JP2015017773A - Refrigeration cycle device and clothes drying device using the same - Google Patents
Refrigeration cycle device and clothes drying device using the same Download PDFInfo
- Publication number
- JP2015017773A JP2015017773A JP2013146117A JP2013146117A JP2015017773A JP 2015017773 A JP2015017773 A JP 2015017773A JP 2013146117 A JP2013146117 A JP 2013146117A JP 2013146117 A JP2013146117 A JP 2013146117A JP 2015017773 A JP2015017773 A JP 2015017773A
- Authority
- JP
- Japan
- Prior art keywords
- refrigeration cycle
- heat exchanger
- refrigerant
- cycle apparatus
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Detail Structures Of Washing Machines And Dryers (AREA)
- Control Of Washing Machine And Dryer (AREA)
Abstract
Description
本発明は、冷凍サイクル装置と、その冷凍サイクル装置を用いた衣類乾燥装置に関する。 The present invention relates to a refrigeration cycle apparatus and a clothes drying apparatus using the refrigeration cycle apparatus.
膨張手段にキャピラリーチューブ等の細径管を用いた冷凍サイクルの高効率化を図る手段として、凝縮器と蒸発器の間に細径管を複数本設置し、さらに1つ以上の細径管に並列に設置された電磁弁等の開閉可能な弁を有したバイパス回路を設けて、冷凍サイクル装置の能力変化に合わせて、冷媒を通過させる細径管を選択可能にする技術が知られている(例えば、特許文献1参照)。 As means for improving the efficiency of a refrigeration cycle using a small diameter tube such as a capillary tube as the expansion means, a plurality of small diameter tubes are installed between the condenser and the evaporator, and one or more small diameter tubes are connected. A technique is known in which a bypass circuit having a valve that can be opened and closed, such as a solenoid valve installed in parallel, is provided so that a small-diameter pipe that allows a refrigerant to pass can be selected in accordance with a change in capacity of the refrigeration cycle apparatus. (For example, refer to Patent Document 1).
特許文献1には、図4に示した除湿装置の冷凍サイクル装置が開示されている。この冷凍サイクル装置100は、圧縮機101、凝縮器102、第1キャピラリーチューブ103、第2キャピラリーチューブ104及び蒸発器105が環状に接続された主冷媒回路110とを備えている。さらに、凝縮器102と第1キャピラリーチューブ103の間から分岐し、第1キャピラリーチューブ103と第2キャピラリーチューブ104との間で主冷媒回路110と合流する電磁弁106を有するバイパス回路111とを有している。このバイパス回路111の電磁弁106を開きバイパス回路111に冷媒を流すことによって、冷媒循環量が大きくなり、冷凍サイクル装置100の冷凍能力が上がり除湿能力も上がる。また、凝縮器102に生じる液冷媒だまりを防ぐことができる。
特許文献1に記載の除湿装置に用いられる冷凍サイクル装置100において、冷凍サイクル装置100の能力変動に合わせて、電磁弁106を設置したバイパス回路111や電磁弁106を制御する制御装置が必要となるため、冷凍サイクル装置100に使用する部品点数の増加、配置スペースの増加、冷凍サイクル装置の高コスト化などを招く問題点があった。
In the
本発明は、かかる事情に鑑み、部品点数の増加や高コスト化を抑制して、冷凍サイクル装置とその冷凍サイクル装置を用いた衣類乾燥装置の性能を向上させることを目的とする。 In view of such circumstances, an object of the present invention is to improve the performance of a refrigeration cycle apparatus and a clothing drying apparatus using the refrigeration cycle apparatus by suppressing an increase in the number of parts and cost increase.
前記従来の課題を解決するために、本発明の冷凍サイクル装置は、圧縮機、第1熱交換器、第1細径管、第2熱交換器を有し、これらの構成要素がこの順番で環状に接続されることによって形成された主冷媒回路と、前記主冷媒回路の前記第1熱交換器の冷媒経路途中から分岐し、前記第1細径管と前記第2熱交換器との間、もしくは前記第1細径管と前記第圧縮機との間で前記主冷媒回路に合流している少なくとも1つのバイパス回路と、前記バイパス回路の経路途中に第2細径管とを有する。 In order to solve the conventional problems, the refrigeration cycle apparatus of the present invention includes a compressor, a first heat exchanger, a first small diameter tube, and a second heat exchanger, and these components are arranged in this order. A main refrigerant circuit formed by being connected in a ring shape, and a branch from the middle of the refrigerant path of the first heat exchanger of the main refrigerant circuit, between the first small diameter tube and the second heat exchanger Alternatively, at least one bypass circuit joined to the main refrigerant circuit between the first small diameter tube and the first compressor, and a second small diameter tube in the middle of the bypass circuit.
