JP2015012792A - Stator for rotary electric machine - Google Patents

Stator for rotary electric machine Download PDF

Info

Publication number
JP2015012792A
JP2015012792A JP2013139275A JP2013139275A JP2015012792A JP 2015012792 A JP2015012792 A JP 2015012792A JP 2013139275 A JP2013139275 A JP 2013139275A JP 2013139275 A JP2013139275 A JP 2013139275A JP 2015012792 A JP2015012792 A JP 2015012792A
Authority
JP
Japan
Prior art keywords
stator
coil
peripheral wall
outer peripheral
end portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2013139275A
Other languages
Japanese (ja)
Inventor
岳志 朝永
Takeshi Tomonaga
岳志 朝永
大村 健
Takeshi Omura
大村  健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013139275A priority Critical patent/JP2015012792A/en
Publication of JP2015012792A publication Critical patent/JP2015012792A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Motor Or Generator Cooling System (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently perform radiation of heat from a coil of a stator.SOLUTION: A refrigerant channel 41 is formed between a coil end part 22a and a mounting part 31, a refrigerant inflow port 42 is formed between a stator radial outer end portion of the coil end part 22a and an outer peripheral wall part 32 by inclining the outer peripheral wall part 32, and the coil end part 22a is cooled from both an outer surface side and an inner surface side by supplying a liquid-state refrigerant through the refrigerant inflow port 42 to the refrigerant channel 41. Further, a contact part 25 in contact with one end portion of the outer peripheral wall part 32 in a stator tangential direction is provided to each of teeth 24 and by forming each of the teeth 24 asymmetric matched with the inclination of the outer peripheral wall part 32, heat is easily conducted from a coil 22 through the outer peripheral wall part 32 to a stator core 21.

Description

本発明は、回転電機のステータに関し、特にコイルの冷却構造に関する。   The present invention relates to a stator for a rotating electrical machine, and more particularly to a coil cooling structure.

下記特許文献1では、回転電機の軸方向に沿って冷却用のオイルをステータのコイルへ噴射してコイルを冷却している。また、下記特許文献2では、ステータコアのティースに絶縁部材を介して第1コイルと第2コイルが巻装され、絶縁部材のバックティース側フランジと第1コイルとの間に第1冷媒流路が形成され、第1コイルと第2コイルとの間に第2冷媒流路が形成されている。   In Patent Document 1 below, cooling oil is sprayed onto the stator coil along the axial direction of the rotating electrical machine to cool the coil. In Patent Document 2 below, the first coil and the second coil are wound around the teeth of the stator core via the insulating member, and the first refrigerant flow path is provided between the back teeth side flange of the insulating member and the first coil. The second refrigerant flow path is formed between the first coil and the second coil.

特開2010−57261号公報JP 2010-57261 A 特開2004−254435号公報JP 2004-254435 A

例えば特許文献1のように、回転電機の軸方向に沿って液体冷媒をステータのコイルへ噴射する場合は、コイルの冷却は外面側からだけ行われ、内面側からは行われない。そのため、ステータのコイルの放熱を効率よく行うことが困難である。   For example, as in Patent Document 1, when liquid refrigerant is injected into the stator coil along the axial direction of the rotating electrical machine, the coil is cooled only from the outer surface side and not from the inner surface side. Therefore, it is difficult to efficiently dissipate heat from the stator coils.

本発明は、ステータのコイルの放熱を効率よく行うことを目的とする。   It is an object of the present invention to efficiently dissipate heat from a stator coil.

本発明に係る回転電機のステータは、上述した目的を達成するために以下の手段を採った。   The stator of the rotating electrical machine according to the present invention employs the following means in order to achieve the above-described object.

