JP2015026559A - Method for manufacturing nonaqueous electrolytic secondary battery - Google Patents

Method for manufacturing nonaqueous electrolytic secondary battery Download PDF

Info

Publication number
JP2015026559A
JP2015026559A JP2013156400A JP2013156400A JP2015026559A JP 2015026559 A JP2015026559 A JP 2015026559A JP 2013156400 A JP2013156400 A JP 2013156400A JP 2013156400 A JP2013156400 A JP 2013156400A JP 2015026559 A JP2015026559 A JP 2015026559A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
secondary battery
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013156400A
Other languages
Japanese (ja)
Inventor
秀之 坂
Hideyuki Saka
秀之 坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013156400A priority Critical patent/JP2015026559A/en
Publication of JP2015026559A publication Critical patent/JP2015026559A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a nonaqueous electrolyte secondary battery capable of rapidly producing enough gas to activate CID even after repetition of charge and discharge, the safety of which is further ensured.SOLUTION: A method for manufacturing a nonaqueous electrolyte secondary battery comprises a positive electrode active material-preparing process for preparing a positive electrode active material, provided that the nonaqueous electrolyte secondary battery has: a positive electrode including the positive electrode active material consisting of a lithium transition metal oxide containing calcium and transition metals including at least nickel, cobalt and manganese; a negative electrode; a nonaqueous electrolytic solution containing an overcharge additive agent which produces gas at overcharge; and a current interruption device(CID) mechanism for interrupting a conducting path when a pressure inside the battery is equal to or larger than a predetermined value. The positive electrode active material-preparing process includes the following steps of: (a) preparing a nickel-cobalt-manganese complex hydroxide; and (b) baking a mixture of the prepared nickel-cobalt-manganese complex hydroxide, a calcium peroxide, and a lithium salt.

Description

本発明は、圧力感知型の電流遮断装置(CID)を備える非水電解質二次電池の製造方法に関する。   The present invention relates to a method for manufacturing a non-aqueous electrolyte secondary battery including a pressure-sensitive current interrupting device (CID).

リチウム二次電池等の非水電解質二次電池は、既存の電池に比べて軽量かつエネルギー密度が高いことから、いわゆるポータブル電源や車両搭載用の高出力電源等に好ましく利用されている。かかる非水電解質二次電池は、一般に所定の電圧領域に収まるよう制御された状態で使用される。しかしながら誤操作等により電池に過剰な電流が供給されて過充電状態に陥ると、電解液が分解して電池ケース内にガスが発生する等の問題が生じるおそれがある。そのため、このような問題を未然に防止し、より高い安全性を得る目的で、過充電状態に伴う電池内圧の上昇を検知すると電流を遮断する電流遮断機構(CID)を設けた電池が提案されている(例えば、特許文献1参照)。また、過充電時のCIDの作動を速やかに実現するために、過充電時に酸化分解されてガスを発生させる過充電添加剤を非水電解液に添加することもなされている。   Nonaqueous electrolyte secondary batteries such as lithium secondary batteries are preferably used for so-called portable power supplies, high-output power supplies mounted on vehicles, and the like because they are lighter and have higher energy density than existing batteries. Such a nonaqueous electrolyte secondary battery is generally used in a controlled state so as to be within a predetermined voltage range. However, when an excessive current is supplied to the battery due to an erroneous operation or the like and the battery is overcharged, there is a possibility that problems such as decomposition of the electrolyte and generation of gas in the battery case may occur. Therefore, for the purpose of preventing such problems and obtaining higher safety, a battery provided with a current interruption mechanism (CID) that interrupts current when an increase in battery internal pressure associated with an overcharge state is detected has been proposed. (For example, refer to Patent Document 1). Further, in order to quickly realize the operation of CID at the time of overcharge, an overcharge additive that is oxidized and decomposed to generate gas at the time of overcharge is also added to the non-aqueous electrolyte.

特開2013−080627号公報JP 2013-080627 A 特開2012−252964号公報JP 2012-252964 A

ところで、シクロヘキシルベンゼン(CHB)やビフェニル(BP)等の過充電添加剤は、過充電時に正極活物質の表面において重合反応が活性化し、水素ガスを発生させる。しかしながら、電池の充放電を繰り返し行っていくにつれ、かかる充電防止添加剤の重合反応が抑制されて、酸化分解が起こり難くなる。すなわち、過充電状態となっても正極でのガス発生添加剤の酸化分解反応が迅速に進まず、CIDの作動に必要なガス量を早期に確保することが難しい。
本発明は、かかる事情に鑑みてなされたものであり、その目的は、繰り返し充放電後でも、CIDを作動させ得るガス量を速やかに発生させることができ、より安全が確保された非水電解質二次電池の製造方法を提供することである。
By the way, an overcharge additive such as cyclohexylbenzene (CHB) or biphenyl (BP) activates a polymerization reaction on the surface of the positive electrode active material during overcharge, and generates hydrogen gas. However, as the battery is repeatedly charged and discharged, the polymerization reaction of the anti-charge additive is suppressed, and oxidative decomposition is less likely to occur. That is, even if the battery is overcharged, the oxidative decomposition reaction of the gas generating additive at the positive electrode does not proceed rapidly, and it is difficult to ensure the amount of gas necessary for CID operation at an early stage.
The present invention has been made in view of such circumstances, and a purpose thereof is to promptly generate a gas amount capable of operating CID even after repeated charging and discharging, and a non-aqueous electrolyte with more safety secured. It is providing the manufacturing method of a secondary battery.

本発明は、上記課題を解決するものとして、非水電解質二次電池の製造方法を提供する。かかる非水電解質二次電池は、正極活物質を備える正極、負極、過充電時にガスを発生する過充電添加剤を含む非水電解液および電池内部の圧力が所定値以上になると導電経路を遮断する電流遮断機構を備えている。また、上記正極活物質は、カルシウム(Ca)を含み、遷移金属として少なくともニッケル(Ni)、コバルト(Co)およびマンガン(Mn)を含有するリチウム遷移金属酸化物(以下、単に、「Ca含有Li(NCM)酸化物」という場合がある)である。
そしてかかる製造方法においては、上記正極活物質を、下記の工程(a)(b)を包含する正極活物質調製工程により調製することを特徴としている。
(a)ニッケル・コバルト・マンガン複合水酸化物(以下、「NCM複合水酸化物」と記す場合がある)を用意すること。
(b)前記用意された(NCM)複合水酸化物と、過酸化カルシウム(CaO)と、リチウム塩との混合物を焼成すること。
This invention provides the manufacturing method of a nonaqueous electrolyte secondary battery as what solves the said subject. Such a non-aqueous electrolyte secondary battery has a positive electrode including a positive electrode active material, a negative electrode, a non-aqueous electrolyte containing an overcharge additive that generates gas when overcharged, and a conductive path when a pressure inside the battery exceeds a predetermined value. A current interruption mechanism is provided. The positive electrode active material contains calcium (Ca) and contains at least nickel (Ni), cobalt (Co), and manganese (Mn) as transition metals, a lithium transition metal oxide (hereinafter simply referred to as “Ca-containing Li”). (NCM) oxide ”).
And in this manufacturing method, the said positive electrode active material is prepared by the positive electrode active material preparation process including the following process (a) (b), It is characterized by the above-mentioned.
(A) Prepare a nickel-cobalt-manganese composite hydroxide (hereinafter sometimes referred to as “NCM composite hydroxide”).
(B) Firing a mixture of the prepared (NCM) composite hydroxide, calcium peroxide (CaO 2 ), and lithium salt.

上記のとおり、本発明においては、正極活物質中に含有させるCa成分を、過酸化カルシウム(CaO)の形態で、なおかつ、NCM複合水酸化物とLi化合物との焼成時に、添加するようにしている。かかる構成によると、正極活物質であるCa含有Li(NCM)酸化物の結晶構造内にCaがほぼ均一に取り込まれると同時に、正極活物質の表面にLiとCaOとの化合物が析出される。正極活物質の表面に存在するLiは一般的にLiOHの形態で存在し、非水電解液中において正極活物質の表面をアルカリに呈する。しかしながら、LiとCaOとの化合物(例えば、LiCaO等)はLiOHと異なりアルカリ成分とはならず、このことにより正極表面での充電防止添加剤の重合の抑制が低減されるものと考えられる。これにより、繰り返し充放電後であっても、過充電時における正極表面でのガス発生効率が高く維持され、CIDの作動に必要なガス量を早期に確保することが可能となる。 As described above, in the present invention, the Ca component contained in the positive electrode active material is added in the form of calcium peroxide (CaO 2 ) and at the time of firing the NCM composite hydroxide and the Li compound. ing. According to this configuration, Ca is almost uniformly incorporated into the crystal structure of the Ca-containing Li (NCM) oxide that is the positive electrode active material, and at the same time, a compound of Li and CaO is deposited on the surface of the positive electrode active material. Li existing on the surface of the positive electrode active material generally exists in the form of LiOH, and the surface of the positive electrode active material is alkalinized in the non-aqueous electrolyte. However, unlike LiOH, a compound of Li and CaO (for example, LiCaO or the like) does not become an alkaline component, and this is considered to reduce the suppression of polymerization of the antistatic additive on the positive electrode surface. Thereby, even after repeated charging / discharging, the gas generation efficiency on the surface of the positive electrode during overcharge is maintained high, and the amount of gas necessary for the operation of the CID can be secured early.