この構成により、第1熱交換器の冷媒経路途中から分岐し、第1細径管と第2熱交換器との間で主冷媒回路に合流するバイパス回路によって、冷凍サイクル装置の能力を増加さ
せた場合に生じる、第1熱交換器の液冷媒だまりを低減することができる。これにより、冷凍サイクル高圧側の圧力上昇を低減すると同時に、第2熱交換器出口の冷媒の過大な過熱度を低減させることが可能となる。これにより、冷凍回路の性能が向上する。また、冷凍サイクル装置の能力が低い低負荷運転時は、バイパス回路入口側の冷媒が二相状態になるため、バイパス回路には冷媒がほとんど流れない。そのため、低負荷運転時には、主冷媒回路のみに冷媒が循環するため、低負荷運転時の冷凍サイクルに悪影響は与えない。これらのことにより、電磁弁を設置したバイパス回路や、主冷媒回路に電子膨張弁等の開度調整可能な膨張機構を用いることなく、冷凍サイクルの負荷変動に合わせた、効率的な冷凍サイクル運転が可能となり、冷凍サイクル装置の省エネ性能が向上する。そして、部品点数の増加や高コスト化を抑制して、冷凍サイクル装置の性能を向上させることができる。
With this configuration, the capacity of the refrigeration cycle apparatus is increased by the bypass circuit that branches off from the middle of the refrigerant path of the first heat exchanger and joins the main refrigerant circuit between the first small-diameter pipe and the second heat exchanger. It is possible to reduce the accumulation of liquid refrigerant in the first heat exchanger that occurs when Accordingly, it is possible to reduce the pressure increase on the high-pressure side of the refrigeration cycle and at the same time reduce the excessive degree of superheat of the refrigerant at the outlet of the second heat exchanger. This improves the performance of the refrigeration circuit. In addition, during low load operation where the capacity of the refrigeration cycle apparatus is low, the refrigerant on the bypass circuit inlet side is in a two-phase state, so that almost no refrigerant flows through the bypass circuit. For this reason, during low load operation, the refrigerant circulates only in the main refrigerant circuit, so there is no adverse effect on the refrigeration cycle during low load operation. These enable efficient refrigeration cycle operation that matches the load fluctuations of the refrigeration cycle without using a bypass circuit with an electromagnetic valve or an expansion mechanism with an adjustable opening such as an electronic expansion valve in the main refrigerant circuit. The energy-saving performance of the refrigeration cycle apparatus is improved. And the increase in a number of parts and cost increase can be suppressed, and the performance of a refrigerating cycle device can be improved.
本発明の冷凍サイクル装置は、第1熱交換器の冷媒経路途中から分岐し、第1細径管以後の主冷媒回路に合流するバイパス回路によって、冷凍サイクル装置の能力を増加させた場合に生じる、第1熱交換器の液冷媒だまりを低減することができ、冷凍回路の性能が向上する。また、電磁弁を設置したバイパス回路や、主冷媒回路に電子膨張弁等の開度調整可能な膨張機構を用いることなく、冷凍サイクルの負荷変動に合わせた、効率的な冷凍サイクル運転が可能となり、冷凍サイクル装置の省エネ性能が向上する。そして、部品点数の増加や高コスト化を抑制して、冷凍サイクル装置の性能を向上させることができる。 The refrigeration cycle apparatus of the present invention occurs when the capacity of the refrigeration cycle apparatus is increased by a bypass circuit that branches from the middle of the refrigerant path of the first heat exchanger and merges with the main refrigerant circuit after the first small-diameter pipe. The liquid refrigerant pool in the first heat exchanger can be reduced, and the performance of the refrigeration circuit is improved. In addition, efficient refrigeration cycle operation can be performed according to the load fluctuation of the refrigeration cycle without using a bypass circuit with a solenoid valve or an expansion mechanism with adjustable opening such as an electronic expansion valve in the main refrigerant circuit. The energy saving performance of the refrigeration cycle device is improved. And the increase in a number of parts and cost increase can be suppressed, and the performance of a refrigerating cycle device can be improved.
