JP2015022957A - Method for manufacturing nonaqueous electrolyte secondary battery - Google Patents

Method for manufacturing nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2015022957A
JP2015022957A JP2013151498A JP2013151498A JP2015022957A JP 2015022957 A JP2015022957 A JP 2015022957A JP 2013151498 A JP2013151498 A JP 2013151498A JP 2013151498 A JP2013151498 A JP 2013151498A JP 2015022957 A JP2015022957 A JP 2015022957A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
capacity
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013151498A
Other languages
Japanese (ja)
Other versions
JP6061144B2 (en
Inventor
武志 阿部
Takeshi Abe
武志 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013151498A priority Critical patent/JP6061144B2/en
Publication of JP2015022957A publication Critical patent/JP2015022957A/en
Application granted granted Critical
Publication of JP6061144B2 publication Critical patent/JP6061144B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery which makes possible to achieve both of a high level of energy density and a high level of durability.SOLUTION: A method for manufacturing a nonaqueous electrolyte secondary battery comprises the steps of: preparing an electrode body which includes a positive electrode having a positive electrode active material and a negative electrode having a negative electrode active material; housing, in a battery case, the electrode body and a nonaqueous electrolyte containing an SEI coating-film forming agent; and performing a charging process on the electrode body. In the step of preparing the electrode body, the positive electrode active material has two or more operating potentials; of the two or more operating potentials, at least one operating potential (V) is 4.3 V or larger, and at least another operating potential (V) is lower than the oxidation potential of the SEI coating-film forming agent; and adjustment is made so that the capacity Cc (mAh) of the positive electrode in a potential range of OCV to the above V, and the capacity Ca (mAh) of the negative electrode in a potential range of OCV to the reduction potential of the SEI coating-film forming agent satisfy the following relation: Cc>Ca.

Description

本発明は、非水電解液を備えた二次電池(非水電解液二次電池)に関する。詳しくは、非水電解液中にSEI被膜形成剤を含む当該電池の製造方法に関する。   The present invention relates to a secondary battery (non-aqueous electrolyte secondary battery) provided with a non-aqueous electrolyte. In detail, it is related with the manufacturing method of the said battery which contains SEI film formation agent in nonaqueous electrolyte.

リチウムイオン二次電池等の非水電解液二次電池は、既存の電池に比べて軽量かつエネルギー密度が高いことから、近年、車両搭載用高出力電源等に好ましく利用されている。
この種の電池の製造では、一般に電池組立体を構築した後にコンディショニング処理(初期充電)を行う。これにより非水電解液の一部が負極で還元分解され、負極の表面にその分解物からなるSEI被膜(Solid Electrolyte Interphase膜)を形成し得る。かかる被膜によって以後の充放電に伴う非水電解液の分解が抑制されることで、電池の耐久性(例えば高温サイクル特性)を向上させることができる。かかる被膜を形成するための技術として、特許文献1〜3が挙げられる。例えば特許文献1には、非水電解液中にSEI被膜形成剤を含み、初回充電において当該SEI被膜形成剤の還元電位で一定時間保持する、リチウムイオン二次電池の製造方法が開示されている。
Nonaqueous electrolyte secondary batteries, such as lithium ion secondary batteries, are lighter and have higher energy density than existing batteries, and thus have been preferably used in recent years for high output power sources mounted on vehicles.
In manufacturing this type of battery, a conditioning process (initial charge) is generally performed after the battery assembly is constructed. Thereby, a part of the non-aqueous electrolyte is reduced and decomposed at the negative electrode, and an SEI film (Solid Electrolyte Interphase film) made of the decomposition product can be formed on the surface of the negative electrode. By suppressing the decomposition of the non-aqueous electrolyte accompanying subsequent charging / discharging by such a coating, the durability (for example, high temperature cycle characteristics) of the battery can be improved. As a technique for forming such a film, Patent Documents 1 to 3 are cited. For example, Patent Document 1 discloses a method for manufacturing a lithium ion secondary battery that includes a SEI film forming agent in a non-aqueous electrolyte and holds the reduced potential of the SEI film forming agent for a certain time in the initial charge. .

特開2004−228010号公報JP 2004-228010 A 特開2001−325988号公報JP 2001-325988 A 特開2005−108682号公報JP 2005-108682 A

ところで、車両搭載用高出力電源として用いられるような電池では、性能向上の一環として、更なる高エネルギー密度化が検討されている。かかる高エネルギー密度化は、例えば作動電位の高い正極活物質を用いることによって実現し得る。
しかしながら、本発明者の検討によれば、作動電位が凡そ4.3V(vs. Li/Li+)以上の正極活物質を用いた場合、上述のような従来のSEI被膜形成技術を適用することが困難であった。これについて、図2を参照しつつ、より詳しく説明する。図2は、従来の被膜形成技術を表す概念図であり、縦軸に電位(vs. Li/Li+)を、横軸に容量を表している。ここに示すように、従来に比べて作動電位が高い正極活物質を用いた場合、初回充電の初期に正極の電位が急激に上昇し、これによってSEI被膜形成剤が正極で酸化分解されてしまう。このため、SEI被膜形成剤を負極で適切に還元分解することができず、負極表面に形成される被膜が不十分および/または不均質になることがあった。それどころか、本発明者の検討によれば、SEI被膜形成剤を添加することでかえって電池特性が悪化することさえあった。
本発明は、かかる事情に鑑みてなされたものであり、その目的は、上記SEI被膜形成剤添加の効果が適切に発揮され、エネルギー密度や耐久性(例えば高温サイクル特性)に優れた非水電解液二次電池を提供することである。関連する他の目的は、当該電池の製造方法を提供することである。
By the way, in a battery that is used as a high-output power source mounted on a vehicle, as a part of performance improvement, further increase in energy density is being studied. Such high energy density can be realized by using, for example, a positive electrode active material having a high operating potential.
However, according to the study of the present inventor, when a positive electrode active material having an operating potential of about 4.3 V (vs. Li / Li + ) or more is used, the conventional SEI film forming technique as described above should be applied. It was difficult. This will be described in more detail with reference to FIG. FIG. 2 is a conceptual diagram showing a conventional film forming technique, where the vertical axis represents potential (vs. Li / Li + ) and the horizontal axis represents capacity. As shown here, when a positive electrode active material having a higher working potential than conventional ones is used, the potential of the positive electrode rises rapidly at the initial stage of the initial charge, and the SEI film forming agent is oxidatively decomposed at the positive electrode. . For this reason, the SEI film-forming agent cannot be appropriately reduced and decomposed at the negative electrode, and the film formed on the negative electrode surface may be insufficient and / or inhomogeneous. On the contrary, according to the study of the present inventor, the addition of the SEI film forming agent sometimes deteriorated the battery characteristics.
The present invention has been made in view of such circumstances, and the object thereof is non-aqueous electrolysis in which the effect of the addition of the SEI film forming agent is appropriately exhibited and the energy density and durability (for example, high temperature cycle characteristics) are excellent. It is to provide a liquid secondary battery. Another related object is to provide a method of manufacturing the battery.

本発明者は、正極電位がSEI被膜形成剤の酸化分解電位に到達する前に、負極電位をSEI被膜形成剤の還元電位(還元分解電位)に到達させることを考えた。そして、鋭意検討を重ねた結果、本発明を完成させた。本発明により提供される非水電解液二次電池の製造方法は、(1)正極活物質を有する正極と、負極活物質を有する負極と、を備える電極体を準備すること;(2)上記電極体と、SEI被膜形成剤を含む非水電解液とを、電池ケース内に収容すること;および、(3)上記電極体に対して少なくとも1回の充電処理を行うこと;を包含する。そして、上記電極体の準備は、以下の(i)、(ii)を特徴とする。
(i)正極活物質として、作動電位を2つ以上有し、当該作動電位のうち少なくとも1つ(V)が4.3V(vs. Li/Li+)以上で、他の少なくとも1つ(V)が上記SEI被膜形成剤の酸化電位(vs. Li/Li+)より低いものを用いる。
(ii)上記正極活物質のOCVから上記Vまでの電位範囲における単位質量あたりの正極単位容量(mAh/g)と当該正極活物質の質量Wc(g)の積で算出される正極容量Cc(mAh)と、上記負極活物質のOCVから上記SEI被膜形成剤の還元電位までの電位範囲における単位質量あたりの負極単位容量(mAh/g)と当該負極活物質の質量Wa(g)の積で算出される負極容量Ca(mAh)とが、Cc>Caの関係になるよう調整する。
The present inventor considered that the negative electrode potential reaches the reduction potential (reduction decomposition potential) of the SEI film forming agent before the positive electrode potential reaches the oxidative decomposition potential of the SEI film forming agent. As a result of intensive studies, the present invention has been completed. A method for producing a non-aqueous electrolyte secondary battery provided by the present invention comprises: (1) preparing an electrode body comprising a positive electrode having a positive electrode active material and a negative electrode having a negative electrode active material; Containing an electrode body and a non-aqueous electrolyte containing a SEI film forming agent in a battery case; and (3) performing at least one charging process on the electrode body. And the preparation of the said electrode body is characterized by the following (i) and (ii).
(I) The positive electrode active material has two or more operating potentials, and at least one of the operating potentials (V H ) is 4.3 V (vs. Li / Li + ) or more, and at least one other ( A material having V L ) lower than the oxidation potential (vs. Li / Li + ) of the SEI film forming agent is used.
(Ii) Positive electrode capacity Cc calculated by the product of positive electrode unit capacity (mAh / g) per unit mass in the potential range from OCV to VL of the positive electrode active material and mass Wc (g) of the positive electrode active material (MAh), product of negative electrode unit capacity (mAh / g) per unit mass in the potential range from the OCV of the negative electrode active material to the reduction potential of the SEI film forming agent, and the mass Wa (g) of the negative electrode active material The negative electrode capacity Ca (mAh) calculated in the above is adjusted so that Cc> Ca.

