JP2015019140A - 画像復号装置、画像符号化装置 - Google Patents

画像復号装置、画像符号化装置 Download PDF

Info

Publication number
JP2015019140A
JP2015019140A JP2013143424A JP2013143424A JP2015019140A JP 2015019140 A JP2015019140 A JP 2015019140A JP 2013143424 A JP2013143424 A JP 2013143424A JP 2013143424 A JP2013143424 A JP 2013143424A JP 2015019140 A JP2015019140 A JP 2015019140A
Authority
JP
Japan
Prior art keywords
prediction
unit
merge
flag
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013143424A
Other languages
English (en)
Other versions
JP6118199B2 (ja
JP2015019140A5 (ja
Inventor
貴也 山本
Takaya Yamamoto
貴也 山本
知宏 猪飼
Tomohiro Igai
知宏 猪飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2013143424A priority Critical patent/JP6118199B2/ja
Publication of JP2015019140A publication Critical patent/JP2015019140A/ja
Publication of JP2015019140A5 publication Critical patent/JP2015019140A5/ja
Application granted granted Critical
Publication of JP6118199B2 publication Critical patent/JP6118199B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

【課題】残差予測に置いては、残差予測フラグの復号に、上の隣接ブロックの残差予測フラグが必要なため、残差予測フラグを保存するためのラインメモリが必要になる。
【解決手段】残差予測を用いるかを示すフラグである残差予測フラグを復号する際に、左の隣接ブロックの残差予測フラグに依存して導出することにより、上の隣接ブロックの残差予測フラグに依存する場合に比べ、ラインメモリを削減することが出来る。
【選択図】図5