ここに開示される非水電解質二次電池の製造方法の好ましい一態様において、上記非水電解液は、過充電添加剤として、シクロヘキシルベンゼンおよびビフェニルの少なくとも一方を、これらの合計が2質量%〜6質量%となる割合で含んでいる。そして、上記正極活物質は、カルシウム(Ca)成分を0.2mol%〜0.3mol%の割合で含むことを特徴としている。
かかる構成とすることで、CIDの作動に必要なガス量を確保するとともに、過充電添加剤の含有量を適切に小量に抑制することができ、過充電添加剤の含有による抵抗増加や電池容量の低下を抑制することができる。
In a preferred embodiment of the method for producing a non-aqueous electrolyte secondary battery disclosed herein, the non-aqueous electrolyte includes at least one of cyclohexylbenzene and biphenyl as an overcharge additive, and the total of these is from 2% by mass to It is included at a ratio of 6% by mass. And the said positive electrode active material is characterized by including a calcium (Ca) component in the ratio of 0.2 mol%-0.3 mol%.
With this configuration, the amount of gas necessary for the operation of the CID can be ensured, and the content of the overcharge additive can be appropriately suppressed to a small amount. A decrease in capacity can be suppressed.

ここで開示される製造方法によって製造された非水電解質二次電池は、ハイレート(特にはハイレートのサイクル)での充放電を行った場合でも、長期に亘って過充電時の安全性を確保するものとなり得る。このような特徴を活かし、ここに開示された製造方法は、高出力密度や高耐久性が要求される用途の非水電解質二次電池を製造する際に好適に適用することができる。このような用途としては、例えば電気自動車、ハイブリッド車両等の動力源(車両駆動用電源)が挙げられる。換言すれば、本発明は、他の側面として上記非水電解質二次電池を備えた車両をも提供し得る。なお、車両に搭載される電池は、該電池が複数個相互に電気的に接続されてなる組電池の形態であり得る。   The nonaqueous electrolyte secondary battery manufactured by the manufacturing method disclosed herein ensures safety during overcharge for a long period even when charging / discharging at a high rate (particularly, a high rate cycle). Can be a thing. Taking advantage of such characteristics, the manufacturing method disclosed herein can be suitably applied when manufacturing a non-aqueous electrolyte secondary battery for applications that require high power density and high durability. Examples of such applications include power sources (vehicle driving power sources) such as electric vehicles and hybrid vehicles. In other words, the present invention can also provide a vehicle including the nonaqueous electrolyte secondary battery as another aspect. Note that the battery mounted on the vehicle may be in the form of an assembled battery in which a plurality of the batteries are electrically connected to each other.

一実施形態に係る正極活物質の調製工程を示すフロー図である。It is a flowchart which shows the preparation process of the positive electrode active material which concerns on one Embodiment. 耐久試験前後の非水電解質二次電池の充電状態と電池ケース内圧力との関係を例示したグラフである。It is the graph which illustrated the relationship between the charge condition of the nonaqueous electrolyte secondary battery before and after an endurance test, and a battery case internal pressure. 従来の正極活物質の調製工程を示すフロー図である。It is a flowchart which shows the preparation process of the conventional positive electrode active material.

以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項(例えば正極活物質の調製工程や過充電添加剤の配合量等)以外の事柄であって本発明の実施に必要な事柄(例えば電池構造や電池の一般的な製造プロセス等)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。   Hereinafter, preferred embodiments of the present invention will be described. It should be noted that matters other than the matters particularly mentioned in the present specification (for example, the preparation process of the positive electrode active material and the blending amount of the overcharge additive) and the matters necessary for the implementation of the present invention (for example, the battery structure and the battery) The general manufacturing process, etc.) can be grasped as a design matter of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.

ここで開示される方法は、上記の通り、正極活物質を備える正極、負極、過充電添加剤を含む非水電解液およびCIDを備える非水電解質二次電池を製造するものである。なお、ここで正極活物質は、Ca含有Li(NCM)酸化物である。そして、かかる製造方法は、本質的に、正極活物質を、(a)NCM複合水酸化物の用意工程、(b)該複合水酸化物と過酸化カルシウムとリチウム塩との混合物の焼成工程を包含する正極活物質調製工程により調製することを特徴としている。Ca含有Li(NCM)酸化物の製造方法については、例えば、本出願人らによる特許文献2に詳細に開示されている。本発明は、Ca源としてCaOを用いる点と、かかるCa源をNiCoMn複合水酸化物とリチウム塩との混合物の焼成時に混合することを必須の要件としている点で、特許文献2に開示の技術と明瞭に区別されるものである。その他の点について、本発明は、特許文献2の開示を参照として含むことができる。図1は、本発明の一実施形態に係る正極活物質調製工程を説明するフロー図である。以下、適宜図1を参照しつつ、正極活物質調製工程について順に説明する。 As described above, the method disclosed herein is to manufacture a positive electrode including a positive electrode active material, a negative electrode, a non-aqueous electrolyte including an overcharge additive, and a non-aqueous electrolyte secondary battery including a CID. Here, the positive electrode active material is a Ca-containing Li (NCM) oxide. And this manufacturing method essentially comprises a positive electrode active material, (a) a step of preparing an NCM composite hydroxide, and (b) a step of firing a mixture of the composite hydroxide, calcium peroxide and lithium salt. It is characterized by preparing by the positive electrode active material preparation process to include. The method for producing the Ca-containing Li (NCM) oxide is disclosed in detail, for example, in Patent Document 2 by the present applicants. The present invention is disclosed in Patent Document 2 in that CaO 2 is used as a Ca source and that the Ca source is required to be mixed at the time of firing a mixture of a NiCoMn composite hydroxide and a lithium salt. It is clearly distinguished from technology. Regarding other points, the present invention can include the disclosure of Patent Document 2 as a reference. FIG. 1 is a flowchart illustrating a positive electrode active material preparation step according to an embodiment of the present invention. Hereinafter, the positive electrode active material preparation step will be described in order with reference to FIG.