本発明の効果を、図1を参照しつつ詳しく説明する。図1は、本発明の概念図であり、縦軸に電位(vs. Li/Li+)を、横軸に容量を表している。本発明では、従来技術とは異なり、正極(正極活物質)に2つ以上の作動電位を持たせる。そして、そのうちの少なくとも1つ(V)を4.3V(vs. Li/Li+)以上とする。これによって、電池の高エネルギー密度化を実現することができる。また、作動電位のうち他の少なくとも1つ(V)をSEI被膜形成剤の酸化電位(vs. Li/Li+)よりも低くする。これによって、初回充電の初期に正極の電位を緩やかに上昇させることができる。さらに、正極容量Ccと負極容量CaとがCc>Caの関係を満たすことで、SEI被膜形成剤の正極での酸化分解反応を抑制することができ、当該SEI被膜形成剤を負極において好適に還元分解することができる。
したがって、上記製造方法によれば、負極の表面にSEI被膜形成剤由来の被膜を均質且つ十分に形成することができ、エネルギー密度と耐久性とを高いレベルで両立可能な非水電解液二次電池を提供することができる。
The effect of the present invention will be described in detail with reference to FIG. FIG. 1 is a conceptual diagram of the present invention, in which the vertical axis represents potential (vs. Li / Li + ) and the horizontal axis represents capacity. In the present invention, unlike the prior art, the positive electrode (positive electrode active material) has two or more operating potentials. At least one of them (V H ) is set to 4.3 V (vs. Li / Li + ) or more. Thereby, it is possible to realize a high energy density of the battery. Further, at least one of the operating potentials (V L ) is set lower than the oxidation potential (vs. Li / Li + ) of the SEI film forming agent. As a result, the potential of the positive electrode can be gradually increased at the initial stage of the first charge. Furthermore, when the positive electrode capacity Cc and the negative electrode capacity Ca satisfy the relationship of Cc> Ca, the oxidative decomposition reaction of the SEI film forming agent at the positive electrode can be suppressed, and the SEI film forming agent is suitably reduced at the negative electrode. Can be disassembled.
Therefore, according to the above production method, a non-aqueous electrolyte secondary solution that can form a uniform and sufficient film derived from the SEI film forming agent on the surface of the negative electrode and can achieve both energy density and durability at a high level. A battery can be provided.

なお、正極(正極活物質)の作動電位は、従来公知の2極式セルを用いた手法によって測定することができる。より詳しくは、先ず、測定対象たる正極(正極活物質層)を所定の大きさに切り出して、作用極を準備する。次に、この作用極を、セパレータを介して対極としての金属リチウムと対向させ、積層体を作製する。この積層体を非水電解液とともにケースに収容して、2極式セルを構築する。次に、当該セルに対して25℃の温度環境下で、作用極−対極間の端子電圧が4.7Vになるまで1/3Cのレートで定電流充電する。そして、得られた電位(vs. Li/Li+)−容量のグラフにおいて、プラトーな(電位の上昇が穏やかになる)ところを、作動電位とすることができる。
また、上記測定の結果から、OCVからVまでの電位範囲における積算容量を求め、この値を、用いた正極活物質の質量で除すことにより、正極活物質1gあたりの容量(mAh/g)を算出することができる。この正極活物質1gあたりの容量(mAh/g)と電池の構築に用いる正極活物質の質量Wc(g)とを掛け合わせることで、任意の電位範囲における正極容量Cc(mAh)を求めることができる。
負極容量(mAh)についてもこれと同様に求めることができる。より詳しくは、作用極として負極(負極活物質層)を用い、上記正極の場合と同様に2極式セルを構築する。次に、当該セルに対して25℃の温度環境下で、作用極−対極間の端子電圧が任意の電位となるまで1/3Cのレートで定電流放電する。そして、上記正極の場合と同様にしてOCVから電池の構築に用いるSEI被膜形成剤の還元電位までの電位範囲における負極容量Ca(mAh)を求めることができる。
The working potential of the positive electrode (positive electrode active material) can be measured by a technique using a conventionally known bipolar cell. More specifically, first, a positive electrode (positive electrode active material layer) to be measured is cut into a predetermined size to prepare a working electrode. Next, this working electrode is made to face metallic lithium as a counter electrode through a separator to produce a laminate. This laminated body is housed in a case together with a non-aqueous electrolyte to construct a bipolar cell. Next, the cell is charged with a constant current at a rate of 1/3 C under a temperature environment of 25 ° C. until the terminal voltage between the working electrode and the counter electrode becomes 4.7V. In the obtained potential (vs. Li / Li + ) -capacitance graph, a plateau (potential increase in potential) can be set as the operating potential.
Further, the integrated capacity in the potential range from OCV to VL is obtained from the result of the above measurement, and this value is divided by the mass of the positive electrode active material used, whereby the capacity per 1 g of the positive electrode active material (mAh / g ) Can be calculated. The positive electrode capacity Cc (mAh) in an arbitrary potential range can be obtained by multiplying the capacity per 1 g of the positive electrode active material (mAh / g) by the mass Wc (g) of the positive electrode active material used for battery construction. it can.
The negative electrode capacity (mAh) can be obtained in the same manner. More specifically, a negative electrode (negative electrode active material layer) is used as a working electrode, and a bipolar cell is constructed as in the case of the positive electrode. Next, constant current discharge is performed at a rate of 1/3 C until the terminal voltage between the working electrode and the counter electrode reaches an arbitrary potential in a temperature environment of 25 ° C. with respect to the cell. Then, in the same manner as in the case of the positive electrode, the negative electrode capacity Ca (mAh) in the potential range from the OCV to the reduction potential of the SEI film forming agent used for battery construction can be obtained.

また、SEI被膜形成剤の酸化および還元電位(vs. Li/Li+)は、従来公知の3極式セルを用いた手法によって測定することができる。例えば還元電位の測定では、先ず、作用極としてのグラッシーカーボンと、対極としての金属リチウムと、参照極としての金属リチウムと、測定対象たるSEI被膜形成剤とを用いて、3極式セルを構築する。次に、25℃の温度環境下で、掃引速度1mV/secの条件でサイクリックボルタンメトリーの測定を行う。そして、得られた電流Iおよび電位Vから微分値dI/dVを算出する。このdI/dVを縦軸、電位Vを横軸としてグラフを作成し、測定開始から最初に現れたdI/dVのピークに対応する電位Vを還元電位とすることができる。 In addition, the oxidation and reduction potential (vs. Li / Li + ) of the SEI film forming agent can be measured by a technique using a conventionally known tripolar cell. For example, in the measurement of reduction potential, first, a tripolar cell is constructed using glassy carbon as a working electrode, metallic lithium as a counter electrode, metallic lithium as a reference electrode, and a SEI film forming agent as a measurement target. To do. Next, cyclic voltammetry is measured under the condition of a sweep rate of 1 mV / sec in a temperature environment of 25 ° C. Then, a differential value dI / dV is calculated from the obtained current I and potential V. A graph is created with the dI / dV as the vertical axis and the potential V as the horizontal axis, and the potential V corresponding to the peak of dI / dV that appears first from the start of measurement can be the reduction potential.

