JP2015009366A - Droplet discharge head, and image formation device - Google Patents

Droplet discharge head, and image formation device Download PDF

Info

Publication number
JP2015009366A
JP2015009366A JP2013133699A JP2013133699A JP2015009366A JP 2015009366 A JP2015009366 A JP 2015009366A JP 2013133699 A JP2013133699 A JP 2013133699A JP 2013133699 A JP2013133699 A JP 2013133699A JP 2015009366 A JP2015009366 A JP 2015009366A
Authority
JP
Japan
Prior art keywords
liquid chamber
substrate
droplet discharge
connecting portion
discharge head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013133699A
Other languages
Japanese (ja)
Other versions
JP6218012B2 (en
Inventor
新行内 充
Mitsuru Shingyouchi
充 新行内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2013133699A priority Critical patent/JP6218012B2/en
Publication of JP2015009366A publication Critical patent/JP2015009366A/en
Application granted granted Critical
Publication of JP6218012B2 publication Critical patent/JP6218012B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a droplet discharge head capable of improving discharge efficiency, by securing the exclusion volume, while restraining mutual interference of discharge characteristics, in the droplet discharge head for discharging a droplet by using a piezo system actuator.SOLUTION: A droplet discharge head is provided for joining a support substrate to a flow passage substrate via connection parts, by forming the plurality of connection parts 60 in a position opposed to a flow passage partition wall in a surface for forming a piezoelectric element of the flow passage substrate having a liquid chamber substrate forming the flow passage partition wall 20a of a plurality of pressurizing liquid chambers, a vibration plate and the piezoelectric element, and the connection parts are partially provided in the longitudinal direction of the pressurizing liquid chamber, and a width W1 of the flow passage partition wall of the pressurizing liquid chamber opposed to an unprovided part of the connection part, is formed narrower than a width W0 of the flow passage partition wall of the pressurizing liquid chamber opposed to a provided part of the connection part.

Description

本発明は、ノズル孔から液滴を吐出する液滴吐出ヘッド、及び、この液滴吐出ヘッドを採用した画像形成装置に関するものである。   The present invention relates to a droplet discharge head that discharges droplets from nozzle holes, and an image forming apparatus that employs the droplet discharge head.

一般に、プリンタ、ファックス、複写機、プロッタ、或いはこれらの内の複数の機能を複合した画像形成装置としては、例えばインクの液滴(以下、インク滴という)を吐出する液滴吐出ヘッドを備えたインクジェット記録装置がある。インクジェット記録装置では、媒体を搬送しながら液滴吐出ヘッドによりインク滴を用紙に付着させて画像形成を行う。ここでの媒体は「用紙」ともいうが材質を限定するものではなく、被記録媒体、記録媒体、転写材、記録紙なども同義で使用する。また、画像形成装置は、紙、糸、繊維、布帛、皮革、金属、プラスチック、ガラス、木材、セラミックス等の媒体に液滴を吐出して画像形成を行う装置を意味する。そして、画像形成とは、文字や図形等の意味を持つ画像を媒体に対して付与することだけでなく、パターン等の意味を持たない画像を媒体に付与する(単に液滴を吐出する)ことをも意味する。また、インクとは、所謂インクに限るものではなく、吐出されるときに液滴となるものであれば特に限定されるものではなく、例えばDNA試料、レジスト、パターン材料なども含まれる液体の総称として用いる。   In general, a printer, a fax machine, a copier, a plotter, or an image forming apparatus that combines a plurality of these functions includes, for example, a droplet ejection head that ejects ink droplets (hereinafter referred to as ink droplets). There is an ink jet recording apparatus. In an ink jet recording apparatus, an image is formed by adhering ink droplets to a sheet by a droplet discharge head while conveying a medium. The medium here is also referred to as “paper”, but the material is not limited, and a recording medium, a recording medium, a transfer material, a recording paper, and the like are also used synonymously. The image forming apparatus means an apparatus for forming an image by ejecting liquid droplets on a medium such as paper, thread, fiber, fabric, leather, metal, plastic, glass, wood, or ceramic. The image formation is not only giving an image having a meaning such as a character or a figure to the medium but also giving an image having no meaning such as a pattern to the medium (simply ejecting a droplet). Also means. The ink is not limited to so-called ink, and is not particularly limited as long as it becomes a droplet when ejected. For example, the ink is a generic term for liquids including DNA samples, resists, pattern materials, and the like. Used as

