JP2015011012A - Decontamination method of contaminated soil - Google Patents

Decontamination method of contaminated soil Download PDF

Info

Publication number
JP2015011012A
JP2015011012A JP2013138891A JP2013138891A JP2015011012A JP 2015011012 A JP2015011012 A JP 2015011012A JP 2013138891 A JP2013138891 A JP 2013138891A JP 2013138891 A JP2013138891 A JP 2013138891A JP 2015011012 A JP2015011012 A JP 2015011012A
Authority
JP
Japan
Prior art keywords
contaminated
contaminated soil
soil
decontamination method
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013138891A
Other languages
Japanese (ja)
Inventor
神谷 昌岳
Masatake Kamiya
昌岳 神谷
朋典 比氣
Tomonori Hiki
朋典 比氣
充記 近藤
Mitsuki Kondo
充記 近藤
信行 長崎
Nobuyuki Nagasaki
信行 長崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Makino Corp
Nagasaki Industrial Co Ltd
Original Assignee
Makino Corp
Nagasaki Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makino Corp, Nagasaki Industrial Co Ltd filed Critical Makino Corp
Priority to JP2013138891A priority Critical patent/JP2015011012A/en
Publication of JP2015011012A publication Critical patent/JP2015011012A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a decontamination method of contaminated soil by which more soil to be reused can be secured.SOLUTION: The decontamination method of contaminated soil according to the present invention is a method to classify contaminated soil contaminated by a radioactive element and to obtain contaminated particles with high contamination concentration and remaining treated particles. The decontamination method includes: a first step of obtaining slurry in which the contaminated soil or contaminated particles is dispersed in a water-containing dispersion medium as dispersoid; a second step of bringing an absorbent into contact with the slurry; and a third step of detaching the absorbent after the second step. The absorbent is a zeolite structure consisting of: a base material made of numerous fine organic fibers having many air holes; and zeolite held in each air hole.

Description

本発明は汚染土壌の除染方法に関する。   The present invention relates to a decontamination method for contaminated soil.

現在、日本では、平成23年3月11日に発生した東北地方太平洋沖地震に伴う原子力発電所の事故によりセシウム137等の放射性元素が放出され、広い地域で土壌が汚染されている。放射性元素によって汚染された汚染土壌はその近くに居住する人間を外部被曝させる。また、汚染土壌によって生育した植物を人間が食したり、その植物を動物が食し、人間がその動物の肉を食したりすれば、その人間は内部被曝する。人間は外部被曝や内部被曝によって健康が損なわれる。   Currently, in Japan, radioactive elements such as cesium 137 are released due to an accident at a nuclear power plant associated with the 2011 off the Pacific coast of Tohoku Earthquake that occurred on March 11, 2011, and soil is contaminated in a wide area. Contaminated soil contaminated with radioactive elements exposes people living nearby to external exposure. Moreover, if a human eats a plant grown by contaminated soil, an animal eats the plant, and a human eats the meat of the animal, the human is internally exposed. Human health is impaired by external and internal exposure.

このため、特許文献1には、汚染土壌を有効に除染可能な除染方法が提案されている。この除染方法は、水を含む分散媒中に汚染土壌を分散質として分散したスラリーを得る第1工程と、スラリーに対して吸着剤等を供給する第2工程と、第2工程後の吸着剤等を回収する第3工程とを備えている。第1工程において、スラリー中の汚染土壌を摩砕することも行われている。また、第1工程において、スラリーを汚染濃度の高い汚染微粒子のスラリーと残余の処理済み粒子のスラリーとに分級することも行われている。第2工程で用いられる吸着剤としては、ゼオライトが採用されている。   For this reason, Patent Document 1 proposes a decontamination method that can effectively decontaminate contaminated soil. This decontamination method includes a first step of obtaining a slurry in which contaminated soil is dispersed as a dispersoid in a dispersion medium containing water, a second step of supplying an adsorbent and the like to the slurry, and an adsorption after the second step. And a third step of collecting the agent and the like. In the first step, the contaminated soil in the slurry is also ground. In the first step, the slurry is classified into a slurry of contaminated fine particles having a high contamination concentration and a slurry of the remaining processed particles. As the adsorbent used in the second step, zeolite is employed.

