having a pore diameter of 0.45 μm, and the obtained filtrate was put into a quartz cell with an optical path length of 20 μm, and an absorption spectrum was measured using chlorobenzene as a reference solution. Using the absorbance at the wavelength at which the molar extinction coefficient was calculated and the molar extinction coefficient obtained with the dilute solution, the solubility of the π-electron conjugated polymer in each solvent was measured.

(実施例1)
スパッタ法により150nmの厚みでITO膜(抵抗値10Ω/□)を付けたガラス基
板を酸素雰囲気下にて15分間UVオゾン洗浄を施し、表面処理を行った。基板上に正孔輸送層となるPEDOT:PSS水溶液(H.C.Starck社製:CLEVIOS PH500)をスピンコート法により40nmの厚さに製膜し、ホットプレートにより140℃で20分間加熱乾燥を行った。次に、クロロベンゼン(和光純薬工業株式会社製:特級)1mlに、電子供与性有機半導体材料として重合例1にて得たπ電子共役重合体A1と、電子受容性有機半導体材料としてフラーレン誘導体PC71BM(フロンティアカーボン社製:E110)とを、1:1.5の質量分率にて混合した粉体を30mg加え、さらにπ電子共役重合体の貧溶媒として1,8−ジヨードオクタンと、N,N−ジメチルホルムアミドをそれぞれ2.5vol%と8.0vol%加え、100℃で溶解させた後、π電子共役重合体とPC71BMを含む有機半導体溶液を調整した。調整した有機半導体溶液をスピンコート法によりPEDOT:PSS水溶液を塗布した基板上に塗布し、有機太陽電池の光電変換層(膜厚約100nm)を得た。これを3時間真空乾燥した後、真空蒸着機によりフッ化リチウムを膜厚1nmで蒸着し、次いでアルミニウムを膜厚100nmで蒸着した。蒸着のときの真空度は、2×10-4Pa以下であった。これによりπ電子共役重合体からなる有機太陽電池が得られた。有機太陽電池の形状は5×5mmの正四角形であった。
Example 1
A glass substrate provided with an ITO film (resistance value 10Ω / □) with a thickness of 150 nm by a sputtering method was subjected to surface treatment by UV ozone cleaning for 15 minutes in an oxygen atmosphere. A PEDOT: PSS aqueous solution (manufactured by HC Starck: CLEVIOS PH500) to be a hole transport layer is formed on a substrate to a thickness of 40 nm by spin coating, and is heated and dried at 140 ° C. for 20 minutes by a hot plate. went. Next, in 1 ml of chlorobenzene (manufactured by Wako Pure Chemical Industries, Ltd .: special grade), the π-electron conjugated polymer A1 obtained in Polymerization Example 1 as an electron-donating organic semiconductor material, and a fullerene derivative PC as an electron-accepting organic semiconductor material 30 mg of a powder obtained by mixing 71 BM (manufactured by Frontier Carbon Co., Ltd .: E110) at a mass fraction of 1: 1.5 was added, and 1,8-diiodooctane was used as a poor solvent for the π-electron conjugated polymer. , N, N-dimethylformamide were added at 2.5 vol% and 8.0 vol%, respectively, and dissolved at 100 ° C., and then an organic semiconductor solution containing a π electron conjugated polymer and PC 71 BM was prepared. The adjusted organic semiconductor solution was applied onto a substrate coated with a PEDOT: PSS aqueous solution by a spin coating method to obtain a photoelectric conversion layer (film thickness of about 100 nm) of an organic solar cell. After vacuum drying this for 3 hours, lithium fluoride was vapor-deposited with a film thickness of 1 nm by a vacuum vapor deposition machine, and then aluminum was vapor-deposited with a film thickness of 100 nm. The degree of vacuum at the time of vapor deposition was 2 × 10 −4 Pa or less. As a result, an organic solar cell made of a π-electron conjugated polymer was obtained. The shape of the organic solar cell was a regular square of 5 × 5 mm.

(実施例2)
π電子共役重合体の貧溶媒として1,8−ジヨードオクタンと、安息香酸メチルをそれぞれ2.5vol%と5.0vol%加えた以外は、実施例1と同様に有機太陽電池を作製した。
(Example 2)
An organic solar cell was produced in the same manner as in Example 1 except that 1,8-diiodooctane and methyl benzoate were added in an amount of 2.5 vol% and 5.0 vol%, respectively, as a poor solvent for the π-electron conjugated polymer.

