JP2015014022A - Corrosion resistance imparting method of cylindrical body made of stainless steel - Google Patents

Corrosion resistance imparting method of cylindrical body made of stainless steel Download PDF

Info

Publication number
JP2015014022A
JP2015014022A JP2013140248A JP2013140248A JP2015014022A JP 2015014022 A JP2015014022 A JP 2015014022A JP 2013140248 A JP2013140248 A JP 2013140248A JP 2013140248 A JP2013140248 A JP 2013140248A JP 2015014022 A JP2015014022 A JP 2015014022A
Authority
JP
Japan
Prior art keywords
nitrogen
stainless steel
cylindrical body
corrosion resistance
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2013140248A
Other languages
Japanese (ja)
Inventor
宏典 青山
Hironori AOYAMA
宏典 青山
角田 佳介
Keisuke Tsunoda
佳介 角田
金澤 孝明
Takaaki Kanazawa
孝明 金澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013140248A priority Critical patent/JP2015014022A/en
Publication of JP2015014022A publication Critical patent/JP2015014022A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a corrosion resistance imparting method capable of improving corrosion resistance by suppressing generation of chromium nitride on the inner surface part side, even in the case of a cylindrical body made of stainless steel.SOLUTION: A corrosion resistance imparting method of a cylindrical body made of stainless steel includes: a nitrogen absorption step in which the cylindrical body made of stainless steel is heated under a gaseous nitrogen atmosphere so as to allow the stainless steel to absorb nitrogen, and then cooled by gas so as to be austenitized; and a nitrogen solid solution step in which the cylindrical body having passed through the nitrogen absorption step is reheated under the gaseous nitrogen atmosphere, and then chilled quickly.

Description

本発明は、ステンレス鋼製の筒体の耐食性付与方法に関する。   The present invention relates to a method for imparting corrosion resistance to a stainless steel cylinder.

従来、ステンレス鋼について耐食性を高める耐食性付与方法として、フェライトステンレス鋼を加熱炉内において1100〜1250℃の窒素ガス雰囲気中で加熱し、該フェライトステンレス鋼に窒素を吸収させる窒素吸収工程を行った後、急冷して該フェライトステンレス鋼の一部または全部をオーステナイト化する工程を含む方法が知られている(例えば、特許文献1参照)。   Conventionally, as a corrosion resistance imparting method for improving the corrosion resistance of stainless steel, after ferritic stainless steel is heated in a nitrogen gas atmosphere at 1100 to 1250 ° C. in a heating furnace, and after performing a nitrogen absorption step in which the ferritic stainless steel absorbs nitrogen A method including a step of quenching to austenite part or all of the ferritic stainless steel is known (for example, see Patent Document 1).

こうした耐食性付与方法で製造されたステンレス鋼は、例えば高耐食性が要求される固体高分子燃料電池のセパレータに用いられる。   Stainless steel manufactured by such a method for imparting corrosion resistance is used, for example, as a separator for a polymer electrolyte fuel cell that requires high corrosion resistance.

特開2012−92413号公報JP 2012-92413 A

しかしながら、従来のステンレス鋼の耐食性付与方法では、例えば固体高分子燃料電池のセパレータのような板状部材に対しては有効であるが、例えば車両に搭載される排気系部品のような中空形状(例えば箱型状など)の筒体に対しては、上述の窒素吸収工程を適用すると、筒体の内面部側と外面部側とで冷却速度に差が生じてしまう。特に、筒体の内面部側は、外面部側に対して冷却速度が遅いため、クロム窒化物(CrN、CrN)が形成され、耐食性を悪化させるおそれがある。 However, the conventional method for imparting corrosion resistance to stainless steel is effective for a plate-like member such as a separator of a solid polymer fuel cell, for example, but a hollow shape such as an exhaust system component mounted on a vehicle (for example) For example, when the above-described nitrogen absorption process is applied to a cylindrical body having a box shape or the like, a difference occurs in the cooling rate between the inner surface portion side and the outer surface portion side of the cylindrical body. In particular, the inner surface portion side of the cylinder has a slower cooling rate than the outer surface portion side, so that chromium nitride (Cr 2 N, CrN) is formed, which may deteriorate the corrosion resistance.

本発明は、上述のような事情に鑑みてなされたもので、ステンレス鋼製の筒体であっても内面部側でクロム窒化物の発生を抑制して耐食性を向上させることができる耐食性付与方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and a corrosion resistance imparting method capable of improving the corrosion resistance by suppressing the generation of chromium nitride on the inner surface side even in the case of a stainless steel cylinder. The purpose is to provide.

本発明に係るステンレス鋼製の筒体の耐食性付与方法は、上記目的達成のため、(1)ステンレス鋼製の筒体を窒素ガス雰囲気中で加熱して前記ステンレス鋼に窒素を吸収させた後、ガス冷却してオーステナイト化する窒素吸収工程と、前記窒素吸収工程を経た前記筒体を窒素ガス雰囲気中で再加熱した後、急冷する窒素固溶工程と、を含むことを特徴とする。   In order to achieve the above object, the method for imparting corrosion resistance to a stainless steel cylinder according to the present invention is as follows: (1) after the stainless steel cylinder is heated in a nitrogen gas atmosphere to allow the stainless steel to absorb nitrogen And a nitrogen absorption step of austenitizing by gas cooling, and a nitrogen solid solution step of rapidly cooling the cylindrical body that has undergone the nitrogen absorption step after reheating in a nitrogen gas atmosphere.

