JP2015026027A - Variable power optical system, optical device, and method for manufacturing variable power optical system - Google Patents

Variable power optical system, optical device, and method for manufacturing variable power optical system Download PDF

Info

Publication number
JP2015026027A
JP2015026027A JP2013157106A JP2013157106A JP2015026027A JP 2015026027 A JP2015026027 A JP 2015026027A JP 2013157106 A JP2013157106 A JP 2013157106A JP 2013157106 A JP2013157106 A JP 2013157106A JP 2015026027 A JP2015026027 A JP 2015026027A
Authority
JP
Japan
Prior art keywords
lens group
lens
end state
optical system
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013157106A
Other languages
Japanese (ja)
Other versions
JP6372058B2 (en
Inventor
芝山 敦史
Atsushi Shibayama
敦史 芝山
幸介 町田
Kosuke Machida
幸介 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2013157106A priority Critical patent/JP6372058B2/en
Priority to CN201810239098.4A priority patent/CN108363193B/en
Priority to CN201480043000.8A priority patent/CN105431758B/en
Priority to PCT/JP2014/003955 priority patent/WO2015015792A1/en
Publication of JP2015026027A publication Critical patent/JP2015026027A/en
Priority to US15/004,931 priority patent/US20160216496A1/en
Application granted granted Critical
Publication of JP6372058B2 publication Critical patent/JP6372058B2/en
Priority to US16/995,196 priority patent/US11635603B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a variable power optical system in which the variation in size of an image during focus adjustment is suppressed, and the variation in aberrations during power variation and during focusing is excellently suppressed, and to provide an optical device and a method for manufacturing the variable power optical system.SOLUTION: A variable power optical system ZL to be used in an optical device such as a camera 1, includes, in order from the object side: a first lens group having a positive refractive power; a second lens group having a negative refractive power; a third lens group having a negative refractive power; a fourth lens group having a positive refractive power; and a fifth lens group having a positive refractive power. When varying power from a wide angle end state to a telephoto end state, the distances between the lens groups are changed. When focusing from an infinite object to a short distance object, the third lens group moves in the optical axis direction.

Description

本発明は、変倍光学系、光学装置及び変倍光学系の製造方法に関する。   The present invention relates to a variable magnification optical system, an optical apparatus, and a method for manufacturing the variable magnification optical system.

従来、写真用カメラ、電子スチルカメラ、ビデオカメラ等に適した変倍光学系が提案されている(例えば、特許文献1を参照)。近年の電子スチルカメラ、ビデオカメラでは、合焦用レンズ群を移動させて撮像素子からの信号を利用し画像のコントラストでピントあわせを行う、いわゆるコントラストAFが一般的になっている。   Conventionally, a variable magnification optical system suitable for a photographic camera, an electronic still camera, a video camera, and the like has been proposed (see, for example, Patent Document 1). In recent electronic still cameras and video cameras, so-called contrast AF is generally used in which a focusing lens group is moved and a signal from an image sensor is used to focus on the contrast of an image.

特開2007−093975号公報JP 2007-093975 A

しかしながら従来の変倍光学系は、コントラストAFでのピントあわせ時に像の大きさの変化が大きく、不自然に感じるという課題があった。   However, the conventional variable magnification optical system has a problem that the size of the image changes greatly during focusing with contrast AF, and it feels unnatural.

本発明はこのような課題に鑑みてなされたものであり、ピントあわせの際の像の大きさの変化を抑え、さらに、変倍時、ならびに合焦時の収差変動を良好に抑えた変倍光学系、光学装置及び変倍光学系の製造方法を提供することを目的とする。   The present invention has been made in view of such problems, and it is possible to suppress a change in the size of an image during focusing, and to further reduce a change in aberrations during zooming and focusing. It is an object of the present invention to provide an optical system, an optical device, and a method for manufacturing a variable magnification optical system.

前記課題を解決するために、本発明に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群と、を有し、広角端状態から望遠端状態への変倍に際し、第1レンズ群と第2レンズ群との間隔が変化し、第2レンズ群と第3レンズ群との間隔が変化し、第3レンズ群と第4レンズ群との間隔が変化し、第4レンズ群と第5レンズ群との間隔が変化し、無限遠物体から近距離物体への合焦に際し、第3レンズ群が光軸方向に移動し、次式の条件を満足することを特徴とする。
1.10 < f1/(−f2) < 2.00
但し、
f1:第1レンズ群の焦点距離
f2:第2レンズ群の焦点距離
In order to solve the above problems, a variable magnification optical system according to the present invention includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a negative refraction. A third lens group having a power, a fourth lens group having a positive refractive power, and a fifth lens group having a positive refractive power, and upon zooming from the wide-angle end state to the telephoto end state, The distance between the first lens group and the second lens group changes, the distance between the second lens group and the third lens group changes, the distance between the third lens group and the fourth lens group changes, and the fourth The distance between the lens group and the fifth lens group changes, and the third lens group moves in the optical axis direction when focusing from an object at infinity to an object at a short distance, and satisfies the following condition: To do.
1.10 <f1 / (− f2) <2.00
However,
f1: Focal length of the first lens group f2: Focal length of the second lens group

また、このような変倍光学系は、広角端状態から望遠端状態への変倍に際し、第1レンズ群が物体方向に移動することが好ましい。   In such a variable magnification optical system, it is preferable that the first lens unit moves in the object direction upon zooming from the wide-angle end state to the telephoto end state.

また、このような変倍光学系は、広角端状態から望遠端状態への変倍に際し、第1レンズ群と第2レンズ群との間隔が増大し、第3レンズ群と第4レンズ群との間隔が減少することが好ましい。   Further, in such a variable magnification optical system, the distance between the first lens group and the second lens group is increased during the magnification change from the wide-angle end state to the telephoto end state, and the third lens group and the fourth lens group It is preferable that the interval is reduced.

また、このような変倍光学系は、次式の条件を満足することが好ましい。
0.990 < (A×B)/(C×D) < 1.013
但し、
A=f3×(1−β3w)2×(1+β3w)×βbw2−Δ×β3w2
B=fbw×(1−βbw)+Δ
C=f3×(1−β3w)2×(1+β3w)×βbw2−Δ×β3w
D=fbw×(1−βbw)+Δ/βbw
Δ=Ymax/50
β3w:広角端状態における第3レンズ群の結像倍率
βbw:広角端状態における第4レンズ群以降のレンズ群の合成結像倍率
Ymax:最大像高
f3:第3レンズ群の焦点距離
fbw:広角端状態における第4レンズ群以降のレンズ群の合成焦点距離
Moreover, it is preferable that such a variable magnification optical system satisfies the condition of the following formula.
0.990 <(A × B) / (C × D) <1.013
However,
A = f3 × (1−β3w) 2 × (1 + β3w) × βbw 2 −Δ × β3w 2
B = fbw × (1−βbw) + Δ
C = f3 × (1−β3w) 2 × (1 + β3w) × βbw 2 −Δ × β3w
D = fbw × (1−βbw) + Δ / βbw
Δ = Ymax / 50
β3w: Imaging magnification of the third lens group in the wide-angle end state βbw: Composite imaging magnification of the fourth lens group and subsequent lenses in the wide-angle end state Ymax: Maximum image height f3: Focal length of the third lens group fbw: Wide angle Combined focal length of the fourth lens unit and subsequent lenses in the end state

また、このような変倍光学系は、広角端状態から望遠端状態への変倍に際し、第4レンズ群と第5レンズ群とが物体方向に移動し、第2レンズ群と第3レンズ群との間隔が増大し、第4レンズ群と第5レンズ群との間隔が減少することが好ましい。   In addition, in such a variable power optical system, the fourth lens group and the fifth lens group move in the object direction during zooming from the wide-angle end state to the telephoto end state, and the second lens group and the third lens group. It is preferable that the distance between the fourth lens group and the fifth lens group decreases.

また、このような変倍光学系は、次式の条件を満足することが好ましい。
0.35 < f3/f2 < 0.90
但し、
f3:第3レンズ群の焦点距離
Moreover, it is preferable that such a variable magnification optical system satisfies the condition of the following formula.
0.35 <f3 / f2 <0.90
However,
f3: focal length of the third lens unit

また、このような変倍光学系は、次式の条件を満足することが好ましい。
3.50 < f1/fw < 5.50
但し、
fw:広角端状態における変倍光学系の全系の焦点距離
Moreover, it is preferable that such a variable magnification optical system satisfies the condition of the following formula.
3.50 <f1 / fw <5.50
However,
fw: focal length of the entire variable magnification optical system in the wide-angle end state

また、このような変倍光学系は、次式の条件を満足することが好ましい。
0.72 < f4/f5 < 1.45
但し、
f4:第4レンズ群の焦点距離
f5:第5レンズ群の焦点距離
Moreover, it is preferable that such a variable magnification optical system satisfies the condition of the following formula.
0.72 <f4 / f5 <1.45
However,
f4: focal length of the fourth lens group f5: focal length of the fifth lens group

また、このような変倍光学系は、次式の条件を満足することが好ましい。
0.15 < (D45w−D45t)/fw < 0.40
但し、
D45w:広角端状態における第4レンズ群と第5レンズ群との間隔
D45t:望遠端状態における第4レンズ群と第5レンズ群との間隔
fw:広角端状態における変倍光学系の全系の焦点距離
Moreover, it is preferable that such a variable magnification optical system satisfies the condition of the following formula.
0.15 <(D45w−D45t) / fw <0.40
However,
D45w: the distance between the fourth lens group and the fifth lens group in the wide-angle end state D45t: the distance between the fourth lens group and the fifth lens group in the telephoto end state fw: the entire system of the variable power optical system in the wide-angle end state Focal length

また、本発明に係る光学装置は、上述の変倍光学系のいずれかを備えたことを特徴とする。   An optical apparatus according to the present invention includes any one of the above-described variable magnification optical systems.

また、本発明に係る変倍光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群と、を有する変倍光学系の製造方法であって、広角端状態から望遠端状態への変倍に際し、第1レンズ群と第2レンズ群との間隔が変化し、第2レンズ群と第3レンズ群との間隔が変化し、第3レンズ群と第4レンズ群との間隔が変化し、第4レンズ群と第5レンズ群との間隔が変化するように配置し、無限遠物体から近距離物体への合焦に際し、第3レンズ群が光軸方向に移動するように配置し、次式の条件を満足するように配置することを特徴とする。
1.10 < f1/(−f2) < 2.00
但し、
f1:第1レンズ群の焦点距離
f2:第2レンズ群の焦点距離
The variable magnification optical system manufacturing method according to the present invention has, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a negative refractive power. A method of manufacturing a variable magnification optical system having a third lens group, a fourth lens group having a positive refractive power, and a fifth lens group having a positive refractive power, from a wide-angle end state to a telephoto end state During zooming, the distance between the first lens group and the second lens group changes, the distance between the second lens group and the third lens group changes, and the distance between the third lens group and the fourth lens group. Is arranged so that the distance between the fourth lens group and the fifth lens group changes, and the third lens group moves in the optical axis direction when focusing from an infinite object to a short-distance object. It arrange | positions and it arrange | positions so that the conditions of following Formula may be satisfied.
1.10 <f1 / (− f2) <2.00
However,
f1: Focal length of the first lens group f2: Focal length of the second lens group

本発明によれば、ピントあわせの際の像の大きさの変化を抑え、さらに、変倍時及び合焦時の収差変動を良好に抑えた変倍光学系、光学装置及び変倍光学系の製造方法を提供することができる。   According to the present invention, there is provided a variable power optical system, an optical device, and a variable power optical system that suppress a change in image size during focusing, and further suppress aberration fluctuations during zooming and focusing. A manufacturing method can be provided.

第1の実施例に係る変倍光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the variable magnification optical system which concerns on a 1st Example. 第1の実施例に係る変倍光学系の無限遠合焦時の諸収差図であり、(a)は広角端状態を示し、(b)は中間焦点距離状態を示し、(c)は望遠端状態を示す。FIG. 4 is a diagram illustrating various aberrations of the variable magnification optical system according to the first example when focusing on infinity, where (a) shows a wide-angle end state, (b) shows an intermediate focal length state, and (c) shows telephoto. Indicates the end state. 第1の実施例に係る変倍光学系の近距離合焦時の諸収差図であり、(a)は広角端状態を示し、(b)は中間焦点距離状態を示し、(c)は望遠端状態を示す。FIG. 6 is a diagram illustrating various aberrations of the variable magnification optical system according to the first example when focusing at short distance, where (a) shows a wide-angle end state, (b) shows an intermediate focal length state, and (c) shows telephoto. Indicates the end state. 第2の実施例に係る変倍光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the variable magnification optical system which concerns on a 2nd Example. 第2の実施例に係る変倍光学系の無限遠合焦時の諸収差図であり、(a)は広角端状態を示し、(b)は中間焦点距離状態を示し、(c)は望遠端状態を示す。FIG. 6 is a diagram showing various aberrations of the variable magnification optical system according to Example 2 when focusing at infinity, (a) showing a wide-angle end state, (b) showing an intermediate focal length state, and (c) showing telephoto. Indicates the end state. 第2の実施例に係る変倍光学系の近距離合焦時の諸収差図であり、(a)は広角端状態を示し、(b)は中間焦点距離状態を示し、(c)は望遠端状態を示す。FIG. 6 is a diagram illustrating various aberrations of the variable magnification optical system according to Example 2 when focusing at short distance, (a) showing a wide-angle end state, (b) showing an intermediate focal length state, and (c) showing telephoto. Indicates the end state. 第3の実施例に係る変倍光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the variable magnification optical system which concerns on a 3rd Example. 第3の実施例に係る変倍光学系の無限遠合焦時の諸収差図であり、(a)は広角端状態を示し、(b)は中間焦点距離状態を示し、(c)は望遠端状態を示す。FIG. 10 is a diagram illustrating various aberrations of the variable magnification optical system according to Example 3 at the time of focusing on infinity, where (a) shows a wide-angle end state, (b) shows an intermediate focal length state, and (c) shows telephoto. Indicates the end state. 第3の実施例に係る変倍光学系の近距離合焦時の諸収差図であり、(a)は広角端状態を示し、(b)は中間焦点距離状態を示し、(c)は望遠端状態を示す。FIG. 6 is a diagram illustrating various aberrations of the zoom optical system according to the third example when focusing at short distance, where (a) illustrates a wide-angle end state, (b) illustrates an intermediate focal length state, and (c) illustrates telephoto. Indicates the end state. 上記変倍光学系を搭載するカメラの断面図を示す。A sectional view of a camera carrying the above-mentioned variable magnification optical system is shown. 上記変倍光学系の製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the said variable magnification optical system.

