JP2015016847A - Improvement of operation stability achieved by effect of rotation drive of aircraft tire wheel due to airflow velocity and profit-and-loss effect due to tire damage safety - Google Patents
Improvement of operation stability achieved by effect of rotation drive of aircraft tire wheel due to airflow velocity and profit-and-loss effect due to tire damage safety Download PDFInfo
- Publication number
- JP2015016847A JP2015016847A JP2013158248A JP2013158248A JP2015016847A JP 2015016847 A JP2015016847 A JP 2015016847A JP 2013158248 A JP2013158248 A JP 2013158248A JP 2013158248 A JP2013158248 A JP 2013158248A JP 2015016847 A JP2015016847 A JP 2015016847A
- Authority
- JP
- Japan
- Prior art keywords
- effect
- aircraft
- tire
- landing
- energy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Tires In General (AREA)
Abstract
Description
航空機に関し着陸行程の空中空間時に於いて、タイヤホイールが本発明の形状付与の機能により、回転駆動を発生生成させる方法技術である。回転はそのモーメントが発するはずみ車効果と、その高速回転が発するジャイロ効果は着陸姿勢の安定を生成させる効果。着陸時の危険な機体のバウンジングの発生をはずみ車的効果と回転力の慣性駆動エネルギーにより、バウンジング発生の因子を減少させる効果。 特に接地(タッチダウン)時の高速摩擦スッリプがタイヤスモークを発生させその熱乖離はトレット部のフラットスッポトを生成、タイヤを損傷させる、回転による駆動エネルギー効果は損傷を最大限に減少させる効果。タイヤホイールを回転させる駆動エネルギーの原資は空中空間時の対気流速度であり他の動力源の支出は必要としない。当回転力が有益効果を創出する航空技術に関する。 This is a method technique for generating and generating a rotational drive of a tire wheel in the air space of a landing stroke with respect to an aircraft by the shape imparting function of the present invention. Rotation is the flywheel effect generated by the moment, and the gyro effect generated by the high-speed rotation is the effect of generating stable landing posture. The effect of reducing the factor of the bounce occurrence by the bodily effect and the inertial drive energy of the rotational force by preventing the occurrence of dangerous aircraft bounce during landing. In particular, high-speed friction slip at the time of grounding (touchdown) generates tire smoke, and the thermal divergence generates a flat spot in the toret and damages the tire. The driving energy effect by rotation reduces the damage to the maximum. The source of driving energy for rotating the tire wheel is the airflow velocity in the air space, and no other power source expenditure is required. It relates to aeronautical technology that produces this beneficial effect.
従来の航空機に於いて地上面2次元面より3次元の空中空間へ、又その逆行程を緩やかな角度と最適な速度で離陸や着陸工程を経なければ航空機の航行は成立しない。現在の運航はそれらを実行している。片やロケットの離陸の場合、その自重を上回る最小でも自重量の約1.3倍の爆発的に燃料を燃焼させる推力がなければ安全な飛行行程は成立しない、極端に云えば自重を支える推力の燃料の消費分だけが無駄となる。その飛行の達成は重力の加速度力学理論と直に関係している。その反面経済性と安全運航のため現状の航空機は重力の影響を等分させるような飛行形態をとっている、その運航機構の費用対効果は優良有益な物理的効果を発揮している。依ってロケットの場合本考案が首題とする地上滑走装置は持たない、所謂一方通行的な使い捨て的機体となる。結果ロケットの飛行の場合、本発明の主題としては論外のものとなる。これは航空飛翔物体全般としての記述である。 In a conventional aircraft, the aircraft cannot be navigated unless it takes a take-off and landing process from a two-dimensional surface on the ground surface to a three-dimensional aerial space and the reverse process at a moderate angle and an optimal speed. Current operations are implementing them. In the case of takeoff of a piece or rocket, a safe flight path is not possible without a thrust that burns fuel explosively about 1.3 times its own weight at the minimum, and in the extreme, thrust that supports its own weight Only the amount of fuel consumed is wasted. The achievement of the flight is directly related to the acceleration dynamics theory of gravity. On the other hand, the current aircraft takes the form of flight that equally divides the influence of gravity for economic efficiency and safe operation, and the cost-effectiveness of its operating mechanism exhibits excellent and beneficial physical effects. Therefore, in the case of a rocket, it becomes a so-called one-way disposable aircraft that does not have the ground-sliding device that is the subject of the present invention. In the case of a result rocket flight, the subject of the present invention is out of the question. This is a general description of flying objects.
航空機の場合上記ロケットの場合と異なり長年、長期間に渉り運航使用が必要とされ地上や空中への離陸着陸を繰り返し安全な保守整備により長期に安全運行が保全されている特に機体の本発明が首題とする着陸装置は最重要でありこの装置が無ければ運航は成立しない。着陸装置には着陸時の機体全重量の衝撃を受け緩和する緩衝装置と地面に直接に接触回転するタイヤホイールとに大別される。タイヤホイールは金属性のホイール部分とその外周部に嵌め込まれたゴムを主体とした圧力空気入りタイヤにより構成されている。 In the case of aircraft Unlike the case of the above-mentioned rockets, the invention of the aircraft, in particular, is required for long-term use for long-term operation, and safe operation is maintained for a long time by repeated take-off and landing on the ground and in the air. Is the most important landing device, and without this device, flight will not be possible. Landing devices are broadly divided into shock absorbers that relieve the impact of the entire weight of the aircraft during landing and tire wheels that rotate in direct contact with the ground. The tire wheel is constituted by a pressure pneumatic tire mainly composed of a metallic wheel portion and rubber fitted on the outer peripheral portion thereof.
その航空機タイヤには最大限の高性能が求められている。ここでジャンボジエット機の場合を例に採れば接地滑走速度は最大許要度を含め秒速100m時速360km以上を必要として、しかも同時に着陸時機体重量の一本分として分担する約20t以上を載荷重されてである。最大機体重量350tを機首輪2本、主翼輪左右計8本、胴体輪左右計8本の合計18本で全重量を支えている、その一本分は陸上の大型積載量10tトラックの全重量を一本で十二分に支えられる驚異的なる機能と性能である。航空機タイヤは特殊な高性能を内在する為高価で最重要の機構部品である。 The aircraft tires are required to have maximum performance. Taking the case of a jumbo jet as an example, the grounding speed requires a maximum speed of 360m / s, including the maximum permissible level, and at the same time, a load of about 20t or more, which is shared as one aircraft weight at the time of landing. Has been. A total body weight of 350t is supported by a total of 18 totals, including two nose wheels, 8 main wing wheel left and right totals, and 8 fuselage wheel left and right totals, one of which is the total weight of a large 10 ton truck on land. It is an amazing function and performance that can be fully supported by one. Aircraft tires are expensive and most important mechanical parts because they have special high performance.