本発明に係る回転電機のステータは、ステータコアのヨークよりステータ径方向内側へ突出するティースに絶縁部材を介してコイルが巻装された回転電機のステータであって、絶縁部材は、ティースに装着され、コイルが巻装される装着部と、装着部のステータ径方向外側端部に接続され、装着部よりステータ軸方向外側及びステータ接線方向外側へ張り出し、コイルのステータ径方向外側端部に接触する外周壁部とを有し、コイルは、装着部よりステータ軸方向外側へ張り出したコイルエンド部を有し、コイルエンド部と装着部との間に冷媒流路が形成され、外周壁部は、ステータ接線方向の一端部が他端部よりステータ径方向内側に位置するようステータ接線方向に対し傾斜することで、外周壁部とコイルエンド部との間に冷媒流入口が形成され、ステータコアにおいては、外周壁部のステータ接線方向一端部に接触する接触面が、外周壁部のステータ接線方向他端部に接触する接触面よりステータ径方向内側に位置し、液体冷媒が冷媒流入口を通って冷媒流路に供給されることを要旨とする。   A stator of a rotating electrical machine according to the present invention is a stator of a rotating electrical machine in which a coil is wound around a tooth protruding inward in the stator radial direction from a yoke of a stator core via an insulating member, and the insulating member is attached to the tooth. , Connected to the mounting portion around which the coil is wound, and the stator radial outer end portion of the mounting portion, projecting outward from the mounting portion in the stator axial direction and the stator tangential direction, and contacting the stator radial outer end portion of the coil And the coil has a coil end portion projecting outward from the mounting portion in the stator axial direction, a refrigerant flow path is formed between the coil end portion and the mounting portion, By inclining the stator tangential direction with respect to the stator tangential direction so that one end of the stator tangential direction is positioned on the inner side of the stator in the radial direction of the stator, the refrigerant inlet is provided between the outer peripheral wall portion and the coil end portion. In the stator core, the contact surface that contacts one end of the outer peripheral wall portion in the stator tangential direction is located on the inner side in the stator radial direction from the contact surface that contacts the other end portion of the outer peripheral wall portion in the stator tangential direction. The gist is to be supplied to the refrigerant flow path through the refrigerant inlet.

本発明によれば、コイルエンド部の冷却を外面側及び内面側の両側から行うことができるとともに、コイルから絶縁部材の外周壁部を通じてステータコアへの熱伝導がされやすくなる。その結果、ステータのコイルの放熱を効率よく行うことができる。   According to the present invention, the coil end portion can be cooled from both the outer surface side and the inner surface side, and heat conduction from the coil to the stator core is facilitated through the outer peripheral wall portion of the insulating member. As a result, it is possible to efficiently dissipate heat from the stator coils.

本発明の実施形態に係るステータの中心軸に沿った方向から見た概略構成を示す図である。It is a figure which shows schematic structure seen from the direction along the central axis of the stator which concerns on embodiment of this invention. 本発明の実施形態に係るステータの中心軸に沿った方向から見た概略構成を示す図である。It is a figure which shows schematic structure seen from the direction along the central axis of the stator which concerns on embodiment of this invention. 本発明の実施形態に係るステータの中心軸と直交する方向から見た概略構成を示す図である。It is a figure which shows schematic structure seen from the direction orthogonal to the center axis | shaft of the stator which concerns on embodiment of this invention.

以下、本発明を実施するための形態(以下実施形態という)を図面に従って説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings.

図1〜3は本発明の実施形態に係る回転電機のステータの概略構成を示す図である。図1,2はステータの中心軸に沿った方向から見た構成図を示し、図3はステータの中心軸と直交する方向から見た構成図を示す。なお、以下の説明において、ステータ軸方向は、ステータの中心軸に沿った方向であり、ステータ周方向は、ステータの中心軸まわりに沿った方向であり、ステータ径方向は、ステータの中心軸(ステータ軸方向)と直交する方向であり、ステータ接線方向は、ステータ径方向及びステータ軸方向と垂直な方向である。   1-3 is a figure which shows schematic structure of the stator of the rotary electric machine which concerns on embodiment of this invention. 1 and 2 show a configuration diagram viewed from a direction along the central axis of the stator, and FIG. 3 shows a configuration diagram viewed from a direction orthogonal to the central axis of the stator. In the following description, the stator axial direction is a direction along the central axis of the stator, the stator circumferential direction is a direction along the central axis of the stator, and the stator radial direction is the central axis of the stator ( The stator tangential direction is a direction perpendicular to the stator radial direction and the stator axial direction.