以下、本発明の好ましい実施形態について図面を参照して説明する。図1に示すように、本実施形態に係る変倍光学系ZLは、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、を有して構成されている。また、この変倍光学系ZLは、広角端状態から望遠端状態への変倍に際し、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第2レンズ群G2と第3レンズ群G3の間隔が変化し、第3レンズ群G3と第4レンズ群G4との間隔が減少し、第4レンズ群G4と第5レンズ群G5との間隔を変化させることで変倍時の良好な収差補正を図ることができる。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, the variable magnification optical system ZL according to the present embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, The lens unit includes a third lens group G3 having negative refractive power, a fourth lens group G4 having positive refractive power, and a fifth lens group G5 having positive refractive power. In addition, in the zoom optical system ZL, when the zoom is changed from the wide-angle end state to the telephoto end state, the distance between the first lens group G1 and the second lens group G2 is increased, and the second lens group G2 and the third lens are increased. The distance between the group G3 is changed, the distance between the third lens group G3 and the fourth lens group G4 is decreased, and the distance between the fourth lens group G4 and the fifth lens group G5 is changed to improve the zooming ratio. Aberration correction can be achieved.

このような変倍光学系ZLは、広角端状態から望遠端状態への変倍に際し、第1レンズ群G1と第2レンズ群G2との間隔を増大させ、第3レンズ群G3と第4レンズ群G4との間隔を減少させることで、5倍程度以上の変倍比を確保することができる。さらに、広角端状態から望遠端状態への変倍に際し、第1レンズ群G1を物体方向に移動させる構成とすることで、広角端状態でのレンズ全長の短縮と、第1レンズ群G1の有効径の縮小ができ、変倍光学系ZLの小型化を図ることができる。   Such a zoom optical system ZL increases the distance between the first lens group G1 and the second lens group G2 during zooming from the wide-angle end state to the telephoto end state, and the third lens group G3 and the fourth lens. By reducing the distance from the group G4, a zoom ratio of about 5 times or more can be secured. Further, the first lens group G1 is moved in the object direction at the time of zooming from the wide-angle end state to the telephoto end state, so that the total lens length in the wide-angle end state is shortened and the first lens group G1 is effective. The diameter can be reduced, and the variable magnification optical system ZL can be reduced in size.

また、このような変倍光学系ZLは、無限遠物体から近距離物体への合焦に際し、第3レンズ群G3を光軸方向に移動させる構成とすることで、ピントあわせの際の像の大きさの変化を抑えることができる。   Further, such a variable magnification optical system ZL is configured to move the third lens group G3 in the optical axis direction when focusing from an object at infinity to an object at a short distance, so that an image at the time of focusing can be obtained. Changes in size can be suppressed.

また、このような変倍光学系ZLは、以下に示す条件式(1)を満足することが望ましい。   In addition, it is desirable that such a variable magnification optical system ZL satisfies the following conditional expression (1).

1.10 < f1/(−f2) < 2.00 (1)
但し、
f1:第1レンズ群G1の焦点距離
f2:第2レンズ群G2の焦点距離
1.10 <f1 / (− f2) <2.00 (1)
However,
f1: Focal length of the first lens group G1 f2: Focal length of the second lens group G2

条件式(1)は、第1レンズ群G1の焦点距離と第2レンズ群G2の焦点距離との適正な比率を規定するものである。本実施形態に係る変倍光学系ZLは、条件式(1)を満足することにより、レンズ全長および第1レンズ群G1の有効径の小型化と、歪曲収差、像面湾曲、球面収差等の諸収差の良好な補正を行うことができる。この条件式(1)の下限値を下回ると、第1レンズ群G1の屈折力が大きくなり、球面収差をはじめとする諸収差を良好に補正することが困難となる。なお、条件式(1)の下限値を1.20に設定することで、本願の効果をより確実なものとすることができる。一方、この条件式(1)の上限値を上回ると、第1レンズ群G1の屈折力が小さくなり、レンズ全長およびの第1レンズ群G1の有効径の小型化が困難となる。なお、条件式(1)の上限値を1.90に設定することで、本願の効果をより確実なものとすることができる。   Conditional expression (1) defines an appropriate ratio between the focal length of the first lens group G1 and the focal length of the second lens group G2. The variable magnification optical system ZL according to the present embodiment satisfies the conditional expression (1), thereby reducing the total lens length and the effective diameter of the first lens group G1, as well as distortion aberration, field curvature, spherical aberration, and the like. Good correction of various aberrations can be performed. If the lower limit value of conditional expression (1) is not reached, the refractive power of the first lens group G1 becomes large, and it becomes difficult to satisfactorily correct various aberrations including spherical aberration. In addition, the effect of this application can be made more reliable by setting the lower limit of conditional expression (1) to 1.20. On the other hand, if the upper limit value of the conditional expression (1) is exceeded, the refractive power of the first lens group G1 becomes small, and it becomes difficult to reduce the total lens length and the effective diameter of the first lens group G1. In addition, the effect of this application can be made more reliable by setting the upper limit of conditional expression (1) to 1.90.

また本実施形態に係る変倍光学系ZLは、広角端状態から望遠端状態への変倍に際し、第4レンズ群G4と第5レンズ群G5とが物体方向に移動し、第2レンズ群G2と第3レンズ群G3との間隔が増大し、第4レンズ群G4と第5レンズ群G5との間隔が減少することが望ましい。この構成により、広角端状態から望遠端状態への変倍時の収差補正と、5倍程度以上の変倍比の確保を、より確実なものとすることができる。   Further, in the zoom optical system ZL according to the present embodiment, when zooming from the wide-angle end state to the telephoto end state, the fourth lens group G4 and the fifth lens group G5 move in the object direction, and the second lens group G2 It is desirable that the distance between the third lens group G3 increases and the distance between the fourth lens group G4 and the fifth lens group G5 decreases. With this configuration, it is possible to more reliably ensure aberration correction at the time of zooming from the wide-angle end state to the telephoto end state and a zoom ratio of about 5 times or more.

また、このような変倍光学系ZLは、以下に示す条件式(2)を満足することが望ましい。   In addition, it is desirable that such a variable magnification optical system ZL satisfies the following conditional expression (2).

0.990 < (A×B)/(C×D) < 1.013 (2)
但し、
A=f3×(1−β3w)2×(1+β3w)×βbw2−Δ×β3w2
B=fbw×(1−βbw)+Δ
C=f3×(1−β3w)2×(1+β3w)×βbw2−Δ×β3w
D=fbw×(1−βbw)+Δ/βbw
Δ=Ymax/50
β3w:広角端状態における第3レンズ群G3の結像倍率
βbw:広角端状態における第4レンズ群G4以降のレンズ群の合成結像倍率
Ymax:最大像高
f3:第3レンズ群G3の焦点距離
fbw:広角端状態における第4レンズ群G4以降のレンズ群の合成焦点距離
0.990 <(A × B) / (C × D) <1.013 (2)
However,
A = f3 × (1−β3w) 2 × (1 + β3w) × βbw 2 −Δ × β3w 2
B = fbw × (1−βbw) + Δ
C = f3 × (1−β3w) 2 × (1 + β3w) × βbw 2 −Δ × β3w
D = fbw × (1−βbw) + Δ / βbw
Δ = Ymax / 50
β3w: Imaging magnification of the third lens group G3 in the wide-angle end state βbw: Composite imaging magnification of the lens group after the fourth lens group G4 in the wide-angle end state Ymax: Maximum image height f3: Focal length of the third lens group G3 fbw: the combined focal length of the lens groups after the fourth lens group G4 in the wide-angle end state

条件式(2)は、第3レンズ群G3を光軸方向に移動させて合焦(ピントあわせ)を行う際の像の大きさの、広角端における変化を規定するものである。さらに詳細に言えば、広角端状態において、最大像高の1/50の量のデフォーカスを与えた場合の焦点距離の変化の比率を規定するものである。本実施形態に係る変倍光学系ZLは、条件式(2)を満足することにより、広角端状態における、合焦の際の像の大きさの変化を目立たない程度に抑えることができる。この条件式(2)の上限値及び下限値のいずれを越えても、合焦の際の像の大きさの変化が増大し、目立ちやすくなる。なお、条件式(2)の下限値を0.995に設定することで、本願の効果をより確実なものとすることができる。あるいは、条件式(2)の上限値を1.010に設定することで、本願の効果をより確実なものとすることができる。   Conditional expression (2) defines the change at the wide-angle end of the image size when the third lens group G3 is moved in the optical axis direction for focusing (focusing). More specifically, it defines the ratio of the change in focal length when defocusing is applied in an amount of 1/50 of the maximum image height in the wide-angle end state. By satisfying conditional expression (2), the zoom optical system ZL according to the present embodiment can suppress the change in the image size at the time of focusing at an inconspicuous level. Regardless of which the upper limit value or lower limit value of the conditional expression (2) is exceeded, the change in the size of the image at the time of focusing increases, making it more noticeable. In addition, the effect of this application can be made more reliable by setting the lower limit of conditional expression (2) to 0.995. Or the effect of this application can be made more reliable by setting the upper limit of conditional expression (2) to 1.010.

以上の構成により、合焦(ピントあわせ)の際の像の大きさの変化を抑えた変倍光学系ZLを実現することができる。   With the above configuration, it is possible to realize a variable magnification optical system ZL that suppresses a change in the size of an image during focusing (focusing).

また、このような変倍光学系ZLは、以下に示す条件式(3)を満足することが望ましい。   Moreover, it is desirable that such a variable magnification optical system ZL satisfies the following conditional expression (3).

0.35 < f3/f2 < 0.90 (3)
但し、
f2:第2レンズ群G2の焦点距離
f3:第3レンズ群G3の焦点距離
0.35 <f3 / f2 <0.90 (3)
However,
f2: Focal length of the second lens group G2 f3: Focal length of the third lens group G3

条件式(3)は、第2レンズ群G2の焦点距離に対する第3レンズ群G3の適正な焦点距離を規定するものである。本実施形態に係る変倍光学系ZLは、条件式(3)を満足することにより、ピントあわせの際の像の大きさの変化を抑え、合焦時の収差変化を良好に補正することができる。この条件式(3)の下限値を下回ると、第3レンズ群G3の屈折力が大きくなり、ピントあわせの際の像の大きさの変化が増大する。なお、条件式(3)の下限値を0.41に設定することで、本願の効果をより確実なものとすることができる。一方、この条件式(3)の上限値を上回ると、第3レンズ群G3の屈折力が小さくなり、合焦時の第3レンズ群G3の移動量が増大し、その結果、合焦時の像面湾曲をはじめとする諸収差の変化が増大する。なお、条件式(3)の上限値を0.63に設定することで、本願の効果をより確実なものとすることができる。   Conditional expression (3) defines an appropriate focal length of the third lens group G3 with respect to the focal length of the second lens group G2. The zoom optical system ZL according to the present embodiment can satisfy the conditional expression (3), thereby suppressing a change in the size of the image during focusing and satisfactorily correcting an aberration change during focusing. it can. If the lower limit value of conditional expression (3) is not reached, the refractive power of the third lens group G3 increases, and the change in the image size during focusing increases. In addition, the effect of this application can be made more reliable by setting the lower limit of conditional expression (3) to 0.41. On the other hand, if the upper limit value of the conditional expression (3) is exceeded, the refractive power of the third lens group G3 decreases, and the amount of movement of the third lens group G3 at the time of focusing increases. Changes in various aberrations including field curvature increase. In addition, the effect of this application can be made more reliable by setting the upper limit of conditional expression (3) to 0.63.

また、このような変倍光学系ZLは、以下に示す条件式(4)を満足することが望ましい。   In addition, it is desirable that such a variable magnification optical system ZL satisfies the following conditional expression (4).