この除染方法によれば、第3工程で回収する吸着剤等が高い汚染濃度を有することから、吸着剤等とともに汚染濃度の高い土壌を回収することが可能である。このため、汚染濃度の低い土壌の再利用が可能になる。   According to this decontamination method, since the adsorbent and the like collected in the third step have a high contamination concentration, it is possible to collect soil having a high contamination concentration together with the adsorbent and the like. This makes it possible to reuse soil with a low contamination concentration.

特開2013−64690号公報JP2013-64690A

しかし、従来の除染方法では、汚染土壌が芝生、草、牧草等、セルロース等の有機物を含む場合、その有機物が吸着剤の作用効果を損ない易い。また、従来の除染方法では、ゼオライト単体を吸着剤として採用していたため、吸着剤が二次凝集した状態から破砕し易く、吸着剤と土壌とを分離し難い。   However, in the conventional decontamination method, when the contaminated soil contains organic matter such as cellulose, such as lawn, grass, and pasture, the organic matter tends to impair the action and effect of the adsorbent. Moreover, in the conventional decontamination method, since the zeolite simple substance was employ | adopted as an adsorbent, it is easy to crush from the state which adsorbent secondary-aggregated, and it is difficult to isolate | separate adsorbent and soil.

このため、吸着剤とともに汚染濃度の低い土壌も回収し易く、再利用する土壌を確保し難い。このため、汚染地域においては、土壌不足が懸念される。   For this reason, it is easy to collect the soil having a low contamination concentration together with the adsorbent, and it is difficult to secure the soil to be reused. For this reason, there is a concern about soil shortage in contaminated areas.

本発明は、上記従来の実情に鑑みてなされたものであって、再利用する土壌をより多く確保できる汚染土壌の除染方法を提供することを解決すべき課題としている。   This invention is made | formed in view of the said conventional situation, Comprising: It is set as the problem which should be solved to provide the decontamination method of the contaminated soil which can ensure more soil to reuse.

本発明に汚染土壌の除染方法は、放射性元素によって汚染された汚染土壌を分級し、汚染濃度の高い汚染微粒子と、残余の処理済み粒子とを得る汚染土壌の除染方法であって、
水を含む分散媒中に前記汚染土壌又は前記汚染微粒子を分散質として分散したスラリーを得る第1工程と、
前記スラリーに対して吸着材を接触させる第2工程と、
前記第2工程後の前記吸着材を分離する第3工程とを備え、
前記吸着材は、多数の気孔を有する無数の微細な有機繊維からなる基材と、前記各気孔内に保持されたゼオライトとからなるゼオライト構造物であることを特徴とする(請求項1)。
The decontamination method for contaminated soil according to the present invention is a decontamination method for contaminated soil by classifying contaminated soil contaminated with radioactive elements to obtain contaminated fine particles having a high contamination concentration and the remaining treated particles,
A first step of obtaining a slurry in which the contaminated soil or the contaminated fine particles are dispersed as a dispersoid in a dispersion medium containing water;
A second step of bringing an adsorbent into contact with the slurry;
A third step of separating the adsorbent after the second step,
The adsorbent is a zeolite structure composed of a substrate made of innumerable fine organic fibers having a large number of pores and zeolite held in the pores (Claim 1).

本発明の汚染土壌の除染方法では、第1工程において、水を含む分散媒中に汚染土壌又は汚染微粒子を分散質として分散したスラリーを得る。そして、第2工程では、スラリーに対して吸着材を接触させる。この後、第3工程では、第2工程後の吸着材を分離する。   In the contaminated soil decontamination method of the present invention, in the first step, a slurry is obtained in which contaminated soil or contaminated fine particles are dispersed as a dispersoid in a dispersion medium containing water. In the second step, the adsorbent is brought into contact with the slurry. Thereafter, in the third step, the adsorbent after the second step is separated.