[A:正極活物質調製工程]
(a)NCM複合水酸化物の用意工程
まず、正極活物質である、カルシウム(Ca)を含み、遷移金属として少なくともニッケル、コバルトおよびマンガンを含有するリチウム遷移金属酸化物について、Ca成分およびLi成分以外の金属成分(典型的には、遷移金属成分)を含む水溶液を調製し、かかる水溶液から遷移金属水酸化物を晶析させる。ここで、遷移金属水酸化物における各遷移金属元素の割合は、好ましくは、目的のCa含有NCM酸化物における当該遷移金属元素の割合(化学量論比)に一致させることができる。なお、かかるCa含有NCM酸化物においては、遷移金属として、Ni,Co,Mn以外の遷移金属元素を含むことができる。例えば、Ca含有NCM酸化物の組成を下記の一般式:
LixNiCoMnMtCa (1)
(ここで、式中、0.95≦x≦1.05、0.8≦a+b+c+d≦1.2、a×b×c≠0、0≦d≦0.05、(x+a+b+c+d+e+2)×0.1≦e≦(x+a+b+c+d+e+2)×0.5である)
で示した場合、Ni,Co,Mn以外の遷移金属元素Mtとしては特に制限はないが、例えば、Sc,Ti,V,Fe,Zr,Mo,Pd,TaおよびW等から1種または2種以上を考慮することができる。
遷移金属を含む水溶液の調製には、所望の遷移金属を含有する塩を、各遷移金属の割合が所望の割合となるように水性溶媒に溶解させることで調製することができる。このような遷移金属の塩としては、例えば、硫酸塩、硝酸塩、塩化物等であり得る。遷移金属は水溶液中で錯体を形成していても良い。この遷移金属の水溶液の濃度は、遷移金属全て(Ni,Co,Mn等)の合計が1〜2.2mol/L程度であることが好ましい。かかる水溶液を調製する際に使用する水性溶媒は、典型的には水であり、使用する各塩の溶解性によっては溶解性を向上させる試薬(酸、塩基等)を含む水を用いてもよい。
[A: Positive electrode active material preparation step]
(A) Preparation process of NCM composite hydroxide First, about lithium transition metal oxide containing calcium (Ca) which is a positive electrode active material and containing at least nickel, cobalt and manganese as transition metals, Ca component and Li component An aqueous solution containing a metal component other than (typically a transition metal component) is prepared, and a transition metal hydroxide is crystallized from the aqueous solution. Here, the ratio of each transition metal element in the transition metal hydroxide can be preferably matched with the ratio (stoichiometry) of the transition metal element in the target Ca-containing NCM oxide. In addition, in this Ca containing NCM oxide, transition metal elements other than Ni, Co, and Mn can be included as a transition metal. For example, the composition of a Ca-containing NCM oxide is represented by the following general formula:
LixNi a Co b Mn c Mt d Ca e O 2 (1)
(Where, 0.95 ≦ x ≦ 1.05, 0.8 ≦ a + b + c + d ≦ 1.2, a × b × c ≠ 0, 0 ≦ d ≦ 0.05, (x + a + b + c + d + e + 2) × 0 .1 ≦ e ≦ (x + a + b + c + d + e + 2) × 0.5)
The transition metal element Mt other than Ni, Co, and Mn is not particularly limited. For example, one or two of Sc, Ti, V, Fe, Zr, Mo, Pd, Ta, and W are used. The above can be considered.
The aqueous solution containing a transition metal can be prepared by dissolving a salt containing a desired transition metal in an aqueous solvent so that the ratio of each transition metal is a desired ratio. Such transition metal salts may be, for example, sulfates, nitrates, chlorides, and the like. The transition metal may form a complex in an aqueous solution. As for the concentration of the transition metal aqueous solution, the total of all transition metals (Ni, Co, Mn, etc.) is preferably about 1 to 2.2 mol / L. The aqueous solvent used in preparing such an aqueous solution is typically water, and water containing a reagent (acid, base, etc.) that improves solubility may be used depending on the solubility of each salt used. .

次いで、上記の遷移金属の水溶液を、pH制御の下、中和することで、NCM複合水酸化物を晶析させる。中和には、遷移金属の水溶液に、塩基性水溶液を混合させるのが簡便である。塩基性水溶液としては、強塩基(アルカリ金属の水酸化物等)および弱塩基(アンモニア等)を含み、遷移金属を含む水溶液を所定量用意した場合において、液温25℃でのpHが11〜14程度に維持され、かつ、NCM複合水酸化物の生成を阻害しないものを好ましく使用できる。典型的には、水酸化ナトリウム水溶液とアンモニア水との混合溶液を用いることができる。この混合溶液は、pHが11〜14の範囲(例えば、pH12程度)であり、アンモニア濃度が3〜25g/Lとなるように調製することが好ましい。これにより、混合水溶液中にNCM複合水酸化物を得ることができる。得られたNCM複合水酸化物は、晶析終了後に水洗・濾過して乾燥させ、所望の粒径を有する粒子状に調製(解砕、粉砕、篩別、分級等を含む)することができる。   Next, the NCM composite hydroxide is crystallized by neutralizing the aqueous solution of the transition metal under pH control. For neutralization, it is convenient to mix a basic aqueous solution with an aqueous solution of a transition metal. The basic aqueous solution contains a strong base (such as an alkali metal hydroxide) and a weak base (such as ammonia). When a predetermined amount of an aqueous solution containing a transition metal is prepared, the pH at a liquid temperature of 25 ° C. is 11 to 11. What is maintained at about 14 and does not inhibit the production of NCM composite hydroxide can be preferably used. Typically, a mixed solution of an aqueous sodium hydroxide solution and aqueous ammonia can be used. This mixed solution is preferably prepared so that the pH is in the range of 11 to 14 (for example, about pH 12) and the ammonia concentration is 3 to 25 g / L. Thereby, an NCM composite hydroxide can be obtained in the mixed aqueous solution. The obtained NCM composite hydroxide can be washed with water, filtered and dried after crystallization, and can be prepared into particles having a desired particle size (including crushing, grinding, sieving, classification, etc.). .

(b)NCM複合水酸化物、CaOおよびLi塩の混合物の焼成工程
上記で用意したNCM複合酸化物と、Ca源としてのCaOと、適切なリチウム塩との混合物を、典型的には空気中で焼成することにより、Ca含有NCM複合酸化物を調製することができる。上記リチウム塩としては、リチウム複合酸化物の形成に使用される一般的なリチウム塩を特に制限なく使用することができる。具体的には、炭酸リチウム、水酸化リチウム等が例示される。これらリチウム塩は、一種のみを単独で、あるいは二種以上を組み合わせて用いることができる。NCM複合酸化物と、CaOと、リチウム塩との混合比は、酸素(O)を除く各構成元素の割合が目的のCa含有NCM複合酸化物における割合と同じとなるように調整すればよい。混合は、各材料が均一な混合状態となるまで行うのが好ましい。
焼成温度は、約700〜1000℃の範囲とすることが好ましい。焼成は、同一の温度で一度に行ってもよく、異なる温度で段階的に行ってもよい。焼成時間は、適宜選択することができ、例えば、700〜800℃程度で1〜12時間程度焼成した後、800〜1000℃程度で2〜24時間程度焼成することが例示される。このようにして得られたCa含有NCM酸化物は、必要に応じて、調整(解砕、粉砕、篩別、分級等を含む)する等して、所望の粒径に調整することができる。正極活物質としての好ましい平均粒径(二次粒径であり得る。)は、例えば、3μm〜7μm程度であり得る。比表面積は、0.5〜1.8m/gの範囲にあることが好ましい。
(B) Firing step of mixture of NCM composite hydroxide, CaO 2 and Li salt Typically, a mixture of the NCM composite oxide prepared above, CaO 2 as a Ca source, and an appropriate lithium salt is typically used. A Ca-containing NCM composite oxide can be prepared by firing in air. As said lithium salt, the general lithium salt used for formation of lithium complex oxide can be especially used without a restriction | limiting. Specific examples include lithium carbonate and lithium hydroxide. These lithium salts can be used alone or in combination of two or more. The mixing ratio of the NCM composite oxide, CaO 2 and lithium salt may be adjusted so that the ratio of each constituent element excluding oxygen (O) is the same as the ratio in the target Ca-containing NCM composite oxide. . The mixing is preferably performed until each material is in a uniform mixed state.
The firing temperature is preferably in the range of about 700 to 1000 ° C. Firing may be performed at the same temperature at a time, or may be performed stepwise at different temperatures. The firing time can be appropriately selected. For example, after firing at about 700 to 800 ° C. for about 1 to 12 hours, firing at about 800 to 1000 ° C. for about 2 to 24 hours is exemplified. The Ca-containing NCM oxide thus obtained can be adjusted to a desired particle size by adjusting (including crushing, crushing, sieving, classification, etc.) as necessary. A preferable average particle size (which may be a secondary particle size) as the positive electrode active material may be, for example, about 3 μm to 7 μm. The specific surface area is preferably in the range of 0.5 to 1.8 m 2 / g.

このようにして調製されるCa含有NCM酸化物は、本質的には、層状構造を有するCa含有NCM複合酸化物の一次粒子が集まった二次粒子の形態をなしている。そして、この一次粒子の結晶構造内において、Caはほぼ均一に存在し得る。例えば、CaO等の形態で均一に存在していると考えられる。そして尚且つ、一次粒子の結晶表面において、CaはLiとの化合物を形成し、一次粒子の結晶構造内とは異なる形態で存在している。すなわち、Caは、一次粒子同士の粒界において、CaとLiとの化合物を形成して析出している。かかる構成によって、例えば、繰り返し充放電後であっても、正極活物質の表面における過充電添加剤の分解が抑制されずに、高いガス発生性能を維持することができる。これにより、例えば図2(a)に示すように、繰り返し充放電の前後の何れにおいてもCIDを作動させ得るガス量を速やかに発生させることができ、より安全な状態で(例えば、より低いSOC状態で)非水電解質二次電池の導電経路を遮断することができる。   The Ca-containing NCM oxide thus prepared is essentially in the form of secondary particles in which primary particles of a Ca-containing NCM composite oxide having a layered structure are gathered. And Ca can exist substantially uniformly in the crystal structure of the primary particles. For example, it is considered to exist uniformly in the form of CaO or the like. In addition, on the crystal surface of the primary particles, Ca forms a compound with Li and exists in a form different from that in the crystal structure of the primary particles. That is, Ca is precipitated by forming a compound of Ca and Li at the grain boundary between primary particles. With such a configuration, for example, even after repeated charging and discharging, high gas generation performance can be maintained without suppressing decomposition of the overcharge additive on the surface of the positive electrode active material. As a result, for example, as shown in FIG. 2 (a), the amount of gas capable of operating the CID can be promptly generated both before and after repeated charging / discharging, and in a safer state (for example, lower SOC) In the state), the conductive path of the non-aqueous electrolyte secondary battery can be blocked.