(実施例3)
π電子共役重合体として重合例3にて得た共役ブロック共重合体B1を用いた以外は、実施例1と同様に有機太陽電池を作製した。
Example 3
An organic solar cell was produced in the same manner as in Example 1 except that the conjugated block copolymer B1 obtained in Polymerization Example 3 was used as the π-electron conjugated polymer.

(実施例4)
π電子共役重合体として重合例3にて得た共役ブロック共重合体B1を用いた以外は、実施例2と同様に有機太陽電池を作製した。
Example 4
An organic solar cell was produced in the same manner as in Example 2 except that the conjugated block copolymer B1 obtained in Polymerization Example 3 was used as the π-electron conjugated polymer.

(比較例1)
π電子共役重合体の貧溶媒を加えなかった以外は、実施例1と同様に有機太陽電池を作製した。
(Comparative Example 1)
An organic solar cell was produced in the same manner as in Example 1 except that the poor solvent for the π-electron conjugated polymer was not added.

(比較例2)
π電子共役重合体の貧溶媒として、1,8−ジヨードオクタンのみを2.5vol%加えた以外は、実施例1と同様に有機太陽電池を作製した。
(Comparative Example 2)
An organic solar cell was produced in the same manner as in Example 1 except that 2.5 vol% of 1,8-diiodooctane alone was added as a poor solvent for the π-electron conjugated polymer.

(比較例3)
π電子共役重合体の貧溶媒として、安息香酸メチルのみを5.0vol%加えた以外は、実施例1と同様に有機太陽電池を作製した。
(Comparative Example 3)
An organic solar cell was produced in the same manner as in Example 1 except that only 5.0 vol% of methyl benzoate was added as a poor solvent for the π-electron conjugated polymer.

(比較例4)
π電子共役重合体の貧溶媒として、N,N−ジメチルスルホキシドのみを5.0vol%加えた以外は、実施例1と同様に有機太陽電池を作製した。
(Comparative Example 4)
An organic solar cell was produced in the same manner as in Example 1 except that only 5.0 vol% of N, N-dimethyl sulfoxide was added as a poor solvent for the π-electron conjugated polymer.

(比較例5)
π電子共役重合体の貧溶媒として1,8−ジヨードオクタンと、N,N−ジメチルスルホキシドをそれぞれ2.5vol%と5.0vol%加えた以外は、実施例1と同様に有機太陽電池を作製した。
(Comparative Example 5)
An organic solar cell was prepared in the same manner as in Example 1 except that 1,8-diiodooctane and N, N-dimethyl sulfoxide were added as poor solvents for the π-electron conjugated polymer, 2.5 vol% and 5.0 vol%, respectively. Produced.

(比較例6)
π電子共役重合体の貧溶媒として1,8−ジヨードオクタンと、クロロホルムをそれぞれ2.5vol%と5.0vol%加えた以外は、実施例1と同様に有機太陽電池を作製した。
(Comparative Example 6)
An organic solar cell was produced in the same manner as in Example 1 except that 1,8-diiodooctane and chloroform were added at 2.5 vol% and 5.0 vol%, respectively, as a poor solvent for the π-electron conjugated polymer.

(比較例7)
π電子共役重合体として重合例3にて得た共役ブロック共重合体B1を用い、π電子共役重合体の貧溶媒を加えなかった以外は、実施例1と同様に有機太陽電池を作製した。
(Comparative Example 7)
An organic solar cell was produced in the same manner as in Example 1 except that the conjugated block copolymer B1 obtained in Polymerization Example 3 was used as the π-electron conjugated polymer and the poor solvent for the π-electron conjugated polymer was not added.

(比較例8)
π電子共役重合体の貧溶媒として1,8−ジヨードオクタンと、N,N−ジメチルスルホキシドをそれぞれ2.5vol%と5.0vol%加えた以外は、比較例7と同様に有機太陽電池を作製した。
(Comparative Example 8)
An organic solar cell was prepared in the same manner as in Comparative Example 7 except that 1,8-diiodooctane and N, N-dimethyl sulfoxide were added as poor solvents for the π-electron conjugated polymer, 2.5 vol% and 5.0 vol%, respectively. Produced.