本発明の除染方法で採用する吸着剤は、多数の気孔を有する無数の微細な有機繊維からなる基材と、各気孔内に保持されたゼオライトとからなるゼオライト構造物である。このゼオライト構造物は、各ゼオライトの周りに存在する各基材がセルロース等の有機物と絡み合うため、有機物が各ゼオライトの作用効果を損なうことを防止し、単体のゼオライトよりも優れた作用効果を発揮する。また、このゼオライト構造物は、土壌と混合されたとしても、無数の微細な有機繊維によって繊維状になっているため、篩等によって比較的容易に異物と分離可能である。   The adsorbent employed in the decontamination method of the present invention is a zeolite structure composed of a base material made of innumerable fine organic fibers having a large number of pores and zeolite held in each pore. This zeolite structure prevents each organic substance from damaging the action and effect of each zeolite because each base material around each zeolite is intertwined with organic matters such as cellulose, and exhibits better action and effect than a single zeolite. To do. Moreover, even if this zeolite structure is mixed with soil, it is fibrous with countless fine organic fibers, so that it can be separated from foreign substances relatively easily by a sieve or the like.

このため、この除染方法によれば、汚染濃度の高い土壌だけを吸着剤とともに回収することが可能になり、再利用する土壌を確保し易い。   For this reason, according to this decontamination method, it becomes possible to collect | recover only soil with high pollution density | concentration with adsorption agent, and it is easy to ensure the soil to recycle.

したがって、本発明の汚染土壌の除染方法によれば、再利用する土壌をより多く確保できる。このため、汚染地域における土壌不足を解消することが可能である。   Therefore, according to the decontamination method for contaminated soil of the present invention, more soil to be reused can be secured. For this reason, it is possible to eliminate the soil shortage in the contaminated area.

吸着剤の基材は、多数の気孔を有する無数の微細な有機繊維であれば、種々のものを採用することが可能である。例えば、竹繊維、椰子繊維等の植物性の多孔質繊維の他、発泡スチロール等の人工の多孔質繊維を採用することが可能である。   As the adsorbent base material, various materials can be adopted as long as they are countless fine organic fibers having a large number of pores. For example, in addition to plant-based porous fibers such as bamboo fiber and coconut fiber, artificial porous fibers such as expanded polystyrene can be employed.

本発明に汚染土壌の除染方法では、基材は竹繊維であることが好ましい(請求項2)。発明者らは竹繊維を基材としてゼオライト構造体を製造できることを確認したからである。また、竹繊維は多孔質であるため、多くの吸着質を吸着することが可能である。また、多孔質の竹繊維によって脱臭等の効果も見込まれる。竹繊維の竹としては、孟宗竹、和竹、笹竹等を採用することができる。   In the method for decontaminating contaminated soil in the present invention, the base material is preferably bamboo fiber (claim 2). This is because the inventors have confirmed that a zeolite structure can be produced using bamboo fiber as a base material. Moreover, since bamboo fiber is porous, it can adsorb | suck many adsorbates. Moreover, the effect of deodorizing etc. is anticipated with porous bamboo fiber. As the bamboo of the bamboo fiber, it is possible to adopt 孟 宗 bamboo, Japanese bamboo, bamboo bamboo and the like.

本発明の汚染土壌の除染方法によれば、再利用する土壌をより多く確保できる。   According to the decontamination method for contaminated soil of the present invention, more reused soil can be secured.