好適な一態様では、上記容量の関係(Cc>Ca)は、上記正極活物質の質量Wcおよび/または上記負極活物質の質量Waを調整することによって行う。
上述の通り、正極容量Ccおよび負極容量Caは、活物質1gあたりの容量(mAh/g)と使用する活物質の質量(g)との積で算出される。このため、CcおよびCaを制御するには、活物質の単位質量あたりの容量(mAh/g)、および/または、活物質の質量(g)を調整することが効果的である。活物質の質量で調整すれば、より簡便にCcおよび/またはCaを好適な値に制御することができる。このことは作業性や生産性の観点から好ましい。さらに、発明者の知見によれば、正極容量Ccを大きくし過ぎると結晶構造の安定性が低下することがあり得る。このため、正極容量Ccは大きく変えずに正負極の質量を調整することで、本願発明の効果をより高いレベルで発揮することができる。換言すれば、正極の結晶構造の配列の乱れを制御することによって、SEI被膜形成剤の正極における分解反応を好適に抑制することができる。
In a preferred aspect, the capacity relationship (Cc> Ca) is performed by adjusting the mass Wc of the positive electrode active material and / or the mass Wa of the negative electrode active material.
As described above, the positive electrode capacity Cc and the negative electrode capacity Ca are calculated by the product of the capacity per 1 g of active material (mAh / g) and the mass (g) of the active material used. For this reason, in order to control Cc and Ca, it is effective to adjust the capacity per unit mass (mAh / g) and / or the mass (g) of the active material. By adjusting the mass of the active material, Cc and / or Ca can be controlled to a suitable value more easily. This is preferable from the viewpoint of workability and productivity. Furthermore, according to the inventor's knowledge, if the positive electrode capacity Cc is excessively increased, the stability of the crystal structure may be lowered. For this reason, the effect of the present invention can be exhibited at a higher level by adjusting the mass of the positive and negative electrodes without largely changing the positive electrode capacity Cc. In other words, by controlling the disorder of the arrangement of the crystal structure of the positive electrode, the decomposition reaction at the positive electrode of the SEI film forming agent can be suitably suppressed.

本発明の概念を説明するための概念図である。It is a conceptual diagram for demonstrating the concept of this invention. 従来のSEI被膜形成技術を表す概念図である。It is a conceptual diagram showing the conventional SEI film formation technique.

以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。   Hereinafter, preferred embodiments of the present invention will be described. Note that matters other than matters specifically mentioned in the present specification and necessary for implementation can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.

ここで開示される製造方法は、(1)電極体準備工程;(2)電池組立体構築工程;および(3)初回充電工程;を包含する。以下、各工程について順に説明する。   The manufacturing method disclosed herein includes (1) an electrode body preparation step; (2) a battery assembly construction step; and (3) an initial charging step. Hereinafter, each process is demonstrated in order.

<1.電極体準備工程>
電極体は、正極活物質を有する正極と負極活物質を有する負極とを、典型的にはセパレータを介して積層することで構築し得る。上記電極体は、正極のOCVから上記Vまでの電位範囲における容量Cc(mAh)と、負極のOCVから上記SEI被膜形成剤の還元電位までの電位範囲における容量Ca(mAh)とが、Cc>Caの関係を満たすよう調整する。これにより、SEI被膜形成剤が正極で酸化分解されることを抑制し得、SEI被膜形成剤添加の効果を好適に発現させることができる。換言すれば、負極表面に均質なSEI被膜を形成することができる。なお、正極容量Ccおよび/または負極容量Caは、活物質の単位質量あたりの容量や活物質の質量によって調整することができる。
<1. Electrode body preparation process>
The electrode body can be constructed by laminating a positive electrode having a positive electrode active material and a negative electrode having a negative electrode active material, typically via a separator. The electrode body has a capacity Cc (mAh) in the potential range from the positive OCV to the VL and a capacity Ca (mAh) in the potential range from the negative OCV to the reduction potential of the SEI film forming agent. > Adjust to satisfy the relationship of Ca. Thereby, it can suppress that a SEI film-forming agent is oxidatively decomposed by a positive electrode, and the effect of SEI film-forming agent addition can be expressed suitably. In other words, a uniform SEI film can be formed on the negative electrode surface. The positive electrode capacity Cc and / or the negative electrode capacity Ca can be adjusted by the capacity per unit mass of the active material and the mass of the active material.

正極としては、正極活物質を導電材やバインダ等とともに組成物として正極集電体上に付着させ、正極活物質層を形成した形態のものを用いることができる。
正極活物質には、作動電位を2つ以上(例えば2つ)有するものを用いる。ここでは、2つ以上の作動電位のうち最も高いものをV、最も低いものをVとする。V(vs. Li/Li+)は、4.3V以上(典型的には4.5V以上、例えば4.6V以上、好ましくは4.7V以上)であって、典型的には5.5V以下、例えば5.3V以下とすることができる。また、V(vs. Li/Li+)は、使用するSEI被膜形成剤の酸化電位より低く、典型的には4.7V以下、例えば4.6V以下、好ましくは4.5V以下、より好ましくは4.2V以下とすることができる。正極活物質について、それ以外は特に限定されず、層状構造やスピネル構造を有するリチウム複合金属酸化物(例えば、LiNi0.5Mn1.5、LiNiO、LiCoO、LiFeO、LiMn、LiNi1/3Co1/3Mn1/3、LiCrMnO、LiFePO)等を採用し得る。
正極活物質のOCVから上記Vまでの電位範囲における単位質量あたりの容量は、典型的には14.9mAh/g未満(例えば5〜14mAh/g程度)とするとよい。これにより、正負極の容量比が、正極容量Cc>負極容量Caの範囲を満たすよう好適に調整することができる。
As a positive electrode, the thing of the form which adhered the positive electrode active material on the positive electrode electrical power collector as a composition with a electrically conductive material, a binder, etc., and formed the positive electrode active material layer can be used.
A positive electrode active material having two or more (for example, two) operating potentials is used. Here, the highest one of two or more operating potentials is V H , and the lowest one is V L. V H (vs. Li / Li + ) is 4.3 V or higher (typically 4.5 V or higher, such as 4.6 V or higher, preferably 4.7 V or higher), and typically 5.5 V. Hereinafter, for example, it can be set to 5.3 V or less. V L (vs. Li / Li + ) is lower than the oxidation potential of the SEI film forming agent used, and is typically 4.7 V or less, such as 4.6 V or less, preferably 4.5 V or less, more preferably Can be 4.2 V or less. Other than that, the positive electrode active material is not particularly limited, and is a lithium composite metal oxide having a layered structure or a spinel structure (for example, LiNi 0.5 Mn 1.5 O 4 , LiNiO 2 , LiCoO 2 , LiFeO 2 , LiMn 2 O 4 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiCrMnO 4 , LiFePO 4 ) or the like may be employed.
The capacity per unit mass in the potential range from OCV to VL of the positive electrode active material is typically less than 14.9 mAh / g (for example, about 5 to 14 mAh / g). Thereby, the capacity ratio of the positive and negative electrodes can be suitably adjusted so as to satisfy the range of the positive electrode capacity Cc> the negative electrode capacity Ca.

このような正極活物質は、従来公知の方法で調製して用意することができる。例えば、目的の組成に応じて選択される原料化合物(例えばリチウム源と遷移金属元素源と)を所定の割合で混合し、その混合物(前駆体)を適切な手段によって焼成した後、冷却する。これを適宜粉砕、造粒、分級することによって、所望の性状の酸化物を調製することができる。作動電位を2つ以上有する正極活物質は、例えば、上記前駆体の原料化合物の比(例えばリチウム源と遷移金属元素源比)や、焼成条件(焼成雰囲気(O濃度等)、焼成温度、焼成時間)、冷却速度等を変化させることによって合成可能である。好適な一態様では、冷却速度を変化させることにより、作動電位を2つ以上有する正極活物質を合成する。例えば上記焼成によって得られた焼成物を5〜10℃/min.の冷却速度で冷却すると、結晶構造に乱れが生じて(例えば結晶構造内に酸素欠損が生じて)、4V(vs. Li/Li+)付近と4.7V(vs. Li/Li+)付近にプラトーを持った正極活物質を好適に合成することができる。 Such a positive electrode active material can be prepared and prepared by a conventionally known method. For example, raw material compounds selected according to the target composition (for example, a lithium source and a transition metal element source) are mixed at a predetermined ratio, the mixture (precursor) is fired by an appropriate means, and then cooled. By suitably pulverizing, granulating, and classifying this, an oxide having a desired property can be prepared. The positive electrode active material having two or more operating potentials includes, for example, the ratio of the precursor raw material compound (for example, the ratio of lithium source to transition metal element source), firing conditions (firing atmosphere (such as O 2 concentration)), firing temperature, It can be synthesized by changing the firing time) and the cooling rate. In a preferred embodiment, a positive electrode active material having two or more operating potentials is synthesized by changing the cooling rate. For example, the fired product obtained by the firing is 5 to 10 ° C./min. When cooling at a cooling rate of 5 ° C, the crystal structure is disturbed (for example, oxygen vacancies are generated in the crystal structure), and around 4 V (vs. Li / Li + ) and around 4.7 V (vs. Li / Li + ) Thus, a positive electrode active material having a plateau can be suitably synthesized.