ライト兄弟の原動機付き機体の初飛行より以来、現在の航空機も着陸装置であるタイヤホイールの現状も着陸時のみでは対気流に対し現在も露出した侭である。唯それは空気抵抗発生の元凶其の物である。引き込み脚機能を持たない一部小型機に於いて空気抵抗の対策のため流線型状のカバーをタイヤに装着された機体もあるがこれは本考案が首題とするタイヤ部を回転させる機能を持たせているものではない。この着陸装置部分の考案は略完成された航空機体の機体工学上と言えども、改良させるべく数少ない未開分野である。 Since the first flight of the Wright brothers motorized aircraft, the current state of the tire wheel, which is the current aircraft and landing gear, should have been exposed to the airflow only when landing. It is the only cause of air resistance. In some small aircraft that do not have a retractable leg function, some aircraft have a streamlined cover attached to the tire as a countermeasure against air resistance, but this has the function of rotating the tire part which is the subject of the present invention It's not something The idea of the landing gear part is one of the few undeveloped fields to improve even though it is almost completed in aircraft engineering.
航空機が離着陸の運航を繰り返し使用する事は必須条件である。ここで本考案の命題である着陸装置のみを考察する時、現在その大部分を構成する緩衝装置は、高圧圧縮気体と緩衝用油類による空気オレオ方式の機能により、緩衝機能が構成されている。この装置は中短期的には磨耗や消耗の程度は略見られない。タイヤホイールのみ特にタイヤ部のみが機体外の諸条件特に硬い滑走路面に直接に対応して、数々の悪条件の大部分を安定的に処理している。タイヤ部は特に他の機体材に比べ消耗の激しい部材となっている。 It is indispensable for an aircraft to repeatedly use takeoff and landing operations. Here, when considering only the landing gear, which is the proposition of the present invention, the shock absorber that constitutes the majority of the present invention is configured with a shock absorbing function by the function of an air oleo system using high pressure compressed gas and buffer oil. . In the medium to short term, this device shows almost no wear or wear. Only the tire wheel, especially only the tire part, directly handles various conditions outside the fuselage, especially the hard runway surface, and stably handles most of a number of adverse conditions. The tire portion is a member that is consumed more rapidly than other airframe materials.
航空機が着陸態勢行程に入る時、機体内より着陸装置を外部に露出させ、着陸の衝撃にも耐えるように機体構造部に固定させる(ギヤーダウン固定確認)。対気流に露出された着陸装置は流体力学の定理に即し強烈な風圧抵抗を受ける。その全着陸装置の風圧抵抗量は=空気密度(kg/m3)×全着陸装置の対正面投影面積(m2)×速度(m/s)の2乗×1/2の簡単な流体力学の抵抗式で凡そ計算できる。因みにここでm2単位の抵抗量を見る時、時速360km(100m/s)のギヤーダウン時の着陸装置が受ける風圧抵抗量は1m2あたり約5,000kg、5t−m、となる、この抵抗成分は、従来の航行では負の要素となっている。When the aircraft enters the landing posture process, the landing gear is exposed to the outside from the fuselage and fixed to the fuselage structure so that it can withstand the impact of landing (gear down fixation check). The landing gear exposed to the airflow receives strong wind pressure resistance in line with the hydrodynamic theorem. Wind pressure resistance of the total landing gear is: air density (kg / m 3 ) × total landing gear's projected area (m 2 ) × speed (m / s) squared × 1/2 simple fluid dynamics Can be calculated by the resistance equation of By the way, when looking at the resistance amount in m 2 unit here, the wind pressure resistance amount received by the landing gear at the time of gear down of 360 km / h (100 m / s) is about 5,000 kg per 1 m 2 , this resistance. The component is a negative element in conventional navigation.
航空機が着陸の最終段階に入る時、複雑な気流により機体は揺動する、特に地面や地形からの乱気流により機体の全操縦舵面を触覚的に機能させ、操縦は機体を安定へと操作し操縦を全とうさせている。操縦士は離陸時の操縦操作時以上に機体着陸時の制御には苦労する。機体姿勢の揺動を制御できる、更なる新機構の開発による安定化技術が待たれる。 When the aircraft enters the final stage of landing, the aircraft fluctuates due to complex air currents, especially the turbulent airflow from the ground and terrain makes all the control surfaces of the aircraft function tactilely, and maneuvering makes the aircraft stable. I'm completely maneuvering. Pilots struggle to control aircraft landing more than during takeoff maneuvers. Stabilization technology is awaited by the development of a new mechanism that can control the swing of the attitude of the aircraft.
航空機が着陸接地した瞬間、着陸姿勢及び着陸進入角度により理想的な着陸進入角度の約3°の基本を境にして機体に重大な損傷を与える進入角度がある。進入角度が浅い3°以下の進入であれば機体には衝撃はないが滑走停止距離は著しく長くなる、この状態では先ず良しとする。機体損傷発生率が大に及ぶ進入角度は3°以上からが事故の発生の可能性が大となる、所謂着陸装置や機体に過大な衝撃や負荷を与える状態となる。機体に操縦系統や機能の欠陥故障の発生がない限り、大部分の操縦士はそのようなミスはしない。 At the moment when the aircraft touches down, there is an approach angle that causes serious damage to the aircraft at the boundary of about 3 ° of the ideal landing approach angle depending on the landing posture and landing approach angle. If the approach angle is less than 3 °, there will be no impact on the aircraft, but the sliding stop distance will be significantly longer. The approach angle where the airframe damage occurrence rate reaches a great degree starts from 3 ° or more, and the possibility of occurrence of an accident becomes large, and a so-called landing device or airframe is subjected to an excessive impact or load. Most pilots will not make such mistakes unless the aircraft has a control system or functional fault.
理想角度による着陸姿勢であっても[0009]で記述の要因により特に急激な下降気流(ダウンバースト)により機体が地面に叩き付けられると言う最悪の事態が出来する、瞬時に叩き付けられた加速重量を付加された機体は、緩衝装置の緩衝行程制限をオーバーロードにさせ最悪の場合、フエルセーブの機能により機体本体の装置の取り付け部や構造部材を安全的に破壊させる。しかしその破壊瞬時以前に発した反動応力により、機体特に機首部が跳ね上がりそれが主翼の迎え角を形成し翼失速を惹起し、今度は機首部から滑走路面に突っ込む、緩衝装置の緩衝力が存在する限り減衰しながら幾度もその現象は繰り返される。 Even if the landing posture is at an ideal angle, it is possible to create the worst situation where the aircraft is struck against the ground by a sudden downdraft due to the factors described in [0009]. The added airframe overloads the buffer stroke limit of the shock absorber, and in the worst case, the attachment portion and the structural member of the airframe body are safely destroyed by the fuel saving function. However, due to the reaction stress generated before the moment of failure, the fuselage, especially the nose, jumps up, forms the angle of attack of the main wing, causes the wing to stall, and this time there is a shock absorbing force of the shock absorber that thrusts into the runway surface from the nose The phenomenon repeats over and over while decaying.