第1の発明の冷凍サイクル装置は、圧縮機、第1熱交換器、キャピラリーチューブ等の第1細径管、第2熱交換器を有し、これらの構成要素がこの順番で環状に接続されることによって形成された主冷媒回路と、前記主冷媒回路の前記第1熱交換器の冷媒経路途中から分岐し、前記第1細径管と前記圧縮機との間で前記主冷媒回路に合流している少なくとも1つのバイパス回路と、前記バイパス回路の経路途中に第2細径管と、を有する。 The refrigeration cycle apparatus of the first invention has a compressor, a first heat exchanger, a first small-diameter tube such as a capillary tube, and a second heat exchanger, and these components are connected in an annular shape in this order. A main refrigerant circuit formed by the operation of the first heat exchanger of the main refrigerant circuit, and the main refrigerant circuit joins the main refrigerant circuit between the first small-diameter pipe and the compressor. And at least one bypass circuit, and a second small diameter tube in the middle of the bypass circuit.
この構成により、第1熱交換器の冷媒経路途中から分岐し、第1細径管と第2熱交換器との間で主冷媒回路に合流するバイパス回路によって、冷凍サイクル装置の能力を増加させた場合に生じる、第1熱交換器の液冷媒だまりを低減することができる。これにより、冷凍サイクル高圧側の圧力上昇を低減すると同時に、第2熱交換器出口の冷媒の過大な過熱度を低減させることが可能となる。これにより、冷凍回路の性能が向上する。また、冷凍サイクル装置の能力が低い低負荷運転時は、バイパス回路入口側の冷媒が二相状態になるため、バイパス回路には冷媒がほとんど流れない。そのため、低負荷運転時には、主冷媒回路のみに冷媒が循環するため、低負荷運転時の冷凍サイクルに悪影響は与えない。これらのことにより、電磁弁を設置したバイパス回路や、主冷媒回路に電子膨張弁等の開度調整可能な膨張機構を用いることなく、冷凍サイクルの負荷変動に合わせた、効率的な冷凍サイクル運転が可能となり、冷凍サイクル装置の省エネ性能が向上する。そして、部品点数の増加や高コスト化を抑制して、冷凍サイクル装置の性能を向上させることができる。 With this configuration, the capacity of the refrigeration cycle apparatus is increased by the bypass circuit that branches off from the middle of the refrigerant path of the first heat exchanger and joins the main refrigerant circuit between the first small-diameter pipe and the second heat exchanger. It is possible to reduce the accumulation of liquid refrigerant in the first heat exchanger that occurs when Accordingly, it is possible to reduce the pressure increase on the high-pressure side of the refrigeration cycle and at the same time reduce the excessive degree of superheat of the refrigerant at the outlet of the second heat exchanger. This improves the performance of the refrigeration circuit. In addition, during low load operation where the capacity of the refrigeration cycle apparatus is low, the refrigerant on the bypass circuit inlet side is in a two-phase state, so that almost no refrigerant flows through the bypass circuit. For this reason, during low load operation, the refrigerant circulates only in the main refrigerant circuit, so there is no adverse effect on the refrigeration cycle during low load operation. These enable efficient refrigeration cycle operation that matches the load fluctuations of the refrigeration cycle without using a bypass circuit with an electromagnetic valve or an expansion mechanism with an adjustable opening such as an electronic expansion valve in the main refrigerant circuit. The energy-saving performance of the refrigeration cycle apparatus is improved. And the increase in a number of parts and cost increase can be suppressed, and the performance of a refrigerating cycle device can be improved.
第2の発明は、第1の発明において、前記バイパス回路は、前記第1細径管と前記第2熱交換器との間で前記主冷媒回路に合流している。この構成によれば、循環している全て
の冷媒が第2熱交換器を通過するため、冷凍サイクル装置の冷却能力を低下させることなく、冷凍サイクル装置の省エネ性能を向上させることができる。
In a second aspect based on the first aspect, the bypass circuit joins the main refrigerant circuit between the first small diameter tube and the second heat exchanger. According to this configuration, since all the circulating refrigerant passes through the second heat exchanger, the energy saving performance of the refrigeration cycle apparatus can be improved without reducing the cooling capacity of the refrigeration cycle apparatus.