本実施形態に係るステータは、ステータコア21とコイル22とインシュレータ(絶縁部材)30とを含んで構成される。ステータコア21は、ステータ周方向に沿って延びる環状のヨーク23と、ヨーク23よりステータ径方向内側(図示しないロータ側)へ突出する複数のティース24とを含む。複数のティース24はステータ周方向に互いに間隔をおいて配置され、各ティース24にインシュレータ30を介してコイル22が巻装されている。図1では、ステータ周方向における一部の構成を図示しているが、図示を省略している部分も同様の構成である。また、図1では、一部のティース24にインシュレータ30を介してコイル22が巻装されているが、他のティース24についてもインシュレータ30を介してコイル22が巻装される。また、図2は、コイル22がインシュレータ30に巻装される前の状態を示している。   The stator according to the present embodiment includes a stator core 21, a coil 22, and an insulator (insulating member) 30. The stator core 21 includes an annular yoke 23 that extends along the circumferential direction of the stator, and a plurality of teeth 24 that protrude from the yoke 23 toward the inside in the stator radial direction (the rotor side (not shown)). The plurality of teeth 24 are arranged at intervals in the stator circumferential direction, and a coil 22 is wound around each tooth 24 via an insulator 30. In FIG. 1, a part of the configuration in the stator circumferential direction is illustrated, but the portion that is not illustrated has the same configuration. In FIG. 1, the coil 22 is wound around some of the teeth 24 via the insulator 30, but the coil 22 is wound around the other teeth 24 via the insulator 30. FIG. 2 shows a state before the coil 22 is wound around the insulator 30.

インシュレータ30は、ティース24に装着され、コイル22が巻装される装着部31と、装着部31のステータ径方向外側端部に接続された外周壁部32と、装着部31のステータ径方向内側端部に接続された内周壁部33とを含む。外周壁部32は、装着部31よりステータ軸方向外側(両側)及びステータ接線方向外側(両側)へ張り出しており、コイル22のステータ径方向外側端部に接触する。内周壁部33は、装着部31よりステータ軸方向外側(両側)へ張り出しており、コイル22のステータ径方向内側端部に接触する。外周壁部32のステータ径方向厚さは、ステータ接線方向の一端部から他端部にかけて均一であり、内周壁部33のステータ径方向厚さも、ステータ接線方向の一端部から他端部にかけて均一である。   The insulator 30 is attached to the tooth 24 and has a mounting portion 31 around which the coil 22 is wound, an outer peripheral wall portion 32 connected to a stator radial direction outer end portion of the mounting portion 31, and a stator radial direction inner side of the mounting portion 31. And an inner peripheral wall portion 33 connected to the end portion. The outer peripheral wall portion 32 protrudes from the mounting portion 31 to the outer side in the stator axial direction (both sides) and the outer side in the stator tangential direction (both sides), and contacts the outer end portion in the stator radial direction of the coil 22. The inner peripheral wall portion 33 protrudes outward (both sides) in the stator axial direction from the mounting portion 31 and contacts the inner radial end portion of the coil 22. The stator radial thickness of the outer peripheral wall 32 is uniform from one end to the other end in the stator tangential direction, and the stator radial thickness of the inner peripheral wall 33 is also uniform from one end to the other end in the stator tangential direction. It is.

各インシュレータ30において、内周壁部33は、ステータ接線方向と平行に形成されている。一方、外周壁部32は、ステータ接線方向の一端部が他端部よりステータ径方向内側に位置するようステータ接線方向に対し傾斜して形成されている。コイル22は、装着部31よりステータ軸方向外側(両側)へ張り出した部分であるコイルエンド部22aを有し、コイルエンド部22aの内面と装着部31の外面との間に隙間が形成されていることで、後述する液体冷媒が供給される冷媒流路41がステータ径方向に沿って形成されている。さらに、コイル22は、内周壁部33と平行に装着部31に巻回されており、コイルエンド部22aのステータ径方向外側端部と外周壁部32との間に隙間が形成されていることで、冷媒流路41と連通し、後述する液体冷媒が通る冷媒流入口42が形成されている。   In each insulator 30, the inner peripheral wall portion 33 is formed in parallel to the stator tangential direction. On the other hand, the outer peripheral wall portion 32 is formed to be inclined with respect to the stator tangential direction so that one end portion in the stator tangential direction is located on the inner side in the stator radial direction from the other end portion. The coil 22 has a coil end portion 22 a that is a portion projecting outward (both sides) in the stator axial direction from the mounting portion 31, and a gap is formed between the inner surface of the coil end portion 22 a and the outer surface of the mounting portion 31. As a result, a refrigerant flow path 41 to which a liquid refrigerant described later is supplied is formed along the stator radial direction. Further, the coil 22 is wound around the mounting portion 31 in parallel with the inner peripheral wall portion 33, and a gap is formed between the stator radial outer end of the coil end portion 22 a and the outer peripheral wall portion 32. Thus, a refrigerant inlet 42 is formed which communicates with the refrigerant flow path 41 and through which a liquid refrigerant described later passes.