3.50 < f1/fw < 5.50 (4)
但し、
fw:広角端状態における変倍光学系ZLの全系の焦点距離
f1:第1レンズ群G1の焦点距離
3.50 <f1 / fw <5.50 (4)
However,
fw: focal length of the entire zooming optical system ZL in the wide-angle end state f1: focal length of the first lens group G1

条件式(4)は、広角端状態における変倍光学系ZLの焦点距離に対する、第1レンズ群G1の焦点距離を規定するものである。本実施形態に係る変倍光学系ZLは、条件式(4)を満足することにより、レンズ全長および第1レンズ群G1の有効径の小型化と、歪曲収差、像面湾曲、球面収差等の諸収差の良好な補正をおこなうことができる。この条件式(4)の下限値を下回ると、第1レンズ群G1の屈折力が大きくなり、歪曲収差、像面湾曲、球面収差等の諸収差を良好に補正することが困難となる。なお、条件式(4)の下限値を3.80に設定することで、本願の効果をより確実なものとすることができる。一方、この条件式(4)の上限値を上回ると、第1レンズ群G1の屈折力が小さくなり、レンズ全長および第1レンズ群G1の有効径の小型化が困難となる。なお、条件式(4)の上限値を5.10に設定することで、本願の効果をより確実なものとすることができる。   Conditional expression (4) defines the focal length of the first lens group G1 with respect to the focal length of the variable magnification optical system ZL in the wide-angle end state. The variable magnification optical system ZL according to the present embodiment satisfies the conditional expression (4), thereby reducing the total lens length and the effective diameter of the first lens group G1, as well as distortion aberration, field curvature, spherical aberration, and the like. Good correction of various aberrations can be performed. If the lower limit of conditional expression (4) is not reached, the refractive power of the first lens group G1 will increase, and it will be difficult to satisfactorily correct various aberrations such as distortion, curvature of field, and spherical aberration. In addition, the effect of this application can be made more reliable by setting the lower limit of conditional expression (4) to 3.80. On the other hand, if the upper limit value of the conditional expression (4) is exceeded, the refractive power of the first lens group G1 becomes small, and it becomes difficult to reduce the total lens length and the effective diameter of the first lens group G1. In addition, the effect of this application can be made more reliable by setting the upper limit of conditional expression (4) to 5.10.

ところで、本実施形態に係る変倍光学系ZLにおいて、第4レンズ群G4及び第5レンズ群G5は広角端状態で略アフォーカルとなるような構造を持ち、さらに、各レンズ群の間隔を、広角端状態から望遠端状態への変倍に際して減少するよう変化させることにより、広角端状態から望遠端状態にわたって諸収差を良好に補正する構造を有している。これらの第4レンズ群G4及び第5レンズ群G5の各レンズ群の焦点距離、および、第4レンズ群G4と第5レンズ群G5との空気間隔は、以下の条件を満足することが望ましい。   By the way, in the variable magnification optical system ZL according to the present embodiment, the fourth lens group G4 and the fifth lens group G5 have a structure that is substantially afocal in the wide-angle end state. The zoom lens has a structure that satisfactorily corrects various aberrations from the wide-angle end state to the telephoto end state by changing it so as to decrease upon zooming from the wide-angle end state to the telephoto end state. It is desirable that the focal length of each lens group of the fourth lens group G4 and the fifth lens group G5 and the air gap between the fourth lens group G4 and the fifth lens group G5 satisfy the following conditions.

まず、このような変倍光学系ZLは、以下に示す条件式(5)を満足することが望ましい。   First, it is desirable that such a variable magnification optical system ZL satisfies the following conditional expression (5).

0.72 < f4/f5 < 1.45 (5)
但し、
f4:第4レンズ群G4の焦点距離
f5:第5レンズ群G5の焦点距離
0.72 <f4 / f5 <1.45 (5)
However,
f4: focal length of the fourth lens group G4 f5: focal length of the fifth lens group G5

条件式(5)は、第4レンズ群G4の焦点距離と第5レンズ群G5の焦点距離との適正な比率を規定するものである。本実施形態に係る変倍光学系ZLは、条件式(5)を満足することにより、像面湾曲、歪曲収差、及び球面収差の良好な補正を実現することができる。この条件式(5)の下限値を下回ると、第4レンズ群G4の屈折力が第5レンズ群G5の屈折力に比べて大きくなり、球面収差をはじめとする諸収差を補正することが困難となる。なお、条件式(5)の下限値を0.80に設定することで、本願の効果をより確実なものとすることができる。一方、この条件式(5)の上限値を上回ると、第4レンズ群G4の屈折力が第5レンズ群G5の屈折力に比べて小さくなり、像面湾曲をはじめとする諸収差を補正することが困難となる。なお、条件式(5)の上限値を1.45に設定することで、本願の効果をより確実なものとすることができる。   Conditional expression (5) defines an appropriate ratio between the focal length of the fourth lens group G4 and the focal length of the fifth lens group G5. The variable magnification optical system ZL according to the present embodiment can achieve good correction of field curvature, distortion, and spherical aberration by satisfying conditional expression (5). If the lower limit of conditional expression (5) is not reached, the refractive power of the fourth lens group G4 becomes larger than the refractive power of the fifth lens group G5, and it is difficult to correct various aberrations including spherical aberration. It becomes. In addition, the effect of this application can be made more reliable by setting the lower limit of conditional expression (5) to 0.80. On the other hand, if the upper limit of conditional expression (5) is exceeded, the refractive power of the fourth lens group G4 becomes smaller than the refractive power of the fifth lens group G5, and various aberrations including field curvature are corrected. It becomes difficult. In addition, the effect of this application can be made more reliable by setting the upper limit of conditional expression (5) to 1.45.

また、このような変倍光学系ZLは、以下に示す条件式(6)を満足することが望ましい。   Further, it is desirable that such a variable magnification optical system ZL satisfies the following conditional expression (6).

0.15 < (D45w−D45t)/fw < 0.40 (6)
但し、
D45w:広角端状態における第4レンズ群G4と第5レンズ群G5との間隔
D45t:望遠端状態における第4レンズ群G4と第5レンズ群G5との間隔
fw:広角端状態における変倍光学系ZLの全系の焦点距離
0.15 <(D45w−D45t) / fw <0.40 (6)
However,
D45w: Distance between the fourth lens group G4 and the fifth lens group G5 in the wide-angle end state D45t: Distance between the fourth lens group G4 and the fifth lens group G5 in the telephoto end state fw: Variable magnification optical system in the wide-angle end state Focal length of the entire ZL system

条件式(6)は、広角端状態と望遠端状態での第4レンズ群G4と第5レンズ群G5との空気間隔の差の適正な範囲を規定するものである。本実施形態に係る変倍光学系ZLは、条件式(6)を満足することにより、広角端状態から望遠端状態への変倍の際の像面湾曲の変化を抑え、さらにレンズ全長の小型化を実現することができる。この条件式(6)の下限値を下回ると、広角端状態と望遠端状態での第4レンズ群G4と第5レンズ群G5との空気間隔の差が小さくなり、広角端状態から望遠端状態への変倍の際の像面湾曲の変化を良好に補正することが困難となる。なお、条件式(6)の下限値を0.15に設定することで、本願の効果をより確実なものとすることができる。一方、この条件式(6)の上限値を上回ると、広角端状態と望遠端状態での第4レンズ群G4と第5レンズ群G5との空気間隔の変化が大きくなり、広角端状態でのレンズ全長が増大する。条件式(6)の上限値を0.34に設定することで、本願の効果をより確実なものとすることができる。   Conditional expression (6) defines an appropriate range of the difference in the air gap between the fourth lens group G4 and the fifth lens group G5 in the wide-angle end state and the telephoto end state. The zoom optical system ZL according to the present embodiment satisfies the conditional expression (6), thereby suppressing a change in field curvature at the time of zooming from the wide-angle end state to the telephoto end state, and further reducing the total lens length. Can be realized. If the lower limit value of conditional expression (6) is not reached, the difference in air spacing between the fourth lens group G4 and the fifth lens group G5 between the wide-angle end state and the telephoto end state becomes small, and the telephoto end state changes from the wide-angle end state. It becomes difficult to properly correct the change in curvature of field during zooming. In addition, the effect of this application can be made more reliable by setting the lower limit of conditional expression (6) to 0.15. On the other hand, if the upper limit value of the conditional expression (6) is exceeded, the change in the air gap between the fourth lens group G4 and the fifth lens group G5 in the wide-angle end state and the telephoto end state becomes large, and in the wide-angle end state, The total lens length increases. By setting the upper limit of conditional expression (6) to 0.34, the effect of the present application can be made more reliable.

次に、本実施形態に係る変倍光学系ZLを備えた光学装置であるカメラを図10に基づいて説明する。このカメラ1は、撮影レンズ2として本実施形態に係る変倍光学系ZLを備えたレンズ交換式の所謂ミラーレスカメラである。本カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、不図示のOLPF(Optical low pass filter:光学ローパスフィルタ)を介して撮像部3の撮像面上に被写体像を形成する。そして、撮像部3に設けられた光電変換素子により被写体像が光電変換されて被写体の画像が生成される。この画像は、カメラ1に設けられたEVF(Electronic view finder:電子ビューファインダ)4に表示される。これにより撮影者は、EVF4を介して被写体を観察することができる。   Next, a camera which is an optical device including the variable magnification optical system ZL according to the present embodiment will be described with reference to FIG. This camera 1 is a so-called mirrorless camera of interchangeable lens provided with a variable magnification optical system ZL according to the present embodiment as a photographing lens 2. In the camera 1, light from an object (subject) (not shown) is collected by the photographing lens 2 and is on the imaging surface of the imaging unit 3 via an OLPF (Optical low pass filter) (not shown). A subject image is formed on the screen. Then, the subject image is photoelectrically converted by the photoelectric conversion element provided in the imaging unit 3 to generate an image of the subject. This image is displayed on an EVF (Electronic view finder) 4 provided in the camera 1. Thus, the photographer can observe the subject via the EVF 4.

また、撮影者によって不図示のレリーズボタンが押されると、撮像部3により光電変換された画像が不図示のメモリに記憶される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。なお、本実施形態では、ミラーレスカメラの例を説明したが、カメラ本体にクイックリターンミラーを有しファインダー光学系により被写体を観察する一眼レフタイプのカメラに本実施形態に係る変倍光学系ZLを搭載した場合でも、上記カメラ1と同様の効果を奏することができる。   Further, when a release button (not shown) is pressed by the photographer, an image photoelectrically converted by the imaging unit 3 is stored in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1. In the present embodiment, an example of a mirrorless camera has been described. However, a variable power optical system ZL according to the present embodiment is applied to a single-lens reflex camera that has a quick return mirror in the camera body and observes a subject with a finder optical system. Even when the camera is mounted, the same effect as the camera 1 can be obtained.

このように、本実施形態に係る光学装置は、上述した構成の変倍光学系ZLを備えていることにより、合焦(ピントあわせ)の際の像の大きさの変化を抑え、さらに、変倍時、ならびに合焦時の収差変動を良好に抑えた光学装置を実現することができる。   As described above, the optical apparatus according to the present embodiment includes the variable magnification optical system ZL having the above-described configuration, thereby suppressing the change in the image size during focusing (focusing), and further It is possible to realize an optical apparatus that can satisfactorily suppress aberration fluctuations at the time of doubling and focusing.

なお、以下に記載の内容は、光学性能を損なわない範囲で適宜採用可能である。   The contents described below can be appropriately adopted as long as the optical performance is not impaired.

本実施形態では、5群構成の変倍光学系ZLを示したが、以上の構成条件等は、6群、7群等の他の群構成にも適用可能である。また、最も物体側にレンズまたはレンズ群を追加した構成や、最も像側にレンズまたはレンズ群を追加した構成でも構わない。また、レンズ群とは、変倍時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。   In the present embodiment, the variable magnification optical system ZL having the five-group configuration is shown, but the above-described configuration conditions and the like can be applied to other group configurations such as the sixth group and the seventh group. Further, a configuration in which a lens or a lens group is added to the most object side, or a configuration in which a lens or a lens group is added to the most image side may be used. The lens group refers to a portion having at least one lens separated by an air interval that changes during zooming.

また、単独または複数のレンズ群、または部分レンズ群を光軸方向に移動させて、無限遠物体から近距離物体への合焦を行う合焦レンズ群としても良い。この場合、合焦レンズ群はオートフォーカスにも適用でき、オートフォーカス用の(超音波モーター等の)モーター駆動にも適している。特に、前述のように第3レンズ群G3を合焦レンズ群とするのが好ましい。   Alternatively, a single lens group, a plurality of lens groups, or a partial lens group may be moved in the optical axis direction to be a focusing lens group that performs focusing from an object at infinity to a near object. In this case, the focusing lens group can be applied to autofocus, and is also suitable for driving a motor for autofocus (such as an ultrasonic motor). In particular, it is preferable that the third lens group G3 is a focusing lens group as described above.

また、レンズ群または部分レンズ群を光軸に垂直な方向の成分を持つように移動させ、または、光軸を含む面内方向に回転移動(揺動)させて、手ぶれによって生じる像ぶれを補正する防振レンズ群としてもよい。特に、第4レンズ群G4の少なくとも一部を防振レンズ群とするのが好ましい。   Also, by moving the lens group or partial lens group so that it has a component in the direction perpendicular to the optical axis, or rotating (swinging) in the in-plane direction including the optical axis, image blur caused by camera shake is corrected. An anti-vibration lens group may be used. In particular, it is preferable that at least a part of the fourth lens group G4 is an anti-vibration lens group.

また、レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工及び組立調整が容易になり、加工及び組立調整の誤差による光学性能の劣化を妨げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。また、レンズ面は回折面としても良く、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしても良い。   Further, the lens surface may be formed as a spherical surface, a flat surface, or an aspheric surface. It is preferable that the lens surface is a spherical surface or a flat surface because lens processing and assembly adjustment are facilitated, and deterioration of optical performance due to errors in processing and assembly adjustment is prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance. When the lens surface is an aspheric surface, the aspheric surface is an aspheric surface by grinding, a glass mold aspheric surface made of glass with an aspheric shape, or a composite aspheric surface made of resin with an aspheric shape on the glass surface. Any aspherical surface may be used. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.