第3の発明の衣類乾燥装置は、上記第1の発明に記載された冷凍サイクル装置と、回転自在に設けられ衣類を収容する回転槽とを備え、前記冷凍サイクル装置の第1熱交換器から前記回転槽へ空気を循環させるための送風装置を有する。この構成によれば、衣類乾燥装置に搭載された冷凍サイクル装置の省エネ性能が向上することで、衣類乾燥装置の省エネ性能、衣類乾燥速度が向上する。 A clothing drying apparatus according to a third aspect of the present invention includes the refrigeration cycle apparatus according to the first aspect of the present invention, and a rotating tub that is rotatably provided to store the clothes, and from the first heat exchanger of the refrigeration cycle apparatus. A blower for circulating air to the rotating tank is provided. According to this structure, the energy-saving performance of the clothing drying apparatus and the clothes drying speed are improved by improving the energy-saving performance of the refrigeration cycle apparatus mounted on the clothes drying apparatus.
第4の発明の衣類乾燥装置は、上記第2の発明に記載された冷凍サイクル装置と、回転自在に設けられ衣類を収容する回転槽とを備え、前記冷凍サイクル装置の第1熱交換器から前記回転槽へ空気を循環させるための送風装置を有する。この構成によれば、衣類乾燥装置に搭載された冷凍サイクル装置の省エネ性能が向上することで、衣類乾燥装置の省エネ性能、衣類乾燥速度が向上する。 According to a fourth aspect of the present invention, there is provided a clothes drying apparatus comprising: the refrigeration cycle apparatus according to the second aspect of the invention described above; and a rotating tub that is rotatably provided to store clothes, and the first heat exchanger of the refrigeration cycle apparatus. A blower for circulating air to the rotating tank is provided. According to this structure, the energy-saving performance of the clothing drying apparatus and the clothes drying speed are improved by improving the energy-saving performance of the refrigeration cycle apparatus mounted on the clothes drying apparatus.
第5の発明は、第3または第4の発明において、前記第1細径管の出口の冷媒の温度を測定する第1温度センサと、前記第2細径管の出口の冷媒温度を測定する第2温度センサとを備え、前記第1温度センサと前記第2温度センサの測定結果に基づいて、前記冷凍サイクル装置の圧縮機の回転数を制御する制御器とを備えたものである。この構成によれば、第1温度センサと第2温度センサの測定結果に基づいて圧縮機の回転数を調整することで、冷凍サイクル装置の省エネ性能を向上させることができる。 According to a fifth invention, in the third or fourth invention, the first temperature sensor that measures the temperature of the refrigerant at the outlet of the first small-diameter tube and the refrigerant temperature at the outlet of the second small-diameter tube are measured. A second temperature sensor, and a controller for controlling the rotational speed of the compressor of the refrigeration cycle apparatus based on the measurement results of the first temperature sensor and the second temperature sensor. According to this configuration, the energy saving performance of the refrigeration cycle apparatus can be improved by adjusting the rotation speed of the compressor based on the measurement results of the first temperature sensor and the second temperature sensor.
以下、本発明の実施の形態について図面を参照しながら説明する。なお、本発明は、以下の実施の形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the following embodiments.