Description

本発明は、画像復号装置、画像符号化装置に関する。
複数視点の画像符号化技術には、複数の視点の画像を符号化する際に画像間の視差を予測することによって情報量を低減する視差予測符号化や、その符号化方法に対応した復号方法が提案されている。視点画像間の視差を表すベクトルを変位ベクトルと呼ぶ。変位ベクトルは、水平方向の要素(x成分)と垂直方向の要素(y成分)を有する2次元のベクトルであり、1つの画像を分割した領域であるブロック毎に算出される。また、複数視点の画像を取得するには、それぞれの視点に配置されたカメラを用いることが一般的である。複数視点の符号化では、各視点画像は、複数のレイヤにおいてそれぞれ異なるレイヤとして符号化される。複数のレイヤから構成される動画像の符号化方法は、一般に、スケーラブル符号化又は階層符号化と呼ばれる。スケーラブル符号化では、レイヤ間で予測を行うことで、高い符号化効率を実現する。レイヤ間で予測を行わずに基準となるレイヤは、ベースレイヤ、それ以外のレイヤは拡張レイヤと呼ばれる。レイヤが視点画像から構成される場合のスケーラブル符号化を、ビュースケーラブル符号化と呼ぶ。このとき、ベースレイヤはベースビュー、拡張レイヤは非ベースビューとも呼ばれる。さらに、ビュースケーラブルに加え、レイヤがテクスチャレイヤ(画像レイヤ)とデプスレイヤ(距離画像レイヤ)から構成される場合のスケーラブル符号化は、3次元スケーラブル符号化と呼ばれる。
また、スケーラブル符号化には、ビュースケーラブル符号化の他、空間的スケーラブル符号化(ベースレイヤとして解像度の低いピクチャ、拡張レイヤが解像度の高いピクチャを処理)、SNRスケーラブル符号化(ベースレイヤとして画質の低いピクチャ、拡張レイヤとして解像度の高いピクチャを処理)等がある。スケーラブル符号化では、例えばベースレイヤのピクチャを、拡張レイヤのピクチャの符号化において、参照ピクチャとして用いることがある。
また、非特許文献1では、通常の動き補償予測でえられる予測対象ブロックに予測された残差を足し合わせることにより、より精度の高い予測画像を得る残差予測と呼ばれる技術が知られている。
3 CE4: Advanced residual prediction for multiview coding, JCT3V-D0177, JCT-3V 4th Meeting: Incheon, KR, 20-26 Apr. 2013
しかしながら、非特許文献1の残差予測においては、残差予測を行うか否かを示すフラグを復号する場合に、対象ブロックの上に隣接するブロックで残差予測を用いたか否かを用いてコンテキストを導出する。そのため、対象ブロックの上に隣接するブロックの残差予測の状態を保存するためのラインメモリが必要になるという課題がある。
また、非特許文献1の残差予測においては、符号化データから復号する残差予測の重みは、値として0、1または2を取り得る。残差予測の重みの候補数が多いため、残差予測の重みを選択する計算量が大きくなるという課題がある。
本発明は上記の点に鑑みてなされたものであり、残差予測の実装複雑度および計算量を低減させる画像復号装置、画像復号方法、画像復号プログラム、画像符号化装置、画像符号化方法、画像符号化プログラム、画像表示システム及び画像伝送システムを提供する。
(1)この発明は上述した課題を解決するためになされたもので、本発明の一態様は、画像復号装置であって、動き補償画像に残差予測を適用する残差予測部と、残差予測を適用するか否かを示す残差予測フラグを復号する残差予測フラグ復号部と、コンテキストに応じて符号化データからシンタックス要素を復号するエントロピー復号部を備え、前記残差予測フラグ復号部は、対象ブロックの左に隣接するブロックの前記残差予測フラグの値に基づいて、前記対象ブロックの前記残差予測フラグを導出する場合のコンテキストを導出することを特徴とする。
(2)また、本発明の他の態様は、画像復号装置であって、動き補償画像に残差予測を適用する残差予測部と、残差予測を適用するか否かを示す残差予測フラグを復号する残差予測フラグ復号部を備え、前記残差予測フラグ復号部は、マージフラグmerge_flagが1の場合にのみ、残差予測フラグを符号化データから復号し、マージフラグmerge_flagが1ではない場合(AMVPモードの場合)には、残差予測フラグを復号せずに、残差予測を用いないことを示す0を導出することを特徴とする。
(3)また、本発明の他の態様は、画像復号装置であって、動き補償画像に残差予測を適用する残差予測部と、残差予測を適用するか否かを示す残差予測フラグを復号する残差予測フラグ復号部を備え、前記残差予測フラグ復号部は、AMVPモードの場合、もしくは、マージモードであり、かつ、merge_idxが所定の値(ここでは3)未満の場合のみ、残差予測フラグを符号化データから復号し、マージフラグmerge_flagが1かつmerge_idxが所定の値より大きい場合には、残差予測フラグを復号せずに、残差予測を用いないことを示す0を導出することを特徴とする。
(4)また、本発明の他の態様は、画像復号装置であって、動き補償画像に残差予測を適用する残差予測部と、残差予測を適用するか否かを示す残差予測フラグを復号する残差予測フラグ復号部を備え、残差予測フラグ復号部は、マージモードであり、かつ、merge_idxが所定の値(ここでは3)未満の場合のみ、残差予測フラグを符号化データから復号し、マージモードではない(AMVPモード)場合、もしくは、マージフラグmerge_flagが1かつmerge_idxが所定の値より大きい場合には、残差予測フラグを復号せずに、残差予測を用いないことを示す0を導出することを特徴とする。
本発明によれば、残差予測の実装複雑度および計算量を低減させる。
本発明の実施形態に係る画像伝送システムの構成を示す概略図である。 本実施形態に係る符号化ストリームのデータの階層構造を示す図である。 参照ピクチャリストの一例を示す概念図である。 参照ピクチャの例を示す概念図である。 本実施形態に係る画像復号装置の構成を示す概略図である。 本実施形態に係るインター予測パラメータ復号部の構成を示す概略図である。 本実施形態に係るマージ予測パラメータ導出部の構成を示す概略図である。 本実施形態に係るAMVP予測パラメータ導出部の構成を示す概略図である。 ベクトル候補の一例を示す概念図である。 本実施形態に係るインター予測画像生成部の構成を示す概略図である。 本実施形態に係る残差予測部の構成を示す概略図である。 本実施形態に係る残差予測の概念図(その1)である。 本実施形態に係る残差予測の概念図(その2)である。 本実施形態に係るインター予測パラメータ復号制御部の構成を示す概略図である。 本実施形態に係る残差予測フラグコンテキスト導出部303113のコンテキスト導出方法を示す図である。 本実施形態に係るインター予測パラメータ復号制御部の変形例B1の構成を示す概略図である。 本実施形態に係る残差予測フラグ復号部が復号対象とする符号化データの構成を示す図である。 本実施形態に係るインター予測パラメータ復号制御部の変形例B2の構成を示す概略図である。 本実施形態に係る残差予測フラグ復号部の変形例B2が復号対象とする符号化データの構成を示す図である。 本実施形態に係る残差予測フラグ復号部の変形例B3が復号対象とする符号化データの構成を示す図である。 マージインデックスmerge_idxと、残差予測の重み数の関係を示す表である。 マージ候補の一例を示す図である。 本実施形態に係る画像符号化装置の構成を示すブロック図である。 本実施形態に係るインター予測パラメータ符号化部の構成を示す概略図である。
(第1の実施形態)
以下、図面を参照しながら本発明の実施形態について説明する。
図1は、本実施形態に係る画像伝送システム1の構成を示す概略図である。
画像伝送システム1は、複数のレイヤ画像を符号化した符号を伝送し、伝送された符号を復号した画像を表示するシステムである。画像伝送システム1は、画像符号化装置11、ネットワーク21、画像復号装置31及び画像表示装置41を含んで構成される。
画像符号化装置11には、複数のレイヤ画像(テクスチャ画像ともいう)を示す信号Tが入力される。レイヤ画像とは、ある解像度及びある視点で視認もしくは撮影される画像である。複数のレイヤ画像を用いて3次元画像を符号化するビュースケーラブル符号化を行う場合、複数のレイヤ画像のそれぞれは、視点画像と呼ばれる。ここで、視点は撮影装置の位置又は観測点に相当する。例えば、複数の視点画像は、被写体に向かって左右の撮影装置のそれぞれが撮影した画像である。画像符号化装置11は、この信号のそれぞれを符号化して符号化ストリームTe(符号化データ)を生成する。符号化ストリームTeの詳細については、後述する。視点画像とは、ある視点において観測される2次元画像(平面画像)である。視点画像は、例えば2次元平面内に配置された画素毎の輝度値、又は色信号値で示される。以下では、1枚の視点画像又は、その視点画像を示す信号をピクチャ(picture)と呼ぶ。また、複数のレイヤ画像を用いて空間スケーラブル符号化を行う場合、その複数のレイヤ画像は、解像度の低いベースレイヤ画像と、解像度の高い拡張レイヤ画像からなる。複数のレイヤ画像を用いてSNRスケーラブル符号化を行う場合、その複数のレイヤ画像は、画質の低いベースレイヤ画像と、画質の高い拡張レイヤ画像からなる。なお、ビュースケーラブル符号化、空間スケーラブル符号化、SNRスケーラブル符号化を任意に組み合わせて行っても良い。本実施形態では、複数のレイヤ画像として、少なくともベースレイヤ画像と、ベースレイヤ画像以外の画像(拡張レイヤ画像)を含む画像の符号化および復号を扱う。複数のレイヤのうち、画像もしくは符号化パラメータにおいて参照関係(依存関係)にある2つのレイヤについて、参照される側の画像を、第1レイヤ画像、参照する側の画像を第2レイヤ画像と呼ぶ。例えば、ベースレイヤを参照して符号化される(ベースレイヤ以外の)エンハンスレイヤ画像がある場合、ベースレイヤ画像を第1レイヤ画像、エンハンスレイヤ画像を第2レイヤ画像として扱う。なお、エンハンスレイヤ画像の例としては、ベースビュー以外の視点の画像、デプスの画像などがある。
ネットワーク21は、画像符号化装置11が生成した符号化ストリームTeを画像復号装置31に伝送する。ネットワーク21は、インターネット(internet)、広域ネットワーク(WAN:Wide Area Network)、小規模ネットワーク(LAN:Local Area Network)又はこれらの組み合わせである。ネットワーク21は、必ずしも双方向の通信網に限らず、地上波ディジタル放送、衛星放送等の放送波を伝送する一方向又は双方向の通信網であっても良い。また、ネットワーク21は、DVD(Digital Versatile Disc)、BD(Blue-ray Disc)等の符号化ストリームTeを記録した記憶媒体で代替されても良い。
画像復号装置31は、ネットワーク21が伝送した符号化ストリームTeのそれぞれを復号し、それぞれ復号した複数の復号レイヤ画像Td(復号視点画像Td)を生成する。
画像表示装置41は、画像復号装置31が生成した複数の復号レイヤ画像Tdの全部又は一部を表示する。例えば、ビュースケーラブル符号化においては、全部の場合、3次元画像(立体画像)や自由視点画像が表示され、一部の場合、2次元画像が表示される。画像表示装置41は、例えば、液晶ディスプレイ、有機EL(Electro-luminescence)ディスプレイ等の表示デバイスを備える。また、空間スケーラブル符号化、SNRスケーラブル符号化では、画像復号装置31、画像表示装置41が高い処理能力を有する場合には、画質の高い拡張レイヤ画像を表示し、より低い処理能力しか有しない場合には、拡張レイヤほど高い処理能力、表示能力を必要としないベースレイヤ画像を表示する。
<符号化ストリームTeの構造>
本実施形態に係る画像符号化装置11および画像復号装置31の詳細な説明に先立って、画像符号化装置11によって生成され、画像復号装置31によって復号される符号化ストリームTeのデータ構造について説明する。
図2は、符号化ストリームTeにおけるデータの階層構造を示す図である。符号化ストリームTeは、例示的に、シーケンス、およびシーケンスを構成する複数のピクチャを含む。図2の(a)〜(f)は、それぞれ、シーケンスSEQを既定するシーケンスレイヤ、ピクチャPICTを規定するピクチャレイヤ、スライスSを規定するスライスレイヤ、スライスデータを規定するスライスデータレイヤ、スライスデータに含まれる符号化ツリーユニットを規定する符号化ツリーレイヤ、符号化ツリーに含まれる符号化単位(Coding Unit;CU)を規定する符号化ユニットレイヤを示す図である。
(シーケンスレイヤ)
シーケンスレイヤでは、処理対象のシーケンスSEQ(以下、対象シーケンスとも称する)を復号するために画像復号装置31が参照するデータの集合が規定されている。シーケンスSEQは、図2の(a)に示すように、ビデオパラメータセット(Video Parameter Set)シーケンスパラメータセットSPS(Sequence Parameter Set)、ピクチャパラメータセットPPS(Picture Parameter Set)、ピクチャPICT、及び、付加拡張情報SEI(Supplemental Enhancement Information)を含んでいる。ここで#の後に示される値はレイヤIDを示す。図2では、#0と#1すなわちレイヤ0とレイヤ1の符号化データが存在する例を示すが、レイヤの種類およびレイヤの数はこれによらない。
ビデオパラメータセットVPSは、複数のレイヤから構成されている動画像において、複数の動画像に共通する符号化パラメータの集合および動画像に含まれる複数のレイヤおよび個々のレイヤに関連する符号化パラメータの集合が規定されている。
シーケンスパラメータセットSPSでは、対象シーケンスを復号するために画像復号装置31が参照する符号化パラメータの集合が規定されている。例えば、ピクチャの幅や高さが規定される。
ピクチャパラメータセットPPSでは、対象シーケンス内の各ピクチャを復号するために画像復号装置31が参照する符号化パラメータの集合が規定されている。例えば、ピクチャの復号に用いられる量子化幅の基準値(pic_init_qp_minus26)や重み付き予測の適用を示すフラグ(weighted_pred_flag)が含まれる。なお、PPSは複数存在してもよい。その場合、対象シーケンス内の各ピクチャから複数のPPSの何れかを選択する。
(ピクチャレイヤ)
ピクチャレイヤでは、処理対象のピクチャPICT(以下、対象ピクチャとも称する)を復号するために画像復号装置31が参照するデータの集合が規定されている。ピクチャPICTは、図2の(b)に示すように、スライスS0〜SNS−1を含んでいる(NSはピクチャPICTに含まれるスライスの総数)。
なお、以下、スライスS0〜SNS−1のそれぞれを区別する必要が無い場合、符号の添え字を省略して記述することがある。また、以下に説明する符号化ストリームTeに含まれるデータであって、添え字を付している他のデータについても同様である。
(スライスレイヤ)
スライスレイヤでは、処理対象のスライスS(対象スライスとも称する)を復号するために画像復号装置31が参照するデータの集合が規定されている。スライスSは、図2の(c)に示すように、スライスヘッダSH、および、スライスデータSDATAを含んでいる。
スライスヘッダSHには、対象スライスの復号方法を決定するために画像復号装置31が参照する符号化パラメータ群が含まれる。スライスタイプを指定するスライスタイプ指定情報(slice_type)は、スライスヘッダSHに含まれる符号化パラメータの一例である。
スライスタイプ指定情報により指定可能なスライスタイプとしては、(1)符号化の際にイントラ予測のみを用いるIスライス、(2)符号化の際に単方向予測、または、イントラ予測を用いるPスライス、(3)符号化の際に単方向予測、双方向予測、または、イントラ予測を用いるBスライスなどが挙げられる。
なお、スライスヘッダSHには、上記シーケンスレイヤに含まれる、ピクチャパラメータセットPPSへの参照(pic_parameter_set_id)を含んでいても良い。
(スライスデータレイヤ)
スライスデータレイヤでは、処理対象のスライスデータSDATAを復号するために画像復号装置31が参照するデータの集合が規定されている。スライスデータSDATAは、図2の(d)に示すように、符号化ツリーブロック(CTB:Coded Tree Block)を含んでいる。CTBは、スライスを構成する固定サイズ(例えば64×64)のブロックであり、最大符号化単位(LCU:Largest Cording Unit)と呼ぶこともある。
(符号化ツリーレイヤ)
符号化ツリーレイヤは、図2の(e)に示すように、処理対象の符号化ツリーブロックを復号するために画像復号装置31が参照するデータの集合が規定されている。符号化ツリーユニットは、再帰的な4分木分割により分割される。再帰的な4分木分割により得られる木構造のノードのことを符号化ツリー(coding tree)と称する。4分木の中間ノードは、符号化ツリーユニット(CTU:Coded Tree Unit)であり、符号化ツリーブロック自身も最上位のCTUとして規定される。CTUは、分割フラグ(splif_flag)を含み、splif_flagが1の場合には、4つの符号化ツリーユニットCTUに分割される。splif_flagが0の場合には、符号化ツリーユニットCTUは4つの符号化ユニット(CU:Coded Unit)に分割される。符号化ユニットCUは符号化ツリーレイヤの末端ノードであり、このレイヤではこれ以上分割されない。符号化ユニットCUは、符号化処理の基本的な単位となる。
また、符号化ツリーブロックCTBのサイズ64×64画素の場合には、符号化ユニットのサイズは、64×64画素、32×32画素、16×16画素、および、8×8画素の何れかをとり得る。
(符号化ユニットレイヤ)
符号化ユニットレイヤは、図2の(f)に示すように、処理対象の符号化ユニットを復号するために画像復号装置31が参照するデータの集合が規定されている。具体的には、符号化ユニットは、CUヘッダCUH、予測ツリー、変換ツリー、CUヘッダCUFから構成される。CUヘッダCUHでは、符号化ユニットが、イントラ予測を用いるユニットであるか、インター予測を用いるユニットであるかなどが規定される。符号化ユニットは、予測ツリー(prediction tree;PT)および変換ツリー(transform tree;TT)のルートとなる。CUヘッダCUFは、予測ツリーと変換ツリーの間、もしくは、変換ツリーの後に含まれる。
予測ツリーは、符号化ユニットが1または複数の予測ブロックに分割され、各予測ブロックの位置とサイズとが規定される。別の表現でいえば、予測ブロックは、符号化ユニットを構成する1または複数の重複しない領域である。また、予測ツリーは、上述の分割により得られた1または複数の予測ブロックを含む。
予測処理は、この予測ブロックごとに行われる。以下、予測の単位である予測ブロックのことを、予測単位(prediction unit;PU、予測ユニット)とも称する。
予測ツリーにおける分割の種類は、大まかにいえば、イントラ予測の場合と、インター予測の場合との2つがある。イントラ予測とは、同一ピクチャ内の予測であり、インター予測とは、互いに異なるピクチャ間(例えば、表示時刻間、レイヤ画像間)で行われる予測処理を指す。
イントラ予測の場合、分割方法は、2N×2N(符号化ユニットと同一サイズ)と、N×Nとがある。