各ティース24のステータ接線方向一端部には、外周壁部32のステータ接線方向一端部と接触する接触部25が設けられている。一方、外周壁部32のステータ接線方向他端部はヨーク23の内周面23aと接触する。外周壁部32のステータ接線方向一端部に接触する接触部25の接触面25aは、外周壁部32のステータ接線方向他端部に接触するヨーク23の内周面23aよりステータ径方向内側に位置し、各ティース24の形状が外周壁部32の傾斜に合わせた非対称形状となっている。   At one end of each tooth 24 in the stator tangent direction, a contact portion 25 that comes into contact with one end of the outer peripheral wall portion 32 in the stator tangential direction is provided. On the other hand, the other end of the outer peripheral wall portion 32 in the stator tangential direction contacts the inner peripheral surface 23 a of the yoke 23. The contact surface 25a of the contact portion 25 that contacts one end portion of the outer peripheral wall portion 32 in the stator tangential direction is located on the inner side in the stator radial direction from the inner peripheral surface 23a of the yoke 23 that contacts the other end portion of the outer peripheral wall portion 32 in the stator tangential direction. In addition, the shape of each tooth 24 is an asymmetric shape that matches the inclination of the outer peripheral wall portion 32.

環状の冷却パイプ46は、ステータ軸方向にコイルエンド部22aと対向して配置されており、冷却パイプ46の内部を冷却オイル等の液体冷媒が循環する。冷却パイプ46には、冷媒吐出口46aがステータ軸方向にコイルエンド部22a(ステータ径方向外側の部分)と対向して形成されており、図3の矢印Aに示すように、冷媒吐出口46aからステータ軸方向に吐出した液体冷媒がコイルエンド部22aの外面に供給される。これによって、コイル22(コイルエンド部22a)の冷却が外面側から行われる。さらに、図3の矢印Bに示すようにコイルエンド部22aの外面に供給された液体冷媒は、冷媒流入口42を通って冷媒流路41にも供給され、冷媒流路41をステータ径方向内側へ流れる。これによって、コイル22(コイルエンド部22a)の冷却が内面側からも行われる。その際には、内周壁部33により液体冷媒が冷媒流路41内に滞留しやすくなる。   The annular cooling pipe 46 is disposed facing the coil end portion 22a in the stator axial direction, and a liquid refrigerant such as cooling oil circulates inside the cooling pipe 46. In the cooling pipe 46, a refrigerant discharge port 46a is formed facing the coil end portion 22a (a portion on the outer side in the stator radial direction) in the stator axial direction, and as shown by an arrow A in FIG. 3, the refrigerant discharge port 46a. The liquid refrigerant discharged from the stator in the axial direction is supplied to the outer surface of the coil end portion 22a. Thereby, cooling of the coil 22 (coil end part 22a) is performed from the outer surface side. Further, as shown by an arrow B in FIG. 3, the liquid refrigerant supplied to the outer surface of the coil end portion 22a is also supplied to the refrigerant flow path 41 through the refrigerant inlet 42, and the refrigerant flow path 41 is connected to the inner side in the stator radial direction. To flow. As a result, the coil 22 (coil end portion 22a) is also cooled from the inner surface side. In that case, the inner peripheral wall portion 33 makes it easier for the liquid refrigerant to stay in the refrigerant flow path 41.

このように、本実施形態では、コイルエンド部22aの内面と装着部31の外面との間に冷媒流路41を形成し、外周壁部32を傾斜させてコイルエンド部22aのステータ径方向外側端部と外周壁部32との間に冷媒流入口42を形成し、冷媒流入口42を通って冷媒流路41に液体冷媒を供給することで、コイル22(コイルエンド部22a)の冷却を外面側及び内面側の両側から行うことができる。したがって、コイル22(コイルエンド部22a)の冷却効率を向上させることができる。   As described above, in the present embodiment, the refrigerant flow path 41 is formed between the inner surface of the coil end portion 22a and the outer surface of the mounting portion 31, and the outer peripheral wall portion 32 is inclined so that the outer end of the coil end portion 22a in the stator radial direction. A coolant inlet 42 is formed between the end portion and the outer peripheral wall portion 32, and liquid coolant is supplied to the coolant channel 41 through the coolant inlet 42, thereby cooling the coil 22 (coil end portion 22 a). It can be performed from both the outer surface side and the inner surface side. Therefore, the cooling efficiency of the coil 22 (coil end portion 22a) can be improved.

