JP2015010938A - Diabetes detection method - Google Patents

Diabetes detection method Download PDF

Info

Publication number
JP2015010938A
JP2015010938A JP2013136560A JP2013136560A JP2015010938A JP 2015010938 A JP2015010938 A JP 2015010938A JP 2013136560 A JP2013136560 A JP 2013136560A JP 2013136560 A JP2013136560 A JP 2013136560A JP 2015010938 A JP2015010938 A JP 2015010938A
Authority
JP
Japan
Prior art keywords
urine
diabetes
fluorescence
sample
specimen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013136560A
Other languages
Japanese (ja)
Other versions
JP6212303B2 (en
Inventor
守 中西
Mamoru Nakanishi
守 中西
景博 内田
Kagehiro Uchida
景博 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Prefectural Public Univ Corp
Biomarker Science Co Ltd
Original Assignee
Kyoto Prefectural Public Univ Corp
Biomarker Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Prefectural Public Univ Corp, Biomarker Science Co Ltd filed Critical Kyoto Prefectural Public Univ Corp
Priority to JP2013136560A priority Critical patent/JP6212303B2/en
Publication of JP2015010938A publication Critical patent/JP2015010938A/en
Application granted granted Critical
Publication of JP6212303B2 publication Critical patent/JP6212303B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a diabetes detection technique which detects even a diabetes in an initial stage by high sensitivity, has high specificity to a diabetes, allows a user to operate easily, and uses urine as a sample.SOLUTION: The diabetes detection method in which urine collected from a subject is used as a sample is provided. The sample is urine or derivation matter thereof which is not subjected to refining. Using intensity of fluorescence emitted from a fluorescent material included in the sample in an excitation wavelength of 250-500 nm as an index, presence/absence of a diabetes in the subject is detected. As the sample, urine itself or a diluted matter of the same may be used.

Description

本発明は糖尿病の検出方法に関する。本発明の糖尿病の検出方法は、糖尿病の有無を高感度、高特異性、かつ簡便に検出できるものである。   The present invention relates to a method for detecting diabetes. The method for detecting diabetes according to the present invention can detect the presence or absence of diabetes with high sensitivity, high specificity, and simply.

近年、食生活の欧米化が進み、それに起因すると考えられる肥満,糖尿病,動脈硬化等の生活習慣病が増加している。このうち糖尿病は、知覚麻痺、失明、動脈硬化等との合併症を引き起こすことも多く、日常生活に多大な障害をもたらす病気として特に問題視されている。   In recent years, westernization of eating habits has progressed, and lifestyle-related diseases such as obesity, diabetes, and arteriosclerosis, which are considered to be caused by this, are increasing. Of these, diabetes often causes complications such as sensory palsy, blindness, arteriosclerosis, and the like, and is regarded as a particular problem as a disease that causes a great disability in daily life.

糖尿病はインスリンの作用不足による高血糖が引き起こす複合疾患である。糖尿病は1型と2型に分類される。1型糖尿病は、膵臓のランゲルハンス島が炎症を起こした結果、インスリン分泌能が低下又は枯渇してしまい、高血糖に至るものである。一方、2型糖尿病はそれ以外の原因によってインスリンの作用不足が起こり、高血糖に至るものである。この2型糖尿病は日本人の糖尿病の大部分を占めるものであり、特に問題視されている。   Diabetes is a complex disease caused by hyperglycemia due to insufficient action of insulin. Diabetes is classified into type 1 and type 2. In type 1 diabetes, pancreatic islets of Langerhans are inflamed, resulting in a decrease or depletion of the ability to secrete insulin, leading to hyperglycemia. On the other hand, type 2 diabetes causes hyperglycemia due to insufficient action of insulin due to other causes. This type 2 diabetes accounts for the majority of Japanese diabetes and is especially regarded as a problem.

2型糖尿病の発病メカニズムはまだ不明の点があるが、主に環境因子が引き金になって発病するとされ、過食や肥満が大きな原因の一つである。例えば、肥満のために膵臓のインスリン分泌量が激増した結果、膵臓が疲労して逆にインスリン分泌量が減少し、結局インスリンの作用不足となり高血糖となる。あるいは、脂肪の増加によってインスリン受容体が減少し、その結果、インスリンの作用不足となり高血糖となる。一方、逆に、インスリンの作用不足から生まれる余剰のグルコースが脂肪となって蓄えられて肥満が進むこともあり、糖尿病はその発症メカニズムにおいて肥満と密接に関係している。また、2型糖尿病は発症初期に自覚症状がないことが多く、発見時にはかなり進行していて治療が困難となることもある。すなわち、2型糖尿病の予備軍は相当に多いと予想される。   Although the pathogenesis of type 2 diabetes is still unclear, it is thought that the disease is caused mainly by environmental factors, and overeating and obesity are one of the major causes. For example, the amount of insulin secretion in the pancreas increases dramatically due to obesity, resulting in fatigue of the pancreas and conversely the decrease in insulin secretion, resulting in insufficient insulin action and hyperglycemia. Alternatively, insulin receptors decrease due to an increase in fat, resulting in insufficient insulin action and hyperglycemia. On the other hand, excess glucose born from insufficient action of insulin is stored as fat and obesity progresses, and diabetes is closely related to obesity in its onset mechanism. In addition, type 2 diabetes often has no subjective symptoms at the beginning of the onset, and at the time of discovery it is so advanced that it may be difficult to treat. In other words, it is expected that there will be a considerable number of reserves for type 2 diabetes.

現在、糖尿病の検出に用いられている臨床検査項目としては、尿糖、空腹時血糖、ヘモグロビンA1c(HbA1c)、血中インスリン値、血中・尿中C−ペプチド値(CPR)などがある。その他、グルコースを経口摂取した後の血中グルコース濃度をモニターし、そのクリアランス能力をみる経口グルコース負荷試験(OGTT)も行われている。   Currently, clinical laboratory items used for detecting diabetes include urine sugar, fasting blood glucose, hemoglobin A1c (HbA1c), blood insulin level, blood / urine C-peptide level (CPR), and the like. In addition, an oral glucose tolerance test (OGTT) is also performed in which blood glucose concentration after ingesting glucose is monitored and its clearance ability is observed.

また近年、医学領域において、糖化最終産物(Advanced glycation end products;以下、「AGEs」と称する)と呼ばれる物質が注目されており、様々な病気、疾患、老化等との関連性について研究されている。そして、慢性的な高血糖状態では循環血液中や組織でAGEsの生成が促進され、蓄積されることが知られている。AGEsという名称は総称であり、AGEsには種々の化合物が含まれる。代表的なAGEsとして、カルボキシメチルリジン(Nε-(carboxymethyl) lysine)、ペントシジン(Pentosidine)、ピラリン(Pyrraline)、クロスリン(Crossline)などが知られている。   In recent years, substances called advanced glycation end products (hereinafter referred to as “AGEs”) have attracted attention in the medical field, and their relationship with various diseases, diseases, aging, etc. has been studied. . And it is known that the generation of AGEs is promoted and accumulated in circulating blood and tissues in a chronic hyperglycemic state. The name AGEs is a generic name, and AGEs include various compounds. As typical AGEs, carboxymethyl lysine (Nε- (carboxymethyl) lysine), pentosidine (Pentosidine), pyralin (Pyrraline), crossline (Crossline) and the like are known.