所謂バウンシングと言われパイロットが最も恐れる、如何なる最適な操作をしても制御不能回復不能の状態となる。最悪の場合機体は転覆大破炎上となる。極東のNハブ空港での事故映像は恐怖に値いした。機体にバウンシング状態が発生しても、唯のワンバウンド状態にして反復状態を封じ込める、緩衝装置系統の更なる改良が待たれる。但し緩衝装置がなければバウンシング状態は発生しない。唯の胴体着陸滑走状態となる、この場合も大破炎上は免れない。ここでバウンシング状態とは、バウンドとリバウンドの繰り返しを連鎖する事である。バウンドとは水平面から上方に飛び上がることであり、リバウンドとは水平面より下方向に沈み込む事で表わせる、所謂交流電圧波形図のゼロボルトを基線とした上下に変動するサインカーブ図形を連想される。 It is said to be so-called bouncing, and it will be in an uncontrollable and unrecoverable state regardless of what optimum operation the pilot fears most. In the worst case, the fuselage is overturned. The accident video at the N hub airport in the Far East was worthy of fear. Even if a bouncing state occurs in the fuselage, further improvement of the shock absorber system is required, which can be a one-bound state and contain the repeated state. However, if there is no shock absorber, the bouncing state does not occur. Even in this case, the fuselage landing is inevitable. Here, the bouncing state is a chain of repeated bounce and rebound. A bounce jumps upward from a horizontal plane, and a rebound is associated with a so-called sine curve figure that fluctuates up and down with a zero volt base line in an AC voltage waveform diagram that can be expressed by sinking downward from the horizontal plane.
航空機が着陸行程の空中空間時に於いて、その着陸装置の露出部分が対向気流から受ける風圧抵抗は、機体の運航に対してマイナス所謂負の要素となる。本発明はその着陸装置のみが露出する事により生成するマイナス要因を航空機の着陸運航時、特に空港敷地付近からエリア内に於ける着地寸前から滑走ランジングそして停止迄の航行に於いて、本発明のタイヤホイールを回転させる効果により操縦安定・機体のランジング時の姿勢安定・消耗部材の減消耗化による経済効果・特に消耗部材であるタイヤの劣化が原因の破裂破壊時の断片物による機体部材への損傷の防止効果、等を以ってマイナス要因を本考案は解決させる、負の有害案件を数々の有益性にへと転化させる、一石四鳥的とする考案技術である。 When the aircraft is in the aerial space during the landing process, the wind pressure resistance that the exposed part of the landing gear receives from the oncoming airflow is a negative so-called negative factor for the operation of the aircraft. In the present invention, a negative factor generated by exposing only the landing gear is a negative factor in landing operation of an aircraft, particularly in the navigation from the vicinity of the airport site to the landing landing and stoppage in the area. Rotating the tire wheel stabilizes the maneuvering, stabilizes the attitude during the aircraft's landing, reduces the consumption of the consumables, and provides economic benefits. This is a devised technology that makes four birds with one stone, which solves negative factors by preventing damage, etc., and transforms negative harmful projects into numerous benefits.
発明効果は着陸装置の露出部分を、特にタイヤホイールを順方向に回転させる。回転力は対向気流の流速エネルギーをタイヤホイールの投影面及びその側面部を通過する気流の流速を利用する。露出部分が受ける気体の流速エネルギーは[0008]に於いて解説したが、タイヤホイールを順方向に回転させるその回転方法はタイヤの接地面の円周部面(トレット部)タイヤ側面部(ショルダー部からサイド部面)に於いて本考案[図2]に示す図形形状をトレット部へはナイフカット、側面部へはその形状をタイヤ成分と同質のゴム材にて製造工程中に肉盛焼付ける。又は柔軟強靭軽量で優良な質材があれば剥離脱落しない方法で裁断した考案図形物の接着も可能である。タイヤホイールのホイール部にも[図1,3]に示す回転を誘導させる形状機構の取り付け設置で効果を得る事も出来る。 The effect of the invention is to rotate the exposed part of the landing gear, in particular the tire wheel in the forward direction. The rotational force uses the flow velocity energy of the opposing airflow as the flow velocity of the airflow passing through the projection surface of the tire wheel and its side surface. The flow velocity energy of the gas received by the exposed part was explained in [0008], but the rotation method for rotating the tire wheel in the forward direction is the circumferential part surface (tlet part) of the tire contact surface and the tire side part (shoulder part). 2 to the side part surface) The figure shape shown in the present invention [Fig. 2] is knife-cut to the torette part, and the shape is baked on the side part with a rubber material of the same quality as the tire component during the manufacturing process. . Alternatively, if there is a flexible, tough, lightweight, and excellent quality material, it is possible to bond a figure that has been cut by a method that does not peel off. An effect can also be obtained by attaching and installing a shape mechanism that induces the rotation shown in FIGS.
気流の流速により発明図形の形状物が受けるトルクがタイヤホイールの慣性重量に序々に打ち勝ちエネルギーが蓄積され回転が始まる。やがて気流の流速とタイヤホイールの周速は同速となる。航空機の大型機のタイヤホイールの直径は約1m強、タイヤ幅約0,6m強、タイヤホイール重量約100kg以上、タイヤホイールの円周長さ3.2m強、対気流の流速を約100m/sと見積もればホイールの回転数は秒速32回転、約1900,rpmとなる、従来マイナスの要因であった気流流速がタイヤホイールに考案図形の作用効果により回転エネルギーが与えられ自力回転した事となる。 The torque received by the shaped object of the invention figure by the flow velocity of the airflow gradually overcomes the inertia weight of the tire wheel, energy is accumulated, and rotation starts. Eventually, the flow velocity of the airflow and the peripheral speed of the tire wheel become the same. The diameter of the tire wheel of a large aircraft aircraft is about 1 m, tire width is about 0.6 m, tire wheel weight is about 100 kg or more, tire wheel circumferential length is over 3.2 m, and the airflow velocity is about 100 m / s. Thus, the rotation speed of the wheel is 32 rotations per second, about 1900 rpm, and the air flow velocity, which has been a negative factor in the past, is applied to the tire wheel by rotational energy due to the effect of the devised figure and is rotated by itself.
与えられたタイヤホイールの回転はここでは回転数約秒速32回転、重量約100kg以上のはずみ車となる。その慣性エネルギーは強大である。そのはずみ車的となる運動エネルギーは、E=1/2×G×V×V、ここで、Gは回転体の重量、Vは回転体の円周速度/秒、の式で計算できる。単純に計算すればこのスペックではタイヤホイール一本分の蓄積された回転エネルギー量は約500トン−メーターとなる。この莫大量の合計量を機体全滑走着陸輪がエネルギーを得た事となる。 The rotation of a given tire wheel is a flywheel having a rotation speed of about 32 rotations per second and a weight of about 100 kg or more. Its inertial energy is strong. The kinetic energy that becomes the flywheel can be calculated by the following equation: E = 1/2 × G × V × V, where G is the weight of the rotating body and V is the circumferential speed / second of the rotating body. If simply calculated, in this specification, the accumulated rotational energy for one tire wheel is about 500 tons-meter. This huge amount of the total amount of energy was obtained from the all-landing landing wheel.