このような正極活物質における各成分の存在形態は、例えば、得られたCa含有NCM複合酸化物(二次粒子)について透過型電子顕微鏡(TEM)を備えたエネルギー分散型X線分光法(EDX;Energy Dispersive X-ray Spectroscopy)を用いて元素分布を調べることや、飛行時間型二次イオン質量分析(TOF‐SIMS)により粒子表面の元素や化学状態を調べることにより、把握することができる。   The existence form of each component in such a positive electrode active material is, for example, energy dispersive X-ray spectroscopy (EDX) equipped with a transmission electron microscope (TEM) for the obtained Ca-containing NCM composite oxide (secondary particles). It can be grasped by examining the element distribution using Energy Dispersive X-ray Spectroscopy or examining the element surface and chemical state of the particle surface by time-of-flight secondary ion mass spectrometry (TOF-SIMS).

なお、例えば、従来の晶析法によりCa源としてカルシウムの硫化物や水酸化物、炭酸塩等を用いて得られたカルシウム含有リチウム遷移金属複合酸化物においては、原料として用いたカルシウム成分(例えば、硫酸カルシウム(CaSO))が粒界に偏析しがちである点で、上記Ca含有NCM複合酸化物と区別することができる。また、これに加えて、従来法で得られるカルシウム含有リチウム遷移金属複合酸化物においては、一次粒子の表面においてLi成分が容易に電離可能なLiOHの形態で多く存在しており、かかる点においても上記Ca含有NCM複合酸化物と区別することができる。なお、従来法によるカルシウム含有リチウム遷移金属複合酸化物においても、一次粒子同士の粒界においてCaとLiとの化合物の析出が見られ得る。しかしながら、かかる量は、上記Ca含有NCM複合酸化物において見られる量よりも、相対的に低い量(割合)となり得る。また、従来法によると、一次粒子の結晶構造内において、CaがCaO等としてほぼ均一に存在することは難しい。従って、例えば、繰り返し充放電後には正極活物質の表面における過充電添加剤の分解反応が抑制され、所定の量のガスを発生させるのに長時間を要してしまう。その結果として、例えば図2(b)に示すように、繰り返し充放電の前よりもCIDの作動に時間を要し、過充電がより進行した状態で(例えば、より高いSOC状態で)しかCIDが作動し得ない状態となり得る。 For example, in a calcium-containing lithium transition metal composite oxide obtained by using a calcium sulfide, hydroxide, carbonate or the like as a Ca source by a conventional crystallization method, a calcium component used as a raw material (for example, , Calcium sulfate (CaSO 4 ) can be distinguished from the Ca-containing NCM composite oxide in that it tends to segregate at grain boundaries. In addition, in the calcium-containing lithium transition metal composite oxide obtained by the conventional method, the Li component is often present in the form of LiOH that can be easily ionized on the surface of the primary particles. It can be distinguished from the Ca-containing NCM complex oxide. In the calcium-containing lithium transition metal composite oxide according to the conventional method, precipitation of a compound of Ca and Li can be seen at the grain boundary between the primary particles. However, such an amount can be a relatively low amount (ratio) than the amount found in the Ca-containing NCM composite oxide. Further, according to the conventional method, it is difficult for Ca to be present almost uniformly as CaO or the like in the crystal structure of the primary particles. Therefore, for example, after repeated charging and discharging, the decomposition reaction of the overcharge additive on the surface of the positive electrode active material is suppressed, and it takes a long time to generate a predetermined amount of gas. As a result, for example, as shown in FIG. 2 (b), it takes more time to operate the CID than before repeated charging / discharging, and the CID is only in a state in which overcharge has progressed more (eg, in a higher SOC state). May not be able to operate.

[B:電池構築工程]
次いで、本発明における非水電解質二次電池の構築方法について、電池構成と共に説明する。なお、かかる電池構築工程は本願発明を特徴づけるものではないため、典型的な例に基づき、簡単に説明するに留める。非水電解質二次電池は、典型的には、正極と負極とが対向してなる電極体を用意し、かかる電極体と非水電解液とを電池ケース内に収容することで構築することができる。
ここで、電極体の正極は、典型的には、正極集電端子を介して電池ケースの外部に配設された正極外部接続端子に電気的に接続されている。また電極体の負極は、典型的には、負極集電端子を介して電池ケースの外部に配設された負極外部接続端子に電気的に接続されている。そして、典型的には、正負の外部接続端子は電池ケースの蓋体に配設されており、電極体は上記の通り蓋体に固定されることで電気の出入力がスムーズに行えるとともに、電池ケース内の位置が安定化されている。電池ケースのケース本体に電極体が挿入された後に、当該ケース本体の開口部が蓋体により閉じられて、電極体の主要が実現される。電池ケースとしては、例えばアルミニウム合金等の軽量な金属製のものを好適に採用し得る。また、電池ケース(典型的には蓋体)には、電池ケースの内圧が所定値を超えるとケース外部と連通する安全弁や、電解液を注入する注液口およびこれを封止する注液口栓等が設けられていてもよい。そして、典型的には、外部接続端子と集電端子との間に、電池ケースの内圧が所定値を超えると作動するCIDが設けられている。CIDは、所定の作動圧において導電経路を遮断し得るものである限り、具体的な構成等は制限されない。
[B: Battery construction process]
Next, a method for constructing the nonaqueous electrolyte secondary battery in the present invention will be described together with the battery configuration. In addition, since this battery construction process does not characterize this invention, it is only demonstrated briefly based on a typical example. A non-aqueous electrolyte secondary battery is typically constructed by preparing an electrode body having a positive electrode and a negative electrode facing each other, and housing the electrode body and the non-aqueous electrolyte in a battery case. it can.
Here, the positive electrode of the electrode body is typically electrically connected to a positive electrode external connection terminal disposed outside the battery case via a positive electrode current collecting terminal. Moreover, the negative electrode of the electrode body is typically electrically connected to a negative electrode external connection terminal disposed outside the battery case via a negative electrode current collecting terminal. Typically, the positive and negative external connection terminals are arranged on the lid of the battery case, and the electrode body is fixed to the lid as described above, so that electricity can be smoothly input and output, and the battery The position in the case is stabilized. After the electrode body is inserted into the case main body of the battery case, the opening of the case main body is closed by the lid body, and the main part of the electrode body is realized. As the battery case, for example, a lightweight metal case such as an aluminum alloy can be preferably used. The battery case (typically a lid) has a safety valve that communicates with the outside of the case when the internal pressure of the battery case exceeds a predetermined value, a liquid injection port for injecting an electrolyte, and a liquid injection port for sealing the same. A stopper or the like may be provided. Typically, a CID that operates when the internal pressure of the battery case exceeds a predetermined value is provided between the external connection terminal and the current collecting terminal. As long as the CID can block the conductive path at a predetermined operating pressure, the specific configuration or the like is not limited.

電極体は、例えば、正極活物質層を有する正極と負極活物質層を有する負極とを、典型的にはセパレータを介して積層することで構成することができる。かかる正極および負極は、例えば、複数のものが積層された積層型電極体を構成していても良いし、長尺の正極シートおよび負極シートを積層し捲回してなる捲回型電極体を構成していても良い。正負極の初期容量比、すなわち正極の初期充電容量(C)に対する負極の初期充電容量(C)の比として算出される容量比(C/C)については特に制限はないが、例えば1.0〜2.1程度とすることができる。 An electrode body can be comprised by laminating | stacking typically the positive electrode which has a positive electrode active material layer, and the negative electrode which has a negative electrode active material layer through a separator, for example. For example, the positive electrode and the negative electrode may constitute a laminated electrode body in which a plurality of positive electrodes and negative electrodes are laminated, or constitute a wound electrode body obtained by laminating and winding a long positive electrode sheet and a negative electrode sheet. You may do it. The capacity ratio (C N / C P ) calculated as the initial capacity ratio of the positive and negative electrodes, that is, the ratio of the initial charge capacity (C N ) of the negative electrode to the initial charge capacity (C P ) of the positive electrode is not particularly limited, For example, it can be set to about 1.0 to 2.1.