AGEsの測定技術としては、AGEsが発する蛍光(主に、励起波長370nm、発光波長440nm)を指標とする蛍光分析法、褐色変化を利用した吸光度測定法、化学発光法等が、簡易的な方法として知られている(例えば、特許文献1〜3)。その他、HPLCやGC/MSによる精密な測定法も知られている(例えば、非特許文献1、特許文献4)。さらに、特定のAGEsに着目したELISAによる測定法も開発されている(例えば、特許文献5〜7、非特許文献2,3)。   AGEs measurement techniques include fluorescence analysis using fluorescence emitted from AGEs (mainly excitation wavelength 370 nm, emission wavelength 440 nm) as an index, absorbance measurement method using brown color change, chemiluminescence method, and the like. (For example, Patent Documents 1 to 3). In addition, precise measurement methods using HPLC and GC / MS are also known (for example, Non-Patent Document 1 and Patent Document 4). Furthermore, measurement methods using ELISA focusing on specific AGEs have also been developed (for example, Patent Documents 5 to 7, Non-Patent Documents 2 and 3).

このうち蛍光測定法は、AGEsの多くが蛍光を発することを利用したものである。ただし、蛍光を発しないAGEsも存在するので(例えば、ピラリン)、蛍光分析法は全てのAGEsを網羅したものではない。逆に、AGEs以外の蛍光物質も含めて測定していると考えられる。また、選択する励起波長と発光波長によって、検出できる蛍光物質が異なると考えられる。蛍光分析法は高感度かつ簡便であり、多数の試料を測定する場合に有用である。例えば、健康診断等において複数の尿や血清を測定試料とする場合に有用である。   Of these, the fluorescence measurement method utilizes the fact that many AGEs emit fluorescence. However, since there are AGEs that do not emit fluorescence (for example, pyralin), the fluorescence analysis method does not cover all AGEs. On the contrary, it is considered that measurement is performed including fluorescent substances other than AGEs. Moreover, it is thought that the fluorescent substance which can be detected changes with excitation wavelength and light emission wavelength to select. The fluorescence analysis method is highly sensitive and simple, and is useful when measuring a large number of samples. For example, it is useful when a plurality of urine samples or serum samples are used as a measurement sample in health checkups.

糖尿病の検出を目的とした尿中AGEsの蛍光分析に関する報告がある(例えば、非特許文献4,5)。ここで、尿検体を蛍光分析に供する場合には、除タンパク等の前処理を行うのが普通である。
例えば、非特許文献4に記載の技術では、前処理として尿検体を限外ろ過に供し、分子量1万以上の物質を除去してから蛍光分析を行っている。また非特許文献5に記載の技術では、前処理として尿検体をトリクロロ酢酸(TCA)による除タンパク処理に供している。
There are reports on the fluorescence analysis of urinary AGEs for the purpose of detecting diabetes (for example, Non-Patent Documents 4 and 5). Here, when the urine sample is subjected to fluorescence analysis, pretreatment such as deproteinization is usually performed.
For example, in the technique described in Non-Patent Document 4, a urine sample is subjected to ultrafiltration as a pretreatment, and a fluorescence analysis is performed after removing a substance having a molecular weight of 10,000 or more. In the technique described in Non-Patent Document 5, a urine sample is subjected to deproteinization treatment with trichloroacetic acid (TCA) as pretreatment.

特開2001−099838号公報JP 2001-099838 A 特開2001−021549号公報JP 2001-021549 A 特開2001−059843号公報JP 2001-059843 A 特開平7−098317号公報Japanese Patent Laid-Open No. 7-098317 特開2004−323515号公報JP 2004-323515 A 特開2006−312621号公報JP 2006-31621 A 特開2001−021559号公報JP 2001-021559 A

MP DE LA MAZA et al., "Fluorescent serum and urinary advanced glycoxidation end-products in non-diabetic subjects", Biol Res. 2007;40(2):203-12.MP DE LA MAZA et al., "Fluorescent serum and urinary advanced glycoxidation end-products in non-diabetic subjects", Biol Res. 2007; 40 (2): 203-12. N. Turk et al., "Urinary extraction of advanced glycation endoproducts in patients with type 2 diabetes and various stages of proteinuria", Diabetes Metab. 2004 Apr;30(2):187-92.N. Turk et al., "Urinary extraction of advanced glycation endoproducts in patients with type 2 diabetes and various stages of proteinuria", Diabetes Metab. 2004 Apr; 30 (2): 187-92. Takeuchi, M., et al., "Immunological evidence that non-carboxymethyllysine advanced glycation end-products are produced from short chain sugars and dicarbonyl compounds in vivo ", Mol Med. 2000 Feb;6(2):114-25.Takeuchi, M., et al., "Immunological evidence that non-carboxymethyllysine advanced glycation end-products are produced from short chain sugars and dicarbonyl compounds in vivo", Mol Med. 2000 Feb; 6 (2): 114-25. Yanagisawa et al., "Specific Fluorescence Assay for Advanced Glycation End Products in Blood and Urine of Diabetic Patients", Metabolism. 1998 Nov;47(11):1348-53.Yanagisawa et al., "Specific Fluorescence Assay for Advanced Glycation End Products in Blood and Urine of Diabetic Patients", Metabolism. 1998 Nov; 47 (11): 1348-53. M. P. de la Maza et al., "Fluorescent advanced glycation end-products (ages) detected by spectro-photofluorimetry, as a screening tool to detect diabetic microvascular complications", Journal of Diabetes Mellitus. 2012 2(2):221-226.M. P. de la Maza et al., "Fluorescent advanced glycation end-products (ages) detected by spectro-photofluorimetry, as a screening tool to detect diabetic microvascular complications", Journal of Diabetes Mellitus. 2012 2 (2): 221-226.

上記したように、2型糖尿病は発症初期に自覚症状がないことが多く、発見時にはかなり進行していて治療が困難となることも多い。そのため、糖尿病の検出を目的とした臨床検査においては、糖尿病の罹患の有無のみならず、通常は検出できないような初期段階の糖尿病の有無、糖尿病の将来の発症リスクの有無、いわゆる糖尿病予備軍であるか否か、等も検出したいという要望がある。一方、非糖尿病が偽陽性として検出されないよう、糖尿病に対する高い特異性が維持されていることも求められる。さらに、集団検診に容易に対応できるように、できるだけ簡便な操作で糖尿病の検出を行いたいという要望もある。そこで本発明は、初期段階等の糖尿病も高感度で検出でき、糖尿病に対する特異性が高く、かつ操作も簡便な糖尿病の検出技術を提供することを目的とする。   As described above, type 2 diabetes often has no subjective symptoms in the early stage of onset, and at the time of discovery it is quite advanced and often difficult to treat. Therefore, in clinical tests aimed at detecting diabetes, not only the presence or absence of diabetes, but the presence or absence of diabetes at an early stage that cannot be detected normally, the presence or absence of future risk of diabetes, There is a desire to detect whether or not there is. On the other hand, it is also required that high specificity for diabetes is maintained so that non-diabetes is not detected as a false positive. Furthermore, there is a demand for detecting diabetes with the simplest possible operation so that it can be easily applied to mass screening. Accordingly, an object of the present invention is to provide a technology for detecting diabetes that can detect diabetes at an early stage with high sensitivity, has high specificity for diabetes, and is easy to operate.