また、インター予測の場合、分割方法は、符号化データのpart_modeにより符号化され、2N×2N(符号化ユニットと同一サイズ)、2N×N、2N×nU、2N×nD、N×2N、nL×2N、nR×2N、および、N×Nなどがある。なお、2N×nUは、2N×2Nの符号化ユニットを上から順に2N×0.5Nと2N×1.5Nの2領域に分割することを示す。2N×nDは、2N×2Nの符号化ユニットを上から順に2N×1.5Nと2N×0.5Nの2領域に分割することを示す。nL×2Nは、2N×2Nの符号化ユニットを左から順に0.5N×2Nと1.5N×2Nの2領域に分割することを示す。nR×2Nは、2N×2Nの符号化ユニットを左から順に1.5N×2Nと0.5N×1.5Nの2領域に分割することを示す。分割数は1、2、4のいずれかであるため、CUに含まれるPUは1個から4個である。これらのPUを順にPU0、PU1、PU2、PU3と表現する。
また、変換ツリーにおいては、符号化ユニットが1または複数の変換ブロックに分割され、各変換ブロックの位置とサイズとが規定される。別の表現でいえば、変換ブロックは、符号化ユニットを構成する1または複数の重複しない領域のことである。また、変換ツリーは、上述の分割より得られた1または複数の変換ブロックを含む。
変換ツリーにおける分割には、符号化ユニットと同一のサイズの領域を変換ブロックとして割り付けるものと、上述したツリーブロックの分割と同様、再帰的な4分木分割によるものがある。
変換処理は、この変換ブロックごとに行われる。以下、変換の単位である変換ブロックのことを、変換単位(transform unit;TU)とも称する。
(予測パラメータ)
予測ユニットの予測画像は、予測ユニットに付随する予測パラメータによって導出される。予測パラメータには、イントラ予測の予測パラメータもしくはインター予測の予測パラメータがある。以下、インター予測の予測パラメータ(インター予測パラメータ)について説明する。インター予測パラメータは、予測リスト利用フラグpredFlagL0、predFlagL1と、参照ピクチャインデックスrefIdxL0、refIdxL1と、ベクトルmvL0、mvL1から構成される。予測リスト利用フラグpredFlagL0、predFlagL1は、各々L0リスト、L1リストと呼ばれる参照ピクチャリストが用いられるか否かを示すフラグであり、値が1の場合に対応する参照ピクチャリストが用いられる。なお、本明細書中「XXであるか否かを示すフラグ」と記す場合、1をXXである場合、0をXXではない場合とし、論理否定、論理積などでは1を真、0を偽と扱う(以下同様)。但し、実際の装置や方法では真値、偽値として他の値を用いることもできる。2つの参照ピクチャリストが用いられる場合、つまり、predFlagL0=1, predFlagL1=1の場合が、双予測に対応し、1つの参照ピクチャリストを用いる場合、すなわち(predFlagL0, predFlagL1) = (1, 0)もしくは(predFlagL0, predFlagL1) = (0, 1)の場合が単予測に対応する。なお、予測リスト利用フラグの情報は、後述のインター予測フラグinter_pred_idcで表現することもできる。通常、後述の予測画像生成部、予測パラメータメモリでは、予測リスト利用フラグが用いれ、符号化データから、どの参照ピクチャリストが用いられるか否かの情報を復号する場合にはインター予測フラグinter_pred_idcが用いられる。
符号化データに含まれるインター予測パラメータを導出するためのシンタックス要素には、例えば、分割モードpart_mode、マージフラグmerge_flag、マージインデックスmerge_idx、インター予測フラグinter_pred_idc、参照ピクチャインデックスrefIdxLX、予測ベクトルインデックスmvp_LX_idx、差分ベクトルmvdLXがある。
(参照ピクチャリストの一例)
次に、参照ピクチャリストの一例について説明する。参照ピクチャリストとは、参照ピクチャメモリ306(図5)に記憶された参照ピクチャからなる列である。図3は、参照ピクチャリストの一例を示す概念図である。参照ピクチャリスト601において、左右に一列に配列された5個の長方形は、それぞれ参照ピクチャを示す。左端から右へ順に示されている符号、P1、P2、Q0、P3、P4は、それぞれの参照ピクチャを示す符号である。P1等のPとは、視点Pを示し、そしてQ0のQとは、視点Pとは異なる視点Qを示す。P及びQの添字は、ピクチャ順序番号POCを示す。refIdxLXの真下の下向きの矢印は、参照ピクチャインデックスrefIdxLXが、参照ピクチャメモリ306において参照ピクチャQ0を参照するインデックスであることを示す。
(参照ピクチャの例)
次に、ベクトルを導出する際に用いる参照ピクチャの例について説明する。図4は、参照ピクチャの例を示す概念図である。図4において、横軸は表示時刻を示し、縦軸は視点を示す。図4に示されている、縦2行、横3列(計6個)の長方形は、それぞれピクチャを示す。6個の長方形のうち、下行の左から2列目の長方形は復号対象のピクチャ(対象ピクチャ)を示し、残りの5個の長方形がそれぞれ参照ピクチャを示す。対象ピクチャから上向きの矢印で示される参照ピクチャQ0は対象ピクチャと同表示時刻であって視点が異なるピクチャである。対象ピクチャを基準とする変位予測においては、参照ピクチャQ0が用いられる。対象ピクチャから左向きの矢印で示される参照ピクチャP1は、対象ピクチャと同じ視点であって、過去のピクチャである。対象ピクチャから右向きの矢印で示される参照ピクチャP2は、対象ピクチャと同じ視点であって、未来のピクチャである。対象ピクチャを基準とする動き予測においては、参照ピクチャP1又はP2が用いられる。
(インター予測フラグと予測リスト利用フラグ)
インター予測フラグと、予測リスト利用フラグpredFlagL0、predFlagL1の関係は以下のように相互に変換可能である。そのため、インター予測パラメータとしては、予測リスト利用フラグを用いても良いし、インター予測フラグを用いてもよい。また、以下、予測リスト利用フラグを用いた判定は、インター予測フラグに置き替えても可能である。逆に、インター予測フラグを用いた判定は、予測リスト利用フラグに置き替えても可能である。
インター予測フラグ = (predFlagL1<<1) + predFlagL0
predFlagL0 =インター予測フラグ & 1
predFlagL1 =インター予測フラグ >> 1
ここで、>>は右シフト、<<は左シフトである。
(マージ予測とAMVP予測)
予測パラメータの復号(符号化)方法には、マージ予測(merge)モードとAMVP(Adaptive Motion Vector Prediction、適応動きベクトル予測)モードがある、マージフラグmerge_flagは、これらを識別するためのフラグである。マージ予測モードでも、AMVPモードでも、既に処理済みのブロックの予測パラメータを用いて、対象PUの予測パラメータが導出される。マージ予測モードは、予測リスト利用フラグpredFlagLX(インター予測フラグinter_pred_idcinter_pred_idc)、参照ピクチャインデックスrefIdxLX、ベクトルmvLXを符号化データに含めずに、既に導出した予測パラメータをそのまま用いるモードであり、AMVPモードは、インター予測フラグinter_pred_idcinter_pred_idc、参照ピクチャインデックスrefIdxLX、ベクトルmvLXを符号化データに含めるモードである。なおベクトルmvLXは、予測ベクトルを示す予測ベクトルインデックスmvp_LX_idxと差分ベクトル(mvdLX)として符号化される。
インター予測フラグinter_pred_idcは、参照ピクチャの種類および数を示すデータであり、Pred_L0、Pred_L1、Pred_Biの何れかの値をとる。Pred_L0、Pred_L1は、各々L0リスト、L1リストと呼ばれる参照ピクチャリストに記憶された参照ピクチャが用いられることを示し、共に1枚の参照ピクチャを用いること(単予測)を示す。L0リスト、L1リストを用いた予測を各々L0予測、L1予測と呼ぶ。Pred_Biは2枚の参照ピクチャを用いること(双予測)を示し、L0リストとL1リストに記憶された参照ピクチャの2つを用いることを示す。予測ベクトルインデックスmvp_LX_idxは予測ベクトルを示すインデックスであり、参照ピクチャインデックスrefIdxLXは、参照ピクチャリストに記憶された参照ピクチャを示すインデックスである。なお、LXは、L0予測とL1予測を区別しない場合に用いられる記述方法であり、LXをL0、L1に置き換えることでL0リストに対するパラメータとL1リストに対するパラメータを区別するする。例えば、refIdxL0はL0予測に用いる参照ピクチャインデックス、refIdxL1はL1予測に用いる参照ピクチャインデックス、refIdx(refIdxLX)は、refIdxL0とrefIdxL1を区別しない場合に用いられる表記である。
マージインデックスmerge_idxは、処理が完了したブロックから導出される予測パラメータ候補(マージ候補)のうち、いずれかの予測パラメータを復号対象ブロックの予測パラメータとして用いるかを示すインデックスである。
(動きベクトルと変位ベクトル)
ベクトルmvLXには、動きベクトルと変位ベクトル(disparity vector、視差ベクトル)がある。動きベクトルとは、あるレイヤのある表示時刻でのピクチャにおけるブロックの位置と、異なる表示時刻(例えば、隣接する離散時刻)における同一のレイヤのピクチャにおける対応するブロックの位置との間の位置のずれを示すベクトルである。変位ベクトルとは、あるレイヤのある表示時刻でのピクチャにおけるブロックの位置と、同一の表示時刻における異なるレイヤのピクチャにおける対応するブロックの位置との間の位置のずれを示すベクトルである。異なるレイヤのピクチャとしては、異なる視点のピクチャである場合、もしくは、異なる解像度のピクチャである場合などがある。特に、異なる視点のピクチャに対応する変位ベクトルを視差ベクトルと呼ぶ。以下の説明では、動きベクトルと変位ベクトルを区別しない場合には、単にベクトルmvLXと呼ぶ。ベクトルmvLXに関する予測ベクトル、差分ベクトルを、それぞれ予測ベクトルmvpLX、差分ベクトルmvdLXと呼ぶ。ベクトルmvLXおよび差分ベクトルmvdLXが、動きベクトルであるか、変位ベクトルであるかは、ベクトルに付随する参照ピクチャインデックスrefIdxLXを用いて行われる。
(画像復号装置の構成)
次に、本実施形態に係る画像復号装置31の構成について説明する。図5は、本実施形態に係る画像復号装置31の構成を示す概略図である。画像復号装置31は、エントロピー復号部301、予測パラメータ復号部302、参照ピクチャメモリ(参照画像記憶部、フレームメモリ)306、予測パラメータメモリ(予測パラメータ記憶部、フレームメモリ)307、予測画像生成部308、逆量子化・逆DCT部311、及び加算部312、残差格納部313(残差記録部)を含んで構成される。
また、予測パラメータ復号部302は、インター予測パラメータ復号部303及びイントラ予測パラメータ復号部304を含んで構成される。予測画像生成部308は、インター予測画像生成部309及びイントラ予測画像生成部310を含んで構成される。
エントロピー復号部301は、外部から入力された符号化ストリームTeに対してエントロピー復号を行って、個々の符号(シンタックス要素)を分離し復号する。分離された符号には、予測画像を生成するための予測情報および、差分画像を生成するための残差情報などがある。
エントロピー復号部301は、分離した符号の一部を予測パラメータ復号部302に出力する。分離した符号の一部とは、例えば、予測モードPredMode、分割モードpart_mode、マージフラグmerge_flag、マージインデックスmerge_idx、インター予測フラグinter_pred_idcinter_pred_idc、参照ピクチャインデックスrefIdxLX、予測ベクトルインデックmvp_LX_idx、差分ベクトルmvdLXである。どの符号を復号するか否かの制御は、予測パラメータ復号部302の指示に基づいて行われる。エントロピー復号部301は、量子化係数を逆量子化・逆DCT部311に出力する。この量子化係数は、符号化処理において、残差信号に対してDCT(Discrete Cosine Transform、離散コサイン変換)を行い量子化して得られる係数である。
インター予測パラメータ復号部303は、エントロピー復号部301から入力された符号に基づいて、予測パラメータメモリ307に記憶された予測パラメータを参照してインター予測パラメータを復号する。
インター予測パラメータ復号部303は、復号したインター予測パラメータを予測画像生成部308に出力し、また予測パラメータメモリ307に記憶する。インター予測パラメータ復号部303の詳細については後述する。
イントラ予測パラメータ復号部304は、エントロピー復号部301から入力された符号に基づいて、予測パラメータメモリ307に記憶された予測パラメータを参照してイントラ予測パラメータを復号する。イントラ予測パラメータとは、ピクチャブロックを1つのピクチャ内で予測する処理で用いるパラメータ、例えば、イントラ予測モードIntraPredModeである。イントラ予測パラメータ復号部304は、復号したイントラ予測パラメータを予測画像生成部308に出力し、また予測パラメータメモリ307に記憶する。
イントラ予測パラメータ復号部304は、輝度と色差で異なるイントラ予測モードを導出しても良い。この場合、イントラ予測パラメータ復号部304は、輝度の予測パラメータとして輝度予測モードIntraPredModeY、色差の予測パラメータとして、色差予測モードIntraPredModeCを復号する。輝度予測モードIntraPredModeYは、35モードであり、プレーナ予測(0)、DC予測(1)、方向予測(2〜34)が対応する。色差予測モードIntraPredModeCは、プレーナ予測(0)、DC予測(1)、方向予測(2、3、4)、LMモード(5)の何れかを用いるもの。
参照ピクチャメモリ306は、加算部312が生成した参照ピクチャのブロック(参照ピクチャブロック)を、復号対象のピクチャ及びブロック毎に予め定めた位置に記憶する。
予測パラメータメモリ307は、予測パラメータを、復号対象のピクチャ及びブロック毎に予め定めた位置に記憶する。具体的には、予測パラメータメモリ307は、インター予測パラメータ復号部303が復号したインター予測パラメータ、イントラ予測パラメータ復号部304が復号したイントラ予測パラメータ及びエントロピー復号部301が分離した予測モードpredModeを記憶する。記憶されるインター予測パラメータには、例えば、予測リスト利用フラグpredFlagLX(インター予測フラグinter_pred_idcinter_pred_idc)、参照ピクチャインデックスrefIdxLX、ベクトルmvLXがある。
予測画像生成部308には、エントロピー復号部301から入力された予測モードpredModeが入力され、また予測パラメータ復号部302から予測パラメータが入力される。また、予測画像生成部308は、参照ピクチャメモリ306から参照ピクチャを読み出す。予測画像生成部308は、予測モードpredModeが示す予測モードで、入力された予測パラメータと読み出した参照ピクチャを用いて予測ピクチャブロックP(予測画像)を生成する。
ここで、予測モードpredModeがインター予測モードを示す場合、インター予測画像生成部309は、インター予測パラメータ復号部303から入力されたインター予測パラメータと読み出した参照ピクチャを用いてインター予測により予測ピクチャブロックPを生成する。予測ピクチャブロックPは予測単位PUに対応する。PUは、上述したように予測処理を行う単位となる複数の画素からなるピクチャの一部分、つまり1度に予測処理が行われる復号対象ブロックに相当する。
インター予測画像生成部309は、予測リスト利用フラグpredFlagLXが1である参照ピクチャリスト(L0リスト、もしくはL1リスト)に対し、参照ピクチャインデックスrefIdxLXで示される参照ピクチャから、復号対象ブロックを基準としてベクトルmvLXが示す位置にある参照ピクチャブロックを参照ピクチャメモリ306から読み出す。インター予測画像生成部309は、読み出した参照ピクチャブロックについて予測を行って予測ピクチャブロックPを生成する。インター予測画像生成部309は、生成した予測ピクチャブロックPを加算部312に出力する。
予測モードpredModeがイントラ予測モードを示す場合、イントラ予測画像生成部310は、イントラ予測パラメータ復号部304から入力されたイントラ予測パラメータと読み出した参照ピクチャを用いてイントラ予測を行う。具体的には、イントラ予測画像生成部310は、復号対象のピクチャであって、既に復号されたブロックのうち復号対象ブロックから予め定めた範囲にある参照ピクチャブロックを参照ピクチャメモリ306から読み出す。予め定めた範囲とは、復号対象ブロックがいわゆるラスタースキャンの順序で順次移動する場合、例えば、左、左上、上、右上の隣接ブロックのうちのいずれかであり、イントラ予測モードによって異なる。ラスタースキャンの順序とは、各ピクチャにおいて、上端から下端まで各行について、順次左端から右端まで移動させる順序である。
イントラ予測画像生成部310は、読み出した参照ピクチャブロックについてイントラ予測モードIntraPredModeが示す予測モードで予測を行って予測ピクチャブロックを生成する。イントラ予測画像生成部310は、生成した予測ピクチャブロックPを加算部312に出力する。
イントラ予測パラメータ復号部304において、輝度と色差で異なるイントラ予測モードを導出する場合、イントラ予測画像生成部310は、輝度予測モードIntraPredModeYに応じて、プレーナ予測(0)、DC予測(1)、方向予測(2〜34)の何れかによって輝度の予測ピクチャブロックを生成し、色差予測モードIntraPredModeCに応じて、プレーナ予測(0)、DC予測(1)、方向予測(2、3、4)、LMモード(5)の何れかによって色差の予測ピクチャブロックを生成する。
逆量子化・逆DCT部311は、エントロピー復号部301から入力された量子化係数を逆量子化してDCT係数を求める。逆量子化・逆DCT部311は、求めたDCT係数について逆DCT(Inverse Discrete Cosine Transform、逆離散コサイン変換)を行い、復号残差信号を算出する。逆量子化・逆DCT部311は、算出した復号残差信号を加算部312および残差格納部313に出力する。
加算部312は、インター予測画像生成部309及びイントラ予測画像生成部310から入力された予測ピクチャブロックPと逆量子化・逆DCT部311から入力された復号残差信号の信号値を画素毎に加算して、参照ピクチャブロックを生成する。加算部312は、生成した参照ピクチャブロックを参照ピクチャメモリ306に記憶し、生成した参照ピクチャブロックをピクチャ毎に統合した復号レイヤ画像Tdを外部に出力する。
(インター予測パラメータ復号部の構成)
次に、インター予測パラメータ復号部303の構成について説明する。
図6は、本実施形態に係るインター予測パラメータ復号部303の構成を示す概略図である。インター予測パラメータ復号部303は、インター予測パラメータ復号制御部3031、AMVP予測パラメータ導出部3032、加算部3035及びマージ予測パラメータ導出部3036を含んで構成される。
インター予測パラメータ復号制御部3031は、インター予測に関連する符号(シンタックス要素の復号をエントロピー復号部301に指示し、符号化データに含まれる符号(シンタックス要素)を例えば、分割モードpart_mode、マージフラグmerge_flag、マージインデックスmerge_idx、インター予測フラグinter_pred_idcinter_pred_idc、参照ピクチャインデックスrefIdxLX、予測ベクトルインデックスmvp_LX_idx、差分ベクトルmvdLXを抽出する。