本発明に係るステンレス鋼製の筒体の耐食性付与方法によれば、窒素吸収工程の後に、オーステナイト化された筒体を窒素ガス雰囲気中で再加熱した後、急冷する窒素固溶工程を行うので、同工程の再加熱により筒体の内面部側で発生したクロム窒化物を再固溶させ、同工程の急冷により高濃度窒素固溶層を得ることができる。これにより、窒素吸収工程の後に窒素固溶工程を実施することで、ステンレス鋼製の筒体であっても内面部側でクロム窒化物の発生を抑制して耐食性を向上させることができる。   According to the method for imparting corrosion resistance of a stainless steel cylinder according to the present invention, after the nitrogen absorption process, the austenitized cylinder is reheated in a nitrogen gas atmosphere, and then a nitrogen solid solution process is performed in which it is rapidly cooled. The chromium nitride generated on the inner surface side of the cylindrical body by reheating in the same process can be re-dissolved, and a high concentration nitrogen solid solution layer can be obtained by rapid cooling in the same process. Thereby, by implementing a nitrogen solid solution process after a nitrogen absorption process, even if it is a stainless steel cylinder, generation | occurrence | production of chromium nitride can be suppressed by the inner surface part side, and corrosion resistance can be improved.

本発明によれば、ステンレス鋼製の筒体であっても内面部側でクロム窒化物の発生を抑制して耐食性を向上させることができる耐食性付与方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, even if it is a stainless steel cylinder, the corrosion-resistance provision method which can suppress generation | occurrence | production of chromium nitride by the inner surface part side and can improve corrosion resistance can be provided.

本発明の実施の形態に係るステンレス鋼製の筒体の耐食性付与処理を示す図であって、(a)は窒素吸収工程、(b)は窒素固溶工程を示す。It is a figure which shows the corrosion resistance provision process of the stainless steel cylinder which concerns on embodiment of this invention, Comprising: (a) shows a nitrogen absorption process, (b) shows a nitrogen solid solution process. 本発明の実施の形態に係る耐食性付与処理のヒートサイクルを示すグラフであって、(a)は窒素吸収工程のヒートサイクル、(b)は窒素固溶工程のヒートサイクルを示す。It is a graph which shows the heat cycle of the corrosion resistance provision process which concerns on embodiment of this invention, Comprising: (a) shows the heat cycle of a nitrogen absorption process, (b) shows the heat cycle of a nitrogen solid solution process. 本発明の実施の形態に係る筒体の内面部の組織変化を示す図であって、(a)は窒素吸収工程後の内面部組織、(b)は窒素固溶工程後の内面部組織を示す。It is a figure which shows the structure | tissue change of the inner surface part of the cylinder which concerns on embodiment of this invention, Comprising: (a) is an inner surface part structure | tissue after a nitrogen absorption process, (b) is an inner surface part structure | tissue after a nitrogen solid solution process. Show. 従来の窒素吸収処理の概要を示す図であって、(a)はその窒素吸収処理の処理工程を示す図であり、(b)はその窒素吸収処理のヒートサイクルを示すグラフである。It is a figure which shows the outline | summary of the conventional nitrogen absorption process, (a) is a figure which shows the process process of the nitrogen absorption process, (b) is a graph which shows the heat cycle of the nitrogen absorption process.

以下、本発明の実施の形態について、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本実施の形態に係る耐食性付与処理が施されるステンレス鋼製の筒体としては、例えば車両等に搭載される排気系部品等が挙げられ、特に凝縮水に対する耐食性が要求されるEGRクーラなどの排気系部品が挙げられる。ここで、筒体とは、少なくとも一部に開口端を有するものである。また、上述の筒体には、例えば円筒形状以外に角筒形状(例えば箱型形状)が含まれる。   Examples of the stainless steel cylinder subjected to the corrosion resistance imparting process according to the present embodiment include exhaust system parts mounted on vehicles and the like, and in particular, EGR coolers that require corrosion resistance against condensed water. Exhaust system parts are listed. Here, the cylindrical body has an open end at least in part. Further, the above-described cylinder includes, for example, a square cylinder shape (for example, a box shape) in addition to the cylindrical shape.

本実施の形態では、筒体の素材となるステンレス鋼材として、耐食性に優れたステンレス鋼材(例えばSUS447J1等)を用いている。具体的には、化学成分組成(単位:質量%)として、例えば下記(1)〜(3)を含み、残部を鉄(Fe)および不可避不純物からなるものを用いることができる。
(1)クロム(Cr)を15.0%〜30.0%
(2)モリブデン(Mo)を0.0%〜4.0%
(3)窒素(N)は0.4%〜2.0%
In the present embodiment, a stainless steel material (for example, SUS447J1 etc.) having excellent corrosion resistance is used as the stainless steel material used as the material of the cylindrical body. Specifically, as the chemical component composition (unit: mass%), for example, the following (1) to (3) can be used, and the balance is composed of iron (Fe) and inevitable impurities.
(1) 15.0% to 30.0% of chromium (Cr)
(2) 0.0% to 4.0% molybdenum (Mo)
(3) Nitrogen (N) is 0.4% to 2.0%

なお、窒素(N)は、処理時に添加される。また、上記フェライトステンレス鋼としては、必要に応じてマンガン(Mn)、ニオブ(Nb)を上記(1)〜(3)に加えて含有させてもよい。   Nitrogen (N) is added during the treatment. Moreover, as said ferritic stainless steel, you may contain manganese (Mn) and niobium (Nb) in addition to said (1)-(3) as needed.