実施例の除染方法で用いるゼオライト構造物の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the zeolite structure used with the decontamination method of an Example. 実施例の除染方法で用いるゼオライト構造物の原料である断熱用のパーライトの100倍のSEM写真である。It is a 100 times as many SEM photograph of the pearlite for heat insulation which is a raw material of the zeolite structure used with the decontamination method of an Example. 実施例の除染方法で用いるゼオライト構造物の原料である精石のパーライトの100倍のSEM写真である。It is a 100-times SEM photograph of the pearlite of the refined stone which is a raw material of the zeolite structure used with the decontamination method of an Example. 実施例の除染方法で用いるゼオライト構造物の原料である竹繊維の500倍のSEM写真である。It is a 500 times SEM photograph of the bamboo fiber which is a raw material of the zeolite structure used with the decontamination method of an Example. 実施例の除染方法で用いたゼオライト構造物の200倍のSEM写真である。It is a 200-times SEM photograph of the zeolite structure used by the decontamination method of an Example. 実施例の除染方法で用いたゼオライト構造物の1000倍のSEM写真である。It is a 1000-times SEM photograph of the zeolite structure used with the decontamination method of an Example. 実施例の除染方法で用いたゼオライト構造物の5000倍のSEM写真である。It is a 5000 times SEM photograph of the zeolite structure used with the decontamination method of an Example. 実施例の汚染土壌の除染方法を示す工程図である。It is process drawing which shows the decontamination method of the contaminated soil of an Example.

以下、本発明を具体化した実施例を図面を参照しつつ説明する。まず、実施例の除染方法で用いるため、ゼオライト構造物を製造する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the present invention will be described below with reference to the drawings. First, a zeolite structure is manufactured for use in the decontamination method of the examples.

図1に示すように、第1処理S1では、乾式ボールミルを使用して断熱用のパーライトを粉砕した。具体的には、乾式ボールミルに0.64kgの断熱用のパーライトを投入し、回転速度比を0.85又は0.95(N/Nc)として2〜6時間の粉砕を行った。   As shown in FIG. 1, in 1st process S1, the pearlite for heat insulation was grind | pulverized using the dry ball mill. Specifically, 0.64 kg of pearlite for heat insulation was put into a dry ball mill, and pulverization was performed for 2 to 6 hours with a rotation speed ratio of 0.85 or 0.95 (N / Nc).

ここで用いた乾式ボールミルは、ポットの内壁が鉄製であり、ポットの長さが725mm、ポットの直径が725mmである。各ボールは、鋼鉄製であり、直径が15mmである。ポット内の容積に対するボールの充填率は50%である。ボールの総重量は7.5kgである。ポットの回転数は83rpmである。   In the dry ball mill used here, the inner wall of the pot is made of iron, the length of the pot is 725 mm, and the diameter of the pot is 725 mm. Each ball is made of steel and has a diameter of 15 mm. The filling rate of the balls with respect to the volume in the pot is 50%. The total weight of the ball is 7.5 kg. The rotation speed of the pot is 83 rpm.

パーライトの組成は、SiO2が75.0質量%、Al23が14.0質量%、CaOが0.1質量%、Na2Oが3.5質量%、K2Oが4.2質量%、Fe23が0.9質量%、その他が2.3質量%である。断熱用のパーライトの100倍のSEM写真を図2に示す。なお、断熱用のパーライトに換えて精石であるパーライトを使用することもできる。精石であるパーライトの100倍のSEM写真を図3に示す。 The composition of perlite, SiO 2 75.0 wt%, Al 2 O 3 is 14.0 wt%, CaO 0.1 wt%, Na 2 O is 3.5 wt%, K 2 O 4.2 % By mass, 0.9% by mass of Fe 2 O 3 and 2.3% by mass of others. FIG. 2 shows a 100 times SEM photograph of pearlite for heat insulation. In addition, pearlite which is a fine stone can be used instead of the pearlite for heat insulation. FIG. 3 shows a 100 times SEM photograph of pearlite, which is a fine stone.

発明者らの試験結果によれば、乾式ボールミルで粉砕することにより、パーライトの粉体は、個々の粒子が内部に歪みを有し、高い活性を発揮する。   According to the test results of the inventors, by pulverizing with a dry ball mill, the pearlite powder exhibits high activity because each particle has internal distortion.