開口絞りSは、第4レンズ群G4の近傍に配置されるのが好ましいが、開口絞りとしての部材を設けずに、レンズの枠でその役割を代用しても良い。   The aperture stop S is preferably disposed in the vicinity of the fourth lens group G4. However, the role of the aperture stop may be substituted by a lens frame without providing a member as an aperture stop.

さらに、各レンズ面には、フレアやゴーストを軽減し高コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施しても良い。   Further, each lens surface may be provided with an antireflection film having a high transmittance in a wide wavelength region in order to reduce flare and ghost and achieve high optical performance with high contrast.

また、本実施形態の変倍光学系ZLは、変倍比が5〜15倍程度である。   The variable magnification optical system ZL of the present embodiment has a variable magnification ratio of about 5 to 15 times.

以下、本実施形態に係る変倍光学系ZLの製造方法の概略を、図11を参照して説明する。まず、各レンズを配置して第1〜第5レンズ群G1〜G5をそれぞれ準備する(ステップS100)。また、広角端状態から望遠端状態への変倍に際し、第1レンズ群G1と第2レンズ群G2との間隔が変化し、第2レンズ群G2と第3レンズ群G3との間隔が変化し、第3レンズ群G3と第4レンズ群G4との間隔が変化し、第4レンズ群G4と第5レンズ群G5との間隔が変化するように配置する(ステップS200)。また、無限遠物体から近距離物体への合焦に際し、第3レンズ群G3が光軸方向に移動するように配置する(ステップS300)。さらにまた、各レンズ群G1〜G6が、前述の条件式(1)を満足するように配置する(ステップS400)。   Hereinafter, an outline of a method for manufacturing the variable magnification optical system ZL according to the present embodiment will be described with reference to FIG. First, the first to fifth lens groups G1 to G5 are prepared by arranging each lens (step S100). Further, upon zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group G1 and the second lens group G2 changes, and the distance between the second lens group G2 and the third lens group G3 changes. The distance between the third lens group G3 and the fourth lens group G4 is changed, and the distance between the fourth lens group G4 and the fifth lens group G5 is changed (Step S200). In addition, the third lens group G3 is arranged so as to move in the optical axis direction when focusing from an object at infinity to a near object (step S300). Furthermore, the lens groups G1 to G6 are arranged so as to satisfy the conditional expression (1) (step S400).

具体的には、本実施形態では、例えば図1に示すように、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12とを接合した接合正レンズ、及び、物体側に凸面を向けた正メニスカスレンズL13を配置して第1レンズ群G1とし、物体側に凸面を向けた負メニスカス形状の非球面負レンズL21、両凹形状の負レンズL22及び両凸形状の正レンズL23を配置して第2レンズ群G2とし、両凹形状の非球面負レンズL31を配置して第3レンズ群G3とし、物体側に凸面を向けた負メニスカスレンズL41と両凸形状の正レンズL42とを接合した接合正レンズ、両凸形状の正レンズL43と物体側に凹面を向けた負メニスカスレンズL44とを接合した接合正レンズ、及び、両凹形状の非球面負レンズL45と物体側に凸面を向けた正メニスカスレンズL46とを接合した接合負レンズを配置して第4レンズ群G4とし、両凸形状の正レンズL51、及び、両凸形状の正レンズL52と物体側に凹面を向けた負メニスカスレンズL53とを接合した接合正レンズを配置して第5レンズ群G5とする。このように準備した各レンズ群を上述の手順で配置して変倍光学系ZLを製造する。   Specifically, in the present embodiment, for example, as shown in FIG. 1, a cemented positive lens in which a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12 are cemented in order from the object side. A positive meniscus lens L13 having a convex surface facing the object side is arranged as the first lens group G1, and a negative meniscus aspheric negative lens L21 having a convex surface facing the object side, a biconcave negative lens L22, and both A convex positive lens L23 is arranged to form the second lens group G2, a biconcave aspheric negative lens L31 is arranged to form the third lens group G3, and both a negative meniscus lens L41 having a convex surface facing the object side and both A cemented positive lens cemented with a convex positive lens L42, a cemented positive lens cemented with a biconvex positive lens L43 and a negative meniscus lens L44 having a concave surface facing the object side, and a biconcave aspheric surface A cemented negative lens in which a lens L45 and a positive meniscus lens L46 having a convex surface facing the object side are cemented to form a fourth lens group G4, a biconvex positive lens L51, and a biconvex positive lens L52. A cemented positive lens in which a negative meniscus lens L53 having a concave surface facing the object side is cemented to form a fifth lens group G5. The lens groups thus prepared are arranged in the above-described procedure to manufacture the variable magnification optical system ZL.

以下、本願の各実施例を、図面に基づいて説明する。なお、図1、図4及び図7は、各実施例に係る変倍光学系ZL(ZL1〜ZL3)の構成及び屈折力配分を示す断面図である。また、これらの変倍光学系ZL1〜ZL3の断面図の下部には、広角端状態(W)から望遠端状態(T)に変倍する際の各レンズ群G1〜G5の光軸に沿った移動方向が矢印で示されている。   Hereinafter, each example of the present application will be described with reference to the drawings. 1, 4 and 7 are cross-sectional views showing the configuration and refractive power distribution of the variable magnification optical system ZL (ZL1 to ZL3) according to each example. Further, in the lower part of the sectional views of these zoom optical systems ZL1 to ZL3, along the optical axes of the lens groups G1 to G5 when zooming from the wide-angle end state (W) to the telephoto end state (T) The direction of movement is indicated by an arrow.

各実施例において、非球面は、光軸に垂直な方向の高さをyとし、高さyにおける各非球面の頂点の接平面から各非球面までの光軸に沿った距離(サグ量)をS(y)とし、基準球面の曲率半径(近軸曲率半径)をrとし、円錐定数をKとし、n次の非球面係数をAnとしたとき、以下の式(a)で表される。なお、以降の実施例において、「E−n」は「×10-n」を示す。 In each embodiment, the height of the aspheric surface in the direction perpendicular to the optical axis is y, and the distance (sag amount) along the optical axis from the tangential plane of the apex of each aspheric surface to each aspheric surface at height y. Is S (y), r is the radius of curvature of the reference sphere (paraxial radius of curvature), K is the conic constant, and An is the nth-order aspherical coefficient, it is expressed by the following equation (a). . In the following examples, “E−n” indicates “× 10 −n ”.

S(y)=(y2/r)/{1+(1−K×y2/r21/2
+A4×y4+A6×y6+A8×y8+A10×y10 (a)
S (y) = (y 2 / r) / {1+ (1−K × y 2 / r 2 ) 1/2 }
+ A4 × y 4 + A6 × y 6 + A8 × y 8 + A10 × y 10 (a)

なお、各実施例において、2次の非球面係数A2は0である。また、各実施例の表中において、非球面には面番号の右側に*印を付している。   In each embodiment, the secondary aspheric coefficient A2 is zero. In the table of each example, an aspherical surface is marked with * on the right side of the surface number.

[第1実施例]
図1は、第1実施例に係る変倍光学系ZL1の構成を示す図である。この図1に示す変倍光学系ZL1は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。
[First embodiment]
FIG. 1 is a diagram showing a configuration of a variable magnification optical system ZL1 according to the first example. The zoom optical system ZL1 shown in FIG. 1 includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a first lens group having a negative refractive power. The third lens group G3 includes a fourth lens group G4 having a positive refractive power and a fifth lens group G5 having a positive refractive power.

この変倍光学系ZL1において、第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合正レンズ、及び、物体側に凸面を向けた正メニスカスレンズL13から構成されている。また、第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカス形状の非球面負レンズL21、両凹形状の負レンズL22、及び、両凸形状の正レンズL23から構成されている。この第2レンズ群G2の非球面負レンズL21は、物体側レンズ面に非球面形状の薄いプラスチック樹脂層を備えている。また、第3レンズ群G3は、両凹形状の非球面負レンズL31から構成されている。この第3レンズ群G3の非球面負レンズL31は、物体側レンズ面が非球面形状である。また、第4レンズ群G4は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL41と両凸形状の正レンズL42との接合正レンズ、両凸形状の正レンズL43と物体側に凹面を向けた負メニスカスレンズL44との接合正レンズ、及び、両凹形状の非球面負レンズL45と物体側に凸面を向けた正メニスカスレンズL46との接合負レンズから構成されている。この第4レンズ群G4の非球面負レンズL45は、物体側レンズ面が非球面形状である。また、第5レンズ群G5は、物体側から順に、両凸形状の正レンズL51、及び、両凸形状の正レンズL52と物体側に凹面を向けた負メニスカスレンズL53との接合正レンズから構成されている。   In the variable magnification optical system ZL1, the first lens group G1 includes, in order from the object side, a cemented positive lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and an object side. It is composed of a positive meniscus lens L13 having a convex surface. The second lens group G2 includes, in order from the object side, a negative meniscus aspheric negative lens L21 having a convex surface directed toward the object side, a biconcave negative lens L22, and a biconvex positive lens L23. Has been. The aspheric negative lens L21 of the second lens group G2 includes an aspheric thin plastic resin layer on the object side lens surface. The third lens group G3 includes a biconcave aspheric negative lens L31. The aspheric negative lens L31 of the third lens group G3 has an aspherical object side lens surface. The fourth lens group G4 includes, in order from the object side, a cemented positive lens of a negative meniscus lens L41 having a convex surface facing the object side and a biconvex positive lens L42, and a biconvex positive lens L43 and the object side. It consists of a cemented positive lens with a negative meniscus lens L44 having a concave surface, and a cemented negative lens with a biconcave aspheric negative lens L45 and a positive meniscus lens L46 with a convex surface facing the object side. The aspheric negative lens L45 of the fourth lens group G4 has an aspheric surface on the object side. The fifth lens group G5 includes, in order from the object side, a biconvex positive lens L51, and a cemented positive lens of a biconvex positive lens L52 and a negative meniscus lens L53 having a concave surface facing the object side. Has been.

この第1実施例に係る変倍光学系ZL1では、広角端状態から望遠端状態への変倍に際し、第1レンズ群G1と第2レンズ群G2の空気間隔が増大し、第2レンズ群G2と第3レンズ群G3の空気間隔が増大し、第3レンズ群G3と第4レンズ群G4の空気間隔が減少し、第4レンズ群G4と第5レンズ群G5の空気間隔が減少するように、第1レンズ群G1から第5レンズ群G5の各レンズ群が物体方向へ移動する。なお、開口絞りSは第3レンズ群と第4レンズ群との間に配置されており、この開口絞りSは、変倍に際し第4レンズ群G4とともに移動する。   In the zoom optical system ZL1 according to the first example, the air gap between the first lens group G1 and the second lens group G2 increases during zooming from the wide-angle end state to the telephoto end state, and the second lens group G2 And the third lens group G3, the air gap between the third lens group G3 and the fourth lens group G4 is decreased, and the air gap between the fourth lens group G4 and the fifth lens group G5 is decreased. Each lens group from the first lens group G1 to the fifth lens group G5 moves in the object direction. The aperture stop S is disposed between the third lens group and the fourth lens group, and the aperture stop S moves together with the fourth lens group G4 during zooming.

また、この第1実施例に係る変倍光学系ZL1では、第3レンズ群G3を物体方向へ移動させることにより、遠距離物体から近距離物体への合焦が行われる。   Further, in the variable magnification optical system ZL1 according to the first example, the third lens group G3 is moved in the object direction, thereby focusing from a long distance object to a short distance object.

以下の表1に、第1実施例に係る変倍光学系ZL1の諸元の値を掲げる。この表1において、全体諸元におけるfは全系の焦点距離、FNOはFナンバー、2ωは画角、Ymaxは最大像高、及び、TLは全長をそれぞれ表している。ここで、全長TLは、無限遠合焦時のレンズ面の第1面から像面Iまでの光軸上の距離を表している。また、レンズデータにおける第1欄mは、光線の進行する方向に沿った物体側からのレンズ面の順序(面番号)を、第2欄rは、各レンズ面の曲率半径を、第3欄dは、各光学面から次の光学面までの光軸上の距離(面間隔)を、第4欄νd及び第5欄ndは、d線(λ=587.6nm)に対するアッベ数及び屈折率を示している。また、曲率半径∞は平面を示し、空気の屈折率1.00000は省略してある。なお、表1に示す面番号1〜29は、図1に示す番号1〜29に対応している。また、レンズ群焦点距離は第1〜第5レンズ群G1〜G5の各々の始面と焦点距離を示している。   Table 1 below lists values of specifications of the variable magnification optical system ZL1 according to the first example. In Table 1, f in the overall specifications represents the focal length of the entire system, FNO represents the F number, 2ω represents the angle of view, Ymax represents the maximum image height, and TL represents the total length. Here, the total length TL represents the distance on the optical axis from the first surface of the lens surface to the image plane I when focusing on infinity. In the lens data, the first column m indicates the order (surface number) of the lens surfaces from the object side along the traveling direction of the light beam, the second column r indicates the curvature radius of each lens surface, and the third column. d is the distance on the optical axis from each optical surface to the next optical surface (surface interval). The fourth column νd and the fifth column nd are Abbe numbers and refractive indices for the d-line (λ = 587.6 nm). Is shown. Further, the radius of curvature ∞ indicates a plane, and the refractive index of air 1.000 is omitted. The surface numbers 1 to 29 shown in Table 1 correspond to the numbers 1 to 29 shown in FIG. The lens group focal length indicates the start surface and the focal length of each of the first to fifth lens groups G1 to G5.