次に、図1〜図3を参照して、上述のフェライトステンレス鋼を素材として加工された筒体の耐食性付与処理について説明する。   Next, with reference to FIGS. 1-3, the corrosion resistance provision process of the cylinder processed using the above-mentioned ferritic stainless steel as a raw material is demonstrated.

図1(a)、図1(b)に示すように、本実施の形態に係る耐食性付与処理は、窒素吸収工程と窒素固溶工程とから構成されている。   As shown in FIGS. 1A and 1B, the corrosion resistance imparting process according to the present embodiment includes a nitrogen absorption process and a nitrogen solid solution process.

窒素吸収工程では、図1(a)に示すように、炉1において多数個の筒体2を同時に処理するバッチ処理が用いられる。ここで、炉1は、ステンレス鋼製の筒体2を例えば50〜400kPaに加圧された窒素ガス(N)雰囲気中で加熱してステンレス鋼に窒素を吸収させる窒素吸収処理を行う加熱室3と、加熱室3で窒素が吸収されたステンレス鋼を加圧された窒素ガス(N)によってガス冷却してオーステナイト化するガス冷却処理を行う冷却室4とを、少なくとも備えている。 In the nitrogen absorption process, as shown in FIG. 1A, a batch process is used in which a large number of cylinders 2 are simultaneously processed in a furnace 1. Here, the furnace 1 is a heating chamber in which a stainless steel cylinder 2 is heated in, for example, a nitrogen gas (N 2 ) atmosphere pressurized to 50 to 400 kPa to perform nitrogen absorption treatment in which the stainless steel absorbs nitrogen. 3 and a cooling chamber 4 for performing a gas cooling process in which the stainless steel in which nitrogen has been absorbed in the heating chamber 3 is gas-cooled with pressurized nitrogen gas (N 2 ) to form austenite.

したがって、窒素吸収工程では、まず炉1内において複数個の筒体2が加熱室3に投入され、加熱室3内が例えば50〜400kPaに加圧された窒素ガス(N)で充満される。次いで、加熱室3に投入された複数個の筒体2に対して、窒素ガス(N)雰囲気中で図示しない加熱装置により所定温度(例えば、1100℃〜1260℃の範囲)まで加熱させる窒素吸収処理を行う。この窒素吸収処理によって、各筒体2のステンレス鋼がオーステナイト化される。その後、加熱室3内において昇温された複数個の筒体2を、一定時間(例えば、30min〜720min)、所定温度で均熱保持する。これにより、各筒体2のステンレス鋼に対して窒素(N)を吸収させる。 Therefore, in the nitrogen absorption process, first, a plurality of cylinders 2 are put into the heating chamber 3 in the furnace 1, and the inside of the heating chamber 3 is filled with nitrogen gas (N 2 ) pressurized to, for example, 50 to 400 kPa. . Next, nitrogen is heated to a predetermined temperature (for example, a range of 1100 ° C. to 1260 ° C.) by a heating device (not shown) in a nitrogen gas (N 2 ) atmosphere with respect to the plurality of cylinders 2 put into the heating chamber 3. Perform absorption treatment. By this nitrogen absorption treatment, the stainless steel of each cylinder 2 is austenitized. Thereafter, the plurality of cylinders 2 that have been heated in the heating chamber 3 are kept soaked at a predetermined temperature for a predetermined time (for example, 30 min to 720 min). Thereby, nitrogen (N) is absorbed with respect to the stainless steel of each cylinder 2.

その後、窒素吸収工程では、均熱保持された状態で一定時間が経過すると、加熱室3と冷却室4との間の断熱扉(図示せず)を開き、図示しない搬送手段によって複数個の筒体2を加熱室3から冷却室4に搬送する。複数個の筒体2が冷却室4に搬送されると、断熱扉を閉じ、冷却室4内に例えば600kPaに加圧された窒素ガス(N)を吹き込み、所定の冷却速度(例えば、6℃/sec)で例えば室温程度までガス冷却するガス冷却処理を行う。 Thereafter, in the nitrogen absorption process, when a certain period of time elapses with the temperature maintained, a heat insulating door (not shown) between the heating chamber 3 and the cooling chamber 4 is opened, and a plurality of cylinders are conveyed by a conveying means (not shown). The body 2 is transferred from the heating chamber 3 to the cooling chamber 4. When the plurality of cylinders 2 are conveyed to the cooling chamber 4, the heat insulating door is closed, nitrogen gas (N 2 ) pressurized to 600 kPa, for example, is blown into the cooling chamber 4, and a predetermined cooling rate (for example, 6 Gas cooling treatment is performed in which the gas is cooled to about room temperature, for example.