機体全着陸輪が持つ回転エネルギーの総量の波及効果は、設計上に於いて特に着陸輪は、機体の安定のため機体の重心付近に位置設置されている。その関係上、はずみ車的となった慣性力は、機体の重心付近に於いて高効率にジャイロ効果を発揮し機体安定を惹起させる。タイヤホイールの回転方向軸及び姿勢は機体の水平面に対して垂直に位置されているので、慣性エネルギーとジャイロ効果は機体水平姿勢維持に十分寄与出来る手段となる。 The ripple effect of the total amount of rotational energy possessed by the entire landing ring of the fuselage is designed to be located near the center of gravity of the fuselage in order to stabilize the fuselage. In this connection, the inertial force that has become like a flywheel exerts a gyro effect with high efficiency in the vicinity of the center of gravity of the fuselage, and causes stability of the fuselage. Since the rotation direction axis and posture of the tire wheel are positioned perpendicular to the horizontal plane of the airframe, the inertial energy and the gyro effect are means that can sufficiently contribute to maintaining the horizontal posture of the airframe.
航空機体が着陸態勢に入る時、必ずその機体の持つ失速速度以上の速度で滑走路に進入しなければなれない、その対地速度は大型機の場合約時速200km〜300km以上である、従来その速度で静止している滑走路面にその摩擦速度で接触するのであるから対物体間には摩擦熱が発生してその熱による溶融蒸発消失の発生、摩擦面間の衝突と重量加重による破壊引きちぎり欠損の発生、等で摩擦物質間の強度的に弱い物質が初期に摩擦破損し消耗する。ここでは特殊強度化したコンクリート滑走路面対強靭化したゴムであるが、タイヤのゴム物質の特性上、最初に摩滅消耗する。 When an aircraft enters a landing position, it must always enter the runway at a speed greater than the stall speed of the aircraft. The ground speed is approximately 200 km to 300 km per hour for large aircraft. Because the frictional heat is generated between the objectives, the melting evaporation disappears due to the heat, the collision between the frictional surfaces and the fracture tearing defect due to weight load. The material that is weak in strength between the friction materials due to the occurrence of friction, etc., is initially frictionally damaged and consumed. Here, concrete runway surface with special strength versus toughened rubber is used, but it wears out first due to the characteristics of the rubber material of the tire.
その滑り時の摩擦を解消する為と機械効率的に最小の摩擦係数を示す回転体であるタイヤホイールを採用したのは正解である。がこのコロ的回転体の摩擦適用範囲は低中速時には有効であるが、高速時ではコロ効果は適用しない、この条件下での滑走路面のころがり摩擦の抵抗係数は最良の0.01である、(余談であるが滑走路面を油脂の油膜で覆えば摩擦抵抗係数は0.001となり機体の制動は不能となる)、が対地速度が高速度で滑走路面に瞬間接触した場合コロ的回転体はコロ自体の重量の持つ慣性力の踏ん張りと摩擦抵抗係数が示す接着性が在っても即時には慣性体であるため安易に反応回転はしない。この現象をタイヤホイールの慣性力解析の現場の状態に拡張展開しても物理的には同意義である。 In order to eliminate the friction at the time of sliding, it is a correct answer to adopt a tire wheel that is a rotating body that exhibits a minimum coefficient of friction in terms of mechanical efficiency. However, the friction application range of this roller rotating body is effective at low and medium speeds, but the roller effect is not applied at high speeds. The resistance coefficient of rolling friction on the runway surface under this condition is the best 0.01. (Although it is an aside, if the runway surface is covered with an oil film of oil and fat, the frictional resistance coefficient becomes 0.001 and the aircraft cannot be braked.) Even if there is a tension of the inertial force of the weight of the roller itself and the adhesion indicated by the frictional resistance coefficient, it does not rotate easily because it is an inertial body immediately. Even if this phenomenon is expanded to the actual state of the tire wheel inertial force analysis, it is physically equivalent.
従来の航空機のタイヤホイールは略回転していないと仮定すれば、その重量が持っている負として内在する慣性力は対地速度に非慣性の重量エネルギーとして即対応する[0016]に解説したように、それが瞬間高速摩擦状態を惹起させる原因を作る。所謂タイヤの構成物質が摩擦熱により焼損剥離が原因のタイヤスモークの発生でありその証明である。ここで着地の瞬間を定義して観る、機体の対地速度が時速250km〜300km、秒速70m〜83mでタッチダウンしたとすると瞬間と言う定義を1秒にするが0.5秒にするかはこの観点では左程重要ではない。滑走路面の敷居位置(スレッドショルド)付近には真っ黒なタイヤ痕が無数に20〜30m程度接着しているのを確認できる。これ即ちスリップ痕でありタイヤスモーク発生の証拠である。本考案はそのタイヤ部の摩擦スリップが原因によるフラットスポットの発生や異常磨耗によるタイヤ破損からそれら免責させるためのタイヤホイールを回転させる本発明の考案技術の開陳である。 Assuming that the tire wheels of conventional aircraft do not rotate substantially, the negative inertia inherent in their weight immediately corresponds to the ground speed as non-inertial weight energy, as explained in [0016]. , It causes the cause of instantaneous high speed friction state. A so-called tire constituent is the occurrence of tire smoke caused by burn-off delamination due to frictional heat, and this is evidence. If you touch down at a ground speed of 250 km to 300 km per hour and a speed of 70 m to 83 m per second, the moment is defined as 1 second. From the viewpoint, it is not as important as the left. It can be confirmed that an infinite number of black tire marks are adhered to the runway surface near the threshold (thread shoulder) about 20 to 30 m. This is a slip mark and evidence of the occurrence of tire smoke. The present invention is a disclosure of the inventive technique for rotating a tire wheel for exempting a tire from damage caused by generation of a flat spot due to friction slip of the tire portion or abnormal wear.
操縦者が最も恐れるのは着陸中に起こる不可抗力とも云えるバウンジング現象である。各空港にはその気象予報的防止対策の万全化を講じているが不慣れな空港であったり突発的に発生するダウンバーストの影響で最悪の事故が出来する。現在の気象予報監視技術の向上により滅多に判断ミスは起こらないとしても時々強烈なバウンジング現象でなくても中小程度のバウンジングは起こりえる、この時の着陸タイヤスリップ痕を見ると変に捩じれたような不整合な状態がみられる。本考案の技術の効果はそのバウンジング現象を大であれば小に小であれば無にと、せめてワンバウンド状態に止め置きさせる事が可能とさせる発明は重要な効果を含んでいる。 The most feared by the pilot is the bounce phenomenon that can be called force majeure during landing. Each airport has taken thorough measures to prevent weather forecasts, but it is an unfamiliar airport or the worst accident can be caused by the sudden downburst. Even if rarely misjudgment occurs due to improvement of current weather forecast monitoring technology, sometimes small and medium bounces can occur even if it is not a strong bounce phenomenon, looking at the landing tire slip trace at this time seems to be twisted strangely Inconsistent state is observed. The effect of the technology of the present invention includes an important effect that makes it possible to stop the bounce phenomenon in a one-bound state at least, if the bounce phenomenon is small or small.