(実施の形態1)
図1に、本発明の実施の形態1に係る冷凍サイクル装置1を示す。冷凍サイクル装置1は、主冷媒回路10、バイパス回路20及び制御器7を備えている。主冷媒回路10は、圧縮機2、第1熱交換器3、第1細径管4及び第2熱交換器6を有している。主冷媒回路10は、これらの構成要素がこの順番で環状に接続されることによって形成された冷媒回路である。バイパス回路20は、第1熱交換器3の経路途中の分岐位置21で主冷媒回路10から分岐し、第1細径管4と第2熱交換器6との間の合流位置24で主冷媒回路10に合流している冷媒回路である。ここで、第1細径管4は、例えば開度調節が不可能なキャピラリーチューブである。冷凍サイクル装置1の運転中に、冷媒が、主冷媒回路10及びバイパス回路20を循環する。冷媒としては、例えば、R407C等の非共沸混合冷媒、R410A等の擬似共沸混合冷媒、又は単一冷媒を用いることができる。
(Embodiment 1)
FIG. 1 shows a
次に、冷凍サイクル装置1を例に、冷凍サイクル装置1の主冷媒回路10の冷媒の流れについて説明する。圧縮機2で圧縮された過熱状態の高圧ガス冷媒は、圧縮機2から吐出され、流路10Aを流れて第1熱交換器3に流入する。冷媒は第1熱交換器3を流れる際に冷却される。そのため、第1熱交換器3と第1細径管4との間の流路10Bにおいて、冷媒は過冷却状態の高圧液冷媒である。冷媒は、第1細径管4において膨張して低圧状態となり、流路10Cを介して第2熱交換器6へ流入する。冷媒は、第2熱交換器6を流れる際に蒸発して周囲を冷却する。第2熱交換器6から流出した冷媒は、流路10Dを介して圧縮機2に吸入され、圧縮機2において再び圧縮される。このようにして、冷媒が主冷媒回路10を循環する。
Next, taking the
図1に示すように、バイパス回路20は、第1熱交換器3の冷媒経路途中の分岐位置21で主冷媒回路10から分岐している。また、バイパス回路20は、第1細径管4と第2熱交換器6との間の合流位置24で主冷媒回路10と合流している。第1熱交換器3を流
れる冷媒の一部がバイパス回路20を流れて、第1細径管4と圧縮機2の間で主冷媒回路10を流れる冷媒と合流する。このバイパス回路20を第1細径管4と圧縮機2との間で主冷媒回路10に接続することで、主冷媒回路10を流れる冷媒量が多くなる。そのため、圧縮機2から第1熱交換器3を流れる冷媒の圧力を低減する。
As shown in FIG. 1, the
バイパス回路20は、第2細径管22を含んでいる。第2細径管22は、例えば開度調節が不可能なキャピラリーチューブである。バイパス回路20の一端は第1熱交換器3の冷媒回路途中に接続され、バイパス回路20の他端は、第1細径管4と圧縮機2の間で主冷媒回路10に接続されていればよい。また、分岐位置21の位置を変えて複数設け、バイパス回路20を複数設けてもよい。バイパス回路20がこのように構成されていると、冷媒の特性上、第1熱交換器3の分岐位置21で、第1熱交換器3を流れる際に冷却された冷媒の過冷却温度が大きい液冷媒の場合には、バイパス回路20へ冷媒がスムーズに流れる。その結果、第1熱交換器3液冷媒だまりを防ぐことができる。その結果、圧縮機2から第1細径管4を流れる冷媒の圧力を低減することができる。
The
さらに、第1熱交換器3の分岐位置21で、第1熱交換器3を流れる際に冷却された冷媒が二相状態、もしくは、過冷却度の低い状態の場合には、バイパス回路20へごく微量の冷媒のみが流れる。その結果、例えば電子膨張弁等の開度調節可能な弁を用いることなく、第1熱交換器3の分岐位置21での冷媒の状態によって、主冷媒回路10を流れる冷媒流量が自然に調節され、冷凍サイクル装置1の省エネ性能の向上を図ることができる。
Furthermore, when the refrigerant cooled when flowing through the
一般的に、第1熱交換器3と第2熱交換器6との間に、例えばキャピラリーチューブによる膨張装置を使用した場合、冷凍サイクル装置の能力変化に応じた膨張装置の開度調節ができないため、冷凍サイクル装置1の能力変化、例えば、圧縮機回転数増加に伴って、冷凍サイクル高圧側の圧力が上昇することで、第1熱交換器3を流れる冷媒の過冷却温度が大きくなり、冷凍サイクルの性能が低下する。
Generally, when an expansion device using a capillary tube, for example, is used between the
本実施の形態1によれば、第1熱交換器3の分岐位置21での冷媒の状態によって、主冷媒回路10とバイパス回路20を流れる冷媒流量が変化する。従って、冷凍サイクル装置の能力を大きく変化させる場合に、特に有効である。
According to the first embodiment, the flow rate of the refrigerant flowing through the main
また、第2熱交換器6での冷却能力を低下させずに、冷凍サイクル装置1の省エネ性能を向上させるためには、バイパス回路20の出口が、第1細径管4と第2熱交換器6の間で主冷媒回路と合流していることが望ましい。
Moreover, in order to improve the energy saving performance of the
さらに、冷凍サイクル装置1は、第1細径管4と合流位置24の間の流路途中に第1温度センサ5と、第2細径管22と合流位置24の間に第2温度センサ23を備え、それぞれ細径管において膨張して低圧状態となった冷媒の温度を測定する。