ガス冷却用の冷却ガスとしては、各種の不活性ガスを用いることができる。本実施の形態では、冷却ガスとして窒素ガス(N)を用いることとした。また、本実施の形態では、これら2つの処理(窒素吸収処理、ガス冷却処理)により窒素吸収工程が構成されている。 Various inert gases can be used as the cooling gas for gas cooling. In this embodiment, nitrogen gas (N 2 ) is used as the cooling gas. Moreover, in this Embodiment, the nitrogen absorption process is comprised by these two processes (nitrogen absorption process, gas cooling process).

ここで、窒素吸収工程における筒体2の内面部側の組織変化について、図2(a)に示すヒートサイクルと併せて説明する。   Here, the structure change on the inner surface side of the cylindrical body 2 in the nitrogen absorption process will be described together with the heat cycle shown in FIG.

図2(a)に示すように、まず筒体2を所定温度まで昇温させる際には、筒体2の内面部側および外面部側の組織は、ともにフェライト(α)相である。その後、筒体2の内面部側および外面部側の組織は、ともに窒素吸収処理の昇温に伴いフェライト(α)相からオーステナイト(γ)相に変態する。そして、所定温度で均熱保持されている間(一定時間)、筒体2の内面部側および外面部側の組織は、オーステナイト(γ)相に維持される。ここで、前述の一定時間は、必要とする深さのオーステナイト(γ)相が得られるよう、例えば、30min〜720minの範囲で調整される。なお、窒素固溶工程でオーステナイト(γ)相、かつクロム窒化物(CrN)を形成しない範囲のN濃度が確保されるので、必ずしも均熱時点でオーステナイト(γ)相となっていなくともよい。 As shown in FIG. 2A, when the temperature of the cylindrical body 2 is first raised to a predetermined temperature, the structures on the inner surface side and the outer surface side of the cylindrical body 2 are both ferrite (α) phases. Thereafter, the structures on the inner surface side and the outer surface side of the cylindrical body 2 both transform from the ferrite (α) phase to the austenite (γ) phase as the temperature of the nitrogen absorption treatment increases. And while maintaining soaking | uniform-heating at predetermined temperature (predetermined time), the structure | tissue of the inner surface part side and the outer surface part side of the cylinder 2 is maintained in an austenite (gamma) phase. Here, the above-mentioned fixed time is adjusted within a range of 30 min to 720 min, for example, so that an austenite (γ) phase having a required depth is obtained. In addition, since the N concentration in a range in which the austenite (γ) phase and chromium nitride (Cr 2 N) are not formed in the nitrogen solid solution process is ensured, the austenite (γ) phase is not necessarily obtained at the time of soaking. Good.

その後、筒体2の内面部側および外面部側の組織は、ガス冷却処理においてオーステナイト(γ)相を維持するよう、ガス冷却される。このとき、筒体2の内面部側と外面部側とでは、その冷却速度に差が生じる。特に、図2(a)中、実線で示す筒体2の内面部側は、図2(a)中、破線で示す外面部側に比べて冷却速度が遅い。筒体2のような内部空間を有する部材は、内面部側に冷却ガスが廻り込み難い上に、輻射熱も存在するため、外面部側と比べて冷却速度が遅くなってしまう。例えば、筒体2がEGRクーラなどである場合には、クーラ内面部側にフィンが取り付けられていたりして複雑な形状をしているため、特に冷却速度が遅くなってしまう。   Thereafter, the structures on the inner surface side and the outer surface side of the cylindrical body 2 are gas cooled so as to maintain the austenite (γ) phase in the gas cooling process. At this time, a difference occurs in the cooling rate between the inner surface portion side and the outer surface portion side of the cylindrical body 2. In particular, in FIG. 2A, the cooling rate of the inner surface side of the cylindrical body 2 indicated by the solid line is slower than that of the outer surface side indicated by the broken line in FIG. In the member having an internal space such as the cylindrical body 2, it is difficult for the cooling gas to go around to the inner surface side, and radiant heat is also present, so that the cooling rate is slower than that on the outer surface side. For example, when the cylinder 2 is an EGR cooler or the like, the cooling rate is particularly slow because fins are attached to the inner surface of the cooler to form a complicated shape.

このため、冷却速度の遅い筒体2の内面部側の組織は、ガス冷却処理の過程においてオーステナイト(γ)相から、フェライト(α)相とオーステナイト(γ)相との2相状態に、クロム窒化物(CrN、CrN:以下、CrNのみ表記する)が生成された状態(γ→α+γ+CrN)となる。すなわち、筒体2の内面部側の組織は、図3(a)に示すように、クロム窒化物(CrN)といった化合物(図3(a)中、黒色部で示す)が形成された組織状態となる。なお、冷却速度が速ければ組織は凍結され、オーステナイト(γ)相が維持される。 For this reason, the structure on the inner surface side of the cylindrical body 2 having a slow cooling rate is changed from austenite (γ) phase to a two-phase state of ferrite (α) phase and austenite (γ) phase in the course of gas cooling treatment. It is in a state (γ → α + γ + Cr 2 N) in which a nitride (Cr 2 N, CrN: hereinafter, only Cr 2 N is described) is generated. That is, the structure on the inner surface side of the cylindrical body 2 was formed with a compound such as chromium nitride (Cr 2 N) (shown by a black portion in FIG. 3A) as shown in FIG. It becomes an organizational state. If the cooling rate is high, the structure is frozen and the austenite (γ) phase is maintained.