導電材としては、カーボンブラック(例えば、アセチレンブラックやケッチェンブラック)等の炭素材料を採用し得る。バインダとしては、ポリフッ化ビニリデン(PVdF)やポリエチレンオキサイド(PEO)等の各種のポリマー材料を採用し得る。正極集電体としては、導電性の良好な金属(例えばアルミニウム)からなる導電性部材を好適に採用し得る。   As the conductive material, a carbon material such as carbon black (for example, acetylene black or ketjen black) can be adopted. As the binder, various polymer materials such as polyvinylidene fluoride (PVdF) and polyethylene oxide (PEO) can be adopted. As the positive electrode current collector, a conductive member made of a metal having good conductivity (for example, aluminum) can be suitably employed.

負極としては、負極活物質をバインダ等とともに組成物として負極集電体上に付着させ、負極活物質層を形成した形態のものを用いることができる。負極活物質としては、黒鉛(グラファイト)、難黒鉛化炭素(ハードカーボン)、易黒鉛化炭素(ソフトカーボン)等の炭素材料を用いることができ、なかでも黒鉛を好適に採用し得る。負極活物質のOCVからSEI被膜形成剤の還元電位までの電位範囲における単位質量あたりの容量は、例えば5〜15mAh/g程度とするとよい。バインダとしては、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、ポリテトラフルオロエチレン(PTFE)等の各種のポリマー材料を採用し得る。負極集電体としては、導電性の良好な金属(例えば銅)からなる導電性材料を好適に採用し得る。   As the negative electrode, it is possible to use a negative electrode active material layer in which a negative electrode active material is deposited on a negative electrode current collector as a composition together with a binder or the like. As the negative electrode active material, a carbon material such as graphite (graphite), non-graphitizable carbon (hard carbon), graphitizable carbon (soft carbon), or the like can be used, and among them, graphite can be preferably used. The capacity per unit mass in the potential range from the OCV of the negative electrode active material to the reduction potential of the SEI film forming agent is preferably about 5 to 15 mAh / g, for example. As the binder, various polymer materials such as styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), and polytetrafluoroethylene (PTFE) can be adopted. As the negative electrode current collector, a conductive material made of a metal having good conductivity (for example, copper) can be suitably used.

セパレータとしては、ポリエチレン(PE)、ポリプロピレン(PP)等の樹脂から成る多孔質樹脂シートを好適に採用し得る。なかでも、上記多孔性樹脂シートの片面または両面に多孔質の耐熱層を備えるものが好ましい。   As the separator, a porous resin sheet made of a resin such as polyethylene (PE) or polypropylene (PP) can be suitably used. Especially, what equips one side or both surfaces of the said porous resin sheet with a porous heat resistant layer is preferable.

<2.電池組立体構築工程>
上記準備した電極体と、非水電解液とを、電池ケース内に収容することで、電池組立体を構築する。電池ケースとしては、例えばアルミニウム等の軽量な金属製のものを好適に採用し得る。
<2. Battery assembly construction process>
A battery assembly is constructed by housing the prepared electrode body and the non-aqueous electrolyte in a battery case. As the battery case, for example, a lightweight metal such as aluminum can be preferably used.

非水電解液としては、非水溶媒中に支持塩とSEI被膜形成剤とを含有させたものを用いる。非水溶媒としては、耐酸化性の高い(すなわち酸化分解電位の高い)ものが好ましい。例えば、非水電解液二次電池に利用し得ることが知られている有機溶媒(例えば、各種のカーボネート類、エーテル類、エステル類、ニトリル類、スルホン類、ラクトン類等)のフッ素化物(フッ素含有非水溶媒)を好適に用いることができる。なかでも、フッ素化カーボネートの使用が好ましい。具体的には、フルオロエチレンカーボネート(FEC)等のフッ素化環状カーボネートや、メチル(2,2,2−トリフルオロエチル)カーボネート(MTFEC)等のフッ素化鎖状カーボネートが挙げられる。これにより、作動電位(典型的にはV)が高い正極活物質を用いた場合であっても、耐久性に優れた電池を実現することができる。
支持塩としては、リチウム塩、ナトリウム塩、マグネシウム塩等を用いることができ、なかでもLiPF、LiBF等のリチウム塩を好適に採用し得る。SEI被膜形成剤としては、上記支持塩および非水溶媒よりも還元電位の高い化合物を用いることができ、なかでもビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)等のビニレンカーボネート化合物を好適に採用し得る。SEI被膜形成剤添加量は、非水電解液100質量%に対して、0.1〜5質量%程度とすることができる。
As the nonaqueous electrolytic solution, a nonaqueous solvent containing a supporting salt and an SEI film forming agent is used. As the non-aqueous solvent, those having high oxidation resistance (that is, high oxidative decomposition potential) are preferable. For example, fluorides (fluorine) of organic solvents (for example, various carbonates, ethers, esters, nitriles, sulfones, lactones, etc.) that are known to be usable for nonaqueous electrolyte secondary batteries Containing non-aqueous solvent) can be preferably used. Of these, the use of fluorinated carbonate is preferred. Specific examples include fluorinated cyclic carbonates such as fluoroethylene carbonate (FEC) and fluorinated chain carbonates such as methyl (2,2,2-trifluoroethyl) carbonate (MTFEC). Thereby, even if it is a case where a positive electrode active material with a high operating potential (typically VH ) is used, the battery excellent in durability is realizable.
As the supporting salt, lithium salt, sodium salt, magnesium salt and the like can be used, and among them, lithium salts such as LiPF 6 and LiBF 4 can be preferably used. As the SEI film forming agent, a compound having a higher reduction potential than the above supporting salt and non-aqueous solvent can be used, and among these, vinylene carbonate compounds such as vinylene carbonate (VC) and vinyl ethylene carbonate (VEC) are preferably employed. Can do. The addition amount of the SEI film forming agent can be about 0.1 to 5% by mass with respect to 100% by mass of the non-aqueous electrolyte.

<3.初回充電工程>
初回充電工程では、上記構築した電池組立体に対して充電処理を行う。典型的には、当該組立体の正極と負極の間に外部電源を接続し、負極の電位が上記SEI被膜形成剤の還元電位に到達するまで充電(典型的には定電流充電)を行う。ここで開示される技術によれば、SEI被膜形成剤が正極で酸化分解されることを抑制し得る。このため、負極で好適にSEI被膜形成剤を還元分解することができ、負極(負極活物質)の表面に当該被膜形成剤の分解物からなる被膜を形成することができる。このときの充電時のレートは、例えば0.1〜10C程度とすることができる。また、正負極端子間の電圧(典型的には最高到達電圧)は、使用する非水溶媒の種類等にも依るが、例えば4.5〜5.5V程度とすることができる。なお、充電処理は1回でもよく、例えば放電処理を挟んで2回以上繰り返し行うこともできる。
<3. Initial charging process>
In the initial charging step, the battery assembly thus constructed is charged. Typically, an external power source is connected between the positive electrode and the negative electrode of the assembly, and charging (typically constant current charging) is performed until the potential of the negative electrode reaches the reduction potential of the SEI film forming agent. According to the technique disclosed herein, the SEI film forming agent can be prevented from being oxidatively decomposed at the positive electrode. For this reason, the SEI film-forming agent can be reduced and decomposed suitably at the negative electrode, and a film made of a decomposition product of the film-forming agent can be formed on the surface of the negative electrode (negative electrode active material). The rate at the time of charge at this time can be about 0.1-10C, for example. Further, the voltage between the positive and negative terminals (typically the highest voltage reached) depends on the type of non-aqueous solvent used, but can be about 4.5 to 5.5 V, for example. The charging process may be performed once, for example, it may be repeated twice or more with the discharging process interposed therebetween.

このように製造される非水電解液二次電池は各種用途に利用可能であるが、SEI被膜形成剤添加の効果と、正極活物質の作動電位の引き上げにより、従来に比べて高い電池特性を実現し得ることを特徴とする。例えば、耐久性とエネルギー密度とを高いレベルで両立可能なことを特徴とする。したがって、このような性質を活かして、プラグインハイブリッド自動車(PHV)、ハイブリッド自動車(HV)、電気自動車(EV)等の車両に搭載される駆動用電源として好適に用いることができる。   The non-aqueous electrolyte secondary battery manufactured in this way can be used for various applications. However, the effect of adding the SEI film forming agent and the increase of the operating potential of the positive electrode active material have improved battery characteristics compared to the conventional one. It can be realized. For example, it is characterized in that both durability and energy density can be achieved at a high level. Therefore, taking advantage of such properties, it can be suitably used as a drive power source mounted on vehicles such as plug-in hybrid vehicles (PHV), hybrid vehicles (HV), and electric vehicles (EV).