さらに、本実施形態では、外周壁部32のステータ接線方向一端部と接触する接触部25(接触面25a)をティース24に設け、ティース24を外周壁部32の傾斜に合わせた非対称形状にすることで、冷媒流入口42を形成するために外周壁部32を傾斜させても、外周壁部32の厚さを薄く均一にすることができ、コイル22から外周壁部32を通じてステータコア21への熱伝導がされやすくなる。したがって、コイル22からステータコア21への抜熱を促進させることができ、コイル22の放熱を効率よく行うことができる。さらに、インシュレータ30の加工も容易となる。   Furthermore, in this embodiment, the contact part 25 (contact surface 25a) which contacts the stator tangential direction one end part of the outer peripheral wall part 32 is provided in the teeth 24, and the teeth 24 are made into the asymmetrical shape according to the inclination of the outer peripheral wall part 32. Thus, even if the outer peripheral wall portion 32 is inclined to form the refrigerant inlet 42, the thickness of the outer peripheral wall portion 32 can be made thin and uniform, and the coil 22 can be connected to the stator core 21 through the outer peripheral wall portion 32. Heat conduction is facilitated. Therefore, heat removal from the coil 22 to the stator core 21 can be promoted, and the heat radiation of the coil 22 can be efficiently performed. Furthermore, the insulator 30 can be easily processed.

なお、特許文献2では、絶縁部材(ティースに装着される部分)の外面とコイルエンド部の内面との間に冷媒流路は形成されておらず、コイルエンド部の冷却は外面側及び内面側の両側からは行われず、本実施形態と異なる。さらに、特許文献2では、コイルから絶縁部材のバックティース側フランジを通じてステータコアへの抜熱を促進させることについては考慮されていない。   In Patent Document 2, a refrigerant flow path is not formed between the outer surface of the insulating member (portion attached to the tooth) and the inner surface of the coil end portion, and cooling of the coil end portion is performed on the outer surface side and the inner surface side. This is not performed from both sides, and is different from the present embodiment. Furthermore, Patent Document 2 does not consider promoting heat removal from the coil to the stator core through the back teeth side flange of the insulating member.

以上、本発明を実施するための形態について説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。   As mentioned above, although the form for implementing this invention was demonstrated, this invention is not limited to such embodiment at all, and it can implement with a various form in the range which does not deviate from the summary of this invention. Of course.

21 ステータコア、22 コイル、22a コイルエンド部、23 ヨーク、24 ティース、25 接触部、25a 接触面、30 インシュレータ、31 装着部、32 外周壁部、33 内周壁部、41 冷媒流路、42 冷媒流入口、46 冷却パイプ、46a 冷媒吐出口。   21 Stator core, 22 Coil, 22a Coil end part, 23 York, 24 Teeth, 25 Contact part, 25a Contact surface, 30 Insulator, 31 Mounting part, 32 Outer peripheral wall part, 33 Inner peripheral wall part, 41 Refrigerant flow path, 42 Refrigerant flow Inlet, 46 Cooling pipe, 46a Refrigerant discharge port.

Claims (1)

ステータコアのヨークよりステータ径方向内側へ突出するティースに絶縁部材を介してコイルが巻装された回転電機のステータであって、
絶縁部材は、ティースに装着され、コイルが巻装される装着部と、装着部のステータ径方向外側端部に接続され、装着部よりステータ軸方向外側及びステータ接線方向外側へ張り出し、コイルのステータ径方向外側端部に接触する外周壁部とを有し、
コイルは、装着部よりステータ軸方向外側へ張り出したコイルエンド部を有し、コイルエンド部と装着部との間に冷媒流路が形成され、
外周壁部は、ステータ接線方向の一端部が他端部よりステータ径方向内側に位置するようステータ接線方向に対し傾斜することで、外周壁部とコイルエンド部との間に冷媒流入口が形成され、
ステータコアにおいては、外周壁部のステータ接線方向一端部に接触する接触面が、外周壁部のステータ接線方向他端部に接触する接触面よりステータ径方向内側に位置し、
液体冷媒が冷媒流入口を通って冷媒流路に供給される、回転電機のステータ。
A stator of a rotating electrical machine in which a coil is wound via an insulating member on a tooth protruding inward in the stator radial direction from a yoke of a stator core,
The insulating member is attached to the teeth and connected to a mounting portion around which the coil is wound, and a stator radial direction outer end portion of the mounting portion, and projects from the mounting portion outward in the stator axial direction and outward in the stator tangential direction. An outer peripheral wall portion in contact with the radially outer end,
The coil has a coil end portion that protrudes outward in the stator axial direction from the mounting portion, and a refrigerant flow path is formed between the coil end portion and the mounting portion.
The outer peripheral wall portion is inclined with respect to the stator tangential direction so that one end portion in the stator tangential direction is located on the inner side in the stator radial direction from the other end portion, thereby forming a refrigerant inlet between the outer peripheral wall portion and the coil end portion. And
In the stator core, the contact surface that contacts one end of the outer peripheral wall portion in the stator tangential direction is located on the inner side in the stator radial direction from the contact surface that contacts the other end portion of the outer peripheral wall portion in the stator tangential direction.
A stator of a rotating electrical machine in which liquid refrigerant is supplied to a refrigerant flow path through a refrigerant inlet.
JP2013139275A 2013-07-02 2013-07-02 Stator for rotary electric machine Withdrawn JP2015012792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013139275A JP2015012792A (en) 2013-07-02 2013-07-02 Stator for rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013139275A JP2015012792A (en) 2013-07-02 2013-07-02 Stator for rotary electric machine