図1に示す第2処理S2では、公知技術を用いて無数の微細な竹繊維を得た。ここでは、長崎工業(株)製「竹宝」を竹繊維とした。この竹繊維の500倍のSEM写真を図4に示す。竹繊維のBET比表面積は0.18946m2/gである。なお、例えば、特開2013−42753号公報に開示されている製造方法で竹繊維を製造することも可能である。 In 2nd process S2 shown in FIG. 1, the countless fine bamboo fiber was obtained using the well-known technique. Here, “Takeho” manufactured by Nagasaki Kogyo Co., Ltd. was used as the bamboo fiber. A 500 times SEM photograph of this bamboo fiber is shown in FIG. The BET specific surface area of the bamboo fiber is 0.18946 m 2 / g. In addition, for example, it is also possible to manufacture bamboo fiber by a manufacturing method disclosed in JP 2013-42753 A.

図1に示す第3処理S3では、1Mの水酸化ナトリウム水溶液14mlと、パーライト粉砕物0.91gと、竹繊維1gとを用意し、これらを混合し、第1反応液を得た。なお、モルデナイトの核として、微量のナノモルデナイトを第1反応液に混合することも可能である。   In 3rd process S3 shown in FIG. 1, 14 ml of 1M sodium hydroxide aqueous solution, 0.91 g of pearlite ground material, and 1 g of bamboo fiber were prepared, these were mixed, and the 1st reaction liquid was obtained. In addition, it is also possible to mix a trace amount nano mordenite into a 1st reaction liquid as a nucleus of mordenite.

第4処理S4では、竹繊維の各繊維内の各気孔に塩基性水溶液をしみ込ませ、各気孔内にゼオライトを析出させるため、第1反応液を減圧した。こうして、第2反応液を得た。   In the fourth treatment S4, the first reaction solution was decompressed in order to saturate each pore in each fiber of the bamboo fiber with a basic aqueous solution and precipitate zeolite in each pore. In this way, the 2nd reaction liquid was obtained.

第5処理では、第2反応液に対し、150°C、84時間の水熱処理を行った。発明者らの試験によれば、より高温、かつ長時間の水熱処理を塩基性水溶液中で行うと、竹繊維のセルロースが分解してしまう。水熱処理後、吸引ろ過及び乾燥を行い、ゼオライト構造物を得た。   In the fifth treatment, hydrothermal treatment was performed on the second reaction liquid at 150 ° C. for 84 hours. According to the tests by the inventors, when the hydrothermal treatment at a higher temperature and for a longer time is performed in the basic aqueous solution, the cellulose of the bamboo fiber is decomposed. After hydrothermal treatment, suction filtration and drying were performed to obtain a zeolite structure.

図5〜7に示すように、この製造方法によって、ゼオライト構造物を製造できることがわかる。これらのゼオライト構造物では、無数の微細な竹繊維の各気孔内に無数のモルデナイト型ゼオライトが保持された構造を有していた。このゼオライト構造物は、極めて微細な気孔を豊富に含んでいる。   As shown in FIGS. 5-7, it turns out that a zeolite structure can be manufactured with this manufacturing method. These zeolite structures have a structure in which an infinite number of mordenite-type zeolite is held in each pore of an infinite number of fine bamboo fibers. This zeolite structure is rich in extremely fine pores.

図5は得られたゼオライト構造物の200倍のSEM写真を示し、図6は得られたゼオライト構造物の1000倍のSEM写真をに示し、図7は得られたゼオライト構造物の5000倍のSEM写真をに示す。   FIG. 5 shows a 200 times SEM photograph of the obtained zeolite structure, FIG. 6 shows a 1000 times SEM photograph of the obtained zeolite structure, and FIG. 7 shows a 5000 times magnification of the obtained zeolite structure. A SEM photograph is shown in.

続いて、実施例の除染方法を行う。まず、図8に示す第1工程S11では、水を含む分散媒中に汚染土壌を分散質として分散したスラリーを得る。このスラリーに対し、pHを調整するとともに、高せん断応力を付与しつつ分散を行うことにより、高せん断分散工程を行う。この際、高速ブランジャー((株)マキノ製)を用いた。   Then, the decontamination method of an Example is performed. First, in 1st process S11 shown in FIG. 8, the slurry which disperse | distributed the contaminated soil as a dispersoid in the dispersion medium containing water is obtained. The slurry is subjected to a high shear dispersion step by adjusting pH and dispersing while applying high shear stress. At this time, a high-speed blanker (manufactured by Makino Co., Ltd.) was used.