ここでバウンジングの現象を詳細に1秒を100倍に拡大して仮に検証する、[0020]の項の条件で瞬間とした1秒間では滑走機体は約70m〜83m進行する。この時仮に地上約10mよりダウンバーストにより重力加速度1Gにて地上に叩き付けられたと仮定する。この時の航行降下角度は約8°となる、適正降下角度3°の3倍弱である、やがて着陸装置のタイヤホイールのタイヤが滑走路面に接触、そこでは0.1秒間で約1mの降下割合で緩衝装置が収縮し機体重量が掛かりやがて空気オレオ機能は収縮は完了する、(ここでは緩衝装置がオーバーロードになり機体構造が損壊されていないものと想定する)その収縮量は機体重量によって条件は大いに異なる。この重量の要素は重要なバウンドの跳ね返り係数となる、(極端に云えば機体重量が軽ければバウンジング等は起こらない所謂バネ下重量理論である)タイヤホイールが今回転しないと仮定して、一本分約245トン以上の慣性エネルギーがマイナス要素となりその負となった慣性エネルギー分を滑走路面に与える。所謂強烈なブレーキ現象の出来である、瞬間的な蹴躓き現象となる。 Here, the phenomenon of bouncing is verified in detail by enlarging 1 second by 100 times. In 1 second, which is instantaneous under the condition of [0020], the gliding body advances about 70 to 83 m. At this time, it is assumed that the ground was hit by ground acceleration at a gravitational acceleration of 1 G due to a downburst from about 10 m above the ground. The navigation descent angle at this time is about 8 °, which is slightly less than 3 times the appropriate descent angle of 3 °, and the tire wheel of the landing gear eventually comes into contact with the runway surface, where the descent is about 1 m in 0.1 seconds. The shock absorber contracts at a rate and the weight of the fuselage is increased, and the air oleo function is completely shrunk. (It is assumed here that the shock absorber is overloaded and the fuselage structure is not damaged.) The amount of shrinkage depends on the weight of the fuselage. The conditions are very different. This weight factor is an important bouncing bounce factor (extremely speaking, the so-called unsprung weight theory in which bouncing does not occur if the weight of the aircraft is light). Inertial energy of about 245 tons or more becomes a negative factor, and the negative inertial energy is given to the runway surface. This is a momentary kicking phenomenon, which is a so-called intense braking phenomenon.
この瞬間、機体重量にもよるが主脚の緩衝装置が収縮完了し今度は反動し伸張へと移行する。ブレーキ効果により機体はタイヤ軸付近を中心に緩衝装置の収縮後の伸張反動エネルギーと共に更に倍加し蹴躓く体勢を加速する、その瞬間今度は機首が路面に叩きつけられ機首部の緩衝装置に機体重量の一部が加速重となり、その緩衝装置が収縮しやがて復元し反発力の生成が機首の跳ね上がり体勢を惹起させ、主翼下面に悪質な気流を孕ませ翼失速を起させる、その繰り返しの連鎖が悪循環となるである。その繰り返し連鎖の周期パターンは機体の状態により不規則で千変万化である、その不規則さ故に優秀であるパイロットでも此の現象の出来時だけは安定化への制御出来ない。 At this moment, depending on the weight of the fuselage, the shock absorber of the main leg is completely contracted, and this time it reacts and shifts to extension. Due to the braking effect, the fuselage further doubles with the extension reaction energy after contraction of the shock absorber around the tire axis, accelerating the kicking posture, and at that moment the nose is hit against the road surface and the weight of the fuselage on the shock absorber at the nose Part of the accelerating weight, the shock absorber contracts and restores soon, and the generation of repulsive force causes the nose to jump up, creating a vigorous airflow on the lower surface of the main wing and causing the wing to stall. It becomes a vicious circle. The periodic pattern of the repetitive chain is irregular and inconsistent depending on the state of the aircraft. Because of the irregularity, even an excellent pilot cannot control stabilization only when this phenomenon occurs.
ここで仮定として一本分の約245トンの慣性エネルギーを従来の無策時とは逆に、先ず以ってタイヤホイールに順回転を付与して置けばどうなるか。が本発明考案の派生技術が示す実行効果の成果の期待である。バウンジングを起すきっかけの一部となる原因要素、即ちマイナスの慣性エネルギーが醸しだすブレーキ効果の負要素を解消させるための考案効果である。[0023]に示した状態に於いてタイヤホイールに着陸前既に考案が望む回転実態があればどうなるか、この場合降下時の巡航速度約時速360km、秒速100mとすると、この速度域に於いての着陸装置の脚出しであるので慣性エネルギーは500トン―メートルを超え既に十分の慣性エネルギーを獲得している。優に従来の着陸時に負の要素であった慣性エネルギー量の2倍量を今度は逆の推進駆動力としての活用である。 Here, assuming that about 245 tons of inertial energy for one bottle is reversely applied to the conventional case, what happens if a forward rotation is first applied to the tire wheel? Is the expectation of the result of the execution effect shown by the derivative technology of the present invention. This is a devised effect for eliminating the causal factor that becomes part of the trigger of bounce, that is, the negative factor of the brake effect caused by the negative inertia energy. In the state shown in [0023], what happens if the tire wheel already has a desired rotation before landing, in this case, assuming that the cruise speed when descending is about 360 km / h and the speed is 100 m / s, Since it is a landing gear, the inertial energy has already exceeded 500 ton-meters and has already acquired sufficient inertial energy. The amount of inertia energy, which was a negative factor at the time of conventional landing, is now used as a reverse driving force.
バウンジング状態時2段階目の機首部を路面に叩きつける悪性の機体行動の制御は機体の重心部下部に設置されているタイヤホイール全輪のはずみ車的な強烈な総合駆動力によって、この駆動力の効果はあたかも機首上げモーメントを瞬時に発生させ機首部の頭下げの芽を未然に防止する。バウンジングを唯のバウンドに変えその効力は二度と悪性の連鎖を繰り返させない。その結果機体姿勢は滑走路面に平行を保ちタイヤホイールのジャイロ効果と共に機体姿勢正常に回復させ優性へと連鎖を醸しだす。云はば、はずみ車的な能力が持つ強大なエネルギー力量を、直接タイヤホイールに瞬間的に強烈に滑走路面に接続させる、その駆動力の効果は正常姿勢に回復させるためのアブソバー的働きをする。この時の悪性・優性の機体姿勢の決定は瞬間を1秒とし70mの機体滑走距離に於いては数秒間数瞬間の行程間にて安否の原因を確定決定させる。唯一つの考案の効果は多くの優性効果を波及させ、その成果の連鎖効果は一石五鳥的となる、この単一なる発明効果は単独技術を集積した成果量にも匹敵する。 The control of the malignant aircraft behavior that hits the nose of the second stage against the road surface in the bounced state is the effect of this driving force due to the strong total driving force of the flywheels of all tire wheels installed at the lower part of the center of gravity of the aircraft It is as if the nose up moment is generated instantly to prevent head nose buds. Changing the bounce into a single bounce will never repeat the malignant chain. As a result, the aircraft posture is kept parallel to the runway surface, and the gyroscopic effect of the tire wheel is restored to normal aircraft posture, creating a chain of superiority. In other words, the powerful energy capacity of the flywheel-like ability is directly connected to the runway surface momentarily and directly to the tire wheel, and the effect of the driving force acts as an absolute to restore the normal posture. At this time, the malignant / dominant aircraft posture is determined by determining the cause of safety in the course of several seconds for a few seconds in the case of an aircraft running distance of 70 m with an instant of 1 second. The effect of only one device will spread many dominance effects, and the chain effect of the results will be like five birds with one stone. This single effect of the invention is comparable to the amount of results obtained by integrating single technologies.