こうした窒素吸収工程は従来から行われているが、筒体2のように内面部側の冷却速度が遅いもの対しては窒素吸収工程だけでは上述のようにクロム窒化物(CrN)が生成されてしまい、このクロム窒化物(CrN)が耐食性を低下させる原因となってしまう。 Although such a nitrogen absorption process has been conventionally performed, chromium nitride (Cr 2 N) is generated as described above only in the nitrogen absorption process for a cylinder 2 having a slow cooling rate on the inner surface side. As a result, this chromium nitride (Cr 2 N) causes a decrease in corrosion resistance.

また、こうした耐食性の悪化を抑制する方法としては、例えば窒素吸収工程の冷却処理において、図4(a)に示すようなガス冷却に代えて冷却液による水冷あるいは油冷を用いることも考えられる。   Further, as a method for suppressing such deterioration in corrosion resistance, for example, in the cooling process of the nitrogen absorption process, it is conceivable to use water cooling or oil cooling with a coolant instead of gas cooling as shown in FIG.

しかし、このような水冷あるいは油冷を用いても、窒素吸収処理後の複数の筒体を冷却室に搬送する間は、水冷あるいは油冷による冷却はまだ行われていないが、一定の冷却速度で冷却される。この搬送中の冷却速度は、著しく遅い。したがって、均熱保持後、水冷あるいは油冷による冷却が開始されるまでの間(搬送中)に、筒体のステンレス鋼に固溶した窒素(N)が抜けてしまうとともに、温度低下により窒素固溶限が減少しCrNが生成されてしまう。なお、窒素(N)が抜けるのは、固溶窒素(N)のエネルギは化合物ほど安定的ではなく、移動しやすいため、高温下(例えば搬送中は温度低下が生じるものの依然高温である)では、ステンレス鋼内部に拡散するとともに表面から外部に抜ける性質があるからである。 However, even when such water cooling or oil cooling is used, cooling by water cooling or oil cooling is not yet performed while transferring the plurality of cylinders after nitrogen absorption treatment to the cooling chamber, but a constant cooling rate Cooled by. The cooling rate during this conveyance is extremely slow. Therefore, nitrogen (N) dissolved in the stainless steel of the cylindrical body is lost during the period from the soaking to the start of cooling by water cooling or oil cooling (during conveyance), and the nitrogen solidification occurs due to the temperature drop. The solubility limit decreases and Cr 2 N is generated. Note that nitrogen (N) escapes because the energy of solute nitrogen (N) is not as stable as the compound and is easy to move, so at high temperatures (for example, a temperature drop occurs during transportation but still high). This is because it has the property of diffusing inside the stainless steel and coming out of the surface.

このように、窒素吸収工程の冷却処理において水冷あるいは油冷を用いた場合であっても、やはりクロム窒化物(CrN)が生成されてしまい、このクロム窒化物(CrN)が耐食性を低下させる原因となってしまう。 Thus, even when water cooling or oil cooling is used in the cooling process of the nitrogen absorption process, chromium nitride (Cr 2 N) is still generated, and this chromium nitride (Cr 2 N) is corrosion resistant. It will cause the decrease.

そこで、本実施の形態では、上述のようなクロム窒化物(CrN)を含まない耐食性に優れた筒体2を得るために、窒素吸収工程の後に、以下に説明する窒素固溶工程を新たに追加した。 Therefore, in the present embodiment, in order to obtain the cylindrical body 2 having excellent corrosion resistance that does not contain chromium nitride (Cr 2 N) as described above, a nitrogen solid solution process described below is performed after the nitrogen absorption process. Newly added.

この窒素固溶工程では、図1(b)に示すように、冷却装置5内において1個の筒体2に対して処理を行う1個処理が用いられる。ここで、冷却装置5は、高周波加熱装置6と、冷却ジャケット7とを含んで構成されている。また、冷却装置5は、高周波加熱装置6により筒体2が加熱される際には装置内部が例えば50〜400kPaに加圧された窒素ガス(N)で満たされるよう、つまりN雰囲気となるよう構成されている。例えば、冷却装置5は、図示しない真空ポンプで装置内部を減圧して装置内部の空気をパージした後に加圧された窒素ガス(N)を装置内部に流通させ、N雰囲気とする。 In this nitrogen solid solution process, as shown in FIG. 1B, a single process for processing one cylindrical body 2 in the cooling device 5 is used. Here, the cooling device 5 includes a high-frequency heating device 6 and a cooling jacket 7. Further, the cooling device 5 is configured so that when the cylindrical body 2 is heated by the high-frequency heating device 6, the inside of the device is filled with nitrogen gas (N 2 ) pressurized to, for example, 50 to 400 kPa, that is, an N 2 atmosphere. It is comprised so that it may become. For example, the cooling device 5 depressurizes the inside of the device with a vacuum pump (not shown) and purges the air inside the device, and then circulates the pressurized nitrogen gas (N 2 ) inside the device to create an N 2 atmosphere.