高速ブランジャーの特性は以下のとおりである。
型式:MHSB−148
寸法:0.84×0.68×高1.4(m)
重量:200(kg)
ロータ径:φ150(mm)
ステータ径:φ250(mm)
材質:鋼
回転数:1200r/min(60Hz)
モータ出力:2.2(kW)
電圧:200(V)
The characteristics of the high-speed blanker are as follows.
Model: MHSB-148
Dimensions: 0.84 x 0.68 x height 1.4 (m)
Weight: 200 (kg)
Rotor diameter: φ150 (mm)
Stator diameter: φ250 (mm)
Material: Steel Rotation speed: 1200r / min (60Hz)
Motor output: 2.2 (kW)
Voltage: 200 (V)

高速ブランジャーにおいて、分散系が収容されるタンクの特性は以下のとおりである。
形状:対辺500mm(内法寸法480mm)×高さ600mmの八角柱状(じゃま板付き)
In the high speed blanker, the characteristics of the tank in which the dispersion system is accommodated are as follows.
Shape: Opposite side 500mm (internal dimensions 480mm) x height 600mm octagonal column (with baffle)

汚染土壌に対して重量比で3倍の水を加え、高せん断分散工程の処理時間を20分とした。この高せん断分散工程後のスラリーには、汚染土壌及び汚染微粒子が分散していることとなる。   Three times the weight ratio of water was added to the contaminated soil, and the treatment time of the high shear dispersion step was 20 minutes. In the slurry after the high shear dispersion step, contaminated soil and contaminated fine particles are dispersed.

次に、第2工程S12では、第1工程S11で得たスラリーに対し、上述したゼオライト構造物からなる吸着剤を接触させる。この吸着剤は、多数の気孔を有する無数の微細な有機繊維からなる基材と、各気孔内に保持されたゼオライトとからなるゼオライト構造物である。このため、ゼオライト構造物は、各ゼオライトの周りに存在する各基材がセルロース等の有機物と絡み合うため、有機物が各ゼオライトの作用効果を損なうことを防止し、単体のゼオライトよりも優れた作用効果を発揮する。   Next, in 2nd process S12, the adsorbent which consists of a zeolite structure mentioned above is made to contact with the slurry obtained by 1st process S11. This adsorbent is a zeolite structure composed of a base material composed of innumerable fine organic fibers having a large number of pores and zeolite retained in each pore. For this reason, the zeolite structure prevents the organic matter from damaging the action effect of each zeolite because each base material existing around each zeolite is intertwined with organic matters such as cellulose, and the action effect superior to that of a single zeolite. Demonstrate.

そして、第3工程S13として、第2工程S12後の吸着材を分離する。この際、まず、第2工程S12後のスラリーに対し、第1分級工程を行った。第1分級工程では、振動篩(晃栄産業(株)製)により、スラリーから粒径1〜4mmの粒子を分級した。   And as 3rd process S13, the adsorbent after 2nd process S12 is isolate | separated. At this time, first, the first classification step was performed on the slurry after the second step S12. In the first classification step, particles having a particle diameter of 1 to 4 mm were classified from the slurry by a vibrating sieve (manufactured by Koei Sangyo Co., Ltd.).

振動篩の特性は以下のとおりである。
型式:500D(タッピングゴム付属)
寸法:0.7×0.7×高0.9(m)
重量:100(kg)
ふるい面(円形)有効径:440mm
振動数:3600回/分
モータ出力:0.4kW
電圧:200(V)
The characteristics of the vibrating sieve are as follows.
Model: 500D (with tapping rubber)
Dimensions: 0.7 x 0.7 x height 0.9 (m)
Weight: 100 (kg)
Sieve surface (circular) effective diameter: 440mm
Frequency: 3600 times / min Motor output: 0.4kW
Voltage: 200 (V)

また、第2分級工程として、上記の振動篩の下流において、粒径0.233〜0.5mmの粒子に対し、フィルタープレス((株)マキノ製)を用いた。   Further, as the second classification step, a filter press (manufactured by Makino Co., Ltd.) was used for particles having a particle size of 0.233 to 0.5 mm downstream of the vibrating sieve.