(比較例9)
π電子共役重合体として重合例2にて得たπ電子共役重合体A2と、電子受容性有機半導体材料としてフラーレン誘導体PC61BM(フロンティアカーボン社製:E100H)とを、1:0.8の質量分率にて混合し、クロロベンゼンに溶解させて光電変換層を形成し、かつπ電子共役重合体の貧溶媒を加えなかった以外は、実施例1と同様に有機太陽電池を作製した。
(Comparative Example 9)
The π-electron conjugated polymer A2 obtained in Polymerization Example 2 as the π-electron conjugated polymer, and the fullerene derivative PC 61 BM (manufactured by Frontier Carbon Co., Ltd .: E100H) as the electron-accepting organic semiconductor material, An organic solar cell was produced in the same manner as in Example 1 except that the photoelectric conversion layer was formed by mixing at a mass fraction, dissolving in chlorobenzene, and no poor solvent for the π-electron conjugated polymer was added.

(比較例10)
π電子共役重合体の貧溶媒として1,8−ジヨードオクタンと、安息香酸メチルをそれぞれ2.5vol%と5.0vol%加えた以外は、比較例9と同様に有機太陽電池を作製した。
(Comparative Example 10)
An organic solar cell was produced in the same manner as in Comparative Example 9, except that 2.5 vol% and 5.0 vol% of 1,8-diiodooctane and methyl benzoate were added as poor solvents for the π-electron conjugated polymer.

(光電変換特性の評価)
得られた各実施例及び比較例の有機太陽電池の光電変換効率を、300Wのソーラシミュレーター(ペクセルテクノロジー社製、商品名PEC L11:AM1.5Gフィルター、放射照度100mW/cm) で測定した。測定結果を表1及び表2に示す。
(Evaluation of photoelectric conversion characteristics)
The photoelectric conversion efficiencies of the organic solar cells obtained in the examples and comparative examples were measured with a 300 W solar simulator (Peccell Technology, trade name: PEC L11: AM1.5G filter, irradiance: 100 mW / cm 2 ). . The measurement results are shown in Tables 1 and 2.

Figure 2015026716
Figure 2015026716

Figure 2015026716
Figure 2015026716

比較例1と実施例1,2の比較、及び比較例7と実施例3、4の比較より、本発明の範囲内にあるπ電子共役重合体の貧溶媒2種を加える事により、貧溶媒を添加せず作製した有機太陽電池よりも高い変換効率が得られる事が分かる。比較例2〜4と実施例1、2の比較から、本発明は、貧溶媒を1種のみ加えた場合よりも高い変換効率が得られる事が分かる。比較例5と実施例1、2の比較、及び比較例8と実施例3,4の比較から、本発明は、π電子共役重合体の貧溶媒1種と、SP値が本発明の範囲外である貧溶媒1種を加え作製した有機太陽電池よりも高い変換効率を示す事が分かる。比較例6と実施例1,2の比較から、π電子共役重合体の貧溶媒1種と、π電子共役重合体の良溶媒であるクロロホルムを添加した場合には、変換効率の向上が得られない事が分かる。比較例9、10から、π電子共役重合体が本発明の範囲外である場合、本発明の製造方法を適用しても変換効率向上は得られない事が分かる。   From the comparison between Comparative Example 1 and Examples 1 and 2 and the comparison between Comparative Example 7 and Examples 3 and 4, by adding two poor solvents of π electron conjugated polymer within the scope of the present invention, the poor solvent It can be seen that higher conversion efficiency can be obtained than an organic solar cell prepared without adding. From the comparison between Comparative Examples 2 to 4 and Examples 1 and 2, it can be seen that the present invention provides higher conversion efficiency than when only one poor solvent is added. From the comparison between Comparative Example 5 and Examples 1 and 2 and the comparison between Comparative Example 8 and Examples 3 and 4, the present invention is a poor solvent of a π electron conjugated polymer and the SP value is outside the range of the present invention. It can be seen that the conversion efficiency is higher than that of the organic solar cell produced by adding one kind of poor solvent. From the comparison between Comparative Example 6 and Examples 1 and 2, when one kind of poor solvent of π electron conjugated polymer and chloroform which is a good solvent of π electron conjugated polymer are added, the conversion efficiency is improved. I understand that there is not. From Comparative Examples 9 and 10, it can be seen that when the π-electron conjugated polymer is outside the scope of the present invention, conversion efficiency cannot be improved even when the production method of the present invention is applied.