上記した課題を解決すべく、本発明者らは、尿を検体として用いる糖尿病の高感度、高特異性、かつ簡便な検出技術について研究を進めた。その結果、尿を前処理せずにそのまま蛍光分析に供することによって、上記の課題を解決できることを見出した。すなわち、尿又は尿の希釈物をそのまま蛍光分析に供することによっても糖尿病の検出が可能であること、さらに、尿の前処理を行わないことにより、従来の方法では見逃されていた糖尿病も検出できることを見出した。さらに、前処理を行わない場合でも糖尿病に対する高い特異性は維持されており、糖尿病と非糖尿病の判別を高精度で行えることを見出した。   In order to solve the above-described problems, the present inventors have advanced research on a highly sensitive, highly specific and simple detection technique for diabetes using urine as a specimen. As a result, it was found that the above problem can be solved by subjecting urine to fluorescence analysis as it is without pretreatment. That is, it is possible to detect diabetes by directly subjecting urine or a diluted urine to fluorescence analysis, and furthermore, it is possible to detect diabetes that has been missed by the conventional method by not performing urine pretreatment. I found. Furthermore, it has been found that high specificity for diabetes is maintained even when pretreatment is not performed, and that diabetes and non-diabetes can be distinguished with high accuracy.

上記した知見に基づいて提供される本発明の1つの様相は、被験者から採取した尿を検体として用いる糖尿病の検出方法であって、前記検体は、精製処理を経ていない尿又は尿由来物であり、励起波長250〜500nmにおいて前記検体に含まれる蛍光物質が発する蛍光の強度を指標として、前記被験者における糖尿病の有無を検出することを特徴とする糖尿病の検出方法である。   One aspect of the present invention provided on the basis of the above findings is a method for detecting diabetes using urine collected from a subject as a specimen, and the specimen is urine or urine-derived material that has not undergone purification treatment. A method for detecting diabetes, comprising detecting the presence or absence of diabetes in the subject using as an index the intensity of fluorescence emitted by a fluorescent substance contained in the specimen at an excitation wavelength of 250 to 500 nm.

本発明の糖尿病の検出方法は、精製処理を経ていない尿又は尿由来物を検体として用い、検体が発する特定の蛍光強度を指標とするものである。本発明によれば、糖尿病に対する高い特異性を維持しつつ、高感度かつ簡便に糖尿病を検出することができる。例えば、従来のような、前処理を経た尿検体を用いた蛍光分析では検出できない糖尿病も検出することができる。   The method for detecting diabetes according to the present invention uses urine or urine-derived material that has not undergone purification treatment as a sample, and uses a specific fluorescence intensity emitted from the sample as an index. According to the present invention, diabetes can be detected with high sensitivity and simplicity while maintaining high specificity for diabetes. For example, it is possible to detect diabetes that cannot be detected by fluorescence analysis using a pretreated urine sample as in the prior art.

ここで「精製処理」とは、採取した尿が有している含有物の組成を変化させるような処理を指す。例えば、一部の含有物を除去する処理や、一部の含有物を濃縮する処理は、当該精製処理に含まれる。例えば、一定以上の分子量を有する物質の除去(例えば、限外ろ過による濃縮・分画処理)、タンパク質やペプチドの除去(例えば、TCAによる除タンパク処理)、一部の荷電分子の除去(例えば、イオン交換体との接触)、各種クロマトグラフィーによる分画処理は、いずれも当該精製処理に含まれる。
一方、希釈操作は、尿全体を均一に薄めるのみであり、含有物の組成を変化させるものではないので、当該精製処理には含まれない。同様に、尿全体を均一に濃縮する操作も、当該精製処理には含まれない。尿全体に安定化剤等を添加する処理も、含有物の組成を変化させない限り当該精製処理に含まれない。
Here, the “purification process” refers to a process that changes the composition of the contents of the collected urine. For example, a process for removing some contents and a process for concentrating some contents are included in the purification process. For example, removal of substances having a molecular weight above a certain level (for example, concentration / fractionation by ultrafiltration), removal of proteins and peptides (for example, deproteinization by TCA), removal of some charged molecules (for example, Contact with an ion exchanger) and fractionation treatment by various chromatography are all included in the purification treatment.
On the other hand, the dilution operation only dilutes the entire urine uniformly and does not change the composition of the inclusions, and thus is not included in the purification treatment. Similarly, the operation of uniformly concentrating the entire urine is not included in the purification process. A treatment for adding a stabilizer or the like to the whole urine is not included in the purification treatment unless the composition of the contents is changed.

精製処理を経ていない「尿由来物」とは、尿そのものではないが、尿に由来し、かつ前記した精製処理を経ていない物を指す。当該尿由来物の代表例は、前記した尿の希釈物である。その他、尿の均一濃縮物も当該尿由来物に含まれる。   A “urine-derived product” that has not undergone purification treatment refers to a product that is not urine itself, but is derived from urine and has not undergone the purification treatment described above. A typical example of the urine-derived material is the urine dilution described above. In addition, a uniform urine concentrate is also included in the urine-derived material.

ここで「糖尿病の有無」とは、糖尿病の罹患の有無だけでなく、通常は検出困難な初期の糖尿病の有無、糖尿病の将来の発症リスクの有無、いわゆる糖尿病予備軍であるか否か、等も含む概念である。糖尿病の将来の発症リスクの有無とは、糖尿病を発症していない時点において、将来、糖尿病に罹患する可能性(危険性)の有無を指す。   Here, “presence / absence of diabetes” is not only the presence / absence of diabetes, but also the presence / absence of early diabetes, which is usually difficult to detect, the presence / absence of the risk of developing diabetes in the future, whether it is a so-called diabetes reserve arm, etc. It is a concept that also includes The presence or absence of the risk of developing diabetes in the future refers to the presence or absence of risk (risk) of having diabetes in the future at the time when diabetes does not occur.

なお、本発明で指標とする蛍光は、励起波長250〜500nmにおいて検体に含まれる蛍光物質が発する蛍光である。この励起波長の範囲は、AGEsの蛍光測定で従来から採用されている波長と重複している。ただし、本発明で指標とする当該蛍光はAGEsのみを反映したものではなく、他の蛍光物質、例えば、従来技術では前処理で除去されていた蛍光物質も含めた広い範囲をカバーしている。   The fluorescence used as an index in the present invention is fluorescence emitted from a fluorescent substance contained in a specimen at an excitation wavelength of 250 to 500 nm. This excitation wavelength range overlaps with the wavelength conventionally employed in the fluorescence measurement of AGEs. However, the fluorescence used as an index in the present invention does not reflect only AGEs, and covers a wide range including other fluorescent materials, for example, fluorescent materials that have been removed by pretreatment in the prior art.