液滴吐出ヘッドは、ノズル孔が連通する加圧液室(圧力室、吐出室、液室、インク室、インク流路等とも称される)と、加圧液室内を昇圧するエネルギーを発生するアクチュエータ手段を備えている。記録に必要なときにのみアクチュエータ手段を駆動して、加圧液室内のインクを昇圧してノズル孔からインク滴を吐出するインク・オン・デマンド方式のものが主流である。また、アクチュエータ手段の種類により、ピエゾ方式、サーマル方式、静電方式などに分けられる。ピエゾ方式の液滴吐出ヘッドは、複数の加圧液室の一面を形成する振動板上に各加圧液室に対応する圧電素子を設け、圧電素子に駆動電圧を印加して生じる変形により振動板を振動させ、これにより加圧液室内のインクを昇圧する。   The droplet discharge head generates a pressure liquid chamber (also referred to as a pressure chamber, a discharge chamber, a liquid chamber, an ink chamber, an ink flow path, etc.) in which nozzle holes communicate with each other and energy for boosting the pressure liquid chamber. Actuator means are provided. An ink-on-demand system is mainly used in which the actuator means is driven only when it is necessary for recording to boost the ink in the pressurized liquid chamber and eject ink droplets from the nozzle holes. Further, depending on the type of actuator means, it can be divided into a piezo system, a thermal system, an electrostatic system and the like. A piezo-type liquid droplet ejection head is provided with a piezoelectric element corresponding to each pressurized liquid chamber on a vibration plate forming one surface of a plurality of pressurized liquid chambers, and vibrates due to deformation caused by applying a driving voltage to the piezoelectric element. The plate is vibrated, thereby increasing the pressure of the ink in the pressurized liquid chamber.

近年、ピエゾ方式の液滴吐出ヘッドの工法として次の工法が主流となっている。まず、基板上に直接振動板を形成し、振動板上に成膜技術により均一な圧電材料層および電極材料層を形成する。これらをフォトリソグラフィ法を用いたエッチングにより各加圧液室に対応する形状に切り分けて各圧電素子を形成する。その後、基板の圧電素子を形成した面と反対側の面をエッチングにより加圧液室の隔壁を形成するよう加工して、流路基板とする。この工法を用いることで、簡易な方法で、小型で精細な液滴吐出ヘッドを作りこむことが可能となり、液滴吐出ヘッドの低コスト化を図ることができる。   In recent years, the following method has become the mainstream as a method of piezo-type droplet discharge heads. First, a diaphragm is directly formed on a substrate, and a uniform piezoelectric material layer and electrode material layer are formed on the diaphragm by a film forming technique. These are cut into shapes corresponding to the respective pressurized liquid chambers by etching using a photolithography method to form the respective piezoelectric elements. Thereafter, the surface of the substrate opposite to the surface on which the piezoelectric element is formed is processed by etching so as to form a partition wall of the pressurized liquid chamber, thereby obtaining a flow path substrate. By using this construction method, a small and fine droplet discharge head can be formed by a simple method, and the cost of the droplet discharge head can be reduced.

また、ピエゾ方式の液滴吐出ヘッドで、流路基板の圧電素子が形成された面に圧電素子の変位を妨げない空間を形成する支持基板を接合して流路基板を支持する構成が知られている。
特許文献1には、流路基板の圧電素子が形成された面における複数の圧電素子からなる圧電素子列の周辺部に、複数の圧電素子の変位を妨げないような連続的な空間を形成する支持基板を接合した液滴吐出ヘッドが記載されている。
特許文献2、3には、流路基板の圧電素子が形成された面における複数の加圧液室の隔壁に対向する位置に連結部を形成し、圧電素子毎に変位を妨げない空間を形成する支持基板を連結部に接合した構成の液滴吐出ヘッドが記載されている。
Also, a piezo-type droplet discharge head is known that supports a flow path substrate by bonding a support substrate that forms a space that does not hinder the displacement of the piezoelectric element to the surface of the flow path substrate on which the piezoelectric element is formed. ing.
In Patent Document 1, a continuous space that does not hinder the displacement of the plurality of piezoelectric elements is formed in the periphery of the piezoelectric element array composed of the plurality of piezoelectric elements on the surface of the flow path substrate on which the piezoelectric elements are formed. A droplet discharge head having a supporting substrate bonded thereto is described.
In Patent Documents 2 and 3, a connecting portion is formed at a position facing the partition walls of a plurality of pressurized liquid chambers on the surface of the flow path substrate where the piezoelectric elements are formed, and a space that does not hinder displacement is formed for each piezoelectric element. A droplet discharge head having a structure in which a supporting substrate to be bonded to a connecting portion is described.