インター予測パラメータ復号制御部3031は、まず、符号化データからマージフラグを抽出する。インター予測パラメータ復号制御部3031が、あるシンタックス要素を抽出すると表現する場合は、あるシンタックス要素の復号をエントロピー復号部301に指示し、該当のシンタックス要素を符号化データから読み出すことを意味する。ここで、マージフラグが示す値が1、すなわち、マージ予測モードを示す場合、インター予測パラメータ復号制御部3031は、マージ予測に係る予測パラメータとして、マージインデックスmerge_idxを抽出する。インター予測パラメータ復号制御部3031は、抽出したマージインデックスmerge_idxをマージ予測パラメータ導出部3036に出力する。
マージフラグmerge_flagが0、すなわち、AMVP予測モードを示す場合、インター予測パラメータ復号制御部3031は、エントロピー復号部301を用いて符号化データからAMVP予測パラメータを抽出する。AMVP予測パラメータとして、例えば、インター予測フラグinter_pred_idc、参照ピクチャインデックスrefIdxLX、ベクトルインデックスmvp_LX_idx、差分ベクトルmvdLXがある。インター予測パラメータ復号制御部3031は、抽出したインター予測フラグinter_pred_idcinter_pred_idcから導出した予測リスト利用フラグpredFlagLXと、参照ピクチャインデックスrefIdxLXをAMVP予測パラメータ導出部3032及び予測画像生成部308(図5)に出力し、また予測パラメータメモリ307(図5)に記憶する。インター予測パラメータ復号制御部3031は、抽出したベクトルインデックスmvp_LX_idxをAMVP予測パラメータ導出部3032に出力する。インター予測パラメータ復号制御部3031は、抽出した差分ベクトルmvdLXを加算部3035に出力する。
図7は、本実施形態に係るマージ予測パラメータ導出部3036の構成を示す概略図である。マージ予測パラメータ導出部3036は、マージ候補導出部30361とマージ候補選択部30362を備える。マージ候補導出部30361は、マージ候補格納部303611と、拡張マージ候補導出部303612と基本マージ候補導出部303613を含んで構成される。
マージ候補格納部303611は、拡張マージ候補導出部303612及び基本マージ候補導出部303613から入力されたマージ候補を格納する。なお、マージ候補は、予測リスト利用フラグpredFlagLX、ベクトルmvLX、参照ピクチャインデックスrefIdxLXを含んで構成されている。マージ候補格納部303611において、格納されたマージ候補には、所定の規則に従ってインデックスが割り当てられる。例えば、拡張マージ候補導出部303612から入力されたマージ候補には、インデックスとして「0」を割り当てる。
拡張マージ候補導出部303612は、変位ベクトル取得部3036122と、レイヤ間マージ候補導出部3036121と変位マージ候補導出部3036123、図示しないBVSPマージ候補導出部3036124を含んで構成される。
変位ベクトル取得部3036122は、まず、復号対象ブロックに隣接する複数の候補ブロック(例えば、左、上、右上に隣接するブロック)から順に変位ベクトルを取得する。具体的には、候補ブロックの一つを選択し、選択した候補ブロックのベクトルが変位ベクトルであるか動きベクトルであるかを、候補ブロックの参照ピクチャインデックスrefIdxLXを用いてリファレンスレイヤ判定部303111(後述)を用いて判定し変位ベクトルが有る場合には、それを変位ベクトルとする。候補ブロックに変位ベクトルがない場合には、次の候補ブロックを順に走査する。隣接するブロックに変位ベクトルがない場合、変位ベクトル取得部3036122は、時間的に別の表示順の参照ピクチャに含まれるブロックの対象ブロックに対応する位置のブロックの変位ベクトルの取得を試みる。変位ベクトルが取得できなかった場合には、変位ベクトル取得部3036122は、変位ベクトルとしてゼロベクトルを設定する。変位ベクトル取得部3036122は、変位ベクトルをレイヤ間マージ候補導出部3036121及び変位マージ候補導出部に出力する。
レイヤ間マージ候補導出部3036121は、変位ベクトル取得部3036122から変位ベクトルを入力される。レイヤ間マージ候補導出部3036121は、別レイヤ(例えばベースレイヤ、ベースビュー)の復号対象ピクチャと同一POCを持つピクチャ内から、変位ベクトル取得部3036122から入力された変位ベクトルだけが示すブロックを選択し、該ブロックが有する動きベクトルである予測パラメータを予測パラメータメモリ307から読み出す。より具体的には、レイヤ間マージ候補導出部3036121が読みだす予測パラメータは、対象ブロックの中心点を起点にしたときに、起点の座標に変位ベクトルを加算した座標を含むブロックの予測パラメータである。
参照ブロックの座標(xRef、yRef)は、対象ブロックの座標が(xP、yP)、変位ベクトルが(mvDisp[0]、mvDisp[1])、対象ブロックの幅と高さがnPSW、nPSHの場合に以下の式により導出する。
xRef = Clip3( 0, PicWidthInSamplesL - 1, xP + ( ( nPSW - 1 ) >> 1 ) + ( ( mvDisp[0] + 2 ) >> 2 ) )
yRef = Clip3( 0, PicHeightInSamplesL - 1, yP + ( ( nPSH - 1 ) >> 1 ) + ( ( mvDisp[1] + 2 ) >> 2 ))
なお、レイヤ間マージ候補導出部3036121は、予測パラメータが動きベクトルか否かを、インター予測パラメータ復号制御部3031に含まれる後述するリファレンスレイヤ判定部303111の判定方法において偽(変位ベクトルではない)と判定した方法により判定する。レイヤ間マージ候補導出部3036121は、読みだした予測パラメータをマージ候補としてマージ候補格納部303611に出力する。また、レイヤ間マージ候補導出部3036121は、予測パラメータを導出出来なかった際には、その旨を変位マージ候補導出部に出力する。本マージ候補は、動き予測のインターレイヤ候補(インタービュー候補)でありレイヤ間マージ候補(動き予測)とも記載する。
変位マージ候補導出部3036123は、変位ベクトル取得部3036122から変位ベクトルを入力される。変位マージ候補導出部3036123は、入力された変位ベクトルと、変位ベクトルが指す先のレイヤ画像の参照ピクチャインデックスrefIdxLX(例えば、復号対象ピクチャと同一POCを持つベースレイヤ画像のインデックス)をマージ候補としてマージ候補格納部303611に出力する。本マージ候補は、変位予測のインターレイヤ候補(インタービュー候補)でありレイヤ間マージ候補(変位予測)とも記載する。
BVSPマージ候補導出部3036124は、ブロック視点合成予測(Block View Synthesis Prediction)マージ候補を導出する。BVSPマージ候補は、別の視点画像から予測画像を生成する変位マージ候補の一種であるが、PU内をさらに小さいブロックに分割して、予測画像生成処理を行うマージ候補である。
基本マージ候補導出部303613は、空間マージ候補導出部3036131と時間マージ候補導出部3036132と結合マージ候補導出部3036133とゼロマージ候補導出部3036134を含んで構成される。
空間マージ候補導出部3036131は、所定の規則に従って、予測パラメータメモリ307が記憶している予測パラメータ(予測リスト利用フラグpredFlagLX、ベクトルmvLX、参照ピクチャインデックスrefIdxLX)を読み出し、読み出した予測パラメータをマージ候補として導出する。読み出される予測パラメータは、復号対象ブロックから予め定めた範囲内にあるブロック(例えば、復号対象ブロックの左下端、左上端、右上端にそれぞれ接するブロックの全部又は一部)のそれぞれに係る予測パラメータである。導出されたマージ候補はマージ候補格納部303611に格納される。
時間マージ候補導出部3036132は、復号対象ブロックの右下の座標を含む参照画像中のブロックの予測パラメータを予測パラメータメモリ307から読みだしマージ候補とする。参照画像の指定方法は、例えば、スライスヘッダに置いて指定された参照ピクチャインデックスrefIdxLXでも良いし、復号対象ブロックに隣接するブロックの参照ピクチャインデックスrefIdxLXのうち最小のものを用いて指定しても良い。導出されたマージ候補はマージ候補格納部303611に格納される。
結合マージ候補導出部3036133は、既に導出されマージ候補格納部303611に格納された2つの異なる導出済マージ候補のベクトルと参照ピクチャインデックスを、それぞれL0、L1のベクトルとして組み合わせることで結合マージ候補を導出する。導出されたマージ候補はマージ候補格納部303611に格納される。
ゼロマージ候補導出部3036134は、参照ピクチャインデックスrefIdxLXが0であり、ベクトルmvLXのX成分、Y成分が共に0であるマージ候補を導出する。導出されたマージ候補はマージ候補格納部303611に格納される。
図22は、マージ候補導出部30361が導出するマージ候補の例を示すものである。2つのマージ候補が同じ予測パラメータである場合に順番を詰める処理を除くと、マージインデックス順に、レイヤ間マージ候補、空間マージ候補(左下)、空間マージ候補(右上)、空間マージ候補(右上)、変位マージ候補、BVSPマージ候補、空間マージ候補(左下)、空間マージ候補(左上)、時間マージ候補の順になる。また、それ以降に、結合マージ候補、ゼロマージ候補があるが、図22では省略している。
マージ候補選択部30362は、マージ候補格納部303611に格納されているマージ候補のうち、インター予測パラメータ復号制御部3031から入力されたマージインデックスmerge_idxに対応するインデックスが割り当てられたマージ候補を、対象PUのインター予測パラメータとして選択する。マージ候補選択部30362は選択したマージ候補を予測パラメータメモリ307(図5)に記憶するとともに、予測画像生成部308(図5)に出力する。
図8は、本実施形態に係るAMVP予測パラメータ導出部3032の構成を示す概略図である。AMVP予測パラメータ導出部3032は、ベクトル候補導出部3033と予測ベクトル選択部3034を備える。ベクトル候補導出部3033は、参照ピクチャインデックスrefIdxに基づいて予測パラメータメモリ307(図5)が記憶するベクトル(動きベクトル又は変位ベクトル)をベクトル候補mvpLXとして読み出す。読み出されるベクトルは、復号対象ブロックから予め定めた範囲内にあるブロック(例えば、復号対象ブロックの左下端、左上端、右上端にそれぞれ接するブロックの全部又は一部)のそれぞれに係るベクトルである。
予測ベクトル選択部3034は、ベクトル候補導出部3033が読み出したベクトル候補のうち、インター予測パラメータ復号制御部3031から入力されたベクトルインデックスmvp_LX_idxが示すベクトル候補を予測ベクトルmvpLXとして選択する。予測ベクトル選択部3034は、選択した予測ベクトルmvpLXを加算部3035に出力する。
図9は、ベクトル候補の一例を示す概念図である。図9に示す予測ベクトルリスト602は、ベクトル候補導出部3033において導出される複数のベクトル候補からなるリストである。予測ベクトルリスト602において、左右に一列に配列された5個の長方形は、それぞれ予測ベクトルを示す領域を示す。左端から2番目のmvp_LX_idxの真下の下向きの矢印とその下のmvpLXは、ベクトルインデックスmvp_LX_idxが、予測パラメータメモリ307においてベクトルmvpLXを参照するインデックスであることを示す。
候補ベクトルは、復号処理が完了したブロックであって、復号対象ブロックから予め定めた範囲のブロック(例えば、隣接ブロック)を参照し、参照したブロックに係るベクトルに基づいて生成される。なお、隣接ブロックには、対象ブロックに空間的に隣接するブロック、例えば、左ブロック、上ブロックの他、対象ブロックに時間的に隣接するブロック、例えば、対象ブロックと同じ位置で、表示時刻が異なるブロックから得られたブロックを含む。
加算部3035は、予測ベクトル選択部3034から入力された予測ベクトルmvpLXとインター予測パラメータ復号制御部から入力された差分ベクトルmvdLXを加算してベクトルmvLXを算出する。加算部3035は、算出したベクトルmvLXを予測画像生成部308(図5)に出力する。
図14は、第1の実施形態のインター予測パラメータ復号制御部3031の構成を示すブロック図である。図14に示すように、インター予測パラメータ復号制御部3031は、残差予測フラグ復号部30311、及び図示しない、分割モード復号部、マージフラグ復号部30312、マージインデックス復号部30313、インター予測フラグ復号部、参照ピクチャインデックス復号部、ベクトル候補インデックス復号部、ベクトル差分復号部を含んで構成される。分割モード復号部、マージフラグ復号部、マージインデックス復号部、インター予測フラグ復号部、参照ピクチャインデックス復号部、ベクトル候補インデックス復号部、ベクトル差分復号部は各々、分割モードpart_mode、マージフラグmerge_flag、マージインデックスmerge_idx、インター予測フラグinter_pred_idc、参照ピクチャインデックスrefIdxLX、予測ベクトルインデックスmvp_LX_idx、差分ベクトルmvdLXを復号する。
残差予測フラグ復号部30311は、残差予測フラグコンテキスト導出部303113、残差予測フラグ格納部303112を含んで構成される。
図15は、第1の実施形態の残差予測フラグコンテキスト導出部303113のコンテキスト導出方法を示す図である。図15に示すように、残差予測フラグコンテキスト導出部303113は、対象ブロックの左に隣接するブロックの残差予測フラグiv_res_pred_weight_idx[ xL ][ yL ]を用いて、コンテキストインデックスctxIdxを
condL = iv_res_pred_weight_idx[ xL ][ yL ]
ctxIdx = ( condL && availableL )
の式から導出する。
ここで、condLは、対象ブロックの左に隣接するブロックの動き補償パラメータから得られる値であり、ここでは、iv_res_pred_weight_idx[ xL ][ yL ]である。iv_res_pred_weight_idx[ xL ][ yL ]は残差予測フラグ格納部303112に格納された値を用いる。xL、yLは、それぞれ左に隣接するブロックのX座標とY座標、availableLは、左に隣接するブロックの利用可能性を示す。左に隣接するブロックが画面外に位置する、もしくは、対象ブロックの属するスライスとは異なるスライスに属する場合、availableLは0となる。それ以外の場合には、availableLは1となる。
導出されたコンテキストインデックスctxIdxは、エントロピー復号部301に入力される。エントロピー復号部301では、入力されたコンテキストインデックスに従って、残差予測フラグiv_res_pred_weight_idxが復号される。
残差予測フラグiv_res_pred_weight_idxは、残差予測フラグ格納部303112に記録されると共に、インター予測画像生成部309に入力される。
上記構成の残差予測フラグ復号部30311によれば、残差予測における重み係数を示す残差予測フラグiv_res_pred_weight_idxを、左の隣接ブロックの残差予測フラグに依存して導出するため、上の隣接ブロックの残差予測フラグに依存する場合に比べ、ラインメモリを削減する効果を奏する。
変位ベクトル取得部は、対象PUに隣接するブロックが変位ベクトルを持つ場合には、その変位ベクトルを予測パラメータメモリ307から抽出し、予測パラメータメモリ307を参照し、対象PUに隣接するブロックの予測フラグpredFlagLX、参照ピクチャインデックスrefIdxLXとベクトルmvLXを読み出す。変位ベクトル取得部は、内部にリファレンスレイヤ判定部303111を備える。変位ベクトル取得部は、対象PUに隣接するブロックの予測パラメータを順に読み出し、リファレンスレイヤ判定部303111を用いて、隣接ブロックの参照ピクチャインデックスから隣接ブロックが変位ベクトルを備えるか否かを判定する。隣接ブロックが変位ベクトルを備える場合には、その変位ベクトルを出力する。隣接ブロックの予測パラメータに変位ベクトルが無い場合にはゼロベクトルを変位ベクトルとして出力する。
(リファレンスレイヤ判定部303111)
リファレンスレイヤ判定部303111は、入力された参照ピクチャインデックスrefIdxLXに基づいて、参照ピクチャインデックスrefIdxLXが指す参照ピクチャと、対象ピクチャの関係を示すリファレンスレイヤ情報reference_layer_infoを定める。リファレンスレイヤ情報reference_layer_infoは、参照ピクチャへのベクトルmvLXが変位ベクトルであるか動きベクトルであるかを示す情報である。
対象ピクチャのレイヤと参照ピクチャのレイヤが同じレイヤである場合の予測を、同一レイヤ予測と呼び、この場合に得られるベクトルは動きベクトルである。対象ピクチャのレイヤと、参照ピクチャのレイヤが異なるレイヤである場合の予測をレイヤ間予測と呼び、この場合に得られるベクトルは変位ベクトルである。
(インター予測画像生成部309)
図10は、本実施形態に係るインター予測画像生成部309の構成を示す概略図である。インター予測画像生成部309は、動き変位補償部3091、残差予測部3092、照度補償部3093、重み予測部3094を含んで構成される。
(動き変位補償)
動き変位補償部3091は、インター予測パラメータ復号部303から入力された、予測リスト利用フラグpredFlagLX、参照ピクチャインデックスrefIdxLX、動きベクトルmvLXに基づいて、参照ピクチャメモリ306から、参照ピクチャインデックスrefIdxLXで指定された参照ピクチャの対象ブロックの位置を起点として、ベクトルmvLXだけずれた位置にあるブロックを読み出すことによって動き変位補償画像を生成する。ここで、ベクトルmvLXが整数ベクトルでない場合には、動き補償フィルタ(もしくは変位補償フィルタ)と呼ばれる小数位置の画素を生成するためのフィルタを施して、動き変位補償画像を生成する。一般に、ベクトルmvLXが動きベクトルの場合、上記処理を動き補償と呼び、変位ベクトルの場合は変位補償と呼ぶ。ここでは総称して動き変位補償と表現する。以下、L0予測の動き変位補償画像をpredSamplesL0、L1予測の動き変位補償画像をpredSamplesL1と呼ぶ。両者を区別しない場合predSamplesLXと呼ぶ。以下、動き変位補償部3091で得られた動き変位補償画像predSamplesLXに、さらに残差予測および照度補償が行われる例を説明するが、これらの出力画像もまた、動き変位補償画像predSamplesLXと呼ぶ。なお、以下の残差予測および照度補償において、入力画像と出力画像を区別する場合には、入力画像をpredSamplesLX、出力画像をpredSamplesLX´と表現する。
(残差予測)
残差予測部3092は、残差予測実施フラグresPredFlagが1の場合に、入力された動き変位補償画像predSamplesLXに対して、残差予測を行う。残差予測実施フラグresPredFlagが0の場合には、入力された動き変位補償画像predSamplesLXをそのまま出力する。refResSamples残差予測は、予測画像生成の対象とする対象レイヤ(第2のレイヤ画像)とは異なる参照レイヤ(第1のレイヤ画像)の残差を、対象レイヤの予測した画像である動き変位補償画像predSamplesLXに加えることにより行われる。すなわち、参照レイヤと同様の残差が対象レイヤにも生じると仮定して、既に導出された参照レイヤの残差を対象レイヤの残差の推定値として用いる。ベースレイヤ(ベースビュー)では同じレイヤの画像のみが参照画像となる。従って、参照レイヤ(第1のレイヤ画像)がベースレイヤ(ベースビュー)である場合には、参照レイヤの予測画像は動き補償による予測画像であることから、対象レイヤ(第2のレイヤ画像)による予測においても、動き補償による予測画像である場合に、残差予測は有効である。すなわち、残差予測は対象ブロックが動き補償の場合に有効であるという特性を持つ。