好ましくは、前記蛍光の強度は、励起波長よりも10〜250nm大きい波長における蛍光の強度である。   Preferably, the intensity of the fluorescence is the intensity of fluorescence at a wavelength 10 to 250 nm larger than the excitation wavelength.

好ましくは、前記検体は、尿そのもの又は尿の希釈物である。   Preferably, the specimen is urine itself or a urine dilution.

好ましくは、前記蛍光の強度を測定し、得られた測定値を基準値と比較する。   Preferably, the intensity of the fluorescence is measured, and the obtained measurement value is compared with a reference value.

本発明によれば、糖尿病に対する高い特異性を維持しつつ、高感度かつ簡便に糖尿病を検出することができる。例えば、従来のような、前処理を経た尿検体を用いた蛍光分析では検出できない糖尿病も検出することができる。   According to the present invention, diabetes can be detected with high sensitivity and simplicity while maintaining high specificity for diabetes. For example, it is possible to detect diabetes that cannot be detected by fluorescence analysis using a pretreated urine sample as in the prior art.

(a)は糖尿病型と非糖尿病型を含む尿検体について蛍光強度を測定した結果を表すグラフ、(b)はドットプロット図である。(A) is a graph showing the result of measuring fluorescence intensity for urine samples including diabetic and non-diabetic types, and (b) is a dot plot diagram. 尿中アルブミンと蛍光強度との関係を表すグラフである。It is a graph showing the relationship between urinary albumin and fluorescence intensity.

以下、本発明の実施形態について説明する。
本発明の糖尿病の検出方法は、被験者から採取した尿を検体として用いる糖尿病の検出方法であって、前記検体は、精製処理を経ていない尿又は尿由来物であり、励起波長250〜500nmにおいて前記検体に含まれる蛍光物質が発する蛍光の強度を指標として、前記被験者における糖尿病の有無を検出することを特徴とするものである。例えば、前記検体が発する前記蛍光強度を蛍光分析装置等で測定し、該測定値を基準値と比較し、その比較結果に基づいて糖尿病の有無を検出する。
Hereinafter, embodiments of the present invention will be described.
The method for detecting diabetes according to the present invention is a method for detecting diabetes using urine collected from a subject as a specimen, and the specimen is urine or urine-derived material that has not undergone purification treatment, and the excitation wavelength is 250 to 500 nm. The presence or absence of diabetes in the subject is detected using the intensity of fluorescence emitted from the fluorescent substance contained in the specimen as an index. For example, the fluorescence intensity emitted from the specimen is measured with a fluorescence analyzer or the like, the measured value is compared with a reference value, and the presence or absence of diabetes is detected based on the comparison result.

本発明では、検体として「精製処理を経ていない尿又は尿由来物」を用いる。上述したように、精製処理とは、採取した尿が有している含有物の組成を変化させるような処理を指す。すなわち本発明では、限外ろ過や除タンパク等の前処理を経ていない尿又は尿由来物を用いる。   In the present invention, “urine or urine-derived material that has not undergone purification treatment” is used as a specimen. As described above, the purification treatment refers to a treatment that changes the composition of the contents of the collected urine. That is, in the present invention, urine or urine-derived material that has not undergone pretreatment such as ultrafiltration or protein removal is used.

上述したように、精製処理を経ていない「尿由来物」とは、尿そのものではないが、尿に由来し、かつ前記した精製処理を経ていない物を指す。当該尿由来物の代表例は、尿の希釈物である。   As described above, the “urine-derived product” that has not undergone purification treatment refers to a product that is not urine itself, but is derived from urine and has not undergone the purification treatment described above. A typical example of the urine-derived material is a urine dilution.

好ましい実施形態では、検体として、尿そのもの又は尿の希釈物を用いる。尿そのものと尿の希釈物の使い分けは、例えば、検体が発する蛍光強度に応じて行うことができる。すなわち、尿の蛍光強度が高すぎる場合には、消光現象を回避するために尿を希釈することが好ましい。
尿の希釈に用いる希釈液としては、蛍光測定に悪影響を及ぼさないものであれば特に限定はなく、水、生理食塩水、リン酸緩衝生理食塩水(PBS)、各種の緩衝液、等を適宜用いることができる。希釈液のpHとしては、蛍光物質が安定に存在できるものであればよく、例えば、6.0〜8.0の範囲から選択することができる。希釈液におけるイオン種やイオン強度についても、蛍光物質が安定に存在できるものであればよい。例えば、タンパク質が変性しない程度のイオン種やイオン強度を選択すればよい。
また希釈液は、蛍光物質を含まないものであることが好ましい。
In a preferred embodiment, urine itself or a urine dilution is used as the specimen. The use of urine itself and urine dilution can be performed according to, for example, the fluorescence intensity emitted from the specimen. That is, when the fluorescence intensity of urine is too high, it is preferable to dilute urine to avoid the quenching phenomenon.
The diluting solution used for diluting urine is not particularly limited as long as it does not adversely affect the fluorescence measurement, and water, physiological saline, phosphate buffered saline (PBS), various buffer solutions, etc. are appropriately used. Can be used. The pH of the diluting solution is not particularly limited as long as the fluorescent substance can exist stably, and can be selected from the range of 6.0 to 8.0, for example. The ionic species and the ionic strength in the diluted solution may be anything as long as the fluorescent substance can exist stably. For example, an ionic species or ionic strength that does not denature the protein may be selected.
Moreover, it is preferable that a dilution liquid does not contain a fluorescent substance.