ここで、以下の全ての諸元値において掲載されている焦点距離f、曲率半径r、面間隔d、その他長さの単位は一般に「mm」が使われるが、光学系は、比例拡大または比例縮小しても同等の光学性能が得られるので、これに限られるものではない。また、これらの符号の説明及び諸元表の説明は以降の実施例においても同様である。   Here, the focal length f, the radius of curvature r, the surface interval d, and other length units listed in all the following specification values are generally “mm”, but the optical system is proportionally enlarged or proportional. Since the same optical performance can be obtained even if the image is reduced, the present invention is not limited to this. The description of these symbols and the description of the specification table are the same in the following embodiments.

(表1)
[全体諸元]
変倍比=7.41
広角端状態 中間焦点距離状態 望遠端状態
f = 18.5 〜 69.8 〜 137.1
FNO = 3.60 〜 5.48 〜 5.92
2ω = 78.1 〜 22.67 〜 11.62
Ymax= 14.25 〜 14.25 〜 14.25
TL = 138.32 〜 181.60 〜 200.88

[レンズデータ]
m r d nd νd
物面 ∞
1 211.4444 2.000 1.846660 23.78
2 65.7391 8.100 1.593190 67.90
3 -279.8993 0.100
4 52.3714 5.642 1.816000 46.62
5 145.4440 d5
6* 200.0000 0.150 1.553890 38.23
7 209.8495 1.200 1.772499 49.61
8 13.1450 7.067
9 -44.1409 1.000 1.882997 40.76
10 73.4990 0.972
11 33.3323 5.131 1.846660 23.78
12 -33.7584 d12
13* -30.5788 1.000 1.816000 46.62
14 91.7167 d14
15 ∞ 0.400 開口絞りS
16 23.1362 1.000 1.902650 35.70
17 16.0830 4.400 1.528284 56.95
18 -34.2215 0.100
19 21.5394 4.256 1.497820 82.51
20 -30.0815 1.000 1.903660 31.27
21 -404.9013 2.791
22* -56.4055 1.000 1.729157 54.66
23 14.6457 2.576 1.850260 32.35
24 30.4317 d24
25 306.4339 3.550 1.487490 70.40
26 -29.9125 0.100
27 62.6797 7.421 1.487490 70.40
28 -15.5000 1.301 1.882997 40.76
29 -34.7471 BF
像面 ∞

[レンズ群焦点距離]
レンズ群 始面 焦点距離
第1レンズ群 1 80.000
第2レンズ群 6 -54.309
第3レンズ群 13 -28.001
第4レンズ群 16 41.026
第5レンズ群 25 39.356
(Table 1)
[Overall specifications]
Scaling ratio = 7.41
Wide angle end state Intermediate focal length state Telephoto end state f = 18.5 to 69.8 to 137.1
FNO = 3.60 to 5.48 to 5.92
2ω = 78.1 to 22.67 to 11.62
Ymax = 14.25 to 14.25 to 14.25
TL = 138.32-181.60-200.88

[Lens data]
m r d nd νd
Object ∞
1 211.4444 2.000 1.846660 23.78
2 65.7391 8.100 1.593190 67.90
3 -279.8993 0.100
4 52.3714 5.642 1.816000 46.62
5 145.4440 d5
6 * 200.0000 0.150 1.553890 38.23
7 209.8495 1.200 1.772499 49.61
8 13.1450 7.067
9 -44.1409 1.000 1.882997 40.76
10 73.4990 0.972
11 33.3323 5.131 1.846660 23.78
12 -33.7584 d12
13 * -30.5788 1.000 1.816000 46.62
14 91.7167 d14
15 ∞ 0.400 Aperture stop S
16 23.1362 1.000 1.902650 35.70
17 16.0830 4.400 1.528284 56.95
18 -34.2215 0.100
19 21.5394 4.256 1.497820 82.51
20 -30.0815 1.000 1.903660 31.27
21 -404.9013 2.791
22 * -56.4055 1.000 1.729157 54.66
23 14.6457 2.576 1.850260 32.35
24 30.4317 d24
25 306.4339 3.550 1.487490 70.40
26 -29.9125 0.100
27 62.6797 7.421 1.487490 70.40
28 -15.5000 1.301 1.882997 40.76
29 -34.7471 BF
Image plane ∞

[Lens focal length]
Lens group Start surface Focal length 1st lens group 1 80.000
Second lens group 6 -54.309
Third lens group 13 -28.001
Fourth lens group 16 41.026
5th lens group 25 39.356

この第1実施例に係る変倍光学系ZL1おいて、第6面、第13面、及び、第22面の各レンズ面は非球面形状に形成されている。次の表2に、非球面のデータ、すなわち円錐定数K及び各非球面定数A4〜A10の値を示す。   In the zoom optical system ZL1 according to the first example, the lens surfaces of the sixth surface, the thirteenth surface, and the twenty-second surface are formed in an aspherical shape. The following Table 2 shows aspheric data, that is, the values of the conic constant K and the aspheric constants A4 to A10.

(表2)
[非球面データ]
K A4 A6 A8 A10
第6面 22.2541 2.37311E-06 -3.87675E-09 -4.25245E-11 9.37969E-14
第13面 -0.1061 9.88612E-07 -4.78288E-08 1.14604E-09 -6.39255E-12
第22面 0.5764 4.90141E-06 6.98139E-08 -4.01292E-10 0.00000E+00
(Table 2)
[Aspherical data]
K A4 A6 A8 A10
6th surface 22.2541 2.37311E-06 -3.87675E-09 -4.25245E-11 9.37969E-14
13th surface -0.1061 9.88612E-07 -4.78288E-08 1.14604E-09 -6.39255E-12
22nd surface 0.5764 4.90141E-06 6.98139E-08 -4.01292E-10 0.00000E + 00

この第1実施例に係る変倍光学系ZL1において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔d5、第2レンズ群G2と第3レンズ群G3との軸上空気間隔d12、第3レンズ群G3と第4レンズ群G4との軸上空気間隔d14、第4レンズ群G4と第5レンズ群G5との軸上空気間隔d24、及び、バックフォーカスBFは、上述したように、変倍に際して変化する。次の表3に無限遠合焦時及び近距離合焦時のそれぞれにおける広角端状態、中間焦点距離状態、及び、望遠状態の各焦点距離における可変間隔及びバックフォーカスの値を示す。なお、バックフォーカスBFは、最も像側のレンズ面(図1における第29面)から像面Iまでの光軸上の距離を示している。この説明は以降の実施例においても同様である。   In the variable magnification optical system ZL1 according to the first example, the axial air distance d5 between the first lens group G1 and the second lens group G2, and the axial air distance between the second lens group G2 and the third lens group G3. d12, the axial air gap d14 between the third lens group G3 and the fourth lens group G4, the axial air gap d24 between the fourth lens group G4 and the fifth lens group G5, and the back focus BF are as described above. In addition, it changes upon zooming. Table 3 below shows the values of the variable interval and the back focus at the respective focal lengths in the wide-angle end state, the intermediate focal length state, and the telephoto state at the time of focusing at infinity and focusing at a short distance. Note that the back focus BF indicates the distance on the optical axis from the most image side lens surface (the 29th surface in FIG. 1) to the image surface I. This description is the same in the following embodiments.

(表3)
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
広角端 中間 望遠端 広角端 中間 望遠端
f 18.5 69.8 137.1 18.5 69.8 137.1
d5 1.500 26.470 40.393 1.500 26.470 40.393
d12 2.800 4.647 7.254 2.397 4.325 6.749
d14 24.136 7.594 3.000 24.539 7.917 3.505
d24 9.609 5.561 5.000 9.609 5.561 5.000
BF 38.02 75.07 82.97 38.02 75.07 82.97
(Table 3)
[Variable interval data]
Infinity focusing state Short-distance focusing state Wide-angle end Medium telephoto end Wide-angle end Medium telephoto end
f 18.5 69.8 137.1 18.5 69.8 137.1
d5 1.500 26.470 40.393 1.500 26.470 40.393
d12 2.800 4.647 7.254 2.397 4.325 6.749
d14 24.136 7.594 3.000 24.539 7.917 3.505
d24 9.609 5.561 5.000 9.609 5.561 5.000
BF 38.02 75.07 82.97 38.02 75.07 82.97

次の表4に、この第1実施例に係る変倍光学系ZL1における各条件式対応値を示す。なお、この表4において、第4レンズ群G4以降のレンズ群の合成焦点距離fb、第3レンズ群G3の結像倍率β3、及び、第4レンズ群G4以降のレンズ群の合成結像倍率βbのそれぞれについて、広角端状態、中間焦点距離状態、及び、望遠状態の各焦点距離の値を示している。また、A、B、C、Dは上述の条件式(1)で示した変数であり、fwは広角端状態における全系の焦点距離を、f1は第1レンズ群G1の焦点距離を、f2は第2レンズ群G2の焦点距離を、f3は第3レンズ群G3の焦点距離を、f4は第4レンズ群G4の焦点距離を、f5は第5レンズ群G5の焦点距離を、D45wは広角端状態における第4レンズ群G4と第5レンズ群G5との間隔を、D45tは望遠端状態における第4レンズ群G4と第5レンズ群G5との間隔をそれぞれ表している。以上の符号の説明は以降の実施例においても同様である。   Table 4 below shows values corresponding to the conditional expressions in the variable magnification optical system ZL1 according to the first example. In Table 4, the combined focal length fb of the lens groups after the fourth lens group G4, the imaging magnification β3 of the third lens group G3, and the combined imaging magnification βb of the lens groups after the fourth lens group G4. For each of these, the values of the focal lengths in the wide-angle end state, the intermediate focal length state, and the telephoto state are shown. A, B, C, and D are variables shown in the above conditional expression (1), fw is the focal length of the entire system in the wide-angle end state, f1 is the focal length of the first lens group G1, and f2 Is the focal length of the second lens group G2, f3 is the focal length of the third lens group G3, f4 is the focal length of the fourth lens group G4, f5 is the focal length of the fifth lens group G5, and D45w is a wide angle. D45t represents the distance between the fourth lens group G4 and the fifth lens group G5 in the telephoto end state, and D45t represents the distance between the fourth lens group G4 and the fifth lens group G5 in the telephoto end state, respectively. The description of the above symbols is the same in the following embodiments.

(表4)
広角端状態 中間焦点距離状態 望遠端状態
fb 32.415 29.979 29.670
β3 0.1334 0.0616 -0.0603
βb -1.0824 -2.3284 -2.6091
[条件式対応値]
(1)f1/(−f2)=1.437
(2)(A×B)/(C×D)=1.0070
(3)f3/f2 =0.516
(4)f1/fw =4.325
(5)f4/f5 =1.042
(6)(D45w−D45t)/fw=0.249
(Table 4)
Wide angle end state Intermediate focal length state Telephoto end state fb 32.415 29.979 29.670
β3 0.1334 0.0616 -0.0603
βb -1.0824 -2.3284 -2.6091
[Conditional expression values]
(1) f1 / (− f2) = 1.437
(2) (A × B) / (C × D) = 1.070
(3) f3 / f2 = 0.516
(4) f1 / fw = 4.325
(5) f4 / f5 = 1.042
(6) (D45w−D45t) /fw=0.249

このように、この第1実施例に係る変倍光学系ZL1は、上記条件式(1)〜(6)を全て満足している。   Thus, the variable magnification optical system ZL1 according to the first example satisfies all the conditional expressions (1) to (6).

この第1実施例に係る変倍光学系ZL1の、無限遠合焦状態での広角端状態、中間焦点距離状態、及び、望遠端状態における諸収差図を図2に示し、近距離合焦状態での広角端状態、中間焦点距離状態、及び、望遠端状態における諸収差図を図3に示す。各収差図において、FNOはFナンバー、NAは開口数、Yは像高をそれぞれ示す。なお、球面収差図では最大口径に対応するFナンバーまたは開口数の値を示し、非点収差図及び歪曲収差図では像高の最大値をそれぞれ示し、コマ収差図では各像高の値を示す。dはd線(λ=587.6nm)、gはg線(λ=435.8nm)をそれぞれ示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。なお、以下に示す各実施例の収差図においても、本実施例と同様の符号を用いる。これらの諸収差図より、この第1実施例に係る変倍光学系ZL1は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離合焦時にも優れた結像性能を有していることがわかる。   FIG. 2 shows various aberration diagrams of the zoom optical system ZL1 according to the first example in the wide-angle end state, the intermediate focal length state, and the telephoto end state in the infinite focus state. FIG. 3 shows various aberration diagrams in the wide-angle end state, the intermediate focal length state, and the telephoto end state. In each aberration diagram, FNO represents an F number, NA represents a numerical aperture, and Y represents an image height. The spherical aberration diagram shows the F-number or numerical aperture value corresponding to the maximum aperture, the astigmatism diagram and the distortion diagram show the maximum image height, and the coma diagram shows the value of each image height. . d represents a d-line (λ = 587.6 nm), and g represents a g-line (λ = 435.8 nm). In the astigmatism diagram, the solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane. Note that the same reference numerals as in this example are also used in the aberration diagrams of the examples shown below. From these various aberration diagrams, the variable magnification optical system ZL1 according to the first example has excellent imaging performance by satisfactorily correcting various aberrations from the wide-angle end state to the telephoto end state. It can be seen that the imaging performance is excellent even during focusing.

[第2実施例]
図4は、第2実施例に係る変倍光学系ZL2の構成を示す図である。この図4に示す変倍光学系ZL2は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。
[Second Embodiment]
FIG. 4 is a diagram showing a configuration of the variable magnification optical system ZL2 according to the second example. The zoom optical system ZL2 shown in FIG. 4 includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a first lens group having a negative refractive power. The third lens group G3 includes a fourth lens group G4 having a positive refractive power and a fifth lens group G5 having a positive refractive power.