以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる具体例に示すものに限定することを意図したものではない。   Several examples relating to the present invention will be described below, but the present invention is not intended to be limited to the specific examples.

[正極活物質の準備]
ここでは、正極活物質として、表1に示す6種類のスピネル構造を有するLiNi0.5Mn1.5(A〜F)を合成した。具体的には、先ず、Ni源と、Mn源とをNi:Mn=0.5:1.5の割合で含む水性溶液から、pH≒12且つアンモニウムイオン濃度が凡そ25g/Lの条件で、当該遷移金属の水酸化物を析出させた。次に、その遷移金属水酸化物とLi源とを混合して1000℃で焼成した後、5〜10℃/min.の冷却速度で冷却した。ここでは冷却速度を上記範囲内で変化させることによって、6種類のリチウム遷移金属複合酸化物(A〜F)を準備した。そして、既に上述した手法を用いて、合成した酸化物の作動電位を測定した。その結果、これらの酸化物は全て4.7V付近(V)と4V付近(V)にプラトー状態(作動電位)を有していることがわかった。また、リチウム基準で、OCVからV(4V)までの電位範囲における単位質量あたりの容量(mAh/g)を算出した。結果を表1に示す。
[Preparation of positive electrode active material]
Here, LiNi 0.5 Mn 1.5 O 4 (A to F) having six types of spinel structures shown in Table 1 was synthesized as a positive electrode active material. Specifically, first, from an aqueous solution containing a Ni source and a Mn source at a ratio of Ni: Mn = 0.5: 1.5, under conditions of pH≈12 and an ammonium ion concentration of about 25 g / L, The transition metal hydroxide was precipitated. Next, the transition metal hydroxide and the Li source were mixed and baked at 1000 ° C., and then 5 to 10 ° C./min. The cooling rate was. Here, six types of lithium transition metal composite oxides (A to F) were prepared by changing the cooling rate within the above range. Then, the working potential of the synthesized oxide was measured using the method described above. As a result, it was found that all of these oxides had plateau states (working potentials) around 4.7 V (V H ) and around 4 V (V L ). Moreover, the capacity | capacitance per unit mass (mAh / g) in the electric potential range from OCV to VL (4V) was computed on the basis of lithium. The results are shown in Table 1.

Figure 2015022957
Figure 2015022957

[SEI被膜形成剤の準備]
先ず、SEI被膜形成剤としてビニレンカーボネート(VC)とビニルエチレンカーボネート(VEC)を準備し、既に上述した手法を用いて酸化電位と還元電位を測定した。測定は、いずれもサイクリックボルタンメトリーの手法を用いて、測定温度25℃、掃引速度1mV/secの条件で実施した。結果を表2に示す。
[Preparation of SEI film forming agent]
First, vinylene carbonate (VC) and vinyl ethylene carbonate (VEC) were prepared as SEI film forming agents, and the oxidation potential and the reduction potential were measured using the method described above. All measurements were carried out using a cyclic voltammetry technique under the conditions of a measurement temperature of 25 ° C. and a sweep rate of 1 mV / sec. The results are shown in Table 2.

Figure 2015022957
Figure 2015022957

[負極活物質の準備]
負極活物質としては、平均粒子径(D50)=20μm、格子定数(C)=0.67nm、結晶子サイズ(Lc)=27nmの天然黒鉛系材料を準備した。そして、既に上述した手法を用いて、この材料のOCVからSEI被膜形成剤の還元電位(ここではSEI被膜形成剤の還元電位を十分下回る0.6V付近)までの電位範囲における単位質量あたりの容量(mAh/g)を算出した。その結果、この材料の当該電位範囲における単位質量あたりの容量は、凡そ10mAh/gだった。
[Preparation of negative electrode active material]
As the negative electrode active material, a natural graphite material having an average particle size (D 50 ) = 20 μm, a lattice constant (C 0 ) = 0.67 nm, and a crystallite size (Lc) = 27 nm was prepared. Then, using the above-described method, the capacity per unit mass in the potential range from the OCV of this material to the reduction potential of the SEI film forming agent (here, around 0.6 V, which is sufficiently lower than the reduction potential of the SEI film forming agent). (MAh / g) was calculated. As a result, the capacity per unit mass of this material in the potential range was approximately 10 mAh / g.

<I.正極活物質の単位質量あたりの容量を調整する手法の検討>
[非水電解液二次電池の構築]
ここでは、表3に示す15種類のリチウムイオン二次電池を構築した。これらの電池は、それぞれ正極活物質のOCVからV(4V)までの電位範囲における単位質量あたりの容量(mAh/g)および/またはSEI被膜形成剤が異なっている。
<I. Examination of the method of adjusting the capacity per unit mass of the positive electrode active material>
[Construction of non-aqueous electrolyte secondary battery]
Here, 15 types of lithium ion secondary batteries shown in Table 3 were constructed. These batteries have different capacities per unit mass (mAh / g) and / or SEI film forming agents in the potential range from OCV to V L (4 V) of the positive electrode active material.

先ず、表1に示した6種類のLiNi0.5Mn1.5(LNM)と、導電材としてのアセチレンブラック(AB)と、バインダとしてのポリフッ化ビニリデン(PVdF)とを、これら材料の質量比率がLNM:AB:PVdF=87:10:3となるよう混練機に投入し、N−メチルピロリドン(NMP)で粘度を調整しながら混練して、正極活物質スラリーを調製した。このスラリーを、厚み15μmのアルミニウム箔(正極集電体)の表面に塗布して、乾燥後にプレスすることによって、正極集電体上に正極活物質層を有する正極シート(A〜F)を作製した。 First, six kinds of LiNi 0.5 Mn 1.5 O 4 (LNM) shown in Table 1, acetylene black (AB) as a conductive material, and polyvinylidene fluoride (PVdF) as a binder, these materials Was put into a kneader so that the mass ratio was LNM: AB: PVdF = 87: 10: 3, and kneaded while adjusting the viscosity with N-methylpyrrolidone (NMP) to prepare a positive electrode active material slurry. The slurry is applied to the surface of an aluminum foil (positive electrode current collector) having a thickness of 15 μm, and pressed after drying to produce positive electrode sheets (A to F) having a positive electrode active material layer on the positive electrode current collector. did.

次に、上記天然黒鉛系材料(C)と、バインダとしてのスチレンブタジエンゴム(SBR)と、増粘剤としてのカルボキシメチルセルロース(CMC)とを、これら材料の質量比がC:SBR:CMC=98:1:1となるよう混練機に投入し、イオン交換水で粘度を調整しながら混練して、負極活物質スラリーを調製した。このスラリーを、正極活物質と負極活物質の質量比が2:1となるように調整して、厚み10μmの銅箔(負極集電体)の表面に塗布した。これを乾燥した後、プレスすることによって、負極集電体上に負極活物質層を有する負極シートを15セル分作製した。   Next, the above-mentioned natural graphite material (C), styrene butadiene rubber (SBR) as a binder, and carboxymethyl cellulose (CMC) as a thickener have a mass ratio of C: SBR: CMC = 98. The mixture was put into a kneader so as to be 1: 1, and kneaded while adjusting the viscosity with ion-exchanged water to prepare a negative electrode active material slurry. The slurry was adjusted so that the mass ratio of the positive electrode active material and the negative electrode active material was 2: 1, and applied to the surface of a 10 μm thick copper foil (negative electrode current collector). This was dried and then pressed to prepare 15 negative electrode sheets each having a negative electrode active material layer on the negative electrode current collector.

次に、上記作製した正極シートと負極シートを、電池の設計容量が60mAhとなるように電極サイズを調整した後、セパレータを介して対向させて電極体を準備した。また、非水電解液として、フッ素化環状カーボネートとしてのフルオロエチレンカーボネート(FEC)と、フッ素化鎖状カーボネートとしてのメチル(2,2,2−トリフルオロエチル)カーボネート(MTFEC)とを、FEC:MTFEC=50:50の体積比で含む混合溶媒に、支持塩としてのLiPFを1mol/Lの濃度で溶解させたものを調製した。さらにSEI被膜形成剤としてVCまたはVECを非水電解液全量に対して1質量%の割合で含ませたものを調製し、計3種類の非水電解液を準備した。そして、上記電極体と非水電解液をラミネート製のセルに封入し、表3に示す評価用電池(例1〜15)を構築した。 Next, after adjusting the electrode size so that the design capacity of the battery was 60 mAh, the prepared positive electrode sheet and negative electrode sheet were opposed to each other through a separator to prepare an electrode body. Further, as a non-aqueous electrolyte, fluoroethylene carbonate (FEC) as a fluorinated cyclic carbonate and methyl (2,2,2-trifluoroethyl) carbonate (MTFEC) as a fluorinated chain carbonate, FEC: A solution prepared by dissolving LiPF 6 as a supporting salt at a concentration of 1 mol / L in a mixed solvent containing MTFEC at a volume ratio of 50:50 was prepared. Furthermore, what contained VC or VEC in the ratio of 1 mass% with respect to the nonaqueous electrolyte total amount as a SEI film forming agent was prepared, and the three types of nonaqueous electrolyte were prepared in total. And the said electrode body and nonaqueous electrolyte solution were enclosed in the cell made from a laminate, and the evaluation battery (Examples 1-15) shown in Table 3 was constructed | assembled.