(光電変換層の断面のモルフォロジ画像評価)
実施例2及び比較例2、5で得られた光電変換素子の、光電変換層の断面のモルフォロジを以下の方法で観察・解析した。光電変換層を有する光電変換素子の断面方向の薄膜切片を収束イオンビーム装置(エスアイアイ・ナノテクノロジー製SMI3200F)を用いて、加速電圧30kVにて作製した。尚、薄膜切片の粗加工時のイオン電流は6500pA、仕上げ加工時のイオン電流は80pAであった。作製した薄膜切片は50〜100nmでの膜厚であった。
(Evaluation of morphology image of cross section of photoelectric conversion layer)
The morphology of the cross section of the photoelectric conversion layer of the photoelectric conversion elements obtained in Example 2 and Comparative Examples 2 and 5 was observed and analyzed by the following method. A thin film slice in the cross-sectional direction of the photoelectric conversion element having the photoelectric conversion layer was produced at an acceleration voltage of 30 kV using a focused ion beam apparatus (SMI3200F manufactured by SII Nanotechnology). The ion current during rough processing of the thin film slice was 6500 pA, and the ion current during finishing was 80 pA. The prepared thin film slice had a thickness of 50 to 100 nm.

作製した薄膜切片に対し、STEM法(日立ハイテクノロジーズ社製;S−5500)を用いて、断面のモルフォロジ画像を得た。STEM法によるモルフォロジ画像の取得は、加速電圧30kVにて実施した。得られた画像は2pixel/nm以上の解像度を持ち、グレースケールに変換後、モルフォロジのコントラストがわかり易いようにコントラスト及び明るさを調整した。   A morphological image of the cross section was obtained from the prepared thin film slice using the STEM method (manufactured by Hitachi High-Technologies; S-5500). The acquisition of the morphology image by the STEM method was performed at an acceleration voltage of 30 kV. The obtained image had a resolution of 2 pixels / nm or higher, and after conversion to grayscale, the contrast and brightness were adjusted so that the morphology contrast was easy to understand.

実施例2において得られた光電変換素子の断面のモルフォロジ画像を図1に示す。この断面のモルフォロジ画像から、ガラス基板上のITO電極膜上にPEDOT/PSS膜からなる正孔輸送層が付され電極層が形成されており、その上に光電変換層が形成され、さらにその上にフッ化リチウム膜上に蒸着されたアルミ電極である電極層が形成されていることを、確認することができる。この図1に対してPhotoShop CS5(アドビ システムズ社製)を用いて2値化処理を行い、光電変換層に該当する領域をトリミングして得られたモルフォロジ画像を図2に示す。本観察では暗い部分が電子供与性有機半導体であるπ電子共役重合体が多く含まれる相であり、明るい部分が電子受容性有機半導体であるフラーレン誘導体が多く含まれる相である。   A morphology image of a cross section of the photoelectric conversion element obtained in Example 2 is shown in FIG. From the morphology image of this cross section, a hole transport layer composed of a PEDOT / PSS film is formed on the ITO electrode film on the glass substrate to form an electrode layer, a photoelectric conversion layer is formed thereon, and further thereon It can be confirmed that an electrode layer which is an aluminum electrode deposited on the lithium fluoride film is formed. FIG. 2 shows a morphology image obtained by performing binarization processing on this FIG. 1 using PhotoShop CS5 (manufactured by Adobe Systems) and trimming a region corresponding to the photoelectric conversion layer. In this observation, the dark part is a phase containing a lot of π-electron conjugated polymers which are electron-donating organic semiconductors, and the bright part is a phase containing a lot of fullerene derivatives which are electron-accepting organic semiconductors.

前記と同様にして、比較例2及び5において得られた光電変換素子の断面のモルフォロジ画像を得た。得られた画像を2値化処理し、光電変換活性層に該当する領域をトリミングして得られた画像モルフォロジ画像をそれぞれ図3、4に示す。   In the same manner as described above, a morphology image of the cross section of the photoelectric conversion element obtained in Comparative Examples 2 and 5 was obtained. 3 and 4 show image morphology images obtained by binarizing the obtained image and trimming the region corresponding to the photoelectric conversion active layer, respectively.

図2、3の比較から、本発明は、貧溶媒として1、8−ジヨードオクタンのみを加える製造法よりも微細化したモルフォロジが得られる事は明らかであり、貧溶媒を2種加える事により光電変換層のモルフォロジを制御できていることがわかる。図2、4の比較から、添加する貧溶媒2種のSP値が18.1以上26.5以下の範囲内であることにより、SP値の範囲が当該範囲を外れる貧溶媒を添加した場合に比べ、モルフォロジの微細化効果に優れていることがわかる。   From the comparison of FIGS. 2 and 3, it is clear that the present invention can obtain a finer morphology than the production method in which only 1,8-diiodooctane is added as a poor solvent, and by adding two kinds of poor solvents. It can be seen that the morphology of the photoelectric conversion layer can be controlled. From the comparison of FIGS. 2 and 4, when the SP value of the two poor solvents to be added is in the range of 18.1 to 26.5, the poor solvent whose SP value is outside the range is added. In comparison, it can be seen that the morphological refinement effect is excellent.