フィルタープレスの特性は以下のとおりである。
機種:M8×6室
寸法:1.3×0.9×高1.3(m)
重量:330(kg)
ろ室厚さ:20(mm)
ろ過面積:0.27(m2
ろ過容積:2.7(l)
ダイヤフラムポンプのモータ出力:0.75(kW)
ダイヤフラムポンプの電圧:200(V)
The characteristics of the filter press are as follows.
Model: M8 x 6 rooms Dimensions: 1.3 x 0.9 x height 1.3 (m)
Weight: 330 (kg)
Filter chamber thickness: 20 (mm)
Filtration area: 0.27 (m 2 )
Filtration volume: 2.7 (l)
Motor output of diaphragm pump: 0.75 (kW)
Diaphragm pump voltage: 200 (V)

この第3工程において、ゼオライト構造物は、土壌と混合されたとしても、無数の微細な有機繊維によって繊維状になっているため、篩等によって比較的容易に異物と分離可能である。   In this third step, even if the zeolite structure is mixed with soil, it is formed into a fibrous shape by countless fine organic fibers, and therefore can be separated from foreign substances relatively easily by a sieve or the like.

このため、この除染方法によれば、汚染濃度の高い土壌だけを吸着剤とともに回収することが可能になり、再利用する土壌を確保し易い。   For this reason, according to this decontamination method, it becomes possible to collect | recover only soil with high pollution density | concentration with adsorption agent, and it is easy to ensure the soil to recycle.

したがって、この除染方法によれば、再利用する土壌をより多く確保できる。このため、汚染地域における土壌不足を解消することが可能である。   Therefore, according to this decontamination method, more reused soil can be secured. For this reason, it is possible to eliminate the soil shortage in the contaminated area.

以上において、本発明を実施例に即して説明したが、本発明は上記実施例に制限されるものではなく、その趣旨を逸脱しない範囲で適宜変更して適用できることはいうまでもない。   While the present invention has been described with reference to the embodiments, it is needless to say that the present invention is not limited to the above-described embodiments and can be appropriately modified and applied without departing from the spirit thereof.

本発明は汚染土壌の除染方法に利用可能である。   The present invention can be used in a decontamination method for contaminated soil.

S11…第1工程
S12…第2工程
S13…第3工程
S11 ... 1st process S12 ... 2nd process S13 ... 3rd process

Claims (2)

放射性元素によって汚染された汚染土壌を分級し、汚染濃度の高い汚染微粒子と、残余の処理済み粒子とを得る汚染土壌の除染方法であって、
水を含む分散媒中に前記汚染土壌又は前記汚染微粒子を分散質として分散したスラリーを得る第1工程と、
前記スラリーに対して吸着材を接触させる第2工程と、
前記第2工程後の前記吸着材を分離する第3工程とを備え、
前記吸着材は、多数の気孔を有する無数の微細な有機繊維からなる基材と、前記各気孔内に保持されたゼオライトとからなるゼオライト構造物であることを特徴とする汚染土壌の除染方法。
A method for decontamination of contaminated soil by classifying contaminated soil contaminated with radioactive elements to obtain contaminated fine particles having a high contamination concentration and the remaining treated particles,
A first step of obtaining a slurry in which the contaminated soil or the contaminated fine particles are dispersed as a dispersoid in a dispersion medium containing water;
A second step of bringing an adsorbent into contact with the slurry;
A third step of separating the adsorbent after the second step,
The adsorbent is a decontamination method for contaminated soil, characterized in that the adsorbent is a zeolite structure comprising a substrate made of innumerable fine organic fibers having a large number of pores and zeolite held in the pores. .
前記基材は竹繊維である請求項1記載の汚染土壌の除染方法。   The decontamination method for contaminated soil according to claim 1, wherein the base material is bamboo fiber.
JP2013138891A 2013-07-02 2013-07-02 Decontamination method of contaminated soil Pending JP2015011012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013138891A JP2015011012A (en) 2013-07-02 2013-07-02 Decontamination method of contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013138891A JP2015011012A (en) 2013-07-02 2013-07-02 Decontamination method of contaminated soil