図11は残差予測部3092の構成を示すブロック図である。残差予測部3092は、残差予測実施フラグ導出部30921と、参照画像取得部30922と、残差合成部30923から構成される。
残差予測実施フラグ導出部30921は、残差予測フラグiv_res_pred_weight_idxが0ではなく、かつ、対象ブロックが動き補償である場合に、残差予測実施フラグresPredFlagに残差予測を実行することを示す1を設定する。一方、残差予測フラグiv_res_pred_weight_idxが0である、又は、対象ブロックが動き補償でない場合(視差補償である場合)に、残差予測実施フラグresPredFlagに0を設定する。
参照画像取得部30922は、残差予測実施フラグresPredFlagが1の場合には、インター予測パラメータ復号部303から入力された動きベクトルmvLXと残差予測変位ベクトルmvDisp、及び参照ピクチャメモリ306に格納された対応ブロックcurrIvSamplesLXと対応ブロックの参照ブロックrefIvSamplesLXを読み出す。
図12は、対応ブロックcurrIvSamplesLXを説明するための図である。図12に示すように、対象レイヤ上の対象ブロックに対応する対応ブロックは、参照レイヤ上の画像の対象ブロックの位置を起点として、参照レイヤと対象レイヤの位置関係を示すベクトルである変位ベクトルmvDispだけずれた位置になるブロックに位置する。
具体的には、参照画像取得部30922は、対象ブロックの画素の座標(x,y)を、対象ブロックの変位ベクトルmvDispだけずらした位置の画素を導出する。変位ベクトルmvDispが1/4ペルの小数精度であることを考慮し、参照画像取得部30922は、対象ブロックの画素の座標が(xP、yP)である場合に対応する整数精度の画素R0のX座標xIntとY座標yInt、及び変位ベクトルmvDispのX成分の小数部分xFracとY成分の小数部分yFracを
xInt = xPb + ( mvLX[ 0 ] >> 2 )
yInt = yPb + ( mvLX[ 1 ] >> 2 )
xFrac = mvLX[ 0 ] & 3
yFrac = mvLX[ 1 ] & 3
の式により導出する。ここで、X & 3は、Xの下位2ビットのみを取り出す数式である。
次に、参照画像取得部30922は、変位ベクトルmvDispが1/4ペルの小数精度であることを考慮し、補間画素predPartLX[ x ][ y ]を生成する。まず、整数画素A(xA,yB)、B(xB,yB)、C(xC,yC)及びD(xD,yD)の座標を
xA = Clip3( 0, picWidthInSamples - 1, xInt )
xB = Clip3( 0, picWidthInSamples - 1, xInt + 1 )
xC = Clip3( 0, picWidthInSamples - 1, xInt )
xD = Clip3( 0, picWidthInSamples - 1, xInt + 1 )
yA = Clip3( 0, picHeightInSamples - 1, yInt )
yB = Clip3( 0, picHeightInSamples - 1, yInt )
yC = Clip3( 0, picHeightInSamples - 1, yInt + 1 )
yD = Clip3( 0, picHeightInSamples - 1, yInt + 1 )
の式により導出する。ここで、整数画素Aは画素R0に対応した画素であり、整数画素B,C,Dはそれぞれ整数画素Aの右、下、右下に隣接する整数精度の画素であり、Clip3(x, y, z)は、zをx以上、y以下に制限(クリップ)する関数である。参照画像取得部30922は、各整数画素A、B、C、及びDに対応する参照画素refPicLX[ xA ][ yA ]、refPicLX[ xB ][ yB ]、refPicLX[ xC ][ yC ]、及びrefPicLX[ xD ][ yD ]を参照ピクチャメモリ306から読み出す。
そして、参照画像取得部30922は、参照画素refPicLX[ xA ][ yA ]、refPicLX[ xB ][ yB ]、refPicLX[ xC ][ yC ]、refPicLX[ xD ][ yD ]と変位ベクトルmvDispのX成分の小数部分xFracとY成分の小数部分yFracを用いて、画素R0から変位ベクトルmvDispの小数部分だけずらした位置の画素である補間画素predPartLX[ x ][ y ]を導出する。具体的には、
predPartLX[ x ][ y ] = (refPicLX[ xA ][ yA ] * ( 8 - xFrac ) * ( 8 - yFrac ) + refPicLX[ xB ][ yB ] * ( 8 - yFrac ) * xFrac
+ refPicLX[ xC ][ yC ] * ( 8 - xFrac ) * yFrac
+ refPicLX[ xD ][ yD ] * xFrac * yFrac ) >> 6
の式により導出する。
参照画像取得部30922は、上記の補間画素導出処理を、対象ブロック内の各画素に対して行い、補間画素の集合を補間ブロックpredPartLXとする。参照画像取得部30922は、導出した補間ブロックpredPartLXを、対応ブロックcurrIvSamplesLXとして、残差合成部30923に出力する。
図13は、参照ブロックrefIvSamplesLXを説明するための図である。図13に示すように、参照レイヤ上の対応ブロックに対応する参照ブロックは、参照レイヤ上の参照画像の対応ブロックの位置を起点として、対象ブロックの動きベクトルmvLXだけずれた位置になるブロックに位置する。
参照画像取得部30922は、対応ブロックcurrIvSamplesLXを導出した処理と、変位ベクトルmvDispをベクトル(mvDisp[ 0 ] + mvLX [ 0 ]、mvDisp[ 1 ] + mvLX [ 1 ])に置き換えている点を除いて、同様の処理を行うことで、対応ブロックrefIvSamplesLXを導出する。参照画像取得部30922は、対応ブロックrefIvSamplesLXを残差合成部30923に出力する。
残差合成部30923は、残差予測実施フラグresPredFlagが1の場合には、動き変位補償画像predSamplesLX、対応ブロックcurrIvSamplesLX、参照ブロックrefIvSamplesLX及び残差予測フラグiv_res_pred_weight_idxから、補正動き変位補償画像predSamplesLX´を導出する。補正動き変位補償画像predSamplesLX´は、
predSamplesLX´ = predSamplesLX +
((currIvSamplesLX - refIvSamplesLX) >> (iv_res_pred_weight_idx - 1))
の式を用いて求める。残差合成部30923は、残差予測実施フラグresPredFlagが0の場合には、動き変位補償画像predSamplesLXをそのまま出力する。
(照度補償)
照度補償部3093は、照度補償フラグic_enable_flagが1の場合に、入力された動き変位補償画像predSamplesLXに対して、照度補償を行う。照度補償フラグic_enable_flagが0の場合には、入力された動き変位補償画像predSamplesLXをそのまま出力する。照度補償部3093に入力される動き変位補償画像predSamplesLXは、残差予測がオフの場合には、動き変位補償部3091の出力画像であり、残差予測がオンの場合には、残差予測部3092の出力画像である。
(画像符号化装置の構成)
次に、本実施形態に係る画像符号化装置11の構成について説明する。図23は、本実施形態に係る画像符号化装置11の構成を示すブロック図である。画像符号化装置11は、予測画像生成部101、減算部102、DCT・量子化部103、エントロピー符号化部104、逆量子化・逆DCT部105、加算部106、予測パラメータメモリ(予測パラメータ記憶部、フレームメモリ)108、参照ピクチャメモリ(参照画像記憶部、フレームメモリ)109、符号化パラメータ決定部110、予測パラメータ符号化部111、残差格納部313(残差記録部)を含んで構成される。予測パラメータ符号化部111は、インター予測パラメータ符号化部112及びイントラ予測パラメータ符号化部113を含んで構成される。
予測画像生成部101は、外部から入力されたレイヤ画像Tの視点毎の各ピクチャについて、そのピクチャを分割した領域であるブロック毎に予測ピクチャブロックPを生成する。ここで、予測画像生成部101は、予測パラメータ符号化部111から入力された予測パラメータに基づいて参照ピクチャメモリ109から参照ピクチャブロックを読み出す。予測パラメータ符号化部111から入力された予測パラメータとは、例えば、動きベクトル又は変位ベクトルである。予測画像生成部101は、符号化対象ブロックを起点として予測された動きベクトル又は変位ベクトルが示す位置にあるブロックの参照ピクチャブロックを読み出す。予測画像生成部101は、読み出した参照ピクチャブロックについて複数の予測方式のうちの1つの予測方式を用いて予測ピクチャブロックPを生成する。予測画像生成部101は、生成した予測ピクチャブロックPを減算部102に出力する。なお、予測画像生成部101は、既に説明した予測画像生成部308と同じ動作であるため予測ピクチャブロックPの生成の詳細は省略する。
予測画像生成部101は、予測方式を選択するために、例えば、レイヤ画像に含まれるブロックの画素毎の信号値と予測ピクチャブロックPの対応する画素毎の信号値との差分に基づく誤差値を最小にする予測方式を選択する。予測方式を選択する方法は、これには限られない。
符号化対象のピクチャがベースビューピクチャである場合には、複数の予測方式とは、イントラ予測、動き予測及びマージ予測である。動き予測とは、上述のインター予測のうち、表示時刻間の予測である。マージ予測とは、既に符号化されたブロックであって、符号化対象ブロックから予め定めた範囲内にあるブロックと同一の参照ピクチャブロック及び予測パラメータを用いる予測である。符号化対象のピクチャがノンベースビューピクチャである場合には、複数の予測方式とは、イントラ予測、動き予測、マージ予測、及び変位予測である。変位予測(視差予測)とは、上述のインター予測のうち、別レイヤ画像(別視点画像)間の予測である。さらに、動き予測、マージ予測、及び変位予測である。変位予測(視差予測)に対して、追加予測(残差予測および照度補償)を行う場合と行わない場合の予測がある。
予測画像生成部101は、イントラ予測を選択した場合、予測ピクチャブロックPを生成する際に用いたイントラ予測モードを示す予測モードpredModeを予測パラメータ符号化部111に出力する。
予測画像生成部101は、動き予測を選択した場合、予測ピクチャブロックPを生成する際に用いた動きベクトルmvLXを予測パラメータメモリ108に記憶し、インター予測パラメータ符号化部112に出力する。動きベクトルmvLXは、符号化対象ブロックの位置から予測ピクチャブロックPを生成する際の参照ピクチャブロックの位置までのベクトルを示す。動きベクトルmvLXを示す情報には、参照ピクチャを示す情報(例えば、参照ピクチャインデックスrefIdxLX、ピクチャ順序番号POC)を含み、予測パラメータを表すものであっても良い。また、予測画像生成部101は、インター予測モードを示す予測モードpredModeを予測パラメータ符号化部111に出力する。
予測画像生成部101は、変位予測を選択した場合、予測ピクチャブロックPを生成する際に用いた変位ベクトルを予測パラメータメモリ108に記憶し、インター予測パラメータ符号化部112に出力する。変位ベクトルdvLXは、符号化対象ブロックの位置から予測ピクチャブロックPを生成する際の参照ピクチャブロックの位置までのベクトルを示す。変位ベクトルdvLXを示す情報には、参照ピクチャを示す情報(例えば、参照ピクチャインデックスrefIdxLX、ビューIDview_id)を含み、予測パラメータを表すものであっても良い。また、予測画像生成部101は、インター予測モードを示す予測モードpredModeを予測パラメータ符号化部111に出力する。
予測画像生成部101は、マージ予測を選択した場合、選択した参照ピクチャブロックを示すマージインデックスmerge_idxをインター予測パラメータ符号化部112に出力する。また、予測画像生成部101は、マージ予測モードを示す予測モードpredModeを予測パラメータ符号化部111に出力する。
上記の、動き予測、変位予測、マージ予測において、予測画像生成部101は、残差予測実施フラグresPredFlagが残差予測を行うことを示す場合には、既に説明したように予測画像生成部101に含まれる残差予測部3092において残差予測を行う
減算部102は、予測画像生成部101から入力された予測ピクチャブロックPの信号値を、外部から入力されたレイヤ画像Tの対応するブロックの信号値から画素毎に減算して、残差信号を生成する。減算部102は、生成した残差信号をDCT・量子化部103と符号化パラメータ決定部110に出力する。
DCT・量子化部103は、減算部102から入力された残差信号についてDCTを行い、DCT係数を算出する。DCT・量子化部103は、算出したDCT係数を量子化して量子化係数を求める。DCT・量子化部103は、求めた量子化係数をエントロピー符号化部104及び逆量子化・逆DCT部105に出力する。
エントロピー符号化部104には、DCT・量子化部103から量子化係数が入力され、符号化パラメータ決定部110から符号化パラメータが入力される。入力される符号化パラメータには、例えば、参照ピクチャインデックスrefIdxLX、ベクトルインデックスmvp_LX_idx、差分ベクトルmvdLX、予測モードpredMode、及びマージインデックスmerge_idx等の符号がある。
エントロピー符号化部104は、入力された量子化係数と符号化パラメータをエントロピー符号化して符号化ストリームTeを生成し、生成した符号化ストリームTeを外部に出力する。
逆量子化・逆DCT部105は、DCT・量子化部103から入力された量子化係数を逆量子化してDCT係数を求める。逆量子化・逆DCT部105は、求めたDCT係数について逆DCTを行い、復号残差信号を算出する。逆量子化・逆DCT部105は、算出した復号残差信号を加算部106に出力する。
加算部106は、予測画像生成部101から入力された予測ピクチャブロックPの信号値と逆量子化・逆DCT部105から入力された復号残差信号の信号値を画素毎に加算して、参照ピクチャブロックを生成する。加算部106は、生成した参照ピクチャブロックを参照ピクチャメモリ109に記憶する。
予測パラメータメモリ108は、予測パラメータ符号化部111が生成した予測パラメータを、符号化対象のピクチャ及びブロック毎に予め定めた位置に記憶する。
参照ピクチャメモリ109は、加算部106が生成した参照ピクチャブロックを、符号化対象のピクチャ及びブロック毎に予め定めた位置に記憶する。
符号化パラメータ決定部110は、符号化パラメータの複数のセットのうち、1つのセットを選択する。符号化パラメータとは、上述した予測パラメータやこの予測パラメータに関連して生成される符号化の対象となるパラメータである。予測画像生成部101は、これらの符号化パラメータのセットの各々を用いて予測ピクチャブロックPを生成する。
符号化パラメータ決定部110は、複数のセットの各々について情報量の大きさと符号化誤差を示すコスト値を算出する。コスト値は、例えば、符号量と二乗誤差に係数λを乗じた値との和である。符号量は、量子化誤差と符号化パラメータをエントロピー符号化して得られる符号化ストリームTeの情報量である。二乗誤差は、減算部102において算出された残差信号の残差値の二乗値についての画素間の総和である。係数λは、予め設定されたゼロよりも大きい実数である。符号化パラメータ決定部110は、算出したコスト値が最小となる符号化パラメータのセットを選択する。これにより、エントロピー符号化部104は、選択した符号化パラメータのセットを符号化ストリームTeとして外部に出力し、選択されなかった符号化パラメータのセットを出力しない。
予測パラメータ符号化部111は、予測画像生成部101から入力されたパラメータに基づいて予測ピクチャを生成する際に用いる予測パラメータを導出し、導出した予測パラメータを符号化して符号化パラメータのセットを生成する。予測パラメータ符号化部111は、生成した符号化パラメータのセットをエントロピー符号化部104に出力する。
予測パラメータ符号化部111は、生成した符号化パラメータのセットのうち符号化パラメータ決定部110が選択したものに対応する予測パラメータを予測パラメータメモリ108に記憶する。
予測パラメータ符号化部111は、予測画像生成部101から入力された予測モードpredModeがインター予測モードを示す場合、インター予測パラメータ符号化部112を動作させる。予測パラメータ符号化部111は、予測モードpredModeがイントラ予測モードを示す場合、イントラ予測パラメータ符号化部113を動作させる。
インター予測パラメータ符号化部112は、符号化パラメータ決定部110から入力された予測パラメータに基づいてインター予測パラメータを導出する。インター予測パラメータ符号化部112は、インター予測パラメータを導出する構成として、インター予測パラメータ復号部303(図5等、参照)がインター予測パラメータを導出する構成と同一の構成を含む。インター予測パラメータ符号化部112の構成については、後述する。
イントラ予測パラメータ符号化部113は、符号化パラメータ決定部110から入力された予測モードpredModeが示すイントラ予測モードIntraPredModeをインター予測パラメータのセットとして定める。
(インター予測パラメータ符号化部の構成)
次に、インター予測パラメータ符号化部112の構成について説明する。インター予測パラメータ符号化部112は、インター予測パラメータ復号部303に対応する手段である。
図24は、本実施形態に係るインター予測パラメータ符号化部112の構成を示す概略図である。
インター予測パラメータ符号化部112は、インター予測パラメータ符号化制御部1031、マージ予測パラメータ導出部1121、AMVP予測パラメータ導出部1122、減算部1123、及び予測パラメータ統合部1126を含んで構成される。
マージ予測パラメータ導出部1121は、上述のマージ予測パラメータ導出部3036(図7参照)と同様な構成を有する。
インター予測パラメータ符号化制御部1031は、インター予測に関連する符号(シンタックス要素の復号をエントロピー符号化部104に指示し、符号化データに含まれる符号(シンタックス要素)を例えば、分割モードpart_mode、マージフラグmerge_flag、マージインデックスmerge_idx、インター予測フラグinter_pred_idcinter_pred_idc、参照ピクチャインデックスrefIdxLX、予測ベクトルインデックスmvp_LX_idx、差分ベクトルmvdLXを符号化する。
インター予測パラメータ符号化制御部1031は、追加予測フラグ符号化部10311、マージインデックス符号化部10312、ベクトル候補インデックス符号化部10313、分割モード符号化部、マージフラグ符号化部、インター予測フラグ符号化部、参照ピクチャインデックス符号化部、ベクトル差分符号化部を含んで構成される。分割モード符号化部、マージフラグ符号化部、マージインデックス符号化部、インター予測フラグ符号化部、参照ピクチャインデックス符号化部、ベクトル候補インデックス符号化部10313、ベクトル差分符号化部は各々、分割モードpart_mode、マージフラグmerge_flag、マージインデックスmerge_idx、インター予測フラグinter_pred_idcinter_pred_idc、参照ピクチャインデックスrefIdxLX、予測ベクトルインデックスmvp_LX_idx、差分ベクトルmvdLXを符号化する。