この変倍光学系ZL2において、第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合正レンズ、及び、物体側に凸面を向けた正メニスカスレンズL13から構成されている。また、第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカス形状の非球面負レンズL21、両凹形状の負レンズL22、及び、両凸形状の正レンズL23から構成されている。この第2レンズ群G2の非球面負レンズL21は、物体側レンズ面に非球面形状の薄いプラスチック樹脂層を備えている。また、第3レンズ群G3は、両凹形状の非球面負レンズL31から構成されている。この第3レンズ群G3の非球面負レンズL31は、物体側レンズ面が非球面形状である。また、第4レンズ群G4は、物体側から順に、両凸形状の正レンズL41、両凸形状の正レンズL42と物体側に凹面を向けた負メニスカスレンズL43との接合正レンズ、及び、両凹形状の負非球面レンズL44と物体側に凸面を向けた正メニスカスレンズL45との接合負レンズから構成されている。この第4レンズ群G4の非球面負レンズL44は、物体側レンズ面が非球面形状である。また、第5レンズ群G5は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL51、及び、両凸形状の正レンズL52と物体側に凹面を向けた負メニスカスレンズL53との接合正レンズから構成されている。   In the variable magnification optical system ZL2, the first lens group G1 includes, in order from the object side, a cemented positive lens of a negative meniscus lens L11 having a convex surface directed toward the object side and a biconvex positive lens L12, and an object side. It is composed of a positive meniscus lens L13 having a convex surface. The second lens group G2 includes, in order from the object side, a negative meniscus aspheric negative lens L21 having a convex surface directed toward the object side, a biconcave negative lens L22, and a biconvex positive lens L23. Has been. The aspheric negative lens L21 of the second lens group G2 includes an aspheric thin plastic resin layer on the object side lens surface. The third lens group G3 includes a biconcave aspheric negative lens L31. The aspheric negative lens L31 of the third lens group G3 has an aspherical object side lens surface. The fourth lens group G4 includes, in order from the object side, a biconvex positive lens L41, a biconvex positive lens L42, and a cemented positive lens of a negative meniscus lens L43 having a concave surface facing the object side, and both It is composed of a cemented negative lens of a concave negative aspheric lens L44 and a positive meniscus lens L45 having a convex surface facing the object side. The aspheric negative lens L44 of the fourth lens group G4 has an aspheric surface on the object side. The fifth lens group G5 includes, in order from the object side, a positive meniscus lens L51 having a concave surface facing the object side, and a biconvex positive lens L52 and a negative meniscus lens L53 having a concave surface facing the object side. It consists of a positive lens.

この第2実施例に係る変倍光学系ZL2では、広角端状態から望遠端状態への変倍に際し、第1レンズ群G1と第2レンズ群G2の空気間隔が増大し、第2レンズ群G2と第3レンズ群G3の空気間隔が増大し、第3レンズ群G3と第4レンズ群G4の空気間隔が減少し、第4レンズ群G4と第5レンズ群G5の空気間隔が減少するように、第1レンズ群G1から第5レンズ群G5の各レンズ群が物体方向へ移動する。なお、開口絞りSは第3レンズ群G3と第4レンズ群G4との間に配置されており、この開口絞りSは、変倍に際し第4レンズ群G4とともに移動する。   In the zoom optical system ZL2 according to the second example, the air gap between the first lens group G1 and the second lens group G2 increases during zooming from the wide-angle end state to the telephoto end state, and the second lens group G2 And the third lens group G3, the air gap between the third lens group G3 and the fourth lens group G4 is decreased, and the air gap between the fourth lens group G4 and the fifth lens group G5 is decreased. Each lens group from the first lens group G1 to the fifth lens group G5 moves in the object direction. The aperture stop S is disposed between the third lens group G3 and the fourth lens group G4. The aperture stop S moves together with the fourth lens group G4 during zooming.

また、この第2実施例に係る変倍光学系ZL2では、第3レンズ群G3を物体方向へ移動させることにより、遠距離物体から近距離物体への合焦が行われる。   In the zoom optical system ZL2 according to the second example, the third lens group G3 is moved in the object direction, thereby focusing from a long distance object to a short distance object.

以下の表5に、第2実施例の変倍光学系ZL2の諸元の値を掲げる。なお、表5に示す面番号1〜28は、図4に示す番号1〜28に対応している。   Table 5 below lists values of specifications of the variable magnification optical system ZL2 of the second example. The surface numbers 1 to 28 shown in Table 5 correspond to the numbers 1 to 28 shown in FIG.

(表5)
[全体諸元]
変倍比=7.42
広角端状態 中間焦点距離状態 望遠端状態
f = 18.5 〜 70.5 〜 137.2
FNO = 3.58 〜 5.44 〜 5.85
2ω = 78.1 〜 22.42 〜 11.57
Ymax= 14.25 〜 14.25 〜 14.25
TL = 139.32 〜 181.02 〜 199.97

[レンズデータ]
m r d nd νd
物面 ∞
1 215.0175 2.000 1.846660 23.78
2 64.9243 8.100 1.593190 67.90
3 -376.0612 0.100
4 53.5780 5.984 1.816000 46.62
5 179.2635 d5
6* 200.0000 0.150 1.553890 38.23
7 300.6098 1.200 1.772499 49.61
8 13.3131 6.828
9 -69.6142 1.000 1.882997 40.76
10 52.3687 1.331
11 34.6867 5.185 1.846660 23.78
12 -34.7377 d12
13* -38.0000 1.000 1.816000 46.62
14 57.9782 d14
15 ∞ 0.400 開口絞りS
16 29.8741 3.478 1.541617 63.72
17 -32.8953 0.100
18 23.2358 3.970 1.497820 82.51
19 -24.0338 1.000 1.903660 31.27
20 -927.0383 4.133
21* -59.0463 1.000 1.729157 54.66
22 13.2866 2.719 1.850260 32.35
23 29.1334 d23
24 -248.1379 3.288 1.563839 60.68
25 -29.4441 0.100
26 49.5575 7.799 1.487490 70.40
27 -16.1456 1.301 1.902650 35.70
28 -34.4375 BF
像面 ∞

[レンズ群焦点距離]
レンズ群 始面 焦点距離
第1レンズ群 1 79.998
第2レンズ群 6 -60.013
第3レンズ群 13 -28.000
第4レンズ群 16 42.588
第5レンズ群 24 36.790
(Table 5)
[Overall specifications]
Scaling ratio = 7.42
Wide angle end state Intermediate focal length state Telephoto end state f = 18.5 to 70.5 to 137.2
FNO = 3.58 to 5.44 to 5.85
2ω = 78.1 to 22.42 to 11.57
Ymax = 14.25 to 14.25 to 14.25
TL = 139.32-181.02-199.97

[Lens data]
m r d nd νd
Object ∞
1 215.0175 2.000 1.846660 23.78
2 64.9243 8.100 1.593190 67.90
3 -376.0612 0.100
4 53.5780 5.984 1.816000 46.62
5 179.2635 d5
6 * 200.0000 0.150 1.553890 38.23
7 300.6098 1.200 1.772499 49.61
8 13.3131 6.828
9 -69.6142 1.000 1.882997 40.76
10 52.3687 1.331
11 34.6867 5.185 1.846660 23.78
12 -34.7377 d12
13 * -38.0000 1.000 1.816000 46.62
14 57.9782 d14
15 ∞ 0.400 Aperture stop S
16 29.8741 3.478 1.541617 63.72
17 -32.8953 0.100
18 23.2358 3.970 1.497820 82.51
19 -24.0338 1.000 1.903660 31.27
20 -927.0383 4.133
21 * -59.0463 1.000 1.729157 54.66
22 13.2866 2.719 1.850 260 32.35
23 29.1334 d23
24 -248.1379 3.288 1.563839 60.68
25 -29.4441 0.100
26 49.5575 7.799 1.487490 70.40
27 -16.1456 1.301 1.902650 35.70
28 -34.4375 BF
Image plane ∞

[Lens focal length]
Lens group Start surface Focal length 1st lens group 1 79.998
Second lens group 6 -60.013
Third lens group 13 -28.000
Fourth lens group 16 42.588
Fifth lens group 24 36.790

この第2実施例に係る変倍光学系ZL2おいて、第6面、第13面、及び、第21面の各レンズ面は非球面形状に形成されている。次の表6に、非球面のデータ、すなわち円錐定数K及び各非球面定数A4〜A10の値を示す。   In the variable magnification optical system ZL2 according to the second example, the lens surfaces of the sixth surface, the thirteenth surface, and the twenty-first surface are aspherical. Table 6 below shows the aspheric data, that is, the values of the conic constant K and the aspheric constants A4 to A10.

(表6)
[非球面データ]
K A4 A6 A8 A10
第6面 22.2541 -3.64184E-06 8.39882E-09 -3.74047E-11 7.81914E-14
第13面 -1.9332 5.71903E-06 1.09072E-08 1.92007E-10 2.33529E-13
第21面 0.5764 5.28102E-06 3.16504E-08 -2.35183E-10 0.00000E+00
(Table 6)
[Aspherical data]
K A4 A6 A8 A10
6th surface 22.2541 -3.64184E-06 8.39882E-09 -3.74047E-11 7.81914E-14
13th surface -1.9332 5.71903E-06 1.09072E-08 1.92007E-10 2.33529E-13
21st surface 0.5764 5.28102E-06 3.16504E-08 -2.35183E-10 0.00000E + 00

この第2実施例に係る変倍光学系ZL2において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔d5、第2レンズ群G2と第3レンズ群G3との軸上空気間隔d12、第3レンズ群G3と第4レンズ群G4との軸上空気間隔d14、第4レンズ群G4と第5レンズ群G5との軸上空気間隔d23、及び、バックフォーカスBFは、上述したように、変倍に際して変化する。次の表7に無限遠合焦時及び近距離合焦時のそれぞれにおける広角端状態、中間焦点距離状態、及び、望遠状態の各焦点距離における可変間隔及びバックフォーカスの値を示す。   In the variable magnification optical system ZL2 according to the second example, the axial air distance d5 between the first lens group G1 and the second lens group G2, and the axial air distance between the second lens group G2 and the third lens group G3. d12, the axial air distance d14 between the third lens group G3 and the fourth lens group G4, the axial air distance d23 between the fourth lens group G4 and the fifth lens group G5, and the back focus BF are as described above. In addition, it changes upon zooming. Table 7 below shows the values of the variable interval and the back focus at the respective focal lengths in the wide-angle end state, the intermediate focal length state, and the telephoto state at the time of focusing at infinity and focusing at a short distance.

(表7)
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
広角端 中間 望遠端 広角端 中間 望遠端
f 18.5 70.5 137.2 18.5 70.5 137.2
d5 1.500 26.692 40.261 1.500 26.692 40.261
d12 2.837 4.356 7.527 2.416 4.012 6.987
d14 24.771 7.722 3.000 25.192 8.065 3.541
d23 10.025 5.509 5.000 10.025 5.509 5.000
BF 38.02 74.58 82.02 38.02 74.58 82.02
(Table 7)
[Variable interval data]
Infinity focusing state Short-distance focusing state Wide-angle end Medium telephoto end Wide-angle end Medium telephoto end
f 18.5 70.5 137.2 18.5 70.5 137.2
d5 1.500 26.692 40.261 1.500 26.692 40.261
d12 2.837 4.356 7.527 2.416 4.012 6.987
d14 24.771 7.722 3.000 25.192 8.065 3.541
d23 10.025 5.509 5.000 10.025 5.509 5.000
BF 38.02 74.58 82.02 38.02 74.58 82.02

次の表8に、この第2実施例に係る変倍光学系ZL2における各条件式対応値を示す。   Table 8 below shows values corresponding to the conditional expressions in the variable magnification optical system ZL2 according to the second example.

(表8)
広角端状態 中間焦点距離状態 望遠端状態
fb 33.565 30.604 30.303
β3 0.1117 0.0349 -0.0925
βb -1.0548 -2.2679 -2.5273
[条件式対応値]
(1)f1/(−f2)=1.333
(2)(A×B)/(C×D)=1.0070
(3)f3/f2 =0.467
(4)f1/fw =4.324
(5)f4/f5 =1.158
(6)(D45w−D45t)/fw=0.272
(Table 8)
Wide-angle end state Intermediate focal length state Telephoto end state fb 33.565 30.604 30.303
β3 0.1117 0.0349 -0.0925
βb -1.0548 -2.2679 -2.5273
[Conditional expression values]
(1) f1 / (− f2) = 1.333
(2) (A × B) / (C × D) = 1.070
(3) f3 / f2 = 0.467
(4) f1 / fw = 4.324
(5) f4 / f5 = 1.158
(6) (D45w−D45t) /fw=0.272

このように、この第2実施例に係る変倍光学系ZL2は、上記条件式(1)〜(6)を全て満足している。   Thus, the zoom optical system ZL2 according to the second example satisfies all the conditional expressions (1) to (6).

この第2実施例に係る変倍光学系ZL2の、無限遠合焦状態での広角端状態、中間焦点距離状態、及び、望遠端状態における諸収差図を図5に示し、近距離合焦状態での広角端状態、中間焦点距離状態、及び、望遠端状態における諸収差図を図6に示す。これらの諸収差図より、この第2実施例に係る変倍光学系ZL2は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離合焦時にも優れた結像性能を有していることがわかる。   FIG. 5 shows various aberration diagrams of the variable magnification optical system ZL2 according to the second example in the wide-angle end state, the intermediate focal length state, and the telephoto end state in the infinite focus state. FIG. 6 shows various aberration diagrams in the wide-angle end state, the intermediate focal length state, and the telephoto end state. From these various aberration diagrams, the variable magnification optical system ZL2 according to the second example has excellent imaging performance by satisfactorily correcting various aberrations from the wide-angle end state to the telephoto end state. It can be seen that the imaging performance is excellent even during focusing.