高周波加熱装置6は、誘導加熱現象を利用して加熱を行うものである。具体的には、高周波加熱装置6は、誘導コイル6aに交流電流を通電して交流磁場を発生させ、発生した交流磁場内に配置した被発熱体(筒体2)に交流電流を発生させ、その交流電流によって被発熱体を発熱させるものである。この高周波加熱装置6を用いることで、筒体2を所定温度(例えば、1100℃〜1260℃)まで急速加熱することが可能となる。なお、筒体2を加熱する装置としては、高周波加熱装置6に限らず、急速加熱が可能であればその他の装置を用いてもよい。   The high-frequency heating device 6 performs heating using an induction heating phenomenon. Specifically, the high-frequency heating device 6 generates an AC magnetic field by energizing the induction coil 6a with an AC current, generates an AC current in a heat generating body (cylinder 2) disposed in the generated AC magnetic field, The heat generating body is caused to generate heat by the alternating current. By using this high-frequency heating device 6, the cylinder 2 can be rapidly heated to a predetermined temperature (for example, 1100 ° C. to 1260 ° C.). The apparatus for heating the cylindrical body 2 is not limited to the high-frequency heating apparatus 6, and other apparatuses may be used as long as rapid heating is possible.

冷却ジャケット7は、冷却液を冷却装置5内に噴射するための複数の噴射孔(図示せず)を有しており、この複数の噴射孔から冷却液を噴射することで、高周波加熱装置6によって急速加熱された筒体2を例えば室内温度程度まで急冷するようになっている。   The cooling jacket 7 has a plurality of injection holes (not shown) for injecting the cooling liquid into the cooling device 5. By injecting the cooling liquid from the plurality of injection holes, the high-frequency heating device 6. The cylindrical body 2 rapidly heated by the above is rapidly cooled to, for example, the room temperature.

このように構成された冷却装置5において、上述の窒素固溶工程が行われる。具体的には、窒素固溶工程に先立ち、まずは前述した窒素吸収工程を経た複数の筒体2のうちの1つが冷却装置5内部の誘導コイル6aの内側に配置される。その後、冷却装置5内部をN雰囲気とする。 In the cooling device 5 configured as described above, the above-described nitrogen solid solution step is performed. Specifically, prior to the nitrogen solid solution step, first, one of the plurality of cylinders 2 that has undergone the above-described nitrogen absorption step is disposed inside the induction coil 6 a inside the cooling device 5. Thereafter, the inside of the cooling device 5 is made an N 2 atmosphere.

次いで、冷却装置5内部に配置された筒体2をN雰囲気中で高周波加熱装置6によって再加熱した後、冷却ジャケット7によって急冷する窒素固溶工程が行われる。具体的には、窒素固溶工程では、筒体2を高周波加熱装置6によって所定温度(例えば、1100℃〜1260℃)まで急速加熱する。その度、冷却装置5内において急速加熱された筒体2を、一定時間(例えば、1min〜15min)、所定温度(例えば、1100℃〜1260℃)で均熱保持する。ここで、前述の一定時間は、例えば1min〜15minの範囲で、窒素吸収工程で形成されたクロム窒化物(CrN)を固溶するために必要な時間以上とされる。 Next, a nitrogen solid solution step is performed in which the cylindrical body 2 disposed inside the cooling device 5 is reheated by the high-frequency heating device 6 in an N 2 atmosphere and then rapidly cooled by the cooling jacket 7. Specifically, in the nitrogen solid solution step, the cylinder 2 is rapidly heated to a predetermined temperature (for example, 1100 ° C. to 1260 ° C.) by the high frequency heating device 6. Each time, the cylinder 2 rapidly heated in the cooling device 5 is kept soaked at a predetermined time (for example, 1100 ° C. to 1260 ° C.) for a certain time (for example, 1 min to 15 min). Here, the above-mentioned fixed time is, for example, in the range of 1 min to 15 min, and is longer than the time necessary for dissolving the chromium nitride (Cr 2 N) formed in the nitrogen absorption process.

その後、窒素固溶工程では、均熱保持される一定時間が経過すると、均熱保持されていた筒体2が冷却ジャケット7によって所定の冷却速度(例えば、50℃/sec以上の冷却速度)で例えば室内温度程度まで急冷される。これにより、一連の窒素固溶工程が終了する。   Thereafter, in the nitrogen solid solution step, after a certain period of time during which the soaking is maintained, the cylinder 2 that has been soaked is cooled by the cooling jacket 7 at a predetermined cooling rate (for example, a cooling rate of 50 ° C./sec or more). For example, it is rapidly cooled to about the room temperature. Thereby, a series of nitrogen solid solution process is complete | finished.

ここで、窒素固溶工程における筒体2の内面部側の組織変化について、図2(b)に示すヒートサイクルと併せて説明する。   Here, the structure change on the inner surface side of the cylindrical body 2 in the nitrogen solid solution step will be described together with the heat cycle shown in FIG.

図2(b)に示すように、まず窒素吸収工程を経た筒体2を所定温度まで急速加熱する際には、筒体2の内面部側の組織は、フェライト(α)相とオーステナイト(γ)相との2相状態に、クロム窒化物(CrN)が生成された状態(γ→α+γ+CrN)である。 As shown in FIG. 2B, when the cylinder 2 that has undergone the nitrogen absorption process is first rapidly heated to a predetermined temperature, the structure on the inner surface side of the cylinder 2 is composed of ferrite (α) phase and austenite (γ ) Phase in which chromium nitride (Cr 2 N) is generated in a two-phase state (γ → α + γ + Cr 2 N).