追加予測フラグ符号化部10311は、追加予測が行われるか否かを示すために、照度補償フラグic_enable_flag、残差予測フラグiv_res_pred_weight_flsgを符号化する。
マージ予測パラメータ導出部1121には、予測画像生成部101から入力された予測モードpredModeがマージ予測モードを示す場合、符号化パラメータ決定部110からマージインデックスmerge_idxが入力される。マージインデックスmerge_idxは、予測パラメータ統合部1126に出力される。マージ予測パラメータ導出部1121は、マージ候補のうちマージインデックスmerge_idxが示す参照ブロックの参照ピクチャインデックスrefIdxLX、ベクトルmvLXを予測パラメータメモリ108から読み出す。マージ候補とは、符号化対象となる符号化対象ブロックから予め定めた範囲にある参照ブロック(例えば、符号化対象ブロックの左下端、左上端、右上端に接する参照ブロックのうち)であって、符号化処理が完了した参照ブロックである。
AMVP予測パラメータ導出部1122は、上述のAMVP予測パラメータ導出部3032(図8参照)と同様な構成を有する。
AMVP予測パラメータ導出部1122には、予測画像生成部101から入力された予測モードpredModeがインター予測モードを示す場合、符号化パラメータ決定部110からベクトルmvLXが入力される。AMVP予測パラメータ導出部1122は、入力されたベクトルmvLXに基づいて予測ベクトルmvpLXを導出する。AMVP予測パラメータ導出部1122は、導出した予測ベクトルmvpLXを減算部1123に出力する。なお、参照ピクチャインデックスrefIdx及びベクトルインデックスmvp_LX_idxは、予測パラメータ統合部1126に出力される。
減算部1123は、符号化パラメータ決定部110から入力されたベクトルmvLXからAMVP予測パラメータ導出部1122から入力された予測ベクトルmvpLXを減算して差分ベクトルmvdLXを生成する。差分ベクトルmvdLXは予測パラメータ統合部1126に出力する。
予測画像生成部101から入力された予測モードpredModeがマージ予測モードを示す場合には、予測パラメータ統合部1126は、符号化パラメータ決定部110から入力されたマージインデックスmerge_idxをエントロピー符号化部104に出力する。
予測画像生成部101から入力された予測モードpredModeがインター予測モードを示す場合には、予測パラメータ統合部1126は、次の処理を行う。
予測パラメータ統合部1126は、符号化パラメータ決定部110から入力された参照ピクチャインデックスrefIdxLX及びベクトルインデックスmvp_LX_idx、減算部1123から入力された差分ベクトルmvdLXを統合する。予測パラメータ統合部1126は、統合した符号をエントロピー符号化部104に出力する。
(第2の実施形態)
以下、図面を参照しながら本発明の第2の実施形態について説明する。第2の実施形態は、動き補償パラメータ、特にマージモードフラグmerge_flagおよびマージモードインデックスmerge_idxに応じて、残差予測フラグiv_res_pred_weight_idxを符号化・復号するか否かを切り替える。
第2の実施形態の構成は、以下の3構成を順に説明する
画像符号化装置11B1、画像復号装置31B1
画像符号化装置11B2、画像復号装置31B2
画像符号化装置11B3、画像復号装置31B3
(画像符号化装置11B1、画像復号装置31B1)
以下、第2の実施形態の1構成である画像符号化装置11B1と画像復号装置31B1を説明する。
画像符号化装置11B1は、、残差予測フラグ復号手段として、第1の実施形態で説明した追加予測フラグ符号化部10311の変わりに、追加予測フラグ符号化部10311B1を用いる。
画像復号装置31B1は、残差予測フラグ復号手段として、第1の実施形態で説明した残差予測フラグ復号部30311の変わりに、残差予測フラグ復号部30311B1を用いる。残差予測フラグ復号部30311B1を含むインター予測パラメータ復号制御部を、インター予測パラメータ復号制御部3031B1とする。
本実施形態における追加予測フラグ符号化部10311B1は、追加予測フラグ符号化部10311とは、符号化モードがマージモードでない場合に、残差予測フラグiv_res_pred_weight_flsgを符号化しない点のみが異なる。
図16は、第2の実施形態のインター予測パラメータ復号制御部3031B1の構成を示すブロック図である。図16に示すように、インター予測パラメータ復号制御部3031B1は、残差予測フラグ復号部30311B1、マージフラグ復号部30312、及び図示しない、マージインデックス復号部30313、分割モード復号部、インター予測フラグ復号部、ベクトル候補インデックス復号部、参照ピクチャインデックス復号部、ベクトル差分復号部を含んで構成される。
残差予測フラグ復号部30311B1は、残差フラグ判定部303113B1を含んで構成される。
図17は、残差予測フラグ復号部30311B1が復号対象とする符号化データの構成を示す例である。図17に示すように、符号化データは、マージモードの場合、即ち、S1001に示すように、対象ブロックがスキップモードで符号化されたか否かを示すスキップフラグskip_flagが1、もしくは、S1002に示すように、マージフラグmerge_flagが1の場合にのみ残差予測フラグiv_res_pred_weight_idxを含む。
残差予測フラグ復号部30311B1は、スキップフラグskip_flagが1、もしくは、マージフラグmerge_flagが1の場合にのみ、残差予測フラグiv_res_pred_weight_idxを符号化データから復号し、インター予測画像生成部309に出力する。それ以外の場合(AMVPモードの場合)には、残差予測フラグiv_res_pred_weight_idxを復号せずに、残差予測を用いないことを示す0を設定した残差予測フラグiv_res_pred_weight_idxをインター予測画像生成部309に出力する。
上記構成の残差予測フラグ復号部30311B1によれば、残差予測を用いる予測パラメータ候補の数が減少するため、残差予測フラグを導出するための計算量を削減する効果を奏する。また、追加予測フラグ符号化部10311B1は、AMVPモードの場合、即ち、対象ブロックが視差補償である可能性がある場合には、残差予測フラグを符号化しないため、効果の小さいAMVPモードにおいて、無駄な符号が発生しないという効果を奏する。また、AMVPモードでは残差予測を行わないため残差予測の計算量を削減する効果も奏する。
(画像符号化装置11B2、画像復号装置31B2)
以下、第2の実施形態の1構成である画像符号化装置11B2と画像復号装置31B2を説明する。
画像符号化装置11B2は、は、残差予測フラグ復号手段として、第1の実施形態で説明した追加予測フラグ符号化部10311の変わりに、追加予測フラグ符号化部10311B2を用いる。
画像復号装置31B2は、残差予測フラグ復号手段として、第1の実施形態で説明した残差予測フラグ復号部30311の変わりに、残差予測フラグ復号部30311B1を用いる。残差予測フラグ復号部30311B2を含むインター予測パラメータ復号制御部を、インター予測パラメータ復号制御部3031B2とする。 本変形例における追加予測フラグ符号化部10311B2は、追加予測フラグ符号化部10311とは、マージモードであり、かつ、マージインデックスmerge_idxが所定の値(ここでは3)未満の場合(merge_flag == 1 && merge_idx < 3)、もしくはAMVPモードの場合(merge_flag == 0)にのみ、残差予測フラグiv_res_pred_weight_flsgを符号化する点のみが異なる。
図18は、本変形例のインター予測パラメータ復号制御部3031B2の構成を示すブロック図である。図18に示すように、インター予測パラメータ復号制御部3031B2は、残差予測フラグ復号部30311B2、マージフラグ復号部30312、マージインデックス復号部30313、及び図示しない、分割モード復号部、インター予測フラグ復号部、ベクトル候補インデックス復号部、参照ピクチャインデックス復号部、ベクトル差分復号部を含んで構成される。
残差予測フラグ復号部30311B2は、残差フラグ判定部303113B2を含んで構成される。
図19は、残差予測フラグ復号部30311B2が復号対象とする符号化データの構成を示す例である。図19に示すように、符号化データは、マージモードでありかつマージインデックスmerge_idxが所定の値(ここでは3)未満の場合(merge_flag == 1 && merge_idx < 3)、もしくはAMVPモードの場合(merge_flag == 0)にのみ、残差予測フラグiv_res_pred_weight_idxを含む。
なお、図22に示すように、マージインデックスmerge_idx=4、5のマージ候補は、変位マージ候補およびBVSPマージ候補である。変位マージ候補およびBVSPマージ候補は、動き補償以外の予測(視差予測)であるから、残差予測実施フラグresPredFlagは0であり、実行されない。そのため、マージインデックスmerge_idx=4、5に対して、残差予測フラグiv_res_pred_weight_idxを符号化することは無駄である(残差予測フラグiv_res_pred_weight_idxがどのような値であっても、残差予測は実施されない)。本実施形態では、マージインデックスmerge_idxが所定の値以上の場合に、残差予測フラグiv_res_pred_weight_idxを符号化しないことにより、このような無駄をなくすことができる。なお、図22では変位マージ候補およびBVSPマージ候補は、マージインデックスmerge_idx=4、5として導出されるが、実際には、それ以前の空間マージ候補が同じ予測パラメータを有することによって、番号が詰められていることが多い。そのため、所定の値として3を用いることも好適である。
残差予測フラグ復号部30311B2は、AMVPモードの場合、もしくは、マージモードであり、かつ、マージインデックスmerge_idxが所定の値(ここでは3)未満の場合のみ、残差予測フラグiv_res_pred_weight_idxを符号化データから復号し、インター予測画像生成部309に出力する。一方、マージフラグmerge_flagが1かつマージインデックスmerge_idxが所定の値より大きい場合には、残差予測フラグiv_res_pred_weight_idxを復号せずに、残差予測フラグiv_res_pred_weight_idxに残差予測を用いないことを示す0を設定し、インター予測画像生成部309に出力する。
上記構成の残差予測フラグ復号部30311B2によれば、残差予測を用いる予測パラメータ候補の数が減少するため、残差予測フラグを導出するための計算量を削減する効果を奏する。
(画像符号化装置11B3、画像復号装置31B3)
以下、第2の実施形態の1構成である画像符号化装置11B3と画像復号装置31B3を説明する。
画像符号化装置11B3は、残差予測フラグ復号手段として、第1の実施形態で説明した追加予測フラグ符号化部10311の変わりに、追加予測フラグ符号化部10311B3を用いる。
画像復号装置31B3は、残差予測フラグ復号手段として、第1の実施形態で説明した残差予測フラグ復号部30311の変わりに、残差予測フラグ復号部30311B1を用いる。残差予測フラグ復号部30311B3を含むインター予測パラメータ復号制御部を、インター予測パラメータ復号制御部3031B3とする。 本変形例における追加予測フラグ符号化部10311B3は、追加予測フラグ符号化部10311とは、マージモードであり、かつ、マージインデックスmerge_idxが所定の値(ここでは3)未満の場合(merge_flag == 1 && merge_idx < 3)にのみ、残差予測フラグiv_res_pred_weight_flsgを符号化する点のみが異なる。
以下、本変形例のインター予測パラメータ復号制御部3031B3を説明する。インター予測パラメータ復号制御部3031B3の構成は、図18に示すインター予測パラメータ復号制御部3031B2と、残差予測フラグ復号部30311B2に代えて残差予測フラグ復号部30311B3を、残差フラグ判定部303113B2に代えて残差フラグ判定部303113B3を有する点を除いて、同様の構成である。
図20は、残差予測フラグ復号部30311B3が復号対象とする符号化データの構成を示す例である。図20に示すようにマージモードであり、かつ、merge_idxが所定の値(ここでは3)未満の場合のみ、残差予測フラグiv_res_pred_weight_idxを含む。
残差予測フラグ復号部30311B3は、マージモードであり、かつ、merge_idxが所定の値(ここでは3)未満の場合のみ、残差予測フラグiv_res_pred_weight_idxを符号化データから復号し、インター予測画像生成部309に出力する。一方、マージモードではない(AMVPモード)場合、もしくは、マージフラグmerge_flagが1かつmerge_idxが所定の値より大きい場合には、残差予測フラグiv_res_pred_weight_idxを復号せずに、残差予測フラグiv_res_pred_weight_idxに残差予測を用いないことを示す0を設定し、インター予測画像生成部309に出力する。
上記構成の残差予測フラグ復号部30311B3によれば、残差予測を用いる予測パラメータ候補の数が減少するため、残差予測フラグを導出するための計算量を削減する効果を奏する。
図21は、残差予測フラグ復号部30311B3を用いて残差予測フラグiv_res_pred_weight_idxを復号する場合における、マージモードである場合の、マージインデックスmerge_idxと、残差予測の重み数を示すものである。merge_idxが所定の値(ここでは3)未満の場合のみ、残差予測をオンとし(ここでは2選択)、merge_idxが所定の値(ここでは3)以上の場合には、残差予測の重み数は1、即ち、残差予測の重みは0となり、残差予測をオフとすることが分かる。
第2の実施形態の別の形態(インター予測パラメータ復号制御部3031B2)において、図22を用いて説明したように、特に、マージインデックスmerge_idxが所定の値(ここでは3)以上の場合には、動き予測となることが少ないため、動き予測の場合にのみ適用される残差予測フラグを復号しても、実際にはフラグが使用されないことがある。本実施形態ではこのような無駄を防ぐことができる。
上記構成の残差予測フラグ復号部30311B3を含む画像復号装置によれば、このような無駄なフラグを復号する場合を減らす効果を奏する。
なお、上述した実施形態における画像符号化装置11、11B1、11B2、11B3、画像復号装置31、31B1、31B2、31B3の一部、例えば、エントロピー復号部301、予測パラメータ復号部302、予測画像生成部101、DCT・量子化部103、エントロピー符号化部104、逆量子化・逆DCT部105、符号化パラメータ決定部110、予測パラメータ符号化部111、エントロピー復号部301、予測パラメータ復号部302、予測画像生成部308、逆量子化・逆DCT部311をコンピュータで実現するようにしても良い。その場合、この制御機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。なお、ここでいう「コンピュータシステム」とは、画像符号化装置11−11h、画像復号装置31−31hのいずれかに内蔵されたコンピュータシステムであって、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでも良い。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
また、上述した実施形態における画像符号化装置11、画像復号装置31の一部、または全部を、LSI(Large Scale Integration)等の集積回路として実現しても良い。画像符号化装置11、画像復号装置31の各機能ブロックは個別にプロセッサ化しても良いし、一部、または全部を集積してプロセッサ化しても良い。また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いても良い。
以上、図面を参照してこの発明の一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。
本発明は、画像データが符号化された符号化データを復号する画像復号装置、および、画像データが符号化された符号化データを生成する画像符号化装置に好適に適用することができる。また、画像符号化装置によって生成され、画像復号装置によって参照される符号化データのデータ構造に好適に適用することができる。
1…画像伝送システム
11、11B1、11B2、11B3…画像符号化装置
101…予測画像生成部
102…減算部
103…DCT・量子化部
1031…インター予測パラメータ符号化制御部
10311、10311B1、10311B2、10311B3…追加予測フラグ符号化部
104…エントロピー符号化部
105…逆量子化・逆DCT部
106…加算部
108…予測パラメータメモリ(フレームメモリ)
109…参照ピクチャメモリ(フレームメモリ)
110…符号化パラメータ決定部
111…予測パラメータ符号化部
112…インター予測パラメータ符号化部
1121…マージ予測パラメータ導出部
1122…AMVP予測パラメータ導出部
1123…減算部
1126…予測パラメータ統合部
113…イントラ予測パラメータ符号化部
21…ネットワーク
31、31B1、31B2、31B3…画像復号装置
301…エントロピー復号部
302…予測パラメータ復号部
303…インター予測パラメータ復号部
3031、3031B1、3031B2、3031B3…インター予測パラメータ復号制御部
30311、30311B1、30311B2、30311B3…残差予測フラグ復号部
303111…リファレンスレイヤ判定部
303112…残差予測フラグ格納部
303113…残差予測フラグコンテキスト導出部
303113B1、303113B2、303113B3…残差予測フラグ判定部
30312…マージフラグ復号部
30313…マージインデックス復号部
3032…AMVP予測パラメータ導出部
3035…加算部
3036…マージ予測パラメータ導出部
30361…マージ候補導出部
303611…マージ候補格納部
303612…拡張マージ候補導出部
3036121…レイヤ間マージ候補導出部
3036122…変位ベクトル取得部
3036123…変位マージ候補導出部
303613…基本マージ候補導出部
3036131…空間マージ候補導出部
3036132…時間マージ候補導出部
3036133…結合マージ候補導出部
3036134…ゼロマージ候補導出部
30362…マージ候補選択部
304…イントラ予測パラメータ復号部
306…参照ピクチャメモリ(フレームメモリ)
307…予測パラメータメモリ(フレームメモリ)
308…予測画像生成部
309…インター予測画像生成部
3091…変位補償部
3092…残差予測部
30921…残差予測実施フラグ導出部
30922…参照画像取得部
30923…残差合成部
3093…照度補償部
3094…重み予測部
310…イントラ予測画像生成部
311…逆量子化・逆DCT部
312…加算部
313…残差格納部
41…画像表示装置