本発明では、励起波長250〜500nmにおいて検体に含まれる蛍光物質が発する蛍光の強度を指標とする。上述したように、この励起波長の範囲は、AGEsの蛍光測定で従来から採用されている波長と重複している。前記励起波長の範囲は、好ましくは250〜450nm、より好ましくは280〜420nmm、さらに好ましくは280〜400nm、特に好ましくは300〜400nmである。
蛍光強度測定時の蛍光波長(発光波長)としては、蛍光を検出できる波長であれば特に限定はないが、励起波長よりも10〜250nm大きい波長を選択することが好ましい。
具体例を挙げると、励起波長が260nmの場合には、蛍光波長は270〜510nm、好ましくは300〜380nm、より好ましくは320〜370nmの範囲から選択することができる。
励起波長が300nmの場合には、蛍光波長は310〜550nm、好ましくは350〜500nm、より好ましくは360〜480nmの範囲から選択することができる。
励起波長が340nmの場合には、蛍光波長は350〜590nm、好ましくは380〜530nm、より好ましくは390〜520nmの範囲から選択することができる。
励起波長が370nmの場合には、蛍光波長は380〜620nm、好ましくは4000〜550nm、より好ましくは420〜530nmの範囲から選択することができる。
励起波長が400nmの場合には、蛍光波長は410〜650nm、好ましくは4500〜600nm、より好ましくは460〜580nmの範囲から選択することができる。
励起波長が450nmの場合には、蛍光波長は460〜700nm、好ましくは5000〜650nm、より好ましくは510〜630nmの範囲から選択することができる。
励起波長が500nmの場合には、蛍光波長は510〜750nm、好ましくは5500〜700nm、より好ましくは560〜680nmの範囲から選択することができる。
In the present invention, the intensity of fluorescence emitted from the fluorescent substance contained in the specimen at an excitation wavelength of 250 to 500 nm is used as an index. As described above, this excitation wavelength range overlaps with the wavelength conventionally employed in the fluorescence measurement of AGEs. The range of the excitation wavelength is preferably 250 to 450 nm, more preferably 280 to 420 nm, still more preferably 280 to 400 nm, and particularly preferably 300 to 400 nm.
The fluorescence wavelength (emission wavelength) at the time of measuring the fluorescence intensity is not particularly limited as long as the fluorescence can be detected, but it is preferable to select a wavelength that is 10 to 250 nm larger than the excitation wavelength.
As a specific example, when the excitation wavelength is 260 nm, the fluorescence wavelength can be selected from the range of 270 to 510 nm, preferably 300 to 380 nm, more preferably 320 to 370 nm.
When the excitation wavelength is 300 nm, the fluorescence wavelength can be selected from the range of 310 to 550 nm, preferably 350 to 500 nm, more preferably 360 to 480 nm.
When the excitation wavelength is 340 nm, the fluorescence wavelength can be selected from the range of 350 to 590 nm, preferably 380 to 530 nm, more preferably 390 to 520 nm.
When the excitation wavelength is 370 nm, the fluorescence wavelength can be selected from the range of 380 to 620 nm, preferably 4000 to 550 nm, more preferably 420 to 530 nm.
When the excitation wavelength is 400 nm, the fluorescence wavelength can be selected from the range of 410 to 650 nm, preferably 4500 to 600 nm, more preferably 460 to 580 nm.
When the excitation wavelength is 450 nm, the fluorescence wavelength can be selected from the range of 460 to 700 nm, preferably 5000 to 650 nm, more preferably 510 to 630 nm.
When the excitation wavelength is 500 nm, the fluorescence wavelength can be selected from the range of 510 to 750 nm, preferably 5500 to 700 nm, more preferably 560 to 680 nm.

さらに、AGEsの蛍光測定で従来から採用されている「励起波長370nm、蛍光波長440nm」の組み合わせを採用してもよい。   Furthermore, a combination of “excitation wavelength of 370 nm and fluorescence wavelength of 440 nm” conventionally used in fluorescence measurement of AGEs may be employed.

本発明では、励起波長250〜500nmにおいて検体に含まれる蛍光物質が発する蛍光の強度を指標とするが、その具体的操作の代表例は、得られた蛍光強度値を基準値と比較することである。例えば、標準物質の蛍光強度を同時に測定し、当該測定値を基準値とすることができる。
より具体的には、例えば、安定な一定濃度の標準溶液を作製し、この標準溶液の蛍光強度を100とした場合の相対値で検体の蛍光強度を表すことができる。
前記標準物質としては、公知の蛍光物質を用いることができる。当該蛍光物質は、上記の励起波長と発光波長で蛍光測定可能なものであれば特に限定されない。AGEsである必要もない。複数の標準物質を用いてもよい。
標準物質となり得る蛍光物質の具体例としては、硫酸キニーネ、フルオレセインナトリウム、ローダミンBなどが挙げられる。例えば、硫酸キニーネの0.1〜1mol/L硫酸溶液は安定であり、標準溶液として有用である。
In the present invention, the intensity of fluorescence emitted from the fluorescent substance contained in the specimen at an excitation wavelength of 250 to 500 nm is used as an index. A typical example of the specific operation is to compare the obtained fluorescence intensity value with a reference value. is there. For example, the fluorescence intensity of a standard substance can be measured at the same time, and the measured value can be used as a reference value.
More specifically, for example, a stable standard solution having a constant concentration is prepared, and the fluorescence intensity of the specimen can be expressed by a relative value when the fluorescence intensity of the standard solution is 100.
A known fluorescent material can be used as the standard material. The fluorescent substance is not particularly limited as long as it can measure fluorescence at the excitation wavelength and emission wavelength. There is no need to be AGEs. A plurality of standard substances may be used.
Specific examples of the fluorescent substance that can be a standard substance include quinine sulfate, sodium fluorescein, rhodamine B, and the like. For example, a 0.1-1 mol / L sulfuric acid solution of quinine sulfate is stable and useful as a standard solution.

その他、基準値がカットオフ値となるような標準物質を選択し、蛍光強度値が基準値以下の場合を非糖尿病、基準値を超える場合を糖尿病と判定することもできる。
また、段階希釈した標準物質を用いて検量線を作成してもよい。
In addition, it is also possible to select a standard substance whose reference value is a cut-off value, and to determine non-diabetic when the fluorescence intensity value is lower than the reference value and to determine diabetes when it exceeds the reference value.
In addition, a calibration curve may be prepared using a serially diluted standard substance.

本発明においては、尿を検体とする他の臨床マーカーと同様に、クレアチニン補正等の濃度補正をすることが好ましい。
尿中クレアチニンの測定方法としては、公知の方法をそのまま用いることができる。例えば、有機化学的測定法、紫外部吸収法、酵素的測定法、質量分析、などを用いることができる。このうち、紫外部吸収法は、尿又は尿の希釈物をそのまま測定試料とすることができ、簡便である。
クレアチニンによる補正以外では、尿の比重によって補正してもよい。
In the present invention, it is preferable to perform concentration correction such as creatinine correction in the same manner as other clinical markers using urine as a specimen.
As a method for measuring creatinine in urine, a known method can be used as it is. For example, organic chemical measurement methods, ultraviolet absorption methods, enzymatic measurement methods, mass spectrometry, and the like can be used. Among these, the ultraviolet absorption method is simple because urine or a diluted urine can be used as a measurement sample as it is.
Other than correction by creatinine, correction may be made by specific gravity of urine.

検体の蛍光強度の測定は、公知の蛍光分析装置を用いて行うことができる。例えば、分光蛍光光度計を用いることにより、検体の蛍光強度を測定することができる。また、蛍光マイクロプレートリーダーを用いることにより、マイクロプレートの各穴に入れた複数の検体の蛍光強度を同時に測定することができる。   The fluorescence intensity of the specimen can be measured using a known fluorescence analyzer. For example, the fluorescence intensity of the specimen can be measured by using a spectrofluorometer. Further, by using a fluorescence microplate reader, the fluorescence intensity of a plurality of specimens placed in each hole of the microplate can be measured simultaneously.