Further, the
第1温度センサ5と第2温度センサ23により測定した温度差が大きい場合は、第2細径管22に冷媒が流れていないため、圧縮機2の回転数を増加させることが可能となる。前記温度差が小さい場合には、第2細径管22へ冷媒が流れているため、圧縮機2の回転数は増加させない。このようにして、第1温度センサと第2温度センサの測定結果に基づいて圧縮機の回転数を調整することで、冷凍サイクル装置の省エネ性能を向上させることができる。
When the temperature difference measured by the
これらの構成により、第1熱交換器の冷媒経路途中から分岐し、第1細径管と第2熱交換器との間で主冷媒回路に合流するバイパス回路によって、冷凍サイクル装置の能力を増加させた場合に生じる、第1熱交換器の液冷媒だまりを低減することができる。これにより、冷凍サイクル高圧側の圧力上昇を低減すると同時に、第2熱交換器出口の冷媒の過大
な過熱度を低減させることが可能となる。これにより、冷凍回路の性能が向上する。また、冷凍サイクル装置の能力が低い低負荷運転時は、バイパス回路入口側の冷媒が二相状態になるため、バイパス回路には冷媒がほとんど流れない。そのため、低負荷運転時には、主冷媒回路のみに冷媒が循環するため、低負荷運転時の冷凍サイクルに悪影響は与えない。これらのことにより、電磁弁を設置したバイパス回路や、主冷媒回路に電子膨張弁等の開度調整可能な膨張機構を用いることなく、冷凍サイクルの負荷変動に合わせた、効率的な冷凍サイクル運転が可能となり、冷凍サイクル装置の省エネ性能が向上する。そして、部品点数の増加や高コスト化を抑制して、冷凍サイクル装置の性能を向上させることができる。
With these configurations, the capacity of the refrigeration cycle apparatus is increased by a bypass circuit that branches off from the middle of the refrigerant path of the first heat exchanger and joins the main refrigerant circuit between the first small diameter pipe and the second heat exchanger It is possible to reduce the accumulation of liquid refrigerant in the first heat exchanger, which occurs when it is made to occur. Accordingly, it is possible to reduce the pressure increase on the high-pressure side of the refrigeration cycle and at the same time reduce the excessive degree of superheat of the refrigerant at the outlet of the second heat exchanger. This improves the performance of the refrigeration circuit. In addition, during low load operation where the capacity of the refrigeration cycle apparatus is low, the refrigerant on the bypass circuit inlet side is in a two-phase state, so that almost no refrigerant flows through the bypass circuit. For this reason, during low load operation, the refrigerant circulates only in the main refrigerant circuit, so there is no adverse effect on the refrigeration cycle during low load operation. These enable efficient refrigeration cycle operation that matches the load fluctuations of the refrigeration cycle without using a bypass circuit with an electromagnetic valve or an expansion mechanism with an adjustable opening such as an electronic expansion valve in the main refrigerant circuit. The energy-saving performance of the refrigeration cycle apparatus is improved. And the increase in a number of parts and cost increase can be suppressed, and the performance of a refrigerating cycle device can be improved.