その後、筒体2の内面部側の組織は、高周波加熱装置6による急速加熱に伴いクロム窒化物(CrN)が再固溶されることで、フェライト(α)相とオーステナイト(γ)相との2相状態にクロム窒化物(CrN)が生成された状態からオーステナイト(γ)相に変態する。そして、所定温度で均熱保持されている間(一定時間)、筒体2の内面部側の組織は、オーステナイト(γ)相に維持される。 Thereafter, the structure on the inner surface side of the cylindrical body 2 is such that the chromium nitride (Cr 2 N) is re-dissolved with rapid heating by the high-frequency heating device 6, whereby the ferrite (α) phase and the austenite (γ) phase. The state in which chromium nitride (Cr 2 N) is generated in the two-phase state is transformed into the austenite (γ) phase. And while maintaining soaking | uniform-heating at predetermined temperature (a fixed time), the structure | tissue of the inner surface part side of the cylinder 2 is maintained in an austenite (gamma) phase.

その後、筒体2の内面部側の組織は、オーステナイト(γ)相を維持するよう、冷却ジャケット7により急冷される。このときの冷却速度は、窒素吸収工程におけるガス冷却の冷却速度よりも速い。また、本実施の形態では、冷却装置5内部で高周波加熱装置6による再加熱と冷却ジャケット7による急冷とが行われるため、急速加熱後に筒体2を搬送するなどの時間をとらずに筒体2を冷却することが可能である。   Thereafter, the structure on the inner surface side of the cylindrical body 2 is rapidly cooled by the cooling jacket 7 so as to maintain the austenite (γ) phase. The cooling rate at this time is faster than the cooling rate of gas cooling in the nitrogen absorption process. Moreover, in this Embodiment, since the reheating by the high frequency heating apparatus 6 and the rapid cooling by the cooling jacket 7 are performed inside the cooling device 5, the cylindrical body does not take time such as transporting the cylindrical body 2 after the rapid heating. 2 can be cooled.

これにより、筒体2の内面部側の組織として、図3(b)に示すように、窒素吸収工程後のような化合物形成がなく、一様にオーステナイト(γ)相のγ単相(窒素固溶組織、高濃度窒素固溶層)を得ることができる。すなわち、筒体2の内面部側の組織として、耐食性に優れた組織を得ることができる。   As a result, as shown in FIG. 3 (b), the structure on the inner surface side of the cylindrical body 2 has no compound formation as in the nitrogen absorption step and is uniformly austenite (γ) phase γ single phase (nitrogen). Solid solution structure, high concentration nitrogen solid solution layer) can be obtained. That is, a structure excellent in corrosion resistance can be obtained as the structure on the inner surface side of the cylindrical body 2.

以上のように、本実施の形態に係るステンレス鋼製の筒体の耐食性付与方法によれば、窒素吸収工程の後に、オーステナイト化された筒体2をN雰囲気中で再加熱した後、急冷する窒素固溶工程を行うので、同工程の再加熱により筒体2の内面部側で発生したクロム窒化物(CrN)を再固溶させ、同工程の急冷により高濃度窒素固溶層を得ることができる。これにより、窒素吸収工程の後に窒素固溶工程を実施することで、ステンレス鋼製の筒体2であっても内面部側でクロム窒化物(CrN)の発生を抑制して耐食性を向上させることができる。 As described above, according to the method for imparting corrosion resistance to the stainless steel cylinder according to the present embodiment, after the nitrogen absorption step, the austenitized cylinder 2 is reheated in an N 2 atmosphere and then rapidly cooled. Since the nitrogen solid solution step is performed, the chromium nitride (Cr 2 N) generated on the inner surface side of the cylinder 2 is re-dissolved by reheating in the same step, and the high concentration nitrogen solid solution layer is rapidly cooled in the same step. Can be obtained. Thereby, by carrying out the nitrogen solid solution process after the nitrogen absorption process, even in the case of the stainless steel cylinder 2, the generation of chromium nitride (Cr 2 N) is suppressed on the inner surface side, thereby improving the corrosion resistance. Can be made.

以上説明したように、本発明に係るステンレス鋼製の筒体の耐食性付与方法によれば、ステンレス鋼製の筒体であっても内面部側でクロム窒化物の発生を抑制して耐食性を向上させることができ、ステンレス鋼製の筒体の耐食性付与方法として有用である。   As described above, according to the method for imparting corrosion resistance of a stainless steel cylinder according to the present invention, the corrosion resistance is improved by suppressing the generation of chromium nitride on the inner surface side even in the case of a stainless steel cylinder. It is useful as a method for imparting corrosion resistance to a stainless steel cylinder.