活物質の質量比を正極活物質:負極活物質=2:1で統一した本検討例では、正極活物質AまたはBを使用した場合、正極容量Cc<負極容量Caとなり、負極がSEI被膜形成剤の還元電位より十分低い0.6Vまで充電されるまでに(10mAh/gまでに)、正極の電位がVまで上昇する設計になっている。また、正極活物質Cを使用した場合、正極容量Cc≒負極容量Caとなり、負極が0.6Vまで充電される容量と、正極の4Vまでの容量とが略同等の設計になっている。また、正極活物質D〜Fを使用した場合、正極容量Cc>負極容量Caとなり、負極が0.6Vまで充電されても、しばらくは正極が4Vの状態を保つ設計になっている。 In this study example in which the mass ratio of the active material is unified as positive electrode active material: negative electrode active material = 2: 1, when the positive electrode active material A or B is used, the positive electrode capacity Cc <the negative electrode capacity Ca is satisfied, and the SEI film is formed on the negative electrode. It is designed to increase the potential of the positive electrode to V H before being charged to 0.6 V which is sufficiently lower than the reduction potential of the agent (by 10 mAh / g). Further, when the positive electrode active material C is used, the positive electrode capacity Cc≈the negative electrode capacity Ca is satisfied, and the capacity in which the negative electrode is charged to 0.6 V and the capacity up to 4 V of the positive electrode are designed to be substantially the same. In addition, when the positive electrode active materials D to F are used, the positive electrode capacity Cc> the negative electrode capacity Ca is satisfied, and even if the negative electrode is charged to 0.6 V, the positive electrode is designed to keep the state of 4 V for a while.

Figure 2015022957
Figure 2015022957

[初期容量の確認]
上記構築した電池について、25℃の環境下において初回充電を行った。具体的には、上記電池を正負極端子間の電圧が4.9Vになるまで1/5Cの定電流で充電(CC充電)した後、正負極端子間の電圧が3.5Vになるまで1/5Cの定電流で放電(CC放電)する操作を1サイクルとして、これを3サイクル繰り返した。この充電処理によって、負極活物質の表面にビニレンカーボネート化合物由来のSEI被膜を形成した。次いで、初期容量の確認を行った。具体的には、正負極端子間の電圧が4.9Vになるまで1/5CでCC充電し、続いて電流値が1/50Cになるまで定電圧で充電(CV充電)した後、正負極端子間の電圧が3.5Vになるまで1/5CでCC放電し、このときのCC放電容量を初期容量とした。
[Check initial capacity]
The battery thus constructed was first charged in an environment of 25 ° C. Specifically, the battery is charged with a constant current of 1/5 C until the voltage between the positive and negative terminals becomes 4.9 V (CC charge), and then 1 until the voltage between the positive and negative terminals becomes 3.5 V. The operation of discharging at a constant current of / 5 C (CC discharge) was taken as one cycle, and this was repeated three cycles. By this charging treatment, a SEI film derived from the vinylene carbonate compound was formed on the surface of the negative electrode active material. Next, the initial capacity was confirmed. Specifically, CC charging is performed at 1/5 C until the voltage between the positive and negative terminals becomes 4.9 V, and then charging at a constant voltage (CV charging) until the current value becomes 1/50 C, then the positive and negative terminals CC discharge was performed at 1/5 C until the voltage between the children reached 3.5 V, and the CC discharge capacity at this time was defined as the initial capacity.

[高温サイクル試験(60℃)]
次に、初期容量確認後の電池を環境温度60℃の恒温槽に移し、高温サイクル試験を行った。具体的には、正負極端子間の電圧が4.9Vになるまで2Cの定電流でCC充電した後、正負極端子間の電圧が3.5Vになるまで2CでCC放電する操作を1サイクルとして、これを400サイクル繰り返した。その後、上記と同様の手順で放電容量を測定し、サイクル試験後の電池容量とした。そして、サイクル試験後の電池容量を初期容量で除して100を掛けることにより、容量維持率(%)を算出した。結果を、表3に示す。
[High-temperature cycle test (60 ° C)]
Next, the battery after confirmation of the initial capacity was transferred to a constant temperature bath having an environmental temperature of 60 ° C., and a high temperature cycle test was performed. Specifically, CC charging is performed at a constant current of 2 C until the voltage between the positive and negative terminals becomes 4.9 V, and then CC discharge is performed at 2 C until the voltage between the positive and negative terminals reaches 3.5 V in one cycle. This was repeated 400 cycles. Thereafter, the discharge capacity was measured in the same procedure as described above to obtain the battery capacity after the cycle test. Then, the capacity retention rate (%) was calculated by dividing the battery capacity after the cycle test by the initial capacity and multiplying by 100. The results are shown in Table 3.

先ず、正極活物質のOCV〜4Vの単位質量あたりの容量が異なる例1〜6の結果について比較した。表3に示すように、当該容量が若干あったほうが(すなわち正極活物質の結晶構造が若干乱れたほうが)、優れた高温サイクル特性を示すものの、当該容量があまりに大きくなると(すなわち正極活物質の結晶構造が乱れすぎると)、高温サイクル特性が低下することがわかった。より具体的には、ここで用いた正極活物質材料(NiMnスピネル)の場合、当該容量(すなわち結晶構造の配列の乱れの度合い)は14.9mAh/g未満が好ましいことがわかった。これは、正極活物質の結晶構造自体の安定性が低下するためと考えられる。
次に、SEI被膜形成剤の効果について、例1〜5と例7〜11とを、それぞれ対比させて検討する。例7,例8では、VCを添加しなかった例1,例2に比べて高温サイクル特性が低下した。これは、上述したように被膜形成剤の還元分解電位に対して負極電位が十分に下がりきる前に正極電位が4.7Vまで上昇してしまうため、被膜形成剤が酸化分解されてしまい、その分解物が電池特性に悪影響を与えたためと考えられる。また、例9では、VCを添加しなかった例3と略同等の高温サイクル特性を示した。これに対して、例10,例11は、VCを添加しなかった例4,例5に比べて優れた高温サイクル特性を示した。これは、負極電位が被膜形成剤の還元分解まで下がった状況でも正極の電位上昇が4V付近に抑えられているため、被膜形成剤の酸化分解が起こらず、被膜形成剤の効果を効率的に発現させることができたためと考えられる。
次に、SEI被膜形成剤の種類が異なる例9〜11と例13〜15の結果について比較した。その結果、VECを用いた場合も、VCと同様の効果が確認された。
次に、初回充電の充電パターンの異なる例11と例12の結果について比較した。例12では、特許文献1の実施例に記載された方式で初回充電を行った後(詳しくは電池電圧3.4V(4.0V−0.6V)で7時間のCV充電を行った後)、上述の手順に沿って初期容量と高温サイクル試験を行った。その結果、例12では、CV充電を行わなかった例11と比較して、高い高温サイクル特性を示した。このことから、本発明の構成であれば、従来のSEI被膜形成に係る技術をも組み合わせ可能なことが確認できた。
First, the results of Examples 1 to 6 having different capacities per unit mass of OCV to 4 V of the positive electrode active material were compared. As shown in Table 3, when the capacity is slightly (that is, when the crystal structure of the positive electrode active material is slightly disturbed), it exhibits excellent high-temperature cycle characteristics, but when the capacity is too large (that is, the positive electrode active material It has been found that if the crystal structure is too disturbed, the high-temperature cycle characteristics deteriorate. More specifically, in the case of the positive electrode active material (NiMn spinel) used here, it was found that the capacity (that is, the degree of disorder of the arrangement of the crystal structure) is preferably less than 14.9 mAh / g. This is presumably because the stability of the crystal structure itself of the positive electrode active material is lowered.
Next, the effects of the SEI film forming agent will be examined by comparing Examples 1 to 5 and Examples 7 to 11, respectively. In Examples 7 and 8, the high-temperature cycle characteristics deteriorated compared to Examples 1 and 2 in which VC was not added. This is because, as described above, since the positive electrode potential rises to 4.7 V before the negative electrode potential is sufficiently lowered with respect to the reductive decomposition potential of the film forming agent, the film forming agent is oxidized and decomposed. This is thought to be due to the degradation of the battery characteristics. Moreover, in Example 9, the high temperature cycle characteristic substantially equivalent to Example 3 which did not add VC was shown. On the other hand, Examples 10 and 11 showed excellent high-temperature cycle characteristics as compared with Examples 4 and 5 in which VC was not added. This is because, even when the negative electrode potential drops to the reductive decomposition of the film forming agent, the potential increase of the positive electrode is suppressed to around 4 V, so that the oxidative decomposition of the film forming agent does not occur, and the effect of the film forming agent is efficiently achieved. It is thought that it was able to be expressed.
Next, the results of Examples 9 to 11 and Examples 13 to 15 having different types of SEI film forming agents were compared. As a result, when VEC was used, the same effect as VC was confirmed.
Next, the results of Example 11 and Example 12 with different charge patterns for the first charge were compared. In Example 12, after performing the initial charge by the method described in the example of Patent Document 1 (specifically, after performing a CV charge for 7 hours at a battery voltage of 3.4 V (4.0 V-0.6 V)) The initial capacity and the high temperature cycle test were conducted according to the above-mentioned procedure. As a result, Example 12 showed higher high-temperature cycle characteristics than Example 11 in which CV charging was not performed. From this, it has been confirmed that the technique according to the present invention can be combined with the technique related to the conventional SEI film formation.