従来の航空機では着陸時の瞬間、タイヤ本体が略静止状態であったとするため、滑走路面とタイヤホイールのタイヤ間に於いて高速度の摩擦スッリプが発生する、その原因に依る高熱度は、タイヤの構造材に特に剥離や燃焼消耗等を起させ所謂タイヤスモーク現象を起こす。タイヤ構造部材への浸食欠損主にフラットスポットの発生生成によりタイヤ本体の走行安全強度を著しく低下させる。本発明考案が首題とするタイヤに予め対地速度に見合うかそれ以上の回転を与えて置けばそれらの弊害は総てに於いて解決する。その解決効果は高価なタイヤの安全性を高め、使用期間を延長させ機体運航経済性にも寄与する。 In conventional aircraft, since the tire body is almost stationary at the moment of landing, a high-speed friction slip is generated between the runway surface and the tire of the tire wheel. In particular, this structural material causes peeling, combustion exhaustion, etc., so-called tire smoke phenomenon. The running safety strength of the tire body is significantly reduced by the generation and generation of flat spots, mainly erosion defects in the tire structural member. If the tire according to the present invention is preliminarily provided with a rotation corresponding to or faster than the ground speed, all the problems are solved. The solution effect increases the safety of expensive tires, extends the period of use and contributes to the economics of aircraft operation.
航空機が着陸時の態勢行程に於いて地面及び地形や地上構造物の影響で気流状態が乱れ不安定な状態にある。本発明が首題とするタイヤに予め回転を与えて置けば、その回転が及ぼす慣性エネルギー量と回転数が獲得するジャイロ効果により、蓄積されたその物理的質量が発揮する効果は、乱れた気流エネルギーの撹乱にも対処できる。更なる機体の着陸姿勢の安定化と操縦安定性に少なからず寄与できる。 The aircraft is in an unstable state due to the influence of the ground, topography, and ground structures during the landing process. If the tire which is the subject of the present invention is pre-rotated and placed, the effect of the accumulated physical mass due to the gyro effect acquired by the amount of inertial energy and the rotational speed exerted by the rotation is a turbulent airflow It can cope with energy disturbance. It can contribute to the stabilization of the landing posture of the aircraft and the stability of maneuvering.
航空機が着陸態勢行程の終端時、突発的異常な乱気流、下降気流の出来で機体が滑走路面に異常落下して叩きつけられる事が有る、機体構造が破壊されない状況の中から小程度のバウンドの繰り返し、所謂バウンジングの発生を初期の一回目のバウンド時に於いて、初期時間0.1秒(この時の機体の滑走距離は約7m程度)内で考案は発生原因の芽を消滅させる。この原理は本考案が首題とするタイヤに予め対地速度に見合うか、それ以上の回転が内包させている慣性エネルギー量を与える事により、タイヤホイールのはずみ車的な瞬発的に放出する駆動力の活用である。機体構造が破壊される状況のバウンジングの発生の最悪の場合にも考案効果は破損被害や被害範囲の程度を軽度化させる。 When the aircraft is at the end of the landing posture, suddenly abnormal turbulence and downdraft may cause the aircraft to fall and hit the runway surface. The so-called bounce occurs at the first time of the first bounce, and the device eliminates the bud that caused the occurrence within an initial time of 0.1 seconds (the sliding distance of the aircraft is about 7 m at this time). The principle of this invention is that the tire wheel, which is the subject of the present invention, gives the amount of inertial energy that corresponds to the ground speed in advance or that the rotation further includes, so that the driving force of the tire wheel can be instantaneously released. It is utilization. Even in the worst case of the occurrence of bounce in the situation where the airframe structure is destroyed, the effect of the idea will reduce the degree of damage and extent of damage.
本発明のタイヤホイールに回転を与えさせる手段の形状機能の付与によりタイヤホイールを回転させるが、回転させるエネルギーの原資は、脚出しの瞬間からの気流の気流速度の活用である本来有害であった物の有用活用である。ここには機体内のエネルギー原資の使用支出は一切無い。これは有害要素を有益要素に転化するエネルギー原資の創出有用活用のである。 The tire wheel is rotated by imparting the shape function of the means for giving rotation to the tire wheel of the present invention, but the source of energy to rotate was inherently harmful, which is the utilization of the airflow velocity of the airflow from the moment of stepping out. Useful use of things. There is no spending on the energy resources in the aircraft. This is the creation and effective use of energy resources to convert harmful elements into useful elements.
本発明の技術による航空機航行の安定性安全性への寄与は前項迄に述べた、ここで運航経費に付いて検証してみる。タイヤホイールの損傷消耗の軽度化により整備上の時間と経済性向上、機体本体への過負荷応力の減少化による機体の長期温存化、タイヤ内部の毀損復歴の内包による突然の破裂(バースト)による特に主翼構造材の破損の減少化、トラブル発生による運航停止による信用失墜と運航収入の減少損失、等は正常な運航経営であるべきところの損害の出来を防止する。考案の効果はそれらの有害因子の発生を抑止させる。 The contribution of the technology of the present invention to the stability and safety of aircraft navigation will be verified with respect to the operating expenses described above. Improvement of maintenance time and economy by reducing tire wheel damage and wear, long-term preservation of the aircraft by reducing overload stress on the fuselage, and sudden burst due to inclusion of damage history inside the tire In particular, the reduction of damage to the main wing structural materials, loss of credit due to suspension of operation due to trouble, and loss of operational revenue, etc., prevent the occurrence of damage that should be in normal operational management. The effect of the device suppresses the generation of those harmful factors.
本発明の技術による効果は前項迄に述べたがその一石五鳥的波及効果の成因は、唯一つタイヤホイールが対向する気流の気流速エネルギーを[図1,2,3,4]に示す考案装置により受け止めるだけで良い。それにより高速の気流エネルギーは、タイヤホイールの重量に回転エネルギーを注入しやがてタイヤホイールの周速度と気流速が同相か其れ以上にする事により考案の首題は完結する。本発明考案以外の機体構造要素は既に完成され尽くしているので本考案は関知する所ではない。 Although the effects of the technology of the present invention have been described in the previous section, the cause of the one-storied and five-bird ripple effect is that the air velocity energy of the airflow opposed to the tire wheel is shown in [Fig. All you have to do is catch it with the device. As a result, high speed air flow energy injects rotational energy into the weight of the tire wheel, and eventually the peripheral speed of the tire wheel and the air flow velocity are in phase or higher, thereby completing the title of the idea. Since the airframe structural elements other than those of the present invention have already been completed, the present invention is not related.