[第3実施例]
図7は、第3実施例に係る変倍光学系ZL3の構成を示す図である。この図7に示す変倍光学系ZL3は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。
[Third embodiment]
FIG. 7 is a diagram showing a configuration of the variable magnification optical system ZL3 according to the third example. The zoom optical system ZL3 shown in FIG. 7 includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a first lens group having a negative refractive power. The third lens group G3 includes a fourth lens group G4 having a positive refractive power and a fifth lens group G5 having a positive refractive power.

この変倍光学系ZL3において、第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合正レンズ、及び、物体側に凸面を向けた正メニスカスレンズL13から構成されている。また、第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカス形状の非球面負レンズL21、両凹形状の負レンズL22、及び、両凸形状の正レンズL23から構成されている。この第2レンズ群G2の非球面負レンズL21は、物体側レンズ面に非球面形状の薄いプラスチック樹脂層を備えている。また、第3レンズ群G3は、両凹形状の非球面負レンズL31から構成されている。この第3レンズ群G3の非球面負レンズL31は、物体側レンズ面が非球面形状である。また、第4レンズ群G4は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL41と両凸形状の正レンズL42との接合正レンズ、両凸形状の正レンズL43と物体側に凹面を向けた負メニスカスレンズL44との接合正レンズ、及び、両凹形状の非球面負レンズL45と物体側に凸面を向けた正メニスカスレンズL46との接合負レンズから構成されている。この第4レンズ群G4の非球面負レンズL45は、物体側レンズ面が非球面形状である。また、第5レンズ群G5は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL51、両凸形状の正レンズL52と物体側に凹面を向けた負メニスカスレンズL53との接合正レンズ、及び、物体側に凹面を向けた負メニスカスレンズL54から構成されている。   In the variable magnification optical system ZL3, the first lens group G1 includes, in order from the object side, a cemented positive lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and an object side. It is composed of a positive meniscus lens L13 having a convex surface. The second lens group G2 includes, in order from the object side, a negative meniscus aspheric negative lens L21 having a convex surface directed toward the object side, a biconcave negative lens L22, and a biconvex positive lens L23. Has been. The aspheric negative lens L21 of the second lens group G2 includes an aspheric thin plastic resin layer on the object side lens surface. The third lens group G3 includes a biconcave aspheric negative lens L31. The aspheric negative lens L31 of the third lens group G3 has an aspherical object side lens surface. The fourth lens group G4 includes, in order from the object side, a cemented positive lens of a negative meniscus lens L41 having a convex surface facing the object side and a biconvex positive lens L42, and a biconvex positive lens L43 and the object side. It consists of a cemented positive lens with a negative meniscus lens L44 having a concave surface, and a cemented negative lens with a biconcave aspheric negative lens L45 and a positive meniscus lens L46 with a convex surface facing the object side. The aspheric negative lens L45 of the fourth lens group G4 has an aspheric surface on the object side. The fifth lens group G5 includes, in order from the object side, a positive meniscus lens L51 having a concave surface facing the object side, a positive lens L52 having a biconvex shape, and a cemented positive lens having a negative meniscus lens L53 having a concave surface facing the object side. And a negative meniscus lens L54 having a concave surface facing the object side.

この第3実施例に係る変倍光学系ZL3では、広角端状態から望遠端状態への変倍に際し、第1レンズ群G1と第2レンズ群G2の空気間隔が増大し、第2レンズ群G2と第3レンズ群G3の空気間隔が増大し、第3レンズ群G3と第4レンズ群G4の空気間隔が減少し、第4レンズ群G4と第5レンズ群G5の空気間隔が減少するように、第1レンズ群G1から第5レンズ群G5の各レンズ群が物体方向へ移動する。なお、開口絞りSは第3レンズ群G3と第4レンズ群G4との間に配置されており、この開口絞りSは、変倍に際し第4レンズ群G4とともに移動する。   In the variable magnification optical system ZL3 according to the third example, the air gap between the first lens group G1 and the second lens group G2 increases upon zooming from the wide-angle end state to the telephoto end state, and the second lens group G2 And the third lens group G3, the air gap between the third lens group G3 and the fourth lens group G4 is decreased, and the air gap between the fourth lens group G4 and the fifth lens group G5 is decreased. Each lens group from the first lens group G1 to the fifth lens group G5 moves in the object direction. The aperture stop S is disposed between the third lens group G3 and the fourth lens group G4. The aperture stop S moves together with the fourth lens group G4 during zooming.

また、この第3実施例に係る変倍光学系ZL3では、第3レンズ群G3を物体方向へ移動させることにより、遠距離物体から近距離物体への合焦が行われる。   In the zoom optical system ZL3 according to the third example, the third lens group G3 is moved in the object direction, thereby focusing from a long distance object to a short distance object.

以下の表9に、第3実施例の変倍光学系ZL3の諸元の値を掲げる。なお、表9に示す面番号1〜31は、図7に示す番号1〜31に対応している。   Table 9 below provides values of specifications of the variable magnification optical system ZL3 of the third example. The surface numbers 1 to 31 shown in Table 9 correspond to the numbers 1 to 31 shown in FIG.

(表9)
[全体諸元]
変倍比=7.41
広角端状態 中間焦点距離状態 望遠端状態
f = 18.5 〜 69.5 〜 137.1
FNO = 3.53 〜 5.63 〜 5.88
2ω = 78.1 〜 22.81 〜 11.60
Ymax= 14.25 〜 14.25 〜 14.25
TL = 138.31 〜 183.34 〜 201.92

[レンズデータ]
m r d nd νd
物面 ∞
1 240.0000 2.000 1.846660 23.78
2 67.9585 8.100 1.593190 67.90
3 -228.3587 0.100
4 50.9478 5.604 1.816000 46.62
5 130.7206 d5
6* 200.0000 0.150 1.553890 38.23
7 220.2039 1.200 1.772499 49.61
8 13.0490 7.071
9 -46.1818 1.000 1.882997 40.76
10 66.5635 1.055
11 35.4681 5.226 1.846660 23.78
12 -30.8403 d12
13* -28.9787 1.000 1.816000 46.62
14 109.6730 d14
15 ∞ 0.400 開口絞りS
16 24.8684 1.000 1.902650 35.70
17 16.7163 4.400 1.562857 53.65
18 -34.2463 0.100
19 18.0955 4.364 1.497820 82.51
20 -31.4489 1.000 1.903660 31.27
21 91.7396 2.500
22* -86.5271 1.000 1.729157 54.66
23 12.5188 2.748 1.850260 32.35
24 24.8338 d24
25 -402.7374 3.237 1.626788 59.07
26 -29.3596 0.100
27 38.7545 7.834 1.487490 70.40
28 -15.5000 1.301 1.882997 40.76
29 -27.6430 0.263
30 -40.1683 1.000 1.882997 40.76
31 -74.5264 BF
像面 ∞

[レンズ群焦点距離]
レンズ群 始面 焦点距離
第1レンズ群 1 80.000
第2レンズ群 6 -59.191
第3レンズ群 13 -28.000
第4レンズ群 16 46.114
第5レンズ群 25 34.271
(Table 9)
[Overall specifications]
Scaling ratio = 7.41
Wide angle end state Intermediate focal length state Telephoto end state f = 18.5 to 69.5 to 137.1
FNO = 3.53 to 5.63 to 5.88
2ω = 78.1 to 22.81 to 11.60
Ymax = 14.25 to 14.25 to 14.25
TL = 138.31-183.34-201.92

[Lens data]
m r d nd νd
Object ∞
1 240.0000 2.000 1.846660 23.78
2 67.9585 8.100 1.593190 67.90
3 -228.3587 0.100
4 50.9478 5.604 1.816000 46.62
5 130.7206 d5
6 * 200.0000 0.150 1.553890 38.23
7 220.2039 1.200 1.772499 49.61
8 13.0490 7.071
9 -46.1818 1.000 1.882997 40.76
10 66.5635 1.055
11 35.4681 5.226 1.846660 23.78
12 -30.8403 d12
13 * -28.9787 1.000 1.816000 46.62
14 109.6730 d14
15 ∞ 0.400 Aperture stop S
16 24.8684 1.000 1.902650 35.70
17 16.7163 4.400 1.562857 53.65
18 -34.2463 0.100
19 18.0955 4.364 1.497820 82.51
20 -31.4489 1.000 1.903660 31.27
21 91.7396 2.500
22 * -86.5271 1.000 1.729157 54.66
23 12.5188 2.748 1.850260 32.35
24 24.8338 d24
25 -402.7374 3.237 1.626788 59.07
26 -29.3596 0.100
27 38.7545 7.834 1.487490 70.40
28 -15.5000 1.301 1.882997 40.76
29 -27.6430 0.263
30 -40.1683 1.000 1.882997 40.76
31 -74.5264 BF
Image plane ∞

[Lens focal length]
Lens group Start surface Focal length 1st lens group 1 80.000
Second lens group 6 -59.191
Third lens group 13 -28.000
Fourth lens group 16 46.114
5th lens group 25 34.271

この第3実施例に係る変倍光学系ZL3おいて、第6面、第13面、及び、第22面の各レンズ面は非球面形状に形成されている。次の表10に、非球面のデータ、すなわち円錐定数K及び各非球面定数A4〜A10の値を示す。   In the variable magnification optical system ZL3 according to the third example, the lens surfaces of the sixth surface, the thirteenth surface, and the twenty-second surface are formed in an aspherical shape. Table 10 below shows the aspheric data, that is, the values of the conic constant K and the aspheric constants A4 to A10.

(表10)
[非球面データ]
K A4 A6 A8 A10
第6面 22.2541 2.52148E-06 -8.96525E-09 -3.86729E-11 1.20386E-13
第13面 -0.0609 1.13314E-06 -1.25083E-09 4.17478E-10 -1.62820E-12
第22面 0.5764 5.81857E-06 6.67215E-08 -4.14394E-10 0.00000E+00
(Table 10)
[Aspherical data]
K A4 A6 A8 A10
6th surface 22.2541 2.52148E-06 -8.96525E-09 -3.86729E-11 1.20386E-13
13th surface -0.0609 1.13314E-06 -1.25083E-09 4.17478E-10 -1.62820E-12
22nd surface 0.5764 5.81857E-06 6.67215E-08 -4.14394E-10 0.00000E + 00

この第3実施例に係る変倍光学系ZL3において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔d5、第2レンズ群G2と第3レンズ群G3との軸上空気間隔d12、第3レンズ群G3と第4レンズ群G4との軸上空気間隔d14、第4レンズ群G4と第5レンズ群G5との軸上空気間隔d24、及び、バックフォーカスBFは、上述したように、変倍に際して変化する。次の表11に無限遠合焦時及び近距離合焦時のそれぞれにおける広角端状態、中間焦点距離状態、及び、望遠状態の各焦点距離における可変間隔及びバックフォーカスの値を示す。   In the variable magnification optical system ZL3 according to the third example, the axial air distance d5 between the first lens group G1 and the second lens group G2, and the axial air distance between the second lens group G2 and the third lens group G3. d12, the axial air gap d14 between the third lens group G3 and the fourth lens group G4, the axial air gap d24 between the fourth lens group G4 and the fifth lens group G5, and the back focus BF are as described above. In addition, it changes upon zooming. Table 11 below shows the values of the variable interval and the back focus at the respective focal lengths in the wide-angle end state, the intermediate focal length state, and the telephoto state at the time of focusing on infinity and focusing on a short distance.

(表11)
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
広角端 中間 望遠端 広角端 中間 望遠端
f 18.5 69.5 137.1 18.5 69.5 137.1
d5 1.500 24.534 40.460 1.500 24.534 40.460
d12 2.808 4.059 7.370 2.401 3.766 6.851
d14 23.985 7.275 3.000 24.392 7.569 3.519
d23 8.253 5.298 5.000 8.253 5.298 5.000
BF 38.01 78.42 82.34 38.01 78.42 82.34
(Table 11)
[Variable interval data]
Infinity focusing state Short-distance focusing state Wide-angle end Medium telephoto end Wide-angle end Medium telephoto end
f 18.5 69.5 137.1 18.5 69.5 137.1
d5 1.500 24.534 40.460 1.500 24.534 40.460
d12 2.808 4.059 7.370 2.401 3.766 6.851
d14 23.985 7.275 3.000 24.392 7.569 3.519
d23 8.253 5.298 5.000 8.253 5.298 5.000
BF 38.01 78.42 82.34 38.01 78.42 82.34

次の表12に、この第3実施例に係る変倍光学系ZL3における各条件式対応値を示す。   Table 12 below shows values corresponding to the conditional expressions in the variable magnification optical system ZL3 according to the third example.

(表12)
広角端状態 中間焦点距離状態 望遠端状態
fb 31.872 30.080 29.910
β3 0.1149 0.0515 -0.0829
βb -1.0734 -2.4362 -2.5771
[条件式対応値]
(1)f1/(−f2)=1.352
(2)(A×B)/(C×D)=1.0073
(3)f3/f2 =0.473
(4)f1/fw =4.325
(5)f4/f5 =1.346
(6)(D45w−D45t)/fw=0.176
(Table 12)
Wide angle end state Intermediate focal length state Telephoto end state fb 31.872 30.080 29.910
β3 0.1149 0.0515 -0.0829
βb -1.0734 -2.4362 -2.5771
[Conditional expression values]
(1) f1 / (− f2) = 1.352
(2) (A × B) / (C × D) = 1.0073
(3) f3 / f2 = 0.473
(4) f1 / fw = 4.325
(5) f4 / f5 = 1.346
(6) (D45w−D45t) /fw=0.176

このように、この第3実施例に係る変倍光学系ZL3は、上記条件式(1)〜(6)を全て満足している。   Thus, the variable magnification optical system ZL3 according to the third example satisfies all the conditional expressions (1) to (6).