Publications (1)

Publication Number Publication Date
JP2015012792A true JP2015012792A (en) 2015-01-19

Family

ID=52305473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013139275A Withdrawn JP2015012792A (en) 2013-07-02 2013-07-02 Stator for rotary electric machine

Country Status (1)

Country Link
JP (1) JP2015012792A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017153310A (en) * 2016-02-26 2017-08-31 Ntn株式会社 Rotary electric machine
JP2017153309A (en) * 2016-02-26 2017-08-31 Ntn株式会社 Insulation bobbin for rotary electric machine
WO2017146117A1 (en) * 2016-02-26 2017-08-31 Ntn株式会社 Insulation bobbin of rotating electric machine
JP6227215B1 (en) * 2016-12-05 2017-11-08 三菱電機株式会社 Rotating electric machine
WO2018105143A1 (en) * 2016-12-05 2018-06-14 三菱電機株式会社 Dynamo-electric machine
WO2020066340A1 (en) * 2018-09-28 2020-04-02 本田技研工業株式会社 Cooling structure for vehicular electric motor, and method for producing cooling duct of cooling structure for vehicular electric motor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017153310A (en) * 2016-02-26 2017-08-31 Ntn株式会社 Rotary electric machine
JP2017153309A (en) * 2016-02-26 2017-08-31 Ntn株式会社 Insulation bobbin for rotary electric machine
WO2017146117A1 (en) * 2016-02-26 2017-08-31 Ntn株式会社 Insulation bobbin of rotating electric machine
JP6227215B1 (en) * 2016-12-05 2017-11-08 三菱電機株式会社 Rotating electric machine
WO2018105143A1 (en) * 2016-12-05 2018-06-14 三菱電機株式会社 Dynamo-electric machine
US10615667B2 (en) 2016-12-05 2020-04-07 Mitsubishi Electric Corporation Rotary electric machine
WO2020066340A1 (en) * 2018-09-28 2020-04-02 本田技研工業株式会社 Cooling structure for vehicular electric motor, and method for producing cooling duct of cooling structure for vehicular electric motor

Similar Documents

Publication Publication Date Title
JP2015012792A (en) Stator for rotary electric machine
CN109155558B (en) Motor and vehicle with same
US10468947B2 (en) Rotary electric machine
EP3136557B1 (en) Rotating electric machine
JP6658627B2 (en) Rotating electric machine
JP2013070595A (en) Three-phase dynamo-electric machine and manufacturing method thereof
JP7082885B2 (en) Rotating machine stator
WO2020105467A1 (en) Motor oil cooling structure
JP2020120470A (en) Rotary electric machine
US10193420B2 (en) Rotating electric machine
WO2017082023A1 (en) Dynamo-electric machine
JP2014107874A (en) Rotary electric machine
JP2015115994A (en) Stator of dynamo-electric machine
JP2017192201A (en) Stator of rotary electric machine
JP2016046971A (en) Stator for rotary electric machine
JP2017184351A (en) Dynamo-electric machine
EP3764524B1 (en) Dynamo-electric machine
KR102413954B1 (en) Slip Ring, Motor and Vehicle having the same
JP2017153346A (en) Motor, and outer magnetic core and inner magnetic core thereof
JP5788055B1 (en) Rotating electric machine for vehicles
JP2019161832A (en) Motor and fan motor
JP2018538775A (en) Slip ring device for electric machine
JP2013207944A (en) Rotary electric machine for vehicle
KR20150128454A (en) Cooling structure for a motor
JP6116365B2 (en) Liquid cooling motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150805

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20151104