さらに、マイクロデバイス(マイクロ流体デバイス、μTAS)を用いた微量分析技術を応用することもできる。例えば、試料導入部と、試料導入部に連通するマイクロ流路と、マイクロ流路に連通するとともに光学セルとして機能する検体収容部とを備えたマイクロデバイスを用意する。そして、試料導入部から検体(例えば、精製処理を経ていない尿希釈物)を導入し、マイクロ流路を経由して検体収容部に収容する。そして、検体収容部(光学セル)に収容された検体が発する蛍光強度を、蛍光分析装置で測定する。
このとき、マイクロデバイスとして検体収容部(光学セル)を2つ設けたものを採用し、一方の検体収容部を蛍光強度測定用、他方の検体収容部をクレアチニン濃度測定用として用いてもよい。この際のクレアチニン測定法としては、例えば、前記した紫外部測定法(220〜250nm)を用いることができる。
本発明にマイクロデバイスを適用することにより、微量の検体(測定試料)で蛍光測定を行うことが可能となる。さらに、光学セルの光路長(セルの厚み、液厚)を小さくすることにより、濃い尿であっても希釈を行わずに、尿そのものを測定試料とすることが可能となる。この際のセルの厚みとしては、例えば100〜500μm程度とすることができる。
Furthermore, a microanalysis technique using a microdevice (microfluidic device, μTAS) can also be applied. For example, a micro device including a sample introduction unit, a micro channel communicating with the sample introduction unit, and a sample storage unit communicating with the micro channel and functioning as an optical cell is prepared. Then, a sample (for example, urine dilution that has not undergone purification treatment) is introduced from the sample introduction unit, and is accommodated in the sample accommodation unit via the microchannel. Then, the fluorescence intensity emitted by the sample stored in the sample storage unit (optical cell) is measured with a fluorescence analyzer.
At this time, a micro device provided with two sample storage units (optical cells) may be employed, and one sample storage unit may be used for fluorescence intensity measurement and the other sample storage unit may be used for creatinine concentration measurement. As the creatinine measurement method at this time, for example, the above-described ultraviolet measurement method (220 to 250 nm) can be used.
By applying the microdevice to the present invention, it is possible to perform fluorescence measurement with a very small amount of specimen (measurement sample). Furthermore, by reducing the optical path length (cell thickness, liquid thickness) of the optical cell, it is possible to use urine itself as a measurement sample without diluting even a thick urine. The thickness of the cell at this time can be, for example, about 100 to 500 μm.

以下に、実施例をもって本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

(1)血糖値及び血中HbA1c値との相関関係
血糖値と血中HbA1c値が分かっている成人男性114名の尿について、本発明による尿中の蛍光物質測定を行い、相関関係を調べた。なお、該114名の血糖値(mg/dL)の分布は、最小値83、最大値271、平均値117.25、標準偏差27.016であった。また、血中HbA1c値(%)の分布は、最小値4.4、最大値9.9、平均値5.706、標準偏差1.0562であった。
(1) Correlation between blood glucose level and blood HbA1c level The urine fluorescent substance measurement according to the present invention was performed on the urine of 114 adult males whose blood glucose level and blood HbA1c level were known, and the correlation was examined. . The distribution of blood glucose levels (mg / dL) of the 114 patients was a minimum value 83, a maximum value 271, an average value 117.25, and a standard deviation 27.016. The distribution of the blood HbA1c value (%) was a minimum value of 4.4, a maximum value of 9.9, an average value of 5.706, and a standard deviation of 1.0562.

尿をPBSで10〜200倍に希釈し、蛍光測定用の検体(測定試料)を調製した。各測定試料200μLを前処理することなくそのまま蛍光測定用マイクロプレート(Greiner bio-one、762077)の各穴に入れ、マイクロプレートリーダー(Spectra Max Gemini EM; Molecular Devices, Sunnyvale, CA)にて蛍光強度(励起波長370nm、蛍光波長440nm)を測定した。別途、各尿検体について、Lタイプワコー CRE・M(和光純薬工業社)を用いてクレアチニン濃度を測定した。得られた蛍光強度値をクレアチニン濃度値で除し、補正された蛍光強度値(AU/gクレアチニン)を得た。
その結果、補正された蛍光強度値の分布は、最小値46、最大値1276、平均値196.33、標準偏差158.067であった。
Urine was diluted 10 to 200 times with PBS to prepare a specimen (measurement sample) for fluorescence measurement. 200 μL of each measurement sample is directly placed in each hole of a fluorescence measurement microplate (Greiner bio-one, 762077) without pretreatment, and fluorescence intensity is measured with a microplate reader (Spectra Max Gemini EM; Molecular Devices, Sunnyvale, Calif.). (Excitation wavelength: 370 nm, fluorescence wavelength: 440 nm) was measured. Separately, the creatinine concentration of each urine sample was measured using L type Wako CRE · M (Wako Pure Chemical Industries, Ltd.). The obtained fluorescence intensity value was divided by the creatinine concentration value to obtain a corrected fluorescence intensity value (AU / g creatinine).
As a result, the distribution of the corrected fluorescence intensity values was a minimum value 46, a maximum value 1276, an average value 196.33, and a standard deviation 158.067.

SPSSソフトウェア(IBM社)により統計処理を行った。その結果、補正された蛍光強度値と血糖値とのPearsonの相関係数は0.260、有意確率(両側)は0.05であった。また、補正された蛍光強度値と血中HbA1c値とのPearsonの相関係数は0.281、有意確率(両側)は0.02であった。
以上より、尿の蛍光強度(励起波長370nm、蛍光波長440nm)は、血糖値及び血中HbA1c値と相関を有していた。
Statistical processing was performed with SPSS software (IBM). As a result, the Pearson correlation coefficient between the corrected fluorescence intensity value and the blood glucose level was 0.260, and the significance (both sides) was 0.05. The Pearson correlation coefficient between the corrected fluorescence intensity value and the blood HbA1c value was 0.281, and the significance (both sides) was 0.02.
From the above, the fluorescence intensity of urine (excitation wavelength: 370 nm, fluorescence wavelength: 440 nm) was correlated with blood glucose level and blood HbA1c value.

(2)蛍光強度による糖尿病と非糖尿病の判別
成人男性393名(糖尿病型22名、非糖尿病型(健常人)371名)の尿を検体として用い、以下の測定を行った。なお、糖尿病型22名の内訳は、
(a)糖尿病治療薬を使用している人:15名
(b)糖尿病治療薬を使用していないが空腹時血糖が126mg/dLでHbA1cが6.1%以上の糖尿病診断基準を満たしている人:7名
であった。
(2) Discrimination between diabetes and non-diabetes by fluorescence intensity The following measurements were performed using urine of 393 adult males (22 diabetic types, 371 non-diabetic types (healthy people)) as samples. The breakdown of the 22 diabetics is
(A) 15 people using anti-diabetic drugs (b) Not using anti-diabetes drugs but fasting blood glucose is 126 mg / dL and HbA1c meets 6.1% or higher diabetes diagnostic criteria People: 7 people.