ピエゾ方式の液滴吐出ヘッドにおいては、駆動する圧電素子の数や駆動する圧電素子の位置により吐出特性が変化してしまう、相互干渉という問題がある。この相互干渉の原因として、駆動された圧電素子による振動が流路基板を介して伝播し、流路基板全体が撓み変形してしまうことが挙げられる。   A piezo-type droplet discharge head has a problem of mutual interference in which the discharge characteristics change depending on the number of piezoelectric elements to be driven and the position of the driven piezoelectric elements. As a cause of this mutual interference, vibration due to the driven piezoelectric element propagates through the flow path substrate, and the entire flow path substrate is bent and deformed.

上記特許文献2、3の液滴吐出ヘッドは、支持基板が複数の加圧液室の隔壁に対向する位置を支持する構成であり、上記特許文献1の支持基板が複数の圧電素子からなる圧電素子列の周辺部を支持する構成に比べて、支持点間距離が短い。流路基板のような板状部材の振動の抑制は、支持点間距離の影響が大きく、支持点間距離が短い構成は支持点間距離が長い構成に較べて、流路基板全体の撓み変形を良好に抑えることができる。このため、支持基板が複数の加圧液室の隔壁に対向する位置を支持する構成は、相互干渉を良好に抑えることができる。さらに、特許文献2、3の液滴吐出ヘッドは、流路基板の加圧液室の隔壁に対向する位置に形成した連結部を介して支持基板を接合するため、流路基板に直接支持基板を接合する構成に比べて、接合位置精度および接合作業性が向上するというメリットを有している。   The droplet discharge heads of Patent Documents 2 and 3 are configured to support a position where the support substrate faces the partition walls of the plurality of pressurized liquid chambers, and the support substrate of Patent Document 1 includes a piezoelectric element including a plurality of piezoelectric elements. The distance between the support points is shorter than the configuration supporting the peripheral portion of the element row. The suppression of the vibration of the plate-like member such as the flow path substrate is greatly affected by the distance between the support points, and the configuration in which the distance between the support points is short compared to the configuration in which the distance between the support points is long, the deflection deformation of the entire flow path substrate. Can be suppressed satisfactorily. For this reason, the structure which supports the position where a support substrate opposes the partition of the some pressurized liquid chamber can suppress mutual interference favorably. Furthermore, since the droplet discharge heads of Patent Documents 2 and 3 join the support substrate via a connecting portion formed at a position facing the partition wall of the pressurized liquid chamber of the flow channel substrate, the support substrate is directly connected to the flow channel substrate. Compared with the structure which joins, it has the merit that a joining position precision and joining workability | operativity improve.