正極としては、典型的には、正極活物質を導電材やバインダ等とともに組成物として正極集電体上に付着させ、正極活物質層を形成した形態のものを用いることができる。正極集電体としては、少なくとも上記の正極活物質調製工程により調製されたCa含有NCM複合酸化物を含むものとする。なお、正極活物質として実質的に上記のCa含有NCM複合酸化物のみを用いることが、本発明の特徴が明瞭になるために好ましい形態である。しかしながら、本発明の目的を損ねない限りにおいて、その他の層状系、スピネル系等のリチウム複合金属酸化物(例えば、LiNiO、LiCoO、LiFeO、LiMn、LiNi1/3Co1/3Mn1/3、LiNi0.5Mn1.5,LiCrMnO、LiFePO等)等が正極活物質に混合または混入されていても良い。導電材としては、カーボンブラック(例えば、アセチレンブラックやケッチェンブラック)等の炭素材料等を採用し得る。バインダとしては、ポリフッ化ビニリデン(PVdF)やポリエチレンオキサイド(PEO)等の各種のポリマー材料を採用し得る。 As the positive electrode, typically, a positive electrode active material can be used in the form of a positive electrode active material layer formed by adhering a positive electrode active material as a composition together with a conductive material, a binder, or the like onto a positive electrode current collector. The positive electrode current collector includes at least the Ca-containing NCM composite oxide prepared by the positive electrode active material preparation step. In addition, it is a preferable form to use only said Ca containing NCM complex oxide as a positive electrode active material, since the characteristic of this invention becomes clear. However, as long as the object of the present invention is not impaired, other layered and spinel-based lithium composite metal oxides (for example, LiNiO 2 , LiCoO 2 , LiFeO 2 , LiMn 2 O 4 , LiNi 1/3 Co 1 / 3 Mn 1/3 O 2, LiNi 0.5 Mn 1.5 O 4, LiCrMnO 4, LiFePO 4 , etc.) and the like may be mixed or incorporated into the positive electrode active material. As the conductive material, a carbon material such as carbon black (for example, acetylene black or ketjen black) can be employed. As the binder, various polymer materials such as polyvinylidene fluoride (PVdF) and polyethylene oxide (PEO) can be adopted.

負極としては、負極活物質をバインダ等とともに組成物として負極集電体上に付着させ、負極活物質層を形成した形態のものを用いることができる。負極集電体としては、導電性の良好な金属(例えば銅)からなる導電性材料を好適に採用し得る。負極活物質としては、例えば、黒鉛(グラファイト)、難黒鉛化炭素(ハードカーボン)、易黒鉛化炭素(ソフトカーボン)等の炭素材料等を用いることができ、なかでもアモルファスコートグラファイト(黒鉛粒子の表面にアモルファスカーボンがコートされた形態のもの)を好適に採用し得る。バインダとしては、例えば、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、ポリテトラフルオロエチレン(PTFE)等の各種のポリマー材料を採用し得る。   As the negative electrode, it is possible to use a negative electrode active material layer in which a negative electrode active material is deposited on a negative electrode current collector as a composition together with a binder or the like. As the negative electrode current collector, a conductive material made of a metal having good conductivity (for example, copper) can be suitably used. As the negative electrode active material, for example, a carbon material such as graphite (graphite), non-graphitizable carbon (hard carbon), graphitizable carbon (soft carbon), etc. can be used. A material whose surface is coated with amorphous carbon can be suitably employed. As the binder, for example, various polymer materials such as styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), and polytetrafluoroethylene (PTFE) can be adopted.

セパレータとしては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)等の樹脂から成る微多孔質樹脂シートを好適に採用し得る。なお、固体状の電解質を用いた電池(リチウムポリマー電池)では、電解質がセパレータを兼ねる構成であり得る。
非水電解液としては、典型的には非水溶媒中に支持塩を含有させたものを用いることができる。支持塩としては、例えば、リチウム塩、ナトリウム塩、マグネシウム塩等を用いることができ、なかでもLiPF、LiBF等のリチウム塩を好適に採用し得る。非水溶媒としては、例えば、カーボネート類、エステル類、エーテル類、ニトリル類、スルホン類、ラクトン類等の非プロトン性溶媒を用いることができる。なかでも、カーボネート類、例えば、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等を好適に採用し得る。
As the separator, for example, a microporous resin sheet made of a resin such as polyethylene (PE) or polypropylene (PP) can be suitably used. Note that in a battery using a solid electrolyte (lithium polymer battery), the electrolyte may also serve as a separator.
As the non-aqueous electrolyte, typically, a non-aqueous solvent containing a supporting salt can be used. As the supporting salt, for example, a lithium salt, a sodium salt, a magnesium salt, or the like can be used, and among them, a lithium salt such as LiPF 6 or LiBF 4 can be preferably used. As the non-aqueous solvent, for example, aprotic solvents such as carbonates, esters, ethers, nitriles, sulfones and lactones can be used. Of these, carbonates such as ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) can be preferably used.

そして、かかる非水電解液には、上述した非水溶媒および支持塩以外に、過充電添加剤を含んでいる。かかる過充電添加剤は、過充電時にガスを発生する化合物であれば特に制限なく用いることができる。なかでも、シクロヘキシルベンゼン(CHB)およびビフェニル(BP)のいずれか一方を含んでいることが好ましい。これらシクロヘキシルベンゼンやビフェニルは共役系をとりやすく、電子授受が容易である。このため過充電時には好適に酸化分解され、大量の水素ガスを発生させ得る。従って、CIDをより迅速に作動させることができ、電池の信頼性を高め得る。さらに、このようにガス発生能の高い過充電添加剤を用いることで、従来に比べてかかる過充電添加剤の添加量を削減することができ、電池の内部抵抗を低減させることができる。なお、非水電解質には、上記の皮膜形成剤以外に、例えば、ガス発生剤等の各種添加剤を適宜添加することもできる。   Such a non-aqueous electrolyte contains an overcharge additive in addition to the above-described non-aqueous solvent and supporting salt. Such an overcharge additive can be used without particular limitation as long as it is a compound that generates gas during overcharge. Especially, it is preferable that any one of cyclohexylbenzene (CHB) and biphenyl (BP) is included. These cyclohexylbenzenes and biphenyls are easy to take a conjugated system and are easy to exchange electrons. For this reason, it is suitably oxidized and decomposed during overcharge, and a large amount of hydrogen gas can be generated. Therefore, the CID can be operated more quickly, and the reliability of the battery can be improved. Furthermore, by using an overcharge additive having a high gas generating ability as described above, the amount of overcharge additive added can be reduced as compared with the conventional case, and the internal resistance of the battery can be reduced. In addition to the above film forming agent, for example, various additives such as a gas generating agent can be appropriately added to the nonaqueous electrolyte.

次いで、上記のとおり構築された非水電解質二次電池は、適切なコンディショニング処理やエージング処理を施した後、所定の充放電性能を備える製品として提供され得る。
ここで開示される方法によって製造された非水電解質二次電池は、充放電サイクル後においても、正極の表面での過充電添加剤の分解が抑制され難く、迅速なCIDの作動が長期に亘って確保されたものであり得る。したがって長期に亘って安全性が求められる各種用途の非水電解質二次電池に特に好適に利用することができる。なかでも、理論容量が10〜100Ah程度の高容量型の電池や、ハイレートでの充放電を繰り返し行う用途の電池等、具体的には、例えばプラグインハイブリッド自動車(PHV)等の車両に搭載されるモーター用の動力源(駆動用電源)等であり得る。
Next, the non-aqueous electrolyte secondary battery constructed as described above can be provided as a product having a predetermined charge / discharge performance after performing an appropriate conditioning process or aging process.
The non-aqueous electrolyte secondary battery manufactured by the method disclosed herein is difficult to suppress the decomposition of the overcharge additive on the surface of the positive electrode even after the charge / discharge cycle, and the rapid CID operation is performed for a long time. Can be reserved. Therefore, it can be particularly suitably used for non-aqueous electrolyte secondary batteries for various applications that require safety over a long period of time. Among them, high capacity type batteries having a theoretical capacity of about 10 to 100 Ah, batteries for applications that repeatedly charge and discharge at a high rate, and the like, such as plug-in hybrid vehicles (PHV), are specifically mounted. It may be a power source (drive power source) for a motor.