(実施の形態2)
図2、図3を参照しつつ、実施の形態2に係る冷凍サイクル装置を搭載した洗濯乾燥機について説明する。なお、冷凍サイクル装置1は、以下で特に説明する部分を除き、実施の形態1に係る冷凍サイクル装置1と同様に構成されている。また、洗濯乾燥機を用いて説明するが、洗濯乾燥機は衣類乾燥装置に含まれる。
(Embodiment 2)
A washing / drying machine equipped with the refrigeration cycle apparatus according to
図2において、衣類を収容する回転槽31は、筐体32内に揺動自在に支持された水槽33内に回転自在に配設されている。水槽33の背面には、回転槽31の回転軸を前上がりに傾斜して回転させる駆動モータ36が取り付けられており、駆動モータ36の駆動により回転槽31が回転し、回転槽31内に投入された衣類の撹拌たたき洗い、および乾燥動作などを行なう。
In FIG. 2, a rotating
筐体32の前部には、回転槽31の開口端側に対向させて扉体45が設けられており、使用者は、扉体45を開くことで、回転槽31に対して洗濯物(衣類)を出し入れすることができる。また、水槽33の上部には、給水弁43が設けられた給水管44が接続され、水槽33の最下部には、排水弁41が設けられた排水管42が接続されている。水槽33の下方には、水槽33を支えるとともに、脱水時等の回転槽31内の衣類の偏りなどで発生する水槽33の振動を減衰させるダンパ34が設けられている。このダンパ34には、支持する水槽33内の衣類などによる重量変化で、ダンパ34の軸が上下に変位する変位量を検知して衣類の量を検知する布量検知部(図示せず)が取り付けられている。
A
乾燥工程において衣類を乾燥させるために、水槽33および回転槽31内の乾燥用空気を送風装置の送風用ファン35によって循環させる風路37が構成されている。風路37には、冷凍サイクル装置1の2つの熱交換器が組み込まれている。回転槽31内で洗濯物から水分を奪って多湿状態となった乾燥用空気は、水槽33の側面上部に設けられた排出口46を通って、冷凍サイクル装置1の第2熱交換器6で冷却及び除湿される。第2熱交換器6で冷却及び除湿された乾燥用空気は、冷凍サイクル装置1の第1熱交換器3で加熱される。加熱された乾燥用空気は、風路37の途中に配置された送風用ファン35から吹出し口38を通過して、再び回転槽31内に吹出す。
In order to dry clothes in a drying process, the
また、回転槽31に流入する乾燥用空気の温度を検知するサーミスタ等の流入温度検知部39を備えており、流入温度検知部39は、風路37の吹出口38近傍または第1熱交換器3近傍に設けられている。送風用ファンモータ40は、乾燥中に働く送風用ファン35を回転駆動する。また、送風用ファンモータ40は、例えば、インバータ等の制御器によって回転速度などの回転動作が制御されている。
In addition, an inflow
以上のように構成された洗濯乾燥機について、以下その作用を説明する。乾燥用空気の温度上昇や、洗濯乾燥機の冷却能力(除湿能力)の増加によって、冷凍サイクル高圧側の圧力及び温度が上昇すると、第1熱交換器3に液化した冷媒だまりが生じ易くなり、これにより冷凍サイクル装置のエネルギー効率が低下する。この時、第1熱交換器3の分岐位
置21に液冷媒が達すると、バイパス回路20を利用して第1熱交換器3の液冷媒たまりを低減することができる。そして、乾燥用空気の温度が上昇するのに伴い、冷凍サイクル高圧側の圧力上昇を低減すると同時に、第2熱交換器6の出口の冷媒の過大な過熱度を低減させることが可能となる。これにより、冷凍回路の性能が向上する。
The operation of the washing / drying machine configured as described above will be described below. When the pressure and temperature on the high-pressure side of the refrigeration cycle increase due to an increase in the temperature of the drying air or an increase in the cooling capacity (dehumidification capacity) of the washing dryer, a liquefied refrigerant pool is likely to occur in the
さらに、乾燥が進行して、冷凍サイクル装置の能力が低い低負荷運転時は、バイパス回路入口側の冷媒が二相状態になるため、バイパス回路には冷媒がほとんど流れない。そのため、低負荷運転時には、主冷媒回路のみに冷媒が循環するため、低負荷運転時の冷凍サイクルに悪影響は与えない。これらのことにより、電磁弁を設置したバイパス回路や、主冷媒回路に電子膨張弁等の開度調整可能な膨張機構を用いることなく、冷凍サイクルの負荷変動に合わせた、効率的な冷凍サイクル運転が可能となり、冷凍サイクル装置の省エネ性能が向上する。 Further, when the drying proceeds and the refrigeration cycle apparatus has a low capacity and the load is low, the refrigerant at the inlet side of the bypass circuit is in a two-phase state, so that the refrigerant hardly flows through the bypass circuit. For this reason, during low load operation, the refrigerant circulates only in the main refrigerant circuit, so there is no adverse effect on the refrigeration cycle during low load operation. These enable efficient refrigeration cycle operation that matches the load fluctuations of the refrigeration cycle without using a bypass circuit with an electromagnetic valve or an expansion mechanism with an adjustable opening such as an electronic expansion valve in the main refrigerant circuit. The energy-saving performance of the refrigeration cycle apparatus is improved.