Claims (5)

  1. 動き補償画像に残差予測を適用する残差予測部と、
    残差予測を適用するか否かを示す残差予測フラグを復号する残差予測フラグ復号部と
    コンテキストに応じて符号化データからシンタックス要素を復号するエントロピー復号部を備え、
    前記残差予測フラグ復号部は、対象ブロックの左に隣接するブロックの前記残差予測フラグの値に基づいて、前記対象ブロックの前記残差予測フラグを導出する場合のコンテキストを導出することを特徴とする画像復号装置。
  2. 動き補償画像に残差予測を適用する残差予測部と、
    残差予測を適用するか否かを示す残差予測フラグを復号する残差予測フラグ復号部を備え、
    前記残差予測フラグ復号部は、予測モード又はマージインデックスに基づいて、残差予測フラグを符号化データから復号するか否かを判定することを特徴とする画像復号装置。
  3. 前記残差予測フラグ復号部は、
    マージモードの場合にのみ、残差予測フラグを符号化データから復号し、マージモードではない場合(AMVPモードの場合)には、残差予測フラグを復号せずに、残差予測を用いないことを示す0を導出すること
    を特徴とする請求項2に記載の画像復号装置。
  4. 前記残差予測フラグ復号部は、AMVPモードの場合、もしくは、マージモードであり、かつ、マージインデックスが所定の値(ここでは3)未満の場合のみ、残差予測フラグを符号化データから復号し、マージモードでありかつマージインデックスが所定の値より大きい場合には、残差予測フラグを復号せずに、残差予測を用いないことを示す0を導出すること
    を特徴とする請求項2に記載の画像復号装置。
  5. 前記残差予測フラグ復号部は、マージモードであり、かつ、マージインデックスが所定の値(ここでは3)未満の場合のみ、残差予測フラグを符号化データから復号し、マージモードではない(AMVPモード)場合、もしくは、マージモードでありかつマージインデックスが所定の値より大きい場合には、残差予測フラグを復号せずに、残差予測を用いないことを示す0を導出すること
    を特徴とする請求項2に記載の画像復号装置。
JP2013143424A 2013-07-09 2013-07-09 画像復号装置、画像符号化装置、画像復号方法、画像符号化方法及びコンピュータ読み取り可能な記録媒体。 Active JP6118199B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013143424A JP6118199B2 (ja) 2013-07-09 2013-07-09 画像復号装置、画像符号化装置、画像復号方法、画像符号化方法及びコンピュータ読み取り可能な記録媒体。