<II.正極活物質と負極活物質の質量比を調整する手法の検討>
[非水電解液二次電池の構築]
ここでは、表4に示す8種類のリチウムイオン二次電池を構築した。これらの電池は、それぞれ正負極の活物質の質量比および/またはSEI被膜形成剤が異なっている。すなわち、「正極活物質C(OCV〜4Vの容量が5.1mAh/gのもの)」を用いたことと、表4に示すように活物質の質量比を変化させたこと以外は、上記I.と同様にして表4に示す評価用電池(例16〜23)を構築した。
なお、正極活物質Cで統一した本検討例では、正負極の活物質の質量比を1.9:1とした場合に、正極容量Cc<負極容量Caとなり、負極がSEI被膜形成剤の還元電位より十分低い0.6Vまで充電されるまでに(10mAh/gまでに)、正極の電位がVまで上昇する設計になっている。また、正負極の活物質の質量比を2.0:1とした場合は、正極容量Cc≒負極容量Caとなり、負極が0.6Vまで充電される容量と正極の4Vまでの容量とが略同等の設計になっている。また、正負極の活物質の質量比を2.1〜2.2:1とした場合は、正極容量Cc>負極容量Caとなり、負極が0.6Vまで充電されても、しばらくは正極が4Vの状態を保つ設計になっている。
上記構築した電池について、上記I.と同様に、初期容量の確認および高温サイクル試験を行った。結果を、表4に示す。
<II. Study of adjusting the mass ratio of positive electrode active material and negative electrode active material>
[Construction of non-aqueous electrolyte secondary battery]
Here, eight types of lithium ion secondary batteries shown in Table 4 were constructed. These batteries have different mass ratios of active materials for positive and negative electrodes and / or SEI film forming agents. That is, except that the “positive electrode active material C (with a capacity of OCV to 4 V of 5.1 mAh / g)” was used and the mass ratio of the active material was changed as shown in Table 4, I . In the same manner as described above, evaluation batteries shown in Table 4 (Examples 16 to 23) were constructed.
Note that, in this study example unified with the positive electrode active material C, when the mass ratio of the positive and negative electrode active materials is 1.9: 1, the positive electrode capacity Cc <the negative electrode capacity Ca, and the negative electrode is a reduction of the SEI film forming agent. It is designed to increase the potential of the positive electrode to V H before being charged to 0.6 V which is sufficiently lower than the potential (by 10 mAh / g). Further, when the mass ratio of the positive and negative electrode active materials is 2.0: 1, the positive electrode capacity Cc≈the negative electrode capacity Ca, and the capacity of the negative electrode charged to 0.6 V and the capacity of the positive electrode up to 4 V are approximately. The design is equivalent. Further, when the mass ratio of the positive and negative electrode active materials is 2.1 to 2.2: 1, the positive electrode capacity Cc> the negative electrode capacity Ca, and even if the negative electrode is charged to 0.6 V, the positive electrode is 4 V for a while. Designed to maintain the state of
About the battery constructed as described above, In the same manner, the initial capacity was confirmed and a high-temperature cycle test was performed. The results are shown in Table 4.

Figure 2015022957
Figure 2015022957

先ず、活物質の質量比が異なる例16,例3,例17,例18の結果について比較した。表4に示すように、負極に対する正極の質量が多くなるほど優れた高温サイクル特性を示すことがわかった。これは、正極容量Cc≫負極容量Caとすることで、被膜形成剤の効果を効率的に発現させることができたためと考えられる。
次に、SEI被膜形成剤の効果について、例16〜18と例19〜21とを、それぞれ対比させて検討する。上記I.と同様に、例19では、VCを添加しなかった例16に比べて高温サイクル特性が低下した。これに対して、例20,例21は、VCを添加しなかった例17,例18に比べて優れた高温サイクル特性を示した。
次に、SEI被膜形成剤の種類が異なる例21と例23の結果について比較した。その結果、上記I.と同様に、VECを用いた場合もVCと同様の効果が確認された。
次に、初回充電の充電パターンの異なる例21と例22の結果について比較した。上記I.と同様に、例12では、特許文献1の実施例に記載された初回充電パターンでCV充電を行った後、上述の手順に沿って初期容量と高温サイクル試験を行った。その結果、CV充電しなかった例21に比べて、例22では高い高温サイクル特性を示した。このことから、本発明の構成であれば、従来のSEI被膜形成に係る技術をも組み合わせ可能なことが確認できた。
First, the results of Examples 16, Example 3, Example 17, and Example 18 having different mass ratios of the active materials were compared. As shown in Table 4, it was found that the higher the mass of the positive electrode relative to the negative electrode, the better the high temperature cycle characteristics. This is considered to be because the effect of the film forming agent could be efficiently expressed by setting the positive electrode capacity Cc >> the negative electrode capacity Ca.
Next, the effects of the SEI film forming agent will be examined by comparing Examples 16 to 18 and Examples 19 to 21, respectively. I. above. Similarly, in Example 19, the high-temperature cycle characteristics deteriorated compared to Example 16 in which VC was not added. On the other hand, Examples 20 and 21 showed excellent high-temperature cycle characteristics as compared with Examples 17 and 18 in which VC was not added.
Next, the results of Example 21 and Example 23 with different types of SEI film forming agents were compared. As a result, the above I.D. Similarly, when VEC was used, the same effect as VC was confirmed.
Next, the results of Example 21 and Example 22 having different charge patterns for the first charge were compared. I. above. Similarly to Example 12, in Example 12, after performing the CV charge with the initial charge pattern described in the example of Patent Document 1, the initial capacity and the high-temperature cycle test were performed according to the above-described procedure. As a result, in comparison with Example 21 in which CV charging was not performed, Example 22 showed higher high-temperature cycle characteristics. From this, it has been confirmed that the technique according to the present invention can be combined with the technique related to the conventional SEI film formation.

以上、本発明を詳細に説明したが、上記実施形態および実施例は例示にすぎず、ここで開示される発明には上述の具体例を様々に変形、変更したものが含まれる。
例えば、負極活物質として黒鉛を用いる場合、安全性の観点から、正極容量よりも負極容量が大きくなるよう設計する。負極容量が小さいと、充放電の繰り返しによって負極上にリチウムが析出し、電池の安全性低下や内部短絡に繋がることがあり得るためである。なお、上記例のように正極活物質(NiMnスピネル)の単位質量あたり容量が凡そ150mAh/gであり、負極活物質(黒鉛)の単位質量あたり容量が凡そ350mAh/gであるとき、例えば、正極活物質B(OCV〜4Vの容量が3.7mAh/gのもの)を用いて「正極のOCV〜4Vの容量>負極のSEI分解電位までの容量(10mAh)」を実現しようとした場合、正極:負極≒3:1の質量比にしなくてはならず、「正極容量450mAh/g(=150×3)>負極容量350mAh/g(=350×1)」となって、電池の安全性や耐久性が低下することがあり得る。このため、安全性とのバランスを考慮して、上述の具体例を適宜変形、変更することが望ましい。
As mentioned above, although this invention was demonstrated in detail, the said embodiment and Example are only illustrations and what changed and changed the above-mentioned specific example is contained in the invention disclosed here.
For example, when graphite is used as the negative electrode active material, the negative electrode capacity is designed to be larger than the positive electrode capacity from the viewpoint of safety. This is because if the negative electrode capacity is small, lithium is deposited on the negative electrode due to repeated charge and discharge, which may lead to a decrease in battery safety and an internal short circuit. When the capacity per unit mass of the positive electrode active material (NiMn spinel) is about 150 mAh / g and the capacity per unit mass of the negative electrode active material (graphite) is about 350 mAh / g as in the above example, for example, the positive electrode When an active material B (with a capacity of OCV to 4 V of 3.7 mAh / g) is used to realize “capacity of positive electrode OCV to 4 V> capacity up to SEI decomposition potential of negative electrode (10 mAh)” : Negative electrode≈3: 1 mass ratio, “positive electrode capacity 450 mAh / g (= 150 × 3)> negative electrode capacity 350 mAh / g (= 350 × 1)” Durability may be reduced. For this reason, it is desirable to appropriately modify and change the above-described specific examples in consideration of the balance with safety.