一方、近年、画像形成装置の高画質化を図るべく、加圧液室を高密度に配列することが望まれている。上記、流路基板が加圧液室の隔壁に対向する位置の連結部を介して支持基板に支持される構成では、加圧液室を高密度に配列することに伴い、連結部とその反対側の面の隔壁との位置精度が課題となる。連結部は隔壁に対して位置ずれしないように配置されることが重要であり、それぞれ加工精度を考慮して隔壁の幅を寸法公差を含めて大きめに形成している。しかし、隔壁の幅を大きめに形成すると、各加圧液室の幅を広くとることができず、振動板の変位領域が狭く、剛性が高くなり、振動板の変位体積(排除体積)を確保することが難くなる。このように、高密度化された液滴吐出ヘッドにおいては、相互干渉を抑制するよう支持基板で支持しつつ、振動板の変位体積(排除体積)を確保することが難くなる。振動板の変位体積(排除体積)を確保できないと、吐出効率が低下するという問題が発生する。吐出効率が低下すると、使用するインクの粘度が制約される場合がある。例えば、低温時に高粘度となるインクでは低温時に吐出ができなくなる場合があり、インク対応性や環境対応性の低下という重要な問題を招いてしまう。   On the other hand, in recent years, it has been desired to arrange the pressurized liquid chambers at high density in order to improve the image quality of the image forming apparatus. In the above configuration in which the flow path substrate is supported by the support substrate via the connecting portion at a position facing the partition wall of the pressurizing liquid chamber, the pressurizing liquid chamber is arranged with high density, and the opposite of the connecting portion. Positional accuracy with the partition wall on the side surface becomes a problem. It is important that the connecting portion is arranged so as not to be displaced with respect to the partition wall, and the width of the partition wall is formed larger including the dimensional tolerance in consideration of the processing accuracy. However, if the partition wall is made wider, each pressurizing fluid chamber cannot be widened, the diaphragm displacement area is narrow, rigidity is increased, and the diaphragm displacement volume (excluded volume) is secured. It becomes difficult to do. As described above, in the liquid droplet ejection head having a high density, it is difficult to secure a displacement volume (exclusion volume) of the diaphragm while supporting the support substrate with the support substrate so as to suppress mutual interference. If the displacement volume (excluded volume) of the diaphragm cannot be secured, there arises a problem that the discharge efficiency is lowered. When the ejection efficiency is lowered, the viscosity of the ink used may be restricted. For example, ink that has a high viscosity at low temperatures may not be able to be ejected at low temperatures, leading to an important problem of reduced ink compatibility and environmental compatibility.

特許文献2の液滴吐出ヘッドは、連結部を隔壁の幅より広く形成した構成であり、連結部が振動板の変位領域を狭めてしまう。このため、加圧液室を高密度に配列した際の振動板の変位体積(排除体積)の確保は難しい。   The droplet discharge head of Patent Document 2 has a configuration in which the connecting portion is formed wider than the width of the partition wall, and the connecting portion narrows the displacement region of the diaphragm. For this reason, it is difficult to ensure the displacement volume (exclusion volume) of the diaphragm when the pressurized liquid chambers are arranged at high density.

特許文献3の液滴吐出ヘッドは、連結部を、加圧液室の配列方向と直交する加圧液室の長手方向に関して部分的に形成した構成である。この構成は、隔壁に対向する位置の加圧液室の長手方向において支持基板に支持されない部分を有しており、加圧液室の長手方向の全域を支持する構成に比べると、振動板の変位領域の剛性が高くなることを部分的に抑制できる。しかしながら、高密度化された液滴吐出ヘッドにおいては、振動板の変位領域の剛性が高くなることを部分的に抑制するだけでは、振動板の変位体積(排除体積)の確保は十分ではない。   The droplet discharge head of Patent Document 3 has a configuration in which the connecting portion is partially formed with respect to the longitudinal direction of the pressurizing liquid chamber orthogonal to the arrangement direction of the pressurizing liquid chambers. This configuration has a portion that is not supported by the support substrate in the longitudinal direction of the pressurizing liquid chamber at a position facing the partition wall. An increase in the rigidity of the displacement region can be partially suppressed. However, in the liquid droplet ejection head having a high density, it is not sufficient to secure the displacement volume (excluded volume) of the diaphragm simply by partially suppressing the increase in rigidity of the displacement area of the diaphragm.

本発明は以上の問題点に鑑みなされたものであり、その目的は、ピエゾ方式のアクチュエータを用いて液滴を吐出させる液滴吐出ヘッドにおいて、吐出特性の相互干渉を抑えると共に、排除体積を確保して吐出効率を向上させた液滴吐出ヘッドおよび画像形成装置を提供することである。   SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and an object of the present invention is to prevent mutual interference of ejection characteristics and secure an excluded volume in a droplet ejection head that ejects droplets using a piezoelectric actuator. Thus, a droplet discharge head and an image forming apparatus with improved discharge efficiency are provided.