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013143424A JP6118199B2 (ja) 2013-07-09 2013-07-09 画像復号装置、画像符号化装置、画像復号方法、画像符号化方法及びコンピュータ読み取り可能な記録媒体。

Publications (3)

Publication Number Publication Date
JP2015019140A true JP2015019140A (ja) 2015-01-29
JP2015019140A5 JP2015019140A5 (ja) 2016-10-13
JP6118199B2 JP6118199B2 (ja) 2017-04-19

Family

ID=52439794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013143424A Active JP6118199B2 (ja) 2013-07-09 2013-07-09 画像復号装置、画像符号化装置、画像復号方法、画像符号化方法及びコンピュータ読み取り可能な記録媒体。

Country Status (1)

Country Link
JP (1) JP6118199B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016537858A (ja) * 2013-10-18 2016-12-01 エルジー エレクトロニクス インコーポレイティド マルチビュービデオをデコードするビデオデコード方法及び装置
US10104389B2 (en) 2015-10-05 2018-10-16 Fujitsu Limited Apparatus, method and non-transitory medium storing program for encoding moving picture
CN113615171A (zh) * 2019-03-08 2021-11-05 夏普株式会社 Lic部、图像解码装置以及图像编码装置
CN114586357A (zh) * 2019-08-31 2022-06-03 Lg电子株式会社 视频编码系统中使用简化的残差数据编码的视频解码方法及其设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012167097A1 (en) * 2011-06-03 2012-12-06 Qualcomm Incorporated Memory efficient context modeling
WO2013001770A1 (ja) * 2011-06-30 2013-01-03 パナソニック株式会社 画像復号方法、画像符号化方法、画像復号装置、画像符号化装置及び画像符号化復号装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012167097A1 (en) * 2011-06-03 2012-12-06 Qualcomm Incorporated Memory efficient context modeling
WO2013001770A1 (ja) * 2011-06-30 2013-01-03 パナソニック株式会社 画像復号方法、画像符号化方法、画像復号装置、画像符号化装置及び画像符号化復号装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BENJAMIN BROSS FRAUNHOFER HHI: "High efficiency video coding (HEVC) text specification draft 8[online]", JCTVC-J JCTVC-J1003_D7, JPN6017001651, pages 159 - 174, ISSN: 0003506638 *
GERHARD TECH FRAUNHOFER HHI: "3D-HEVC Test Model 4[online]", JCT3V-D JCT3V-D1005-SPEC-V4, JPN6017001650, pages 16 - 17, ISSN: 0003506637 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016537858A (ja) * 2013-10-18 2016-12-01 エルジー エレクトロニクス インコーポレイティド マルチビュービデオをデコードするビデオデコード方法及び装置
US10321157B2 (en) 2013-10-18 2019-06-11 Lg Electronics Inc. Video decoding method and apparatus for decoding multi-view video
US10104389B2 (en) 2015-10-05 2018-10-16 Fujitsu Limited Apparatus, method and non-transitory medium storing program for encoding moving picture
CN113615171A (zh) * 2019-03-08 2021-11-05 夏普株式会社 Lic部、图像解码装置以及图像编码装置
CN114586357A (zh) * 2019-08-31 2022-06-03 Lg电子株式会社 视频编码系统中使用简化的残差数据编码的视频解码方法及其设备
CN114586357B (zh) * 2019-08-31 2024-03-29 Lg电子株式会社 视频编码系统中使用简化的残差数据编码的视频解码方法及其设备

Also Published As

Publication number Publication date
JP6118199B2 (ja) 2017-04-19

Similar Documents

Publication Publication Date Title
JP6469588B2 (ja) 残差予測装置、画像復号装置、画像符号化装置、残差予測方法、画像復号方法、および画像符号化方法
JP6441236B2 (ja) 画像復号装置及び画像符号化装置
JP6360053B2 (ja) 照度補償装置、画像復号装置、画像符号化装置
WO2016125685A1 (ja) 画像復号装置、画像符号化装置および予測ベクトル導出装置
JP6225241B2 (ja) 画像復号装置、画像復号方法、画像符号化装置及び画像符号化方法
WO2015056719A1 (ja) 画像復号装置、画像符号化装置
WO2015194669A1 (ja) 画像復号装置、画像符号化装置および予測画像生成装置
JPWO2014103529A1 (ja) 画像復号装置、およびデータ構造
US10034017B2 (en) Method and apparatus for image decoding and encoding
WO2015056620A1 (ja) 画像復号装置、画像符号化装置
JP6118199B2 (ja) 画像復号装置、画像符号化装置、画像復号方法、画像符号化方法及びコンピュータ読み取り可能な記録媒体。
WO2014103600A1 (ja) 符号化データ構造、および画像復号装置
WO2015141696A1 (ja) 画像復号装置、画像符号化装置および予測装置
JP2016066864A (ja) 画像復号装置、画像符号化装置およびマージモードパラメータ導出装置
JP2017135432A (ja) 視点合成予測装置、画像復号装置及び画像符号化装置
WO2016056587A1 (ja) 変位配列導出装置、変位ベクトル導出装置、デフォルト参照ビューインデックス導出装置及びデプスルックアップテーブル導出装置
WO2015190510A1 (ja) 視点合成予測装置、画像復号装置及び画像符号化装置
JP6401707B2 (ja) 画像復号装置、画像復号方法、および記録媒体
JP2015080053A (ja) 画像復号装置、及び画像符号化装置
JP2014204327A (ja) 画像復号装置および画像符号化装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150423

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160824

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20161104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170324

R150 Certificate of patent or registration of utility model

Ref document number: 6118199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150