リチウム二次電池の作製にあたり、まずは、下記の本発明に係る手順1と、従来の手順2および3とで、正極活物質を調製した。
[手順1]
<例1>
反応容器に半分程度の水を入れ、攪拌しながら40℃に加熱した。該反応容器を窒素置換した後、窒素気流下、3.25%水酸化ナトリウム水溶液と25%アンモニア水とを適量ずつ加え、液温25℃におけるpHが12.0、液相のアンモニア濃度が20g/Lとなるように調整して、塩基性水溶液を得た。
硫酸ニッケル(NiSO)、硫酸コバルト(CoSO)および硫酸マンガン(MnSO)を、Ni,Co,Mnのモル比が所定の割合となるよう水に溶解させてNiCoMn水溶液を調製した。
上記で用意したNiCoMn水溶液を、pHを12.0に維持しながら塩基性水溶液に加え、混合することで、NiCoMnの水酸化物を晶析させた。この晶析物をろ過し、アルカリ成分を洗浄して乾燥させることで、目的のNiCoMn複合水酸化物を得た。
In producing a lithium secondary battery, first, a positive electrode active material was prepared by the following procedure 1 according to the present invention and conventional procedures 2 and 3.
[Procedure 1]
<Example 1>
About half of the water was placed in the reaction vessel and heated to 40 ° C. with stirring. After replacing the reaction vessel with nitrogen, an appropriate amount of 3.25% aqueous sodium hydroxide solution and 25% aqueous ammonia was added in a nitrogen stream, and the pH at the liquid temperature of 25 ° C. was 12.0, and the ammonia concentration in the liquid phase was 20 g. / L was adjusted to obtain a basic aqueous solution.
Nickel sulfate (NiSO 4 ), cobalt sulfate (CoSO 4 ), and manganese sulfate (MnSO 4 ) were dissolved in water so that the molar ratio of Ni, Co, and Mn was a predetermined ratio to prepare a NiCoMn aqueous solution.
The NiCoMn aqueous solution prepared above was added to the basic aqueous solution while maintaining the pH at 12.0 and mixed to crystallize the NiCoMn hydroxide. The crystallized product was filtered, and the alkaline component was washed and dried to obtain the target NiCoMn composite hydroxide.

上記NiCoMn複合水酸化物中の全遷移金属(すなわち、Ni,Co,Mn)のモル数の合計をMとしたとき、このMに対するリチウムのモル比(Li/M)が1.0、となるように炭酸リチウム(LiCO)を秤量し、また、正極活物質内のCa量が0.3mol%となるよう過酸化カルシウム(CaO)を秤量して、上記加熱処理後の水酸化物粒子と均一に混合した。得られた混合物を、大気中にて、760℃で4時間焼成した後、950℃で10時間焼成し、Ca含有Li(NiCoMn)複合酸化物を得た。 When the total number of moles of all transition metals (ie, Ni, Co, Mn) in the NiCoMn composite hydroxide is M, the molar ratio of lithium to M (Li / M) is 1.0. Lithium carbonate (Li 2 CO 3 ) was weighed as above, and calcium peroxide (CaO 2 ) was weighed out so that the amount of Ca in the positive electrode active material was 0.3 mol%. The product particles were mixed uniformly. The obtained mixture was baked at 760 ° C. for 4 hours in the air, and then baked at 950 ° C. for 10 hours to obtain a Ca-containing Li (NiCoMn) composite oxide.

<例2>
上記の例1において、正極活物質内のCa量が0.2mol%となるよう過酸化カルシウム(CaO)を秤量して加えた。その他は、例1と同様にして、Ca含有Li(NiCoMn)複合酸化物を得た。
<Example 2>
In Example 1 described above, calcium peroxide (CaO 2 ) was weighed and added so that the amount of Ca in the positive electrode active material was 0.2 mol%. Others were the same as in Example 1 to obtain a Ca-containing Li (NiCoMn) composite oxide.

[手順2]
<例3>
反応容器に半分程度の水を入れ、攪拌しながら40℃に加熱した。該反応容器を窒素置換した後、窒素気流下、3.25%水酸化ナトリウム水溶液と25%アンモニア水とを適量ずつ加え、液温25℃におけるpHが12.0、液相のアンモニア濃度が20g/Lとなるように調整して、塩基性水溶液を得た。
硫酸ニッケル(NiSO)、硫酸コバルト(CoSO)、硫酸マンガン(MnSO)、硫酸カルシウム(CaSO)を、Ni,Co,Mnのモル比が所定の割合で、かつ、正極活物質内のCa量が0.3mol%となるよう水に溶解させてCa含有NiCoMn水溶液を調製した。
上記で用意したCa含有NiCoMn水溶液を、pHを12.0に維持しながら塩基性水溶液に加え、混合することで、Caを含有するNiCoMnの水酸化物を晶析させた。この晶析物をろ過し、アルカリ成分を洗浄して乾燥させることで、目的のCa含有NiCoMn複合水酸化物を得た。
[Procedure 2]
<Example 3>
About half of the water was placed in the reaction vessel and heated to 40 ° C. with stirring. After replacing the reaction vessel with nitrogen, an appropriate amount of 3.25% aqueous sodium hydroxide solution and 25% aqueous ammonia was added in a nitrogen stream, and the pH at the liquid temperature of 25 ° C. was 12.0, and the ammonia concentration in the liquid phase was 20 g. / L was adjusted to obtain a basic aqueous solution.
Nickel sulfate (NiSO 4 ), cobalt sulfate (CoSO 4 ), manganese sulfate (MnSO 4 ), calcium sulfate (CaSO 4 ) at a predetermined molar ratio of Ni, Co, and Mn, and in the positive electrode active material A Ca-containing NiCoMn aqueous solution was prepared by dissolving in water such that the Ca amount was 0.3 mol%.
The Ca-containing NiCoMn aqueous solution prepared above was added to the basic aqueous solution while maintaining the pH at 12.0 and mixed to crystallize Ca-containing NiCoMn hydroxide. The crystallized product was filtered, and the alkali component was washed and dried to obtain the target Ca-containing NiCoMn composite hydroxide.

上記Ca含有NiCoMn複合水酸化物中の全遷移金属(すなわち、Ni,Co,Mn)のモル数の合計をMとしたとき、このMに対するリチウムのモル比(Li/M)が1.0、となるように炭酸リチウム(LiCO)を秤量して、上記加熱処理後のCa含有水酸化物粒子と均一に混合した。得られた混合物を、大気中にて、760℃で4時間焼成した後、950℃で10時間焼成し、Ca含有Li(NiCoMn)複合酸化物を得た。 When the total number of moles of all transition metals (ie, Ni, Co, Mn) in the Ca-containing NiCoMn composite hydroxide is M, the molar ratio of lithium to M (Li / M) is 1.0. Lithium carbonate (Li 2 CO 3 ) was weighed so as to be uniformly mixed with the Ca-containing hydroxide particles after the heat treatment. The obtained mixture was baked at 760 ° C. for 4 hours in the air, and then baked at 950 ° C. for 10 hours to obtain a Ca-containing Li (NiCoMn) composite oxide.

<例4>
上記の例3において、正極活物質内のCa量が0.2mol%となるよう硫酸カルシウム(CaSO)を秤量して加えた。その他は、例3と同様にして、Ca含有Li(NiCoMn)複合酸化物を得た。
<Example 4>
In Example 3 above, calcium sulfate (CaSO 4 ) was weighed and added so that the amount of Ca in the positive electrode active material was 0.2 mol%. Others were the same as in Example 3 to obtain a Ca-containing Li (NiCoMn) composite oxide.

[手順3]
<例5>
上記の手順1または手順2において、正極活物質にCa成分を加えることなく、その他は同様にして、Li(NiCoMn)複合酸化物を得た。
[Procedure 3]
<Example 5>
In the above procedure 1 or 2, the Li (NiCoMn) composite oxide was obtained in the same manner without adding the Ca component to the positive electrode active material.

上記で用意した例1〜例5のLi(NiCoMn)複合酸化物を正極活物質として用い、導電材としてのアセチレンブラック(AB)および黒鉛(KS4)と、バインダとしてのポリフッ化ビニリデン(PVdF)とを、質量比率が91:3:3:3となるようにN−メチルピロリドン(NMP)と混合し、スラリー状組成物を調製した。この組成物を、厚みおよそ15μmの長尺状アルミニウム箔(正極集電体)に塗布して正極活物質層を形成した。得られた正極を乾燥およびプレスし、シート状の正極(正極シート)を作製した。   Using the Li (NiCoMn) composite oxide prepared in Examples 1 to 5 as the positive electrode active material, acetylene black (AB) and graphite (KS4) as the conductive material, and polyvinylidene fluoride (PVdF) as the binder Was mixed with N-methylpyrrolidone (NMP) such that the mass ratio was 91: 3: 3: 3 to prepare a slurry composition. This composition was applied to a long aluminum foil (positive electrode current collector) having a thickness of about 15 μm to form a positive electrode active material layer. The obtained positive electrode was dried and pressed to produce a sheet-like positive electrode (positive electrode sheet).