Claims (5)

少なくとも一方が光透過性を有する正極と負極との間に、π電子共役重合体及び電子受容性有機半導体を含む光電変換層を有する光電変換素子の製造方法であって、
前記π電子共役重合体は、少なくとも一つのチオフェン環を化学構造の一部に含む縮環π共役骨格、カルバゾール骨格、ジベンゾシロール骨格、ジベンゾゲルモール骨格及びジケトピロロピロール骨格から選ばれる複素環骨格を少なくとも一つ有する単量体単位を含み、
前記π電子共役重合体及び前記電子受容性有機半導体を有機溶媒に溶解させ、有機半導体溶液を得る工程(A)、
該有機半導体溶液に、SP値が18.1以上26.5以下の範囲内である前記π電子共役重合体の貧溶媒を少なくとも2種添加する工程(B)、及び
前記正極と負極との間に、工程(B)で得られた有機半導体溶液を塗布法により製膜して、前記光電変換層を形成する工程(C)、を含むことを特徴とする光電変換素子の製造方法。
A method for producing a photoelectric conversion element having a photoelectric conversion layer containing a π-electron conjugated polymer and an electron-accepting organic semiconductor between a positive electrode and a negative electrode, at least one of which is light transmissive,
The π-electron conjugated polymer is a heterocyclic skeleton selected from a condensed π-conjugated skeleton, a carbazole skeleton, a dibenzosilole skeleton, a dibenzogermol skeleton, and a diketopyrrolopyrrole skeleton containing at least one thiophene ring as part of the chemical structure. A monomer unit having at least one of
Dissolving the π-electron conjugated polymer and the electron-accepting organic semiconductor in an organic solvent to obtain an organic semiconductor solution (A),
A step (B) of adding at least two poor solvents of the π-electron conjugated polymer having an SP value in the range of 18.1 to 26.5 to the organic semiconductor solution; and between the positive electrode and the negative electrode A process (C) of forming the photoelectric conversion layer by forming the organic semiconductor solution obtained in the process (B) by a coating method.
前記工程(B)で用いられる貧溶媒は、前記π電子共役重合体の溶解度が1.0mg/mL以下である請求項1に記載の光電変換素子の製造方法。   The method for producing a photoelectric conversion element according to claim 1, wherein the poor solvent used in the step (B) has a solubility of the π-electron conjugated polymer of 1.0 mg / mL or less. 前記工程(B)で用いられる貧溶媒の少なくとも1種が、1,8−ジヨードオクタン、アニソール、安息香酸メチル、アニリン、1,2−ジブロモエタン、モルホリン、N,N−ジメチルホルムアミド及びN,N−ジメチルアセトアミドから選ばれるいずれかである請求項1または2に記載の光電変換素子の製造方法。   At least one poor solvent used in the step (B) is 1,8-diiodooctane, anisole, methyl benzoate, aniline, 1,2-dibromoethane, morpholine, N, N-dimethylformamide and N, The method for producing a photoelectric conversion element according to claim 1, which is any one selected from N-dimethylacetamide. 前記工程(B)で用いられる貧溶媒の少なくとも1種が1,8−ジヨードオクタンであり、少なくとも他の1種が、アニソール、安息香酸メチル、アニリン、1,2−ジブロモエタン、モルホリン、N,N−ジメチルホルムアミド及びN,N−ジメチルアセトアミドから選ばれるいずれかである請求項3に記載の光電変換素子の製造方法。   At least one poor solvent used in the step (B) is 1,8-diiodooctane, and at least one other is anisole, methyl benzoate, aniline, 1,2-dibromoethane, morpholine, N The method for producing a photoelectric conversion element according to claim 3, which is any one selected from N, N-dimethylformamide and N, N-dimethylacetamide. 前記工程(B)で用いられる少なくとも2種の貧溶媒の添加量の合計が、前記有機半導体溶液の0.1vol%〜50.0vol%の範囲内である請求項1〜4のいずれかに記載の光電変換素子の製造方法。   5. The total amount of at least two kinds of poor solvents used in the step (B) is in the range of 0.1 vol% to 50.0 vol% of the organic semiconductor solution. Manufacturing method of the photoelectric conversion element.
JP2013155424A 2013-07-26 2013-07-26 Method of manufacturing photoelectric conversion element Pending JP2015026716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013155424A JP2015026716A (en) 2013-07-26 2013-07-26 Method of manufacturing photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013155424A JP2015026716A (en) 2013-07-26 2013-07-26 Method of manufacturing photoelectric conversion element