これらの構成により、衣類を乾燥する工程において、実施の形態1に係る冷凍サイクル装置と同様の効果により、冷凍サイクル装置の性能が向上し、洗濯乾燥機の乾燥工程のエネルギー効率及び乾燥速度の向上を図ることができる。
With these configurations, in the process of drying clothing, the performance of the refrigeration cycle apparatus is improved by the same effect as the refrigeration cycle apparatus according to
本発明に係る冷凍サイクル装置は、給湯器、温水暖房装置、冷凍機器及び空調機器、洗濯乾燥機及び衣類乾燥装置、又は、その他の用途の冷凍サイクル装置として利用することができる。 The refrigeration cycle apparatus according to the present invention can be used as a hot water heater, a hot water heating apparatus, a refrigeration apparatus and an air conditioning apparatus, a washing dryer and a clothes drying apparatus, or a refrigeration cycle apparatus for other uses.
1 冷凍サイクル装置
2 圧縮機
3 第1熱交換器
4 第1細径管
5 第1温度センサ
6 第2熱交換器
7 制御器
10 主冷媒回路
20 バイパス回路
21 分岐位置
22 第2細径管
23 第2温度センサ
24 合流位置
31 回転槽
35 送風用ファン
DESCRIPTION OF
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013146117A JP2015017773A (en) | 2013-07-12 | 2013-07-12 | Refrigeration cycle device and clothes drying device using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013146117A JP2015017773A (en) | 2013-07-12 | 2013-07-12 | Refrigeration cycle device and clothes drying device using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015017773A true JP2015017773A (en) | 2015-01-29 |
Family
ID=52438924
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013146117A Pending JP2015017773A (en) | 2013-07-12 | 2013-07-12 | Refrigeration cycle device and clothes drying device using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015017773A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108061409A (en) * | 2016-11-07 | 2018-05-22 | 特灵国际有限公司 | For the variable orifice of chiller unit |
-
2013
- 2013-07-12 JP JP2013146117A patent/JP2015017773A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108061409A (en) * | 2016-11-07 | 2018-05-22 | 特灵国际有限公司 | For the variable orifice of chiller unit |
US11105544B2 (en) | 2016-11-07 | 2021-08-31 | Trane International Inc. | Variable orifice for a chiller |
CN108061409B (en) * | 2016-11-07 | 2022-01-28 | 特灵国际有限公司 | Variable orifice for a chiller unit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102009278B1 (en) | A clothes dryer having a expansion valve which is variable according to the driving mode | |
US20140033563A1 (en) | Heat pump laundry dryer | |
JP4976965B2 (en) | Clothes dryer | |
JP2007175528A (en) | Washing and drying machine | |
JP6486197B2 (en) | Clothes dryer | |
JP2008048810A (en) | Clothes dryer | |
JP2008067742A (en) | Clothes dryer | |
WO2018123845A1 (en) | Clothes drying machine | |
KR102364677B1 (en) | Control Method for Laundry Treating Apparatus | |
WO2016026226A1 (en) | Heat pump system, combo washer-dryer, and dryer | |
JP2018102992A (en) | Refrigeration cycle equipment | |
JP2006087484A (en) | Washing/drying machine | |
US11142863B2 (en) | Controlling refrigerant and air mass flow rate based on moisture extraction rate in a dryer appliance | |
JP4690936B2 (en) | Clothes dryer | |
JP6518498B2 (en) | Washing and drying machine | |
EP2976454A1 (en) | Appliance for drying laundry | |
JP2018114037A (en) | Clothes dryer | |
JP6092004B2 (en) | Clothes dryer | |
JP2016123770A (en) | Washing and drying machine | |
JP2015017773A (en) | Refrigeration cycle device and clothes drying device using the same | |
JP2015016184A (en) | Clothes dryer | |
JP6466093B2 (en) | Clothes dryer | |
JP6321870B2 (en) | Refrigeration cycle equipment | |
JP2013031503A (en) | Washing and drying machine, drying control method, and washing method | |
JP2013017639A (en) | Clothing drying device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20141021 |