尿をPBSで10〜200倍に希釈し、蛍光測定用の検体(測定試料)を調製した。各測定試料200μLを前処理することなくそのまま蛍光測定用マイクロプレート(Greiner bio-one、762077)の各穴に入れ、マイクロプレートリーダー(Spectra Max Gemini EM; Molecular Devices, Sunnyvale, CA)にて蛍光強度(励起波長370nm、蛍光波長440nm)を測定した。
別途、各尿検体について、Lタイプワコー CRE・M(和光純薬工業社)を用いてクレアチニン濃度を測定した。得られた蛍光強度値をクレアチニン濃度値で除し、補正された蛍光強度値(AU/gクレアチニン)を得た。結果を図1(a),(b)に示す。
Urine was diluted 10 to 200 times with PBS to prepare a specimen (measurement sample) for fluorescence measurement. 200 μL of each measurement sample is directly placed in each hole of a fluorescence measurement microplate (Greiner bio-one, 762077) without pretreatment, and fluorescence intensity is measured with a microplate reader (Spectra Max Gemini EM; Molecular Devices, Sunnyvale, Calif.). (Excitation wavelength: 370 nm, fluorescence wavelength: 440 nm) was measured.
Separately, the creatinine concentration of each urine sample was measured using L type Wako CRE · M (Wako Pure Chemical Industries, Ltd.). The obtained fluorescence intensity value was divided by the creatinine concentration value to obtain a corrected fluorescence intensity value (AU / g creatinine). The results are shown in FIGS. 1 (a) and (b).

補正された蛍光強度値(AU/gクレアチニン)の平均値±標準偏差は、非糖尿病型(371名)では171±132であった。一方、上記(a)の糖尿病型(15名)では260±181、上記(b)の糖尿病型(7名)では344±413、上記(a)(b)を合わせて(22名)287±269であった。
そして、非糖尿病型と糖尿病型(a)との間、非糖尿病型と糖尿病型(b)との間、非糖尿病型と糖尿病型(a)及び(b)との間、のいずれにおいても、補正された蛍光強度値に有意差(P<0.05)が認められた。
The average value ± standard deviation of the corrected fluorescence intensity values (AU / g creatinine) was 171 ± 132 in the non-diabetic type (371 patients). On the other hand, the above (a) diabetic type (15 persons) is 260 ± 181, the above (b) diabetic type (7 persons) is 344 ± 413, and the above (a) and (b) are combined (22 persons) 287 ±. 269.
And between non-diabetic type and diabetic type (a), between non-diabetic type and diabetic type (b), between non-diabetic type and diabetic type (a) and (b), A significant difference (P <0.05) was observed in the corrected fluorescence intensity values.

(3)励起波長と蛍光波長の検討
上記(2)の各検体について、励起波長を260〜500nmの範囲、蛍光波長を300〜700nmの範囲で振って、蛍光強度(AU/gクレアチニン)を測定し、糖尿病群(22例)と非糖尿病群(371例)での有意差検定を行った。結果を表1に示す。
すなわち、少なくとも励起波長260〜500nmの範囲で、蛍光強度に有意差が認められた(P<0.05、太字部分)。また蛍光波長については、少なくとも励起波長プラス20nm程度の波長であれば、十分採用可能であった。
(3) Examination of excitation wavelength and fluorescence wavelength For each specimen in (2) above, the fluorescence intensity (AU / g creatinine) is measured by shaking the excitation wavelength in the range of 260 to 500 nm and the fluorescence wavelength in the range of 300 to 700 nm. A significant difference test was performed between the diabetic group (22 cases) and the non-diabetic group (371 cases). The results are shown in Table 1.
That is, a significant difference was observed in the fluorescence intensity at least in the excitation wavelength range of 260 to 500 nm (P <0.05, bold portion). As for the fluorescence wavelength, at least the excitation wavelength plus a wavelength of about 20 nm could be sufficiently employed.

Figure 2015010938
Figure 2015010938

(4)尿中アルブミンと蛍光強度の関係
上記(2)の各検体について尿中アルブミンを測定し、(N)20mg/gクレアチニン以下(353例)、(Mi)21〜200mg/gクレアチニン(36例、ミクロアルブミン尿)、(Ma)201mg/gクレアチニン以上(4例、マクロアルブミン尿)、の3つの群に分けた。各群について、上記(2)で測定した蛍光強度(AU/gクレアチニン)を比較した。結果を図2に示す。
(4) Relationship between urinary albumin and fluorescence intensity Urinary albumin was measured for each specimen of (2) above, (N) 20 mg / g creatinine or less (353 cases), (Mi) 21-200 mg / g creatinine (36 Example, microalbuminuria), (Ma) 201 mg / g creatinine or higher (4 cases, macroalbuminuria). About each group, the fluorescence intensity (AU / g creatinine) measured by said (2) was compared. The results are shown in FIG.

蛍光強度(AU/gクレアチニン)の平均値±標準偏差は、(N)では170±144、(Mi)では229±120、(Ma)では361±223であった。そして、(N)と(Mi)との間、並びに、(N)と(Ma)との間に有意差が認められた(P<0.05)。
このように、本発明の方法では、尿中アルブミンが高いほど、すなわち糖尿病の重症度が高いほど蛍光強度が高かった。本発明の方法によれば、重症度に応じた糖尿病の検出が可能であった。
The mean value ± standard deviation of the fluorescence intensity (AU / g creatinine) was 170 ± 144 for (N), 229 ± 120 for (Mi), and 361 ± 223 for (Ma). And the significant difference was recognized between (N) and (Mi) and between (N) and (Ma) (P <0.05).
Thus, in the method of the present invention, the higher the urinary albumin, that is, the higher the severity of diabetes, the higher the fluorescence intensity. According to the method of the present invention, it was possible to detect diabetes depending on the severity.

なお、非特許文献4に記載の方法では、前処理として尿を限外ろ過に供しており、アルブミンは予め除去されている。そして、N群、Mi群、及びMa群の3群の間には有意差が認められない(例えば、Fig. 2B、Fig. 3)。この方法では、尿中アルブミンが検出されるような重症の糖尿病患者を見逃している可能性があり、重症度に応じた糖尿病の検出が困難であると考えられる。   In the method described in Non-Patent Document 4, urine is subjected to ultrafiltration as a pretreatment, and albumin is removed in advance. And no significant difference is recognized among three groups of N group, Mi group, and Ma group (for example, Fig. 2B, Fig. 3). In this method, there is a possibility that a severely diabetic patient whose urinary albumin is detected may be missed, and it is considered difficult to detect diabetes according to the severity.