次に、負極活物質としてのアモルファスコートグラファイト粉末と、スチレンブタジエンゴム(SBR)と、カルボキシメチルセルロース(CMC)とを、質量比率が98.3:1.0:0.7となるようにイオン交換水と混合して、スラリー状組成物を調製した。この組成物を、厚みおよそ10μmの長尺状銅箔(負極集電体)に塗布して負極活物質層を形成した。得られた負極を乾燥およびプレスし、シート状の負極(負極シート)を作製した。   Next, ion exchange of amorphous coated graphite powder as a negative electrode active material, styrene butadiene rubber (SBR), and carboxymethyl cellulose (CMC) is performed so that the mass ratio becomes 98.3: 1.0: 0.7. A slurry-like composition was prepared by mixing with water. This composition was applied to a long copper foil (negative electrode current collector) having a thickness of about 10 μm to form a negative electrode active material layer. The obtained negative electrode was dried and pressed to prepare a sheet-like negative electrode (negative electrode sheet).

次に、上記で作製した正極シートと負極シートとを、セパレータ(ここでは、ポリエチレン(PE)層の両面にポリプロピレン(PP)層が積層された三層構造のものを用いた。)を介して重ね合わせて捲回し、得られた捲回電極体を側面方向から押しつぶして拉げさせることによって扁平形状に成形した。そして、かかる捲回電極体の正極集電体の端部に正極端子を、負極集電体の端部に負極端子を溶接によりそれぞれ接合した。なお、正極端子には、導電経路内に圧力感知型のCID機構が備えられている。
この電極体を電池ケースに収容し、非水電解液を注入した。なお、非水電解液としては、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)とを3:4:3の体積比率で含む混合溶媒に、電解質としてのLiPFを約1mol/Lの濃度で溶解し、さらに、過充電添加剤としてCHBとBPとを、これらの合計が下記の表1に示す値となるように調整して添加したものを用いた。そして、電池ケースの開口部に蓋体を装着し、溶接して接合することによって計40個のリチウム二次電池を構築した。なお、これらリチウム二次電池の容量比(C/C)は1.36に調整されており、定格容量は25Ahである。
Next, the positive electrode sheet and the negative electrode sheet produced as described above were passed through a separator (here, a three-layer structure in which a polypropylene (PP) layer was laminated on both sides of a polyethylene (PE) layer was used). The resulting wound electrode body was formed into a flat shape by crushing it from the side and dragging it. And the positive electrode terminal was joined to the edge part of the positive electrode collector of this winding electrode body, and the negative electrode terminal was joined to the edge part of the negative electrode collector, respectively. The positive electrode terminal is provided with a pressure-sensitive CID mechanism in the conductive path.
This electrode body was accommodated in a battery case and a non-aqueous electrolyte was injected. As the non-aqueous electrolyte, a mixed solvent containing ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC) in a volume ratio of 3: 4: 3, and LiPF 6 as an electrolyte is about It melt | dissolved by the density | concentration of 1 mol / L, Furthermore, CHB and BP which were adjusted and added so that these total might become the value shown in following Table 1 as an overcharge additive were used. Then, a total of 40 lithium secondary batteries were constructed by attaching a lid to the opening of the battery case and welding and joining. The capacity ratio (C N / C P ) of these lithium secondary batteries is adjusted to 1.36, and the rated capacity is 25 Ah.

[コンディショニング]上記のリチウム二次電池に対し、25℃にて1CでSOC85%まで定電流(CC)充電するコンディショニング処理を行った。その後、1/5Cの放電レートで3.0VまでCC放電したときの容量を、初期容量とした。 [Conditioning] The lithium secondary battery was subjected to a conditioning process in which a constant current (CC) charge was performed up to SOC 85% at 1C at 25C. Then, the capacity | capacitance when CC discharge to 3.0V with the discharge rate of 1 / 5C was made into the initial stage capacity | capacitance.

[初期ガス発生量の評価]上記で用意した例1〜例5の各電池のうち、各電池20個について、初期ガス発生量の評価を行った。すなわち、25℃にて1CでSOC140%まで定電流(CC)充電した際のCIDの作動状況を確認し、CIDが作動しない場合にはその時の電池ケース内のガス圧を測定し、結果を初期ガス圧として下記の表1に示した。また、同時に正負極間の初期の抵抗を測定し、その結果を併せて下記の表1に示した。 [Evaluation of Initial Gas Generation Amount] The initial gas generation amount was evaluated for 20 batteries among the batteries of Examples 1 to 5 prepared above. That is, the operating state of the CID when charging at constant current (CC) up to SOC 140% at 1C at 25 ° C. is confirmed. If the CID does not operate, the gas pressure in the battery case at that time is measured, and the result is initialized. The gas pressure is shown in Table 1 below. At the same time, the initial resistance between the positive and negative electrodes was measured, and the results are shown in Table 1 below.

[容量維持率の評価]上記で用意した例1〜例5の各電池のうち、各電池の残りの20個について、温度25℃の環境下、1/5Cのレートで4.1Vまで定電流(CC)充電した後、電流値が1/50Cになるまで定電圧(CV)充電を行い、満充電状態とした。
次いで、各電池を60℃に設定した恒温槽内に2時間以上静置した後、以下の充放電操作(1)〜(2)を500サイクル繰り返した(耐久試験)。
(1)2Cのレートで4.1VまでCC充電し、10分間休止する。
(2)2Cのレートで3.0VまでCC放電し、10分間休止する。
その後、上記初期容量の測定方法と同様の手順で放電容量を測定し、耐久後の容量とした。そして、容量維持率(%)を、初期容量に対する耐久後の容量の割合((耐久後の容量/初期容量)×100(%))として算出した。得られた値(容量維持率)を、表1に併せて示した。
[Evaluation of Capacity Maintenance Rate] Among the batteries prepared in Examples 1 to 5, the remaining 20 batteries were constant current up to 4.1 V at a rate of 1/5 C in an environment at a temperature of 25 ° C. (CC) After charging, constant voltage (CV) charging was performed until the current value reached 1/50 C, and a fully charged state was obtained.
Subsequently, after leaving each battery in a thermostat set at 60 ° C. for 2 hours or more, the following charge / discharge operations (1) to (2) were repeated 500 cycles (endurance test).
(1) CC charge to 4.1V at a rate of 2C and rest for 10 minutes.
(2) CC discharge to 3.0 V at a rate of 2 C and rest for 10 minutes.
Thereafter, the discharge capacity was measured by the same procedure as the above initial capacity measurement method to obtain the capacity after endurance. The capacity retention rate (%) was calculated as a ratio of the capacity after endurance to the initial capacity ((capacity after endurance / initial capacity) × 100 (%)). The obtained values (capacity maintenance ratio) are shown together in Table 1.

[耐久後のガス発生量の評価]
上記耐久試験後の各電池に対し、25℃にて1CでSOC140%までCC充電した際のCIDの作動状況を確認し、CIDが作動しない場合にはその時の電池ケース内のガス圧を測定して、結果を下記の表1の欄に耐久後ガス圧として示した。
[Evaluation of gas generation after endurance]
For each battery after the endurance test, check the operating status of the CID when CC is charged to SOC 140% at 1C at 25 ° C. If the CID does not work, measure the gas pressure in the battery case at that time. The results are shown as the post-endurance gas pressure in the column of Table 1 below.

Figure 2015026559
Figure 2015026559

なお、表1中のガス圧に係る欄は、CIDが迅速に開弁した場合については記号「◎」のみを、CIDが開弁せずに遅れが見られた場合についてはガス圧と記号「×」とを示している。
表1に示されるように、二次電池の使用初期の段階でのCIDの動作状態は、例1〜例5のいずれにおいても良好であった。また、初期容量は、正極活物質にCa成分を含まない例5に比較して、例1〜例4の電池は概ね高い値であった。
しかしながら、耐久試験後のCIDの作動状態は、正極活物質にCa成分を含まない例5の電池と、従来法によりCa成分を含有させた正極活物質を備える例3の電池で動作不良が確認され、繰り返し充放電により過充電添加剤の分解およびガス発生が良好に行われなくなることが確認された。また、例3の電池は、例5の電池に比べて内部抵抗が高く、容量維持率も低いという結果であった。
The column relating to the gas pressure in Table 1 shows only the symbol “」 ”when the CID is opened quickly, and the gas pressure and the symbol“ when the CID is delayed without opening. X ".
As shown in Table 1, the operating state of the CID at the initial use stage of the secondary battery was good in any of Examples 1 to 5. The initial capacity of the batteries of Examples 1 to 4 was generally higher than that of Example 5 in which the positive electrode active material did not contain a Ca component.
However, the operating state of the CID after the endurance test is confirmed to be defective in the battery of Example 5 in which the positive electrode active material does not include the Ca component and the battery of Example 3 including the positive electrode active material in which the Ca component is included by the conventional method. As a result, it was confirmed that the overcharge additive was not decomposed and gas was not generated satisfactorily by repeated charge and discharge. In addition, the battery of Example 3 had a higher internal resistance and a lower capacity retention rate than the battery of Example 5.