上記目的を達成するために、請求項1の発明は、複数のノズル孔に連通する複数の加圧液室の隔壁を形成する液室基板と、該加圧液室の一面を形成するよう該液室基板上に積層された振動板と、該振動板上に形成された圧電素子とを有する流路基板と、該流路基板の該圧電素子が形成された面を該圧電素子の変位を妨げないように支持する支持基板とを備え、該流路基板の該圧電素子が形成された面における該加圧液室の複数の隔壁に対向する位置に複数の連結部を形成し、該連結部を介して該支持基板を該流路基板に接合する液滴吐出ヘッドにおいて、
上記連結部を上記加圧液室の複数の隔壁に対向する位置における該加圧液室の配列方向と直交する該加圧液室の長手方向に対して部分的に設け、該連結部が設けられた領域に対向する該加圧液室の隔壁の幅よりも、該連結部が設けられていない領域に対向する該加圧液室の隔壁の幅が狭いことを特徴とするものである。
In order to achieve the above object, the invention of claim 1 is characterized in that the liquid chamber substrate forming the partition walls of the plurality of pressurized liquid chambers communicating with the plurality of nozzle holes and the one surface of the pressurized liquid chamber are formed. A flow path substrate having a vibration plate laminated on the liquid chamber substrate and a piezoelectric element formed on the vibration plate, and a surface of the flow path substrate on which the piezoelectric element is formed is displaced with respect to the piezoelectric element. A support substrate that supports the piezoelectric element so as not to obstruct, and a plurality of connecting portions are formed at positions facing the plurality of partition walls of the pressurized liquid chamber on the surface of the flow path substrate on which the piezoelectric element is formed. In a droplet discharge head that joins the support substrate to the flow path substrate via a section,
The connecting portion is partially provided with respect to the longitudinal direction of the pressurizing fluid chamber orthogonal to the arrangement direction of the pressurizing fluid chambers at a position facing the plurality of partition walls of the pressurizing fluid chamber, and the connecting portion is provided. The partition wall of the pressurizing fluid chamber facing the region where the connecting portion is not provided is narrower than the width of the partition wall of the pressurizing fluid chamber facing the formed region.

本発明によれば、ピエゾ方式のアクチュエータを用いて液滴を吐出させる液滴吐出ヘッドにおいて、吐出特性の相互干渉を抑えると共に、排除体積を確保して吐出効率を向上できるという優れた効果がある。   According to the present invention, in a droplet discharge head that discharges droplets using a piezo-type actuator, there is an excellent effect of suppressing the mutual interference of the discharge characteristics and securing the excluded volume and improving the discharge efficiency. .