Publications (1)

Publication Number Publication Date
JP2015026716A true JP2015026716A (en) 2015-02-05

Family

ID=52491147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013155424A Pending JP2015026716A (en) 2013-07-26 2013-07-26 Method of manufacturing photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP2015026716A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016189383A (en) * 2015-03-30 2016-11-04 株式会社東芝 Photoelectric conversion element and method for manufacturing the same
WO2018174117A1 (en) * 2017-03-23 2018-09-27 コニカミノルタ株式会社 Coating liquid for forming organic film, organic film, organic electronic device, and method for producing coating liquid for forming organic film
CN114174374A (en) * 2019-07-30 2022-03-11 住友化学株式会社 Method for producing pi-conjugated polymer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016189383A (en) * 2015-03-30 2016-11-04 株式会社東芝 Photoelectric conversion element and method for manufacturing the same
US10468616B2 (en) 2015-03-30 2019-11-05 Kabushiki Kaisha Toshiba Photoelectric conversion device and method of manufacturing the same
WO2018174117A1 (en) * 2017-03-23 2018-09-27 コニカミノルタ株式会社 Coating liquid for forming organic film, organic film, organic electronic device, and method for producing coating liquid for forming organic film
JPWO2018174117A1 (en) * 2017-03-23 2020-05-14 コニカミノルタ株式会社 Organic film forming coating liquid, organic film, organic electronic device, and method for producing organic film forming coating liquid
CN114174374A (en) * 2019-07-30 2022-03-11 住友化学株式会社 Method for producing pi-conjugated polymer
CN114174374B (en) * 2019-07-30 2024-04-26 住友化学株式会社 Method for producing pi-conjugated polymer

Similar Documents

Publication Publication Date Title
KR101361312B1 (en) Electron-donating organic material for photovoltaic devices, material for photovoltaic devices, and photovoltaic devices
JP5359173B2 (en) Electron donating organic material for photovoltaic element, photovoltaic element material and photovoltaic element
JP5482973B1 (en) Conjugated polymer, electron donating organic material, photovoltaic device material and photovoltaic device using the same
WO2011156478A2 (en) Polymers with tunable band gaps for photonic and electronic applications
JP5299023B2 (en) Material for photovoltaic element and photovoltaic element
WO2014042091A1 (en) Conjugated polymer, and electron-donating organic material, photovoltaic element material and photovoltaic element comprising same
WO2009022733A1 (en) Composition and organic photoelectric converter
JP5658633B2 (en) Composition for organic semiconductor and photoelectric conversion element using the same
JP4983524B2 (en) Composition suitable for photovoltaic device and photovoltaic device
JP2014034618A (en) Organic thin film, and photoelectric conversion element using the same
JP5691628B2 (en) Material for photovoltaic element and photovoltaic element
Li et al. Conjugated polymers based on dicarboxylic imide‐substituted isothianaphthene and their applications in solar cells
JP5736456B2 (en) Conjugated block copolymer and photoelectric conversion element using the same
WO2013065621A1 (en) Photoelectric conversion element and method of manufacturing thereof
JP2015026716A (en) Method of manufacturing photoelectric conversion element
JP5844368B2 (en) Conjugated polymer composition and photoelectric conversion element using the same
JP2014003255A (en) Organic thin film and photoelectric conversion element using the same
WO2013099926A1 (en) Photoelectric conversion element and method of fabricating same
JP2012241099A (en) Conjugated polymer, electron-releasing organic material employing the same, material for photovoltaic element and photovoltaic element
JP5957564B1 (en) Polymer and solar cell using the same
JP2013191794A (en) Photovoltaic element
JP2014241369A (en) Photoelectric conversion element and method for manufacturing the same
JP2014027175A (en) Method for manufacturing photoelectric conversion element, photoelectric conversion element, solar cell, and solar cell module
JP2009267092A (en) Material for photovoltaic device, and photovoltaic device
JP2014051583A (en) Conjugated block copolymer and photoelectric conversion element using the same