この第3実施例に係る変倍光学系ZL3の、無限遠合焦状態での広角端状態、中間焦点距離状態、及び、望遠端状態における諸収差図を図8に示し、近距離合焦状態での広角端状態、中間焦点距離状態、及び、望遠端状態における諸収差図を図9に示す。これらの諸収差図より、この第3実施例に係る変倍光学系ZL3は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離合焦時にも優れた結像性能を有していることがわかる。   FIG. 8 shows various aberration diagrams of the variable magnification optical system ZL3 according to the third example in the wide-angle end state, the intermediate focal length state, and the telephoto end state in the infinite focus state. FIG. 9 shows various aberration diagrams in the wide-angle end state, the intermediate focal length state, and the telephoto end state. From these various aberration diagrams, the variable magnification optical system ZL3 according to the third example has excellent imaging performance by satisfactorily correcting various aberrations from the wide-angle end state to the telephoto end state. It can be seen that the imaging performance is excellent even during focusing.

ここで、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。   Here, each said Example has shown one specific example of this invention, and this invention is not limited to these.

1 カメラ(光学装置) ZL(ZL1,ZL2) 変倍光学系
G1 第1レンズ群 G2 第2レンズ群 G3 第3レンズ群
G4 第4レンズ群 G5 第5レンズ群
DESCRIPTION OF SYMBOLS 1 Camera (optical apparatus) ZL (ZL1, ZL2) Variable magnification optical system G1 1st lens group G2 2nd lens group G3 3rd lens group G4 4th lens group G5 5th lens group

Claims (11)

物体側から順に、
正の屈折力を有する第1レンズ群と、
負の屈折力を有する第2レンズ群と、
負の屈折力を有する第3レンズ群と、
正の屈折力を有する第4レンズ群と、
正の屈折力を有する第5レンズ群と、を有し、
広角端状態から望遠端状態への変倍に際し、前記第1レンズ群と前記第2レンズ群との間隔が変化し、前記第2レンズ群と前記第3レンズ群との間隔が変化し、前記第3レンズ群と前記第4レンズ群との間隔が変化し、前記第4レンズ群と前記第5レンズ群との間隔が変化し、
無限遠物体から近距離物体への合焦に際し、前記第3レンズ群が光軸方向に移動し、
次式の条件を満足することを特徴とする変倍光学系。
1.10 < f1/(−f2) < 2.00
但し、
f1:前記第1レンズ群の焦点距離
f2:前記第2レンズ群の焦点距離
From the object side,
A first lens group having a positive refractive power;
A second lens group having negative refractive power;
A third lens group having negative refractive power;
A fourth lens group having a positive refractive power;
A fifth lens group having a positive refractive power,
During zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group changes, and the distance between the second lens group and the third lens group changes, The distance between the third lens group and the fourth lens group changes, and the distance between the fourth lens group and the fifth lens group changes,
When focusing from an object at infinity to an object at a short distance, the third lens group moves in the optical axis direction,
A variable magnification optical system characterized by satisfying the following condition:
1.10 <f1 / (− f2) <2.00
However,
f1: Focal length of the first lens group f2: Focal length of the second lens group
広角端状態から望遠端状態への変倍に際し、前記第1レンズ群が物体方向に移動することを特徴とする請求項1に記載の変倍光学系。   2. The zoom optical system according to claim 1, wherein the first lens unit moves in the object direction when zooming from the wide-angle end state to the telephoto end state. 広角端状態から望遠端状態への変倍に際し、前記第1レンズ群と前記第2レンズ群との間隔が増大し、前記第3レンズ群と前記第4レンズ群との間隔が減少することを特徴とする請求項1または2に記載の変倍光学系。   In zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group increases, and the distance between the third lens group and the fourth lens group decreases. The variable power optical system according to claim 1 or 2, characterized in that: 次式の条件を満足することを特徴とする請求項1〜3のいずれか一項に記載の変倍光学系。
0.990 < (A×B)/(C×D) < 1.013
但し、
A=f3×(1−β3w)2×(1+β3w)×βbw2−Δ×β3w2
B=fbw×(1−βbw)+Δ
C=f3×(1−β3w)2×(1+β3w)×βbw2−Δ×β3w
D=fbw×(1−βbw)+Δ/βbw
Δ=Ymax/50
β3w:広角端状態における前記第3レンズ群の結像倍率
βbw:広角端状態における前記第4レンズ群以降のレンズ群の合成結像倍率
Ymax:最大像高
f3:前記第3レンズ群の焦点距離
fbw:広角端状態における前記第4レンズ群以降のレンズ群の合成焦点距離
The zoom lens system according to any one of claims 1 to 3, wherein a condition of the following formula is satisfied.
0.990 <(A × B) / (C × D) <1.013
However,
A = f3 × (1−β3w) 2 × (1 + β3w) × βbw 2 −Δ × β3w 2
B = fbw × (1−βbw) + Δ
C = f3 × (1−β3w) 2 × (1 + β3w) × βbw 2 −Δ × β3w
D = fbw × (1−βbw) + Δ / βbw
Δ = Ymax / 50
β3w: Imaging magnification of the third lens group in the wide-angle end state βbw: Composite imaging magnification of the lens group after the fourth lens group in the wide-angle end state Ymax: Maximum image height f3: Focal length of the third lens group fbw: the combined focal length of the lens units after the fourth lens unit in the wide-angle end state
広角端状態から望遠端状態への変倍に際し、前記第4レンズ群と前記第5レンズ群とが物体方向に移動し、前記第2レンズ群と前記第3レンズ群との間隔が増大し、前記第4レンズ群と前記第5レンズ群との間隔が減少することを特徴とする請求項1〜4のいずれか一項に記載の変倍光学系。   During zooming from the wide-angle end state to the telephoto end state, the fourth lens group and the fifth lens group move in the object direction, and the distance between the second lens group and the third lens group increases. 5. The variable magnification optical system according to claim 1, wherein a distance between the fourth lens group and the fifth lens group is reduced. 次式の条件を満足することを特徴とする請求項1〜5のいずれか一項に記載の変倍光学系。
0.35 < f3/f2 < 0.90
但し、
f3:前記第3レンズ群の焦点距離
The zoom lens system according to any one of claims 1 to 5, wherein a condition of the following formula is satisfied.
0.35 <f3 / f2 <0.90
However,
f3: focal length of the third lens group
次式の条件を満足することを特徴とする請求項1〜6のいずれか一項に記載の変倍光学系。
3.50 < f1/fw < 5.50
但し、
fw:広角端状態における前記変倍光学系の全系の焦点距離
The zoom lens system according to any one of claims 1 to 6, wherein a condition of the following formula is satisfied.
3.50 <f1 / fw <5.50
However,
fw: focal length of the entire system of the variable magnification optical system in the wide-angle end state
次式の条件を満足することを特徴とする請求項1〜7のいずれか一項に記載の変倍光学系。
0.72 < f4/f5 < 1.45
但し、
f4:前記第4レンズ群の焦点距離
f5:前記第5レンズ群の焦点距離
The zoom lens system according to any one of claims 1 to 7, wherein a condition of the following formula is satisfied.
0.72 <f4 / f5 <1.45
However,
f4: focal length of the fourth lens group f5: focal length of the fifth lens group
次式の条件を満足することを特徴とする請求項1〜8のいずれか一項に記載の変倍光学系。
0.15 < (D45w−D45t)/fw < 0.40
但し、
D45w:広角端状態における前記第4レンズ群と前記第5レンズ群との間隔
D45t:望遠端状態における前記第4レンズ群と前記第5レンズ群との間隔
fw:広角端状態における前記変倍光学系の全系の焦点距離
The zoom lens system according to any one of claims 1 to 8, wherein a condition of the following formula is satisfied.
0.15 <(D45w−D45t) / fw <0.40
However,
D45w: the distance between the fourth lens group and the fifth lens group in the wide-angle end state D45t: the distance between the fourth lens group and the fifth lens group in the telephoto end state fw: the variable power optical system in the wide-angle end state Focal length of the whole system
請求項1〜9のいずれか一項に記載の変倍光学系を備えたことを特徴とする光学装置。   An optical apparatus comprising the variable magnification optical system according to claim 1. 物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群と、を有する変倍光学系の製造方法であって、
広角端状態から望遠端状態への変倍に際し、前記第1レンズ群と前記第2レンズ群との間隔が変化し、前記第2レンズ群と前記第3レンズ群との間隔が変化し、前記第3レンズ群と前記第4レンズ群との間隔が変化し、前記第4レンズ群と前記第5レンズ群との間隔が変化するように配置し、
無限遠物体から近距離物体への合焦に際し、前記第3レンズ群が光軸方向に移動するように配置し、
次式の条件を満足するように配置することを特徴とする変倍光学系の製造方法。
1.10 < f1/(−f2) < 2.00
但し、
f1:前記第1レンズ群の焦点距離
f2:前記第2レンズ群の焦点距離
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a negative refractive power, and a fourth lens having a positive refractive power A variable magnification optical system having a group and a fifth lens group having a positive refractive power,
During zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group changes, and the distance between the second lens group and the third lens group changes, The distance between the third lens group and the fourth lens group is changed, and the distance between the fourth lens group and the fifth lens group is changed.
When focusing from an object at infinity to an object at a short distance, the third lens group is arranged to move in the optical axis direction,
A method of manufacturing a variable magnification optical system, wherein the zoom lens is disposed so as to satisfy the condition of the following formula.
1.10 <f1 / (− f2) <2.00
However,
f1: Focal length of the first lens group f2: Focal length of the second lens group
JP2013157106A 2013-07-29 2013-07-29 Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method Active JP6372058B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2013157106A JP6372058B2 (en) 2013-07-29 2013-07-29 Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
CN201810239098.4A CN108363193B (en) 2013-07-29 2014-07-28 Variable magnification optical system and optical apparatus
CN201480043000.8A CN105431758B (en) 2013-07-29 2014-07-28 Variable-power optical system, optical device and the manufacture method for variable-power optical system
PCT/JP2014/003955 WO2015015792A1 (en) 2013-07-29 2014-07-28 Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
US15/004,931 US20160216496A1 (en) 2013-07-29 2016-01-23 Variable power optical system, optical apparatus and manufacturing method for variable power optical system
US16/995,196 US11635603B2 (en) 2013-07-29 2020-08-17 Variable power optical system, optical apparatus and manufacturing method for variable power optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013157106A JP6372058B2 (en) 2013-07-29 2013-07-29 Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018133128A Division JP2018200472A (en) 2018-07-13 2018-07-13 Variable power optical system, optical device, and method for manufacturing variable power optical system

Publications (2)

Publication Number Publication Date
JP2015026027A true JP2015026027A (en) 2015-02-05
JP6372058B2 JP6372058B2 (en) 2018-08-15

Family

ID=52490709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013157106A Active JP6372058B2 (en) 2013-07-29 2013-07-29 Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method

Country Status (1)

Country Link
JP (1) JP6372058B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10268030B2 (en) 2017-03-08 2019-04-23 Fujifilm Corporation Zoom lens and imaging apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1048518A (en) * 1996-08-01 1998-02-20 Nikon Corp Variable power optical system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1048518A (en) * 1996-08-01 1998-02-20 Nikon Corp Variable power optical system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10268030B2 (en) 2017-03-08 2019-04-23 Fujifilm Corporation Zoom lens and imaging apparatus

Also Published As

Publication number Publication date
JP6372058B2 (en) 2018-08-15

Similar Documents

Publication Publication Date Title
WO2015015792A1 (en) Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
JP6467804B2 (en) Zoom lens and optical apparatus
JP5839062B2 (en) Zoom lens, optical device
JP5885026B2 (en) Variable magnification optical system, optical apparatus having the variable magnification optical system, and method for manufacturing the variable magnification optical system
JP6281200B2 (en) Variable magnification optical system and optical apparatus
JP6620998B2 (en) Variable magnification optical system and optical apparatus
JP2018200472A (en) Variable power optical system, optical device, and method for manufacturing variable power optical system
JP6372058B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP6232805B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP6337565B2 (en) Variable magnification optical system and imaging apparatus
JP6197489B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6232806B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP5871163B2 (en) Variable magnification optical system, optical apparatus having the variable magnification optical system, and method for manufacturing the variable magnification optical system
JP6601471B2 (en) Variable magnification optical system and optical apparatus
JP6241141B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP6323045B2 (en) Variable magnification optical system
JP6241143B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP6241142B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP2015191059A (en) Variable power optical system, imaging apparatus, and method for manufacturing the variable power optical system
JP2015045839A (en) Zoom lens, optical device, and method for manufacturing the zoom lens
JP2015172696A (en) Zoom lens, optical device, and method for manufacturing zoom lens
JP6260074B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system
JP2015026031A (en) Variable power optical system, optical device, and method for manufacturing variable power optical system
JP2014048373A (en) Variable power optical system, optical device including the variable power optical system, and method for manufacturing the variable power optical system
JP2014048374A (en) Variable power optical system, optical device including the variable power optical system, and method for manufacturing the variable power optical system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170511

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180702

R150 Certificate of patent or registration of utility model

Ref document number: 6372058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250