Publications (1)

Publication Number Publication Date
JP2015011012A true JP2015011012A (en) 2015-01-19

Family

ID=52304285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013138891A Pending JP2015011012A (en) 2013-07-02 2013-07-02 Decontamination method of contaminated soil

Country Status (1)

Country Link
JP (1) JP2015011012A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017002880A1 (en) * 2015-06-29 2017-01-05 三井金属鉱業株式会社 Method for producing surface-modified pearlite, filtration assistant, filtration method and surface-modified pearlite

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017002880A1 (en) * 2015-06-29 2017-01-05 三井金属鉱業株式会社 Method for producing surface-modified pearlite, filtration assistant, filtration method and surface-modified pearlite
JP2017014038A (en) * 2015-06-29 2017-01-19 三井金属鉱業株式会社 Manufacturing method of surface modified pearlite, filter aid, filtration method and surface modified pearlite
CN107709238A (en) * 2015-06-29 2018-02-16 三井金属矿业株式会社 Manufacture method, filter aid, filter method and the surface modification pearlite of surface modification pearlite

Similar Documents

Publication Publication Date Title
Khaniabadi et al. Removal of Congo red dye from aqueous solutions by a low-cost adsorbent: activated carbon prepared from Aloe vera leaves shell
Essekri et al. Novel citric acid-functionalized brown algae with a high removal efficiency of crystal violet dye from colored wastewaters: insights into equilibrium, adsorption mechanism, and reusability
Akhayere et al. Effective and reusable nano-silica synthesized from barley and wheat grass for the removal of nickel from agricultural wastewater
CN107684634B (en) A kind of bentonite deodorizer and preparation method thereof
Iddou et al. Biosorptive removal of lead (II) ions from aqueous solutions using Cystoseira stricta biomass: Study of the surface modification effect
Dashti Khavidaki et al. Adsorption of thallium (I) ions using eucalyptus leaves powder
Balarak et al. Application of alumina-coated carbon nanotubes in removal of tetracycline from aqueous solution
Kayan et al. Adsorption of Malachite Green on Fe-modified biochar: influencing factors and process optimization
Younis et al. Novel eco-friendly amino-modified nanoparticles for phenol removal from aqueous solution
Mohammad et al. Removal of copper (II) ions by eco-friendly raw eggshells and nano-sized eggshells: a comparative study
CN107115719A (en) A kind of environment-friendly composite filter core for air purifier
JP2015011012A (en) Decontamination method of contaminated soil
JP2013057575A (en) Method for decontaminating soil contaminated by radioactive material
JP2010264391A (en) Solid hull charcoal and method for manufacturing the same
JP5439621B1 (en) Method for producing zeolite structure
Lalhmunsiama et al. Recent advances in adsorption removal of cesium from aquatic environment
JP2014224696A (en) Radioactive contamination water decontamination method
CN104874353B (en) Sintered carbon rod
JP2014228282A (en) Aggregate of radioactive material decontamination particle, production method thereof, and decontamination method of contaminant
KR20140134528A (en) Method for fabrication shellfish-powder having nano pores and application on the material for reduction of environmental pollutants
KR20220138536A (en) Self-propelled adsorbent and a method for purifying contaminated water using the same
KR101817716B1 (en) Penetrant composition for improving environment of concrete structures and cement products and method for preparing penetrant using the same
Divband et al. Investigation of nano particles efficiency prepared from cedar fly ash (Zizyphus spinachristi) for lead (Pb+ 2) removal from aqueous solution.
JP2013024812A (en) Processing method of radioactive cesium polluted solid
KR20170124390A (en) A filter for purification and sterilization, and a sterilizer using the filter