Claims (4)

被験者から採取した尿を検体として用いる糖尿病の検出方法であって、
前記検体は、精製処理を経ていない尿又は尿由来物であり、
励起波長250〜500nmにおいて前記検体に含まれる蛍光物質が発する蛍光の強度を指標として、前記被験者における糖尿病の有無を検出することを特徴とする糖尿病の検出方法。
A method for detecting diabetes using urine collected from a subject as a specimen,
The specimen is urine or urine-derived material that has not undergone purification treatment,
A method for detecting diabetes, comprising detecting the presence or absence of diabetes in the subject using as an index the intensity of fluorescence emitted by a fluorescent substance contained in the specimen at an excitation wavelength of 250 to 500 nm.
前記蛍光の強度は、励起波長よりも10〜250nm大きい波長における蛍光の強度であることを特徴とする請求項1に記載の糖尿病の検出方法。   The method for detecting diabetes according to claim 1, wherein the fluorescence intensity is the fluorescence intensity at a wavelength 10 to 250 nm larger than the excitation wavelength. 前記検体は、尿そのもの又は尿の希釈物であることを特徴とする請求項1又は2に記載の糖尿病の検出方法。   The method for detecting diabetes according to claim 1 or 2, wherein the specimen is urine itself or a diluted urine. 前記蛍光の強度を測定し、得られた測定値を基準値と比較することを特徴とする請求項1〜3のいずれかに記載の糖尿病の検出方法。   The method for detecting diabetes according to any one of claims 1 to 3, wherein the fluorescence intensity is measured, and the obtained measurement value is compared with a reference value.
JP2013136560A 2013-06-28 2013-06-28 Diabetes marker measurement method Active JP6212303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013136560A JP6212303B2 (en) 2013-06-28 2013-06-28 Diabetes marker measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013136560A JP6212303B2 (en) 2013-06-28 2013-06-28 Diabetes marker measurement method

Publications (2)

Publication Number Publication Date
JP2015010938A true JP2015010938A (en) 2015-01-19
JP6212303B2 JP6212303B2 (en) 2017-10-11

Family

ID=52304222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013136560A Active JP6212303B2 (en) 2013-06-28 2013-06-28 Diabetes marker measurement method

Country Status (1)

Country Link
JP (1) JP6212303B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022549315A (en) * 2019-09-30 2022-11-24 エイチプレックス株式会社 Apparatus and method for performing a urine test
WO2023243230A1 (en) * 2022-06-15 2023-12-21 株式会社島津製作所 Advice apparatus, advice method, advice program, and advice system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08510321A (en) * 1993-04-06 1996-10-29 シーダー − サイナイ メディカル センター Glucose fluorescence inspection apparatus and method
JPH09171015A (en) * 1995-10-18 1997-06-30 Kdk Corp Urinary component measuring instrument
JP2003522579A (en) * 2000-02-18 2003-07-29 アーゴス インク Non-invasive tissue glucose concentration monitoring
JP2008268195A (en) * 2007-03-27 2008-11-06 Toto Ltd Urine component concentration measuring apparatus, toilet bowl device having urine component concentration measuring device and solution component concentration measuring method
JP2010501252A (en) * 2006-08-22 2010-01-21 バイエル・ヘルスケア・エルエルシー Non-invasive method to determine analyte concentration using spectral information
US20140322723A1 (en) * 2011-11-22 2014-10-30 President and Dellows of Harvard College Diabetes diagnosis through the detection of glycated proteins in urine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08510321A (en) * 1993-04-06 1996-10-29 シーダー − サイナイ メディカル センター Glucose fluorescence inspection apparatus and method
JP2004309503A (en) * 1993-04-06 2004-11-04 Cedars-Sinai Medical Center Glucose fluorescence monitor and method
JPH09171015A (en) * 1995-10-18 1997-06-30 Kdk Corp Urinary component measuring instrument
JP2003522579A (en) * 2000-02-18 2003-07-29 アーゴス インク Non-invasive tissue glucose concentration monitoring
JP2010501252A (en) * 2006-08-22 2010-01-21 バイエル・ヘルスケア・エルエルシー Non-invasive method to determine analyte concentration using spectral information
JP2008268195A (en) * 2007-03-27 2008-11-06 Toto Ltd Urine component concentration measuring apparatus, toilet bowl device having urine component concentration measuring device and solution component concentration measuring method
US20140322723A1 (en) * 2011-11-22 2014-10-30 President and Dellows of Harvard College Diabetes diagnosis through the detection of glycated proteins in urine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022549315A (en) * 2019-09-30 2022-11-24 エイチプレックス株式会社 Apparatus and method for performing a urine test
JP7324548B2 (en) 2019-09-30 2023-08-10 エイチプレックス株式会社 Apparatus and method for performing a urine test
WO2023243230A1 (en) * 2022-06-15 2023-12-21 株式会社島津製作所 Advice apparatus, advice method, advice program, and advice system

Also Published As

Publication number Publication date
JP6212303B2 (en) 2017-10-11

Similar Documents

Publication Publication Date Title
Yanagisawa et al. Specific fluorescence assay for advanced glycation end products in blood and urine of diabetic patients
Lacquaniti et al. “Normoalbuminuric” diabetic nephropathy: tubular damage and NGAL
Samadi et al. Oxysterol species: reliable markers of oxidative stress in diabetes mellitus
Christ-Crain et al. Copeptin as a biomarker and a diagnostic tool in the evaluation of patients with polyuria–polydipsia and hyponatremia
Jonklaas et al. Total and free thyroxine and triiodothyronine: measurement discrepancies, particularly in inpatients
De Carvalho et al. Assessment of urinary γ-glutamyltransferase and alkaline phosphatase for diagnosis of diabetic nephropathy
Sherif et al. Red cell distribution width as a marker of inflammation in type 2 diabetes mellitus
Shirakabe et al. Clinical usefulness of urinary liver fatty acid-binding protein excretion for predicting acute kidney injury during the first 7 days and the short-term prognosis in acute heart failure patients with non-chronic kidney disease
Marcovecchio Importance of identifying novel biomarkers of microvascular damage in type 1 diabetes
Demirpence et al. Apelin: A potential novel serum biomarker for early detection of diabetic nephropathy in patients with type 2 diabetes.
JP6212303B2 (en) Diabetes marker measurement method
Ma et al. Glycated albumin is independently associated with estimated glomerular filtration rate in nondiabetic patients with chronic kidney disease
Singh et al. Are low erythropoietin and 1, 25-dihydroxyvitamin D levels indicative of tubulo-interstitial dysfunction in diabetes without persistent microalbuminuria?
Suehiro et al. Measurement of urinary advanced glycation end-products (AGEs) using a fluorescence assay for metabolic syndrome-related screening tests
Ali et al. Reference values for hemoglobin A 1c in males living in Khartoum State: Pilot study 2016
Wang et al. Osteoinductive factor is a novel biomarker for the diagnosis of early diabetic nephropathy
TWI735470B (en) Method for determining diabetic nephropathy and the use of biomarkers in this method
Saeed et al. Fasting homocysteine levels in adults with type 1 diabetes and retinopathy
Katchunga et al. Glycated nail proteins as a new biomarker in management of the South Kivu Congolese diabetics
JP6222629B2 (en) Biomarkers for dysuria
Medina Escobar et al. Glycaemic patterns in healthy elderly individuals and in those with impaired glucose metabolism-exploring the relationship with nonglycaemic variables.
Sharma et al. Interrelationship of elevated serum Advanced Glycation End-product levels and malnutrition (Subjective Global Assessment) scores with the severity of retinopathy in type II diabetes
Vieira et al. Lab-on-a-chip technologies for minimally invasive molecular sensing of diabetic retinopathy
El-Rasheidy et al. Effect of abnormalities in leptin levels on pituitary–hypothalamic axis in patients with chronic hemolytic anemia
Tufekci et al. Can signal peptide-CUB-EGF domain-containing protein 1 (SCUBE-1) be used as an indicator of endothelial dysfunction in acromegaly patients?

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170405

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170915

R150 Certificate of patent or registration of utility model

Ref document number: 6212303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154