1…炉、2…筒体、3…加熱室、4…冷却室、5…冷却装置、6…高周波加熱装置、6a…誘導コイル、7…冷却ジャケット DESCRIPTION OF SYMBOLS 1 ... Furnace, 2 ... Cylindrical body, 3 ... Heating chamber, 4 ... Cooling chamber, 5 ... Cooling device, 6 ... High frequency heating device, 6a ... Induction coil, 7 ... Cooling jacket

Claims (1)

ステンレス鋼製の筒体を窒素ガス雰囲気中で加熱して前記ステンレス鋼に窒素を吸収させた後、ガス冷却してオーステナイト化する窒素吸収工程と、
前記窒素吸収工程を経た前記筒体を窒素ガス雰囲気中で再加熱した後、急冷する窒素固溶工程と、を含むことを特徴とするステンレス鋼製の筒体の耐食性付与方法。
After the stainless steel cylinder is heated in a nitrogen gas atmosphere to absorb the nitrogen in the stainless steel, the nitrogen absorption step of gas cooling to austenite,
A method for imparting corrosion resistance to a stainless steel cylinder, comprising: a nitrogen solid solution process in which the cylinder having undergone the nitrogen absorption process is reheated in a nitrogen gas atmosphere and then rapidly cooled.
JP2013140248A 2013-07-04 2013-07-04 Corrosion resistance imparting method of cylindrical body made of stainless steel Withdrawn JP2015014022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013140248A JP2015014022A (en) 2013-07-04 2013-07-04 Corrosion resistance imparting method of cylindrical body made of stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013140248A JP2015014022A (en) 2013-07-04 2013-07-04 Corrosion resistance imparting method of cylindrical body made of stainless steel

Publications (1)

Publication Number Publication Date
JP2015014022A true JP2015014022A (en) 2015-01-22

Family

ID=52435959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013140248A Withdrawn JP2015014022A (en) 2013-07-04 2013-07-04 Corrosion resistance imparting method of cylindrical body made of stainless steel

Country Status (1)

Country Link
JP (1) JP2015014022A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020111806A (en) * 2019-01-15 2020-07-27 日本製鉄株式会社 Stainless steel sheet and method for producing the same, separator for fuel battery, fuel battery cell, and fuel battery stack
JP2020111805A (en) * 2019-01-15 2020-07-27 日本製鉄株式会社 Stainless steel sheet, separator for fuel battery, fuel battery cell, and fuel battery stack

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020111806A (en) * 2019-01-15 2020-07-27 日本製鉄株式会社 Stainless steel sheet and method for producing the same, separator for fuel battery, fuel battery cell, and fuel battery stack
JP2020111805A (en) * 2019-01-15 2020-07-27 日本製鉄株式会社 Stainless steel sheet, separator for fuel battery, fuel battery cell, and fuel battery stack
JP7257794B2 (en) 2019-01-15 2023-04-14 日鉄ステンレス株式会社 Stainless steel plate and its manufacturing method, fuel cell separator, fuel cell, and fuel cell stack
JP7257793B2 (en) 2019-01-15 2023-04-14 日鉄ステンレス株式会社 Stainless steel plate, fuel cell separator, fuel cell, and fuel cell stack

Similar Documents

Publication Publication Date Title
JP5252131B2 (en) Hardening method of steel pipe
RU2015128019A (en) GROUP OF EQUIPMENT FOR THERMAL TREATMENT OF SEAMLESS STEEL PIPE OR PIPELINE AND METHOD FOR PRODUCING PIPE OR PIPELINE FROM HIGH STRENGTH STAINLESS STEEL
KR20180074450A (en) Low temperature austenitic high manganese steel and method for manufacturing the same
CN105671435A (en) Steel for manufacturing bearing, method for carrying out heat treatment on steel and forming piece
WO2011021396A1 (en) Method for manufacturing thick-walled seamless steel pipe
CN107109616A (en) The carbo-nitriding method and equipment of steel part under compared with low pressure and higher temperature
CN113215364A (en) Double-medium quenching and cooling method for fine-grain strengthening and toughening of steel
JP2015014022A (en) Corrosion resistance imparting method of cylindrical body made of stainless steel
JP5668592B2 (en) Manufacturing method of composite steel parts
CN101956048B (en) Heat treatment process of ship carbon-manganese steel casting
JP2016023346A (en) Carburization method of gear
Hu et al. Effects of strain and deformation temperature on bainitic transformation in a Fe–C–Mn–Si alloy
CN105543463A (en) Atmosphere protection heat treatment technology of ultrahigh strength D6AC steel thin-wall tube
CN113564325B (en) Motor iron core heat treatment process for new energy vehicle
KR101985777B1 (en) Medium manganese steel having super plasticity and manufacturing method for the same
KR101272917B1 (en) Jig for raser heat treatment
CN103114195B (en) Connected metal link heat treatment process method
AU2012285581B2 (en) Method for cooling metal parts having undergone a nitriding/nitrocarburising treatment in a molten salt bath, unit for implementing said method and the treated metal parts
CN108486337A (en) A kind of G18CrMo2-6 Heat-Treatments of Steel technique
CN109536685A (en) The heat treatment method of harmful phase in a kind of elimination two phase stainless steel
JP6497446B2 (en) Gas quenching method
CN105648448A (en) Bevel gear heat-treatment technology
Zhao et al. Surface Decarburization Behavior of Spring Steel 60Si2MnA under AC1 Temperature and in Temperature Range AC3-G
EP3517640B1 (en) Method for producing steel member
CN112899447A (en) Annealing method for improving output linearity of nanocrystalline iron core in transformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150817

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20151104