本発明の首題はタイヤホイールを対気流の風圧力に依って巡方向に回転させる事に在る。ここではタイヤ部特にタイヤショルダー部、サイド部に考案の図形を製造工程終盤時の焼付け成型時に完了させる、製造の難易度は現在一般のタイヤサイドの精密刻印の技術の延長で以って凸型肉盛成型をさせる、製造の可能性の成否は十分的に製造は可能である。タイヤ円周の外周部トレット部への考案図形の形状構築は現在のタイヤ製造工程で云われるナイフカットと同技術にて凹型溝構造で成型させる。 The subject of the present invention is to rotate the tire wheel in the cyclic direction depending on the wind pressure of the airflow. Here, the invented figure is completed at the end of the manufacturing process at the end of the manufacturing process, and the difficulty of manufacturing is raised by extending the technology of precision stamping on the general tire side. The success or failure of the possibility of manufacturing, which allows the build-up molding, can be sufficiently manufactured. The shape construction of the idea figure on the outer peripheral part of the tire circumference is formed with a concave groove structure by the same technique as the knife cutting used in the current tire manufacturing process.
金属ホイール部への順方向の回転を起させる機能装置は現在航空機の金属ホイールは大部分アルミニユーム合金製である事を考慮しなければならない。[図3,4]示す考案型式の構造はホイール部本体に簡単に脱着が可能とする。この脱着が安易に可能である事は整備性、特にタイヤ交換時に支障を来たさない。アルミニユーム合金製は鋼鈑に比べ比較的軟らかいがホイール部本体には発明考案装置は損傷や害を与える事は無いが少々難がある。 Functional devices that cause forward rotation to the metal wheel section must take into account that aircraft metal wheels are now mostly made of aluminum alloy. [FIGS. 3 and 4] The structure of the device type shown in FIG. 3 can be easily attached to and detached from the wheel body. The fact that this attachment / detachment can be easily performed does not hinder maintenance, particularly when changing tires. Although the aluminum alloy is relatively soft compared to the steel plate, the inventive device does not cause damage or harm to the wheel body, but is somewhat difficult.
この考案装置の形状は本体ホイール部の外形部表面形状にぴったり勘合するインナーライナー状となる、その本体ホイール部リム部付近のライナーリング部に、所謂気象観測器の風力測定器の気流受け皿様形状か、その効果に見合う形状物をライナーのリム部円周線上に配置する。但しこの受け皿形状は想定以上の風圧力を設計要素に吟味の上、耐え得るような強度の確保と形状にしなければならない。 The shape of this device is an inner liner shape that fits closely with the outer surface shape of the main body wheel part. The liner ring part near the rim part of the main body wheel part has an airflow saucer-like shape of a so-called meteorological wind measuring instrument. Alternatively, a shape corresponding to the effect is arranged on the rim portion circumferential line of the liner. However, the shape of the tray must be designed to ensure the strength and strength to withstand after considering the wind pressure above the design factor.
インナーライナーが受ける風圧応力によるホイール部へに対する回り止めはホイール部ランド部に埋め込まれた4本のスタットボルトにて制止させる。インナーライナーには4本のスタットボルトに咬み合う風圧力により、自動的に密着を画策した斜め切りのスリットを設け密着を促す、完全に密着を完了した後スタットボルトによりホイール部とインナーライナー両部はナット締めにより固定締結されセットは完了となる。 The rotation of the inner liner against the wheel due to wind pressure stress is restrained by four stat bolts embedded in the wheel land. The inner liner is provided with a diagonally cut slit designed to automatically contact with the wind pressure engaged with the four stat bolts to promote close contact. After complete close contact, both the wheel and inner liner are The set is completed by fastening with nuts.
タイヤ本体の本発明の主旨を全するタイヤ本体のインナーライナーの形成製造は、本発明の設計図形に習い従来からタイヤ製造を専門とする製造メーカーにお願いする、その製造過程は従来の普遍的技術的範囲内であり、其処には製造上の難易度は存在はしない。 The formation of the inner liner of the tire body that fulfills the gist of the present invention of the tire body is requested by a manufacturer who specializes in tire production according to the design figure of the present invention, the manufacturing process is a conventional universal technology There is no manufacturing difficulty there.
ホイール部本体へ取り付ける本発明の主旨を全する形成製作は、気流風速を受けるべき回転駆動に資する風車的風力エネルギーの受け皿部と、ホイール部本体の外形表面円形部形状に密着させた形状の回転応力受け部分と、所謂インナーライナー的な胴部とに分割される。分割されたとする二部品を一体構造とにする製作には、剛性的には優秀性は認められるが製作的に難問が発生する、そのため製造するための経費は高額なものとなる、本発明の製造方法には費用対効果上それらは望まない。 Forming and manufacturing that fulfills the gist of the present invention to be attached to the wheel body is a windmill-like wind energy receiving tray that contributes to the rotational drive that should receive the airflow wind speed, and the rotation of the shape in close contact with the circular shape of the outer surface of the wheel body It is divided into a stress receiving portion and a so-called inner liner body. In making the two parts that are divided into an integral structure, excellent rigidity is recognized, but difficulty in manufacturing occurs, so that the cost for manufacturing becomes expensive. Manufacturing methods do not want them cost-effectively.
本発明の主願としてはインナーライナー的な発明機体全体の本体を円周方向に2〜3分割にして、その各部品の使用材質を抗張力鋼板製とする、鋼製とする事により溶接性は安易自在となり、図3,に示すリム部のスプーン状的な複雑な形状の製作も溶接構造にする事により安易となる、又設計変更の対処にも即応できる、近代の精密溶接技術全般の向上はそれらの製作には本発明の強度要求上何等形状維持や強度的に問題はない。 As the main application of the present invention, the main body of the entire inner liner-like invention body is divided into two or three parts in the circumferential direction, and the use material of each part is made of tensile strength steel plate. Improvement of the modern precision welding technology in general, making it easy to make a complicated rim-shaped spoon shape as shown in Fig. 3 by using a welded structure and adapting to design changes. However, there is no problem in maintaining the shape or the strength in the manufacture of these because of the strength requirement of the present invention.
図3,に示すリム形状部へのスプーン状かそれに同等の形状の風力受け皿をリム形状部と固定一体構造とせずにスプーン的皿状単体部分のみを3L部に於いて脱着可能構造として、あらゆる使用条件に適応対応させる様な脱着可能な状態にする事もできる。これは蒸気タービンの羽根車先端部である蒸気圧力受け羽根部の、風車部品の埋め込み脱着可能方式(クリスマスツリー型埋め込み方式)の延長方法か、[図3]3Lに示す簡便なワンタッチ脱着機構で同等の成果を発揮する技術を用いてもよい。 As shown in Fig. 3, the spoon-shaped wind saucer to the rim-shaped part or the equivalent shape is not fixed to the rim-shaped part, and only the spoon-shaped single-piece part is detachable in the 3L part. It can also be made removable so that it can be adapted to the usage conditions. This is an extension method of the method of embedding / removing wind turbine components (Christmas tree type embedding method) of the steam pressure receiving vane, which is the tip of the impeller of the steam turbine, or [Fig. 3] with a simple one-touch desorption mechanism shown in 3L. You may use the technology which shows the equivalent result.