Claims (3)

非水電解液二次電池を製造する方法であって、
正極活物質を有する正極と、負極活物質を有する負極と、を備える電極体を準備すること;
前記電極体と、SEI被膜形成剤を含む非水電解液とを、電池ケース内に収容すること;および、
前記電極体に対して少なくとも1回の充電処理を行うこと;
を包含し、
ここで、前記電極体の準備では、
前記正極活物質として、作動電位を2つ以上有し、当該作動電位のうち少なくとも1つ(V)が4.3V(vs. Li/Li+)以上で、他の少なくとも1つ(V)が前記SEI被膜形成剤の酸化電位(vs. Li/Li+)より低いものを用い、且つ、
前記正極活物質のOCVから前記Vまでの電位範囲における単位質量あたりの容量(mAh/g)と当該正極活物質の質量Wc(g)の積で算出される正極容量Cc(mAh)と、
前記負極活物質のOCVから前記SEI被膜形成剤の還元電位までの電位範囲における単位質量あたりの容量(mAh/g)と当該負極活物質の質量Wa(g)の積で算出される負極容量Ca(mAh)とが、
Cc>Caの関係になるよう調整する、非水電解液二次電池の製造方法。
A method of manufacturing a non-aqueous electrolyte secondary battery,
Preparing an electrode body comprising a positive electrode having a positive electrode active material and a negative electrode having a negative electrode active material;
Containing the electrode body and a non-aqueous electrolyte containing a SEI film forming agent in a battery case; and
Performing at least one charging process on the electrode body;
Including
Here, in the preparation of the electrode body,
The positive electrode active material has two or more operation potentials, and at least one of the operation potentials (V H ) is 4.3 V (vs. Li / Li + ) or more and at least one other (V L ) Is lower than the oxidation potential (vs. Li / Li + ) of the SEI film forming agent, and
A positive electrode capacity Cc (mAh) calculated by the product of a capacity per unit mass (mAh / g) in a potential range from OCV to VL of the positive electrode active material and a mass Wc (g) of the positive electrode active material;
Negative electrode capacity Ca calculated by the product of the capacity per unit mass (mAh / g) and the mass Wa (g) of the negative electrode active material in the potential range from the OCV of the negative electrode active material to the reduction potential of the SEI film forming agent. (MAh)
A method for producing a non-aqueous electrolyte secondary battery, which is adjusted to satisfy a relationship of Cc> Ca.
前記容量の関係(Cc>Ca)は、前記正極活物質の質量Wc、および/または、前記負極活物質の質量Waを調整することによって行う、請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the capacity relationship (Cc> Ca) is performed by adjusting a mass Wc of the positive electrode active material and / or a mass Wa of the negative electrode active material. 請求項1または2に記載の製造方法により得られる非水電解液二次電池。   A non-aqueous electrolyte secondary battery obtained by the production method according to claim 1.
JP2013151498A 2013-07-22 2013-07-22 Method for producing non-aqueous electrolyte secondary battery Active JP6061144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013151498A JP6061144B2 (en) 2013-07-22 2013-07-22 Method for producing non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013151498A JP6061144B2 (en) 2013-07-22 2013-07-22 Method for producing non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2015022957A true JP2015022957A (en) 2015-02-02
JP6061144B2 JP6061144B2 (en) 2017-01-18

Family

ID=52487218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013151498A Active JP6061144B2 (en) 2013-07-22 2013-07-22 Method for producing non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP6061144B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094286A1 (en) * 2015-12-01 2017-06-08 オートモーティブエナジーサプライ株式会社 Lithium ion secondary battery and method for manufacturing same
CN111375568A (en) * 2018-12-29 2020-07-07 天臣新能源(渭南)有限公司 Method for finished product battery core screening stage
CN112635709A (en) * 2020-12-15 2021-04-09 合肥工业大学 SEI film forming agent for negative electrode of sodium-ion battery, pre-sodium treatment method and sodium-ion battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185148A (en) * 1999-12-27 2001-07-06 Japan Metals & Chem Co Ltd Positive electrode material for 5 v-class lithium secondary battery and manufacturing method therefor
JP2006073434A (en) * 2004-09-03 2006-03-16 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
JP2011089969A (en) * 2009-10-26 2011-05-06 Toyota Central R&D Labs Inc Quantitative method, program and quantitative device
JP2012529752A (en) * 2010-08-10 2012-11-22 シティック グオアン ムオングーリー パワー テクノロジー カンパニー エルティーディー High voltage lithium battery cathode material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185148A (en) * 1999-12-27 2001-07-06 Japan Metals & Chem Co Ltd Positive electrode material for 5 v-class lithium secondary battery and manufacturing method therefor
JP2006073434A (en) * 2004-09-03 2006-03-16 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
JP2011089969A (en) * 2009-10-26 2011-05-06 Toyota Central R&D Labs Inc Quantitative method, program and quantitative device
JP2012529752A (en) * 2010-08-10 2012-11-22 シティック グオアン ムオングーリー パワー テクノロジー カンパニー エルティーディー High voltage lithium battery cathode material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094286A1 (en) * 2015-12-01 2017-06-08 オートモーティブエナジーサプライ株式会社 Lithium ion secondary battery and method for manufacturing same
JPWO2017094286A1 (en) * 2015-12-01 2018-07-05 オートモーティブエナジーサプライ株式会社 Lithium ion secondary battery and manufacturing method thereof
CN108352577A (en) * 2015-12-01 2018-07-31 汽车能源供应公司 Lithium rechargeable battery and its manufacturing method
CN111375568A (en) * 2018-12-29 2020-07-07 天臣新能源(渭南)有限公司 Method for finished product battery core screening stage
CN112635709A (en) * 2020-12-15 2021-04-09 合肥工业大学 SEI film forming agent for negative electrode of sodium-ion battery, pre-sodium treatment method and sodium-ion battery

Also Published As

Publication number Publication date
JP6061144B2 (en) 2017-01-18

Similar Documents

Publication Publication Date Title
JP6270612B2 (en) Non-aqueous electrolyte secondary battery and assembly thereof
EP2642577B1 (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery including positive electrode active material
JP5858295B2 (en) Nonaqueous electrolyte secondary battery
KR101678798B1 (en) Method for producing nonaqueous electrolyte secondary battery
KR20110136867A (en) Fluorinated binder composite materials and carbon nanotubes for positive electrodes for lithium batteries
KR20090077716A (en) Non-aqueous electrolyte secondary battery and process for producing the same
KR20140098152A (en) Method for manufacturing nonaqueous electrolyte secondary battery
KR20190001556A (en) Lithium secondary battery
JP5999457B2 (en) Lithium secondary battery and manufacturing method thereof
JP6086248B2 (en) Non-aqueous electrolyte secondary battery
JP2015018713A (en) Nonaqueous electrolytic solution and lithium-ion secondary battery using the same
WO2017154788A1 (en) Electrolyte solution for secondary batteries, and secondary battery
WO2014133165A1 (en) Lithium-ion secondary cell
JP2018181772A (en) Nonaqueous electrolyte power storage element and manufacturing method thereof
KR102211367B1 (en) Organic electrolyte and lithium battery employing said electrolyte
JP6565899B2 (en) Nonaqueous electrolyte secondary battery
JP2015170477A (en) Nonaqueous electrolyte secondary battery
JP6061144B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP6899312B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte power storage elements
KR101872086B1 (en) Method of manufacturing nonaqueous electrolyte secondary battery
JP2018060672A (en) Method for manufacturing lithium ion secondary battery
CN106257717A (en) Rechargeable nonaqueous electrolytic battery
JP2016076411A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JPWO2018043369A1 (en) Nonaqueous electrolyte storage element
JP2018032477A (en) Nonaqueous electrolyte power storage device and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161130

R151 Written notification of patent or utility model registration

Ref document number: 6061144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151