これに対し、本発明の方法によりCa成分を含有させた正極活物質を備える例1および例2の電池は、耐久試験後もCIDの作動が迅速に保たれ、過充電に対して安全性がより高いことが確認できた。特に、例2の電池によると、比較的少ないCa含有量で内部抵抗が低く、初期容量および容量維持率ともに高い電池が実現されたことが確認できた。なお、耐久後の動作不良が確認された例3の電池よりも過充電添加剤の量を多くした例4の電池は、耐久後もCIDが良好に作動したものの、過充電添加剤の量が多すぎるために内部抵抗が高く、容量維持率が最も低くなるという結果であった。
以上のことから、本発明により製造された二次電池は、正極活物質におけるCa成分の存在形態が良好であるために、少ないCa量でサイクル後のガス発生量を高く維持することができ、そのため過充電添加剤の配合量を減らすことができ、内部抵抗が低く、容量維持率が高いといった優れた効果が発現されることが解った。
On the other hand, the batteries of Examples 1 and 2 provided with the positive electrode active material containing the Ca component by the method of the present invention can keep the CID operation quickly after the durability test, and are safe against overcharge. It was confirmed that it was higher. In particular, according to the battery of Example 2, it was confirmed that a battery having a relatively low Ca content, a low internal resistance, and a high initial capacity and a high capacity retention rate was realized. In addition, although the battery of Example 4 in which the amount of the overcharge additive was larger than the battery of Example 3 in which the operation failure after durability was confirmed, the CID operated well after the endurance, the amount of the overcharge additive was The result was that the internal resistance was high and the capacity retention rate was the lowest because it was too much.
From the above, since the secondary battery manufactured according to the present invention has a good presence of the Ca component in the positive electrode active material, the amount of gas generated after the cycle can be kept high with a small amount of Ca. Therefore, it turned out that the compounding quantity of an overcharge additive can be reduced, and the outstanding effects that internal resistance is low and a capacity | capacitance maintenance factor are high are expressed.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。   As mentioned above, although the specific example of this invention was demonstrated in detail, these are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

Claims (2)

正極活物質を備える正極、ここで前記正極活物質は、カルシウムを含み、遷移金属として少なくともニッケル、コバルトおよびマンガンを含有するリチウム遷移金属酸化物である;
負極;、
過充電時にガスを発生する過充電添加剤を含む非水電解液;および
電池内部の圧力が所定値以上になると導電経路を遮断する電流遮断機構;
を備える非水電解質二次電池の製造方法であって、
前記正極活物質を、下記の工程:
(a)ニッケル・コバルト・マンガン複合水酸化物を用意すること、
(b)前記用意されたニッケル・コバルト・マンガン複合水酸化物と、過酸化カルシウムと、リチウム塩との混合物を焼成すること、
を包含する、正極活物質調製工程により調製する、製造方法。
A positive electrode comprising a positive electrode active material, wherein the positive electrode active material is a lithium transition metal oxide containing calcium and containing at least nickel, cobalt and manganese as transition metals;
Negative electrode;
A non-aqueous electrolyte containing an overcharge additive that generates gas when overcharged; and a current interruption mechanism that interrupts a conductive path when the pressure inside the battery exceeds a predetermined value;
A non-aqueous electrolyte secondary battery manufacturing method comprising:
The positive electrode active material is subjected to the following steps:
(A) preparing a nickel-cobalt-manganese composite hydroxide;
(B) firing the prepared nickel / cobalt / manganese composite hydroxide, calcium peroxide, and lithium salt;
The manufacturing method prepared by the positive electrode active material preparation process including this.
前記非水電解液は、過充電添加剤として、シクロヘキシルベンゼンおよびビフェニルの少なくとも一方を、これらの合計が2質量%〜6質量%となる割合で含んでおり、
前記正極活物質は、カルシウム(Ca)成分を0.2mol%〜0.3mol%の割合で含む、請求項1に記載の製造方法。
The non-aqueous electrolyte contains at least one of cyclohexylbenzene and biphenyl as an overcharge additive in a ratio of 2 to 6% by mass in total.
The said positive electrode active material is a manufacturing method of Claim 1 which contains a calcium (Ca) component in the ratio of 0.2 mol%-0.3 mol%.
JP2013156400A 2013-07-29 2013-07-29 Method for manufacturing nonaqueous electrolytic secondary battery Pending JP2015026559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013156400A JP2015026559A (en) 2013-07-29 2013-07-29 Method for manufacturing nonaqueous electrolytic secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013156400A JP2015026559A (en) 2013-07-29 2013-07-29 Method for manufacturing nonaqueous electrolytic secondary battery

Publications (1)

Publication Number Publication Date
JP2015026559A true JP2015026559A (en) 2015-02-05

Family

ID=52491061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013156400A Pending JP2015026559A (en) 2013-07-29 2013-07-29 Method for manufacturing nonaqueous electrolytic secondary battery

Country Status (1)

Country Link
JP (1) JP2015026559A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110221224A (en) * 2019-07-01 2019-09-10 中兴高能技术有限责任公司 Prediction technique, device and the storage medium of battery cycle life
JPWO2019087492A1 (en) * 2017-10-31 2020-12-03 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery using positive electrode active material
WO2023218315A1 (en) * 2022-05-13 2023-11-16 株式会社半導体エネルギー研究所 Secondary battery, method for producing same, and vehicle
WO2024004710A1 (en) * 2022-06-29 2024-01-04 パナソニックIpマネジメント株式会社 Positive electrode active material for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019087492A1 (en) * 2017-10-31 2020-12-03 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery using positive electrode active material
CN110221224A (en) * 2019-07-01 2019-09-10 中兴高能技术有限责任公司 Prediction technique, device and the storage medium of battery cycle life
WO2023218315A1 (en) * 2022-05-13 2023-11-16 株式会社半導体エネルギー研究所 Secondary battery, method for producing same, and vehicle
WO2024004710A1 (en) * 2022-06-29 2024-01-04 パナソニックIpマネジメント株式会社 Positive electrode active material for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell

Similar Documents

Publication Publication Date Title
JP6287707B2 (en) Nonaqueous electrolyte secondary battery
JP5598726B2 (en) Lithium secondary battery
JP6152825B2 (en) Non-aqueous electrolyte secondary battery
US20150270544A1 (en) Lithium-ion secondary battery
JP2014103098A (en) Nonaqueous electrolyte secondary battery
JP6130051B2 (en) Electrode active material with improved energy density and lithium secondary battery including the same
JP2009123464A (en) Positive electrode active material for lithium-ion secondary battery, positive electrode, method of manufacturing the same, and lithium-ion secondary battery
JP2011090876A (en) Lithium secondary battery and method of manufacturing the same
US10411265B2 (en) Lithium ion secondary battery and method of manufacturing same
JP2013084395A (en) Lithium ion secondary battery manufacturing method
JP5962956B2 (en) Lithium secondary battery
JP2015513773A (en) High performance lithium secondary battery
CN108695542B (en) Lithium ion secondary battery and method for manufacturing same
JPWO2012035664A1 (en) Lithium ion secondary battery
JP6493757B2 (en) Lithium ion secondary battery
JP6390915B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP2015103306A (en) Positive electrode active material and nonaqueous electrolyte secondary battery including the same
JP6799813B2 (en) Non-aqueous electrolyte secondary battery
JP2015026559A (en) Method for manufacturing nonaqueous electrolytic secondary battery
JP6572882B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP7235405B2 (en) Non-aqueous electrolyte secondary battery
KR101888775B1 (en) Nonaqueous electrolyte secondary battery
CN112689916A (en) Electric storage element
JP6240100B2 (en) High performance lithium secondary battery
JP6493766B2 (en) Lithium ion secondary battery