2A 風力受けトレット部ナイフカット溝A―A´のA部面が風力受け部
2B 風力受けタイヤショルダーからサイド部凸部B―B´部B´面が風力受け部
3A ホイール横断面
3B 気流受け機能部取り付けインナーライナー本体
3C インナーライナー取り付け風力受け皿装置模式原理図
3D ホイール部への埋め込みスタットボールトか貫通ボルト、4本
3E インナーライナー回り止めと密着機能兼用のスリット機構
3F 風力受け皿、原理図
3G インナーライナー本体3分割の組み立て部の溶接箇所、一体構造の場合は不要
3H 航空機タイヤ
3I 風力受け皿、側面形模式原理図
3J インナーライナー本体への風力受け皿取り付けボルト及びワンッタチ締結装置
3K 風圧抗力ステー
3L 風車部品単体脱着ワンタッチ装置部
4A インナーライナー3分割部の最内部ライナー
4B インナーライナー回転応力方向
4C 風力流受け皿応力方向
4D スッタトボルト
4E スッタトボルトへの締結用緩み止め特殊ナットと平ワッシャー
4F ホイール本体の断面
4G インナーライナー本体の断面2A Wind-power receiving tret section A-side surface of knife cut groove A-A 'is wind-power receiving section 2B Wind-power receiving tire shoulder to side portion convex section B-B' section B'-surface is wind-
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013158248A JP2015016847A (en) | 2013-07-11 | 2013-07-11 | Improvement of operation stability achieved by effect of rotation drive of aircraft tire wheel due to airflow velocity and profit-and-loss effect due to tire damage safety |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013158248A JP2015016847A (en) | 2013-07-11 | 2013-07-11 | Improvement of operation stability achieved by effect of rotation drive of aircraft tire wheel due to airflow velocity and profit-and-loss effect due to tire damage safety |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015016847A true JP2015016847A (en) | 2015-01-29 |
Family
ID=52438270
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013158248A Pending JP2015016847A (en) | 2013-07-11 | 2013-07-11 | Improvement of operation stability achieved by effect of rotation drive of aircraft tire wheel due to airflow velocity and profit-and-loss effect due to tire damage safety |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015016847A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170113001A (en) * | 2016-03-28 | 2017-10-12 | 가부시키가이샤 고마쓰 세이사쿠쇼 | Assesment device and assessment method |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60128098A (en) * | 1983-12-15 | 1985-07-08 | 落合 鶴之亮 | Wheel for aircraft |
JPS60110200U (en) * | 1983-12-29 | 1985-07-26 | 高橋 克彦 | airplane wheels |
JPS63199200A (en) * | 1987-02-16 | 1988-08-17 | 長川 文雄 | Wheel for aircraft |
JPH09254892A (en) * | 1996-03-21 | 1997-09-30 | U Giken Kogyo Kk | Wheel for aircraft |
JPH10100995A (en) * | 1996-09-27 | 1998-04-21 | Usui Toshinori | Stream lining device for air flow behind aircraft wheel and reducing device for tire wear |
JP2001146199A (en) * | 1999-11-19 | 2001-05-29 | Takuji Sato | Aerodynamically rotatable aircraft wheel |
JP2002154485A (en) * | 2000-11-21 | 2002-05-28 | Ishikawajima Harima Heavy Ind Co Ltd | Landing gear for aircraft and tire for aircraft |
JP2004058978A (en) * | 2002-07-29 | 2004-02-26 | Yukitaka Urasato | Aircraft tire and rim having blade like windmill to reduce friction, shock or the like between tire and runway when aircraft is landing |
US20040065771A1 (en) * | 2002-10-03 | 2004-04-08 | Snyder Arnold J. | Aircraft wheels having vanes |
-
2013
- 2013-07-11 JP JP2013158248A patent/JP2015016847A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60128098A (en) * | 1983-12-15 | 1985-07-08 | 落合 鶴之亮 | Wheel for aircraft |
JPS60110200U (en) * | 1983-12-29 | 1985-07-26 | 高橋 克彦 | airplane wheels |
JPS63199200A (en) * | 1987-02-16 | 1988-08-17 | 長川 文雄 | Wheel for aircraft |
JPH09254892A (en) * | 1996-03-21 | 1997-09-30 | U Giken Kogyo Kk | Wheel for aircraft |
JPH10100995A (en) * | 1996-09-27 | 1998-04-21 | Usui Toshinori | Stream lining device for air flow behind aircraft wheel and reducing device for tire wear |
JP2001146199A (en) * | 1999-11-19 | 2001-05-29 | Takuji Sato | Aerodynamically rotatable aircraft wheel |
JP2002154485A (en) * | 2000-11-21 | 2002-05-28 | Ishikawajima Harima Heavy Ind Co Ltd | Landing gear for aircraft and tire for aircraft |
JP2004058978A (en) * | 2002-07-29 | 2004-02-26 | Yukitaka Urasato | Aircraft tire and rim having blade like windmill to reduce friction, shock or the like between tire and runway when aircraft is landing |
US20040065771A1 (en) * | 2002-10-03 | 2004-04-08 | Snyder Arnold J. | Aircraft wheels having vanes |
Non-Patent Citations (1)
Title |
---|
JPN6015032152; Henry F. Shippel: 'PREROTATION of LANDING GEAR WHEELS' SAE Jounal Vol. 52, No. 10, 194410, p. 486-491, SOCIETY OF AUTOMOTIVE ENGINEERS * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170113001A (en) * | 2016-03-28 | 2017-10-12 | 가부시키가이샤 고마쓰 세이사쿠쇼 | Assesment device and assessment method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2014242601B2 (en) | Semi-automatic collective pitch mechanism for a rotorcraft | |
JP6522614B2 (en) | Aircraft autonomous push back | |
US7866605B2 (en) | Energy absorbing impact band and method | |
CN101557981B (en) | Airborne platform and method for improving performance thereof | |
AU2017208465A1 (en) | Turbine system for saving energy in a vehicle | |
JP5763818B1 (en) | Aircraft tire | |
KR101967249B1 (en) | Drone | |
CA2959433C (en) | Fan case for an aircraft engine | |
CN103085978B (en) | Aircraft equipped with a buoyancy system of a rotating element | |
CN204606224U (en) | A kind of unmanned plane landing damping device | |
JP2015016847A (en) | Improvement of operation stability achieved by effect of rotation drive of aircraft tire wheel due to airflow velocity and profit-and-loss effect due to tire damage safety | |
JPWO2012105037A1 (en) | Airplane wheel rotation drive device | |
US20040065771A1 (en) | Aircraft wheels having vanes | |
CA2458607C (en) | Aircraft wheel support mechanism | |
JP6219465B1 (en) | Aircraft tire | |
WO2013004070A1 (en) | Spherical saucer-shaped aviation aircraft | |
JP2004058978A (en) | Aircraft tire and rim having blade like windmill to reduce friction, shock or the like between tire and runway when aircraft is landing | |
Crider et al. | Simulation modeling requirements for loss-of-control accident prevention of turboprop transport aircraft | |
GB2534999A (en) | Propeller for an aircraft turbomachine, including a blade retaining structure through which the aerodynamic part of each blade passes | |
KR100844451B1 (en) | The air frame of adhersive airplane tire | |
US3004738A (en) | Aircraft landing wheel rotating means | |
JP2008254628A (en) | Tire wear reducing device for aircraft | |
US20040104305A1 (en) | Aircraft wheel spin-up rotor | |
Heinzen | Flight testing of the free-to-pitch variable pitch propeller | |
CN207562346U (en) | Finger tip glide vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141027 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150730 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150901 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20160126 |