本実施形態のインクジェット記録装置の構成を示す斜視図。1 is a perspective view illustrating a configuration of an ink jet recording apparatus according to an embodiment. 本実施形態のインクジェット記録装置の機構部の側面図。FIG. 3 is a side view of a mechanism unit of the ink jet recording apparatus according to the embodiment. 実施例1の液滴吐出ヘッドの流路基板を圧電素子を形成した側からみた上面図。FIG. 3 is a top view of the flow path substrate of the droplet discharge head according to the first embodiment when viewed from the side where the piezoelectric element is formed. 実施例1の液滴吐出ヘッドの加圧液室幅方向断面図であり、(a)は図3のA−A’面、(b)はB−B’面を示す。4A and 4B are cross-sectional views of a liquid droplet ejection head according to Embodiment 1 in a pressurized liquid chamber width direction, in which FIG. 3A shows the A-A ′ plane and FIG. 3B shows the B-B ′ plane. 実施例1の液滴吐出ヘッドの加圧液室長手方向断面図であり、(a)は図3のC−C’面、(b)はD−D’面を示す。4A and 4B are cross-sectional views in the longitudinal direction of the pressurized liquid chamber of the droplet discharge head according to the first exemplary embodiment, in which FIG. 3A illustrates a C-C ′ plane and FIG. 3B illustrates a D-D ′ plane. 本実施形態の液滴吐出ヘッドの製造工程を示す工程断面図(その1)。Process sectional drawing which shows the manufacturing process of the droplet discharge head of this embodiment (the 1). 本実施形態の液滴吐出ヘッドの製造工程を示す工程断面図(その2)。Process sectional drawing which shows the manufacturing process of the droplet discharge head of this embodiment (the 2). 実施例2の液滴吐出ヘッドの流路基板を圧電素子を形成した側からみた上面図。FIG. 6 is a top view of a flow path substrate of a droplet discharge head according to a second embodiment as viewed from a side where a piezoelectric element is formed. 実施例2の液滴吐出ヘッドの加圧液室幅方向断面図であり、(a)は図8のA−A’面、(b)はB−B’面を示す。FIG. 9 is a cross-sectional view in the width direction of the pressurized liquid chamber of the liquid droplet ejection head of Example 2, where (a) shows the A-A ′ surface and (b) shows the B-B ′ surface of FIG. 8. 実施例2の液滴吐出ヘッドの加圧液室長手方向断面図であり、(a)は図8のC−C’面、(b)はD−D’面を示す。FIG. 9 is a longitudinal cross-sectional view of a pressurized liquid chamber of a droplet discharge head of Example 2, wherein (a) shows a C-C ′ surface and (b) shows a D-D ′ surface of FIG. 8. 実施例3の液滴吐出ヘッドの流路基板を圧電素子を形成した側からみた上面図。FIG. 6 is a top view of a flow path substrate of a droplet discharge head according to a third embodiment as viewed from a side where a piezoelectric element is formed. 実施例3の液滴吐出ヘッドの加圧液室幅方向断面図であり、(a)は図11のA−A’面、(b)はB−B’面を示す。FIG. 10 is a cross-sectional view in the width direction of the pressurized liquid chamber of the liquid droplet ejection head of Example 3, where (a) shows the A-A ′ surface and (b) shows the B-B ′ surface of FIG. 11. 実施例4の液滴吐出ヘッドの加圧液室幅方向断面図であり、(a)は図11のA−A’面、(b)はB−B’面を示す。FIG. 10 is a cross-sectional view in the width direction of the pressurized liquid chamber of the droplet discharge head of Example 4, where (a) shows the A-A ′ plane and (b) shows the B-B ′ plane of FIG. 11. 実施例4の液滴吐出ヘッドの加圧液室長手方向断面図であり、(a)は図11のC−C’面、(b)はD−D’面を示す。FIG. 10 is a longitudinal sectional view of a liquid droplet ejection head of Example 4 in a pressurized liquid chamber, where (a) shows a C-C ′ plane and (b) shows a D-D ′ plane of FIG. 11. 実施例5の液滴吐出ヘッドの加圧液室幅方向断面図であり、(a)は図11のA−A’面、(b)はB−B’面を示す。FIG. 10 is a cross-sectional view in the width direction of a pressurized liquid chamber of a droplet discharge head of Example 5, where (a) shows an A-A ′ plane and (b) shows a B-B ′ plane in FIG. 11. 実施例6の液滴吐出ヘッドの加圧液室幅方向断面図であり、(a)は図11のA−A’面、(b)はB−B’面を示す。FIG. 10 is a cross-sectional view of a droplet discharge head of Example 6 in the direction of the pressurized liquid chamber width, where (a) shows the A-A ′ plane and (b) shows the B-B ′ plane of FIG. 11.

まず、本実施形態の係る画像形成装置の一例であるインクジェット記録装置の構成について図面を参照して説明する。図1は本実施形態のインクジェット記録装置の構成を示す斜視図、図2は本実施形態のインクジェット記録装置の機構部の側面図である。
図1及び図2に示す本実施形態のインクジェット記録装置100は、装置本体の内部に主走査方向に移動可能なキャリッジ101を備えている。そして、このキャリッジ101に搭載した液滴吐出ヘッド1及び液滴吐出ヘッド1に対してインクを供給するインクカートリッジ102等で構成される印字機構部103等を収納している。また、装置本体の下方部には前方側から多数枚の記録紙を積載可能な給紙カセット(或いは給紙トレイでもよい)104を抜き差し自在に装着されている。更に、記録紙を手差しで給紙するために開かれる手差しトレイ105を有し、給紙カセット104あるいは手差しトレイ105から給送される記録紙を取り込む。そして、印字機構部103によって所要の画像を記録した後、後面側に装着された排紙トレイ106に排紙する。
First, a configuration of an ink jet recording apparatus which is an example of an image forming apparatus according to the present embodiment will be described with reference to the drawings. FIG. 1 is a perspective view showing a configuration of an ink jet recording apparatus according to the present embodiment, and FIG. 2 is a side view of a mechanism portion of the ink jet recording apparatus according to the present embodiment.
The ink jet recording apparatus 100 of this embodiment shown in FIGS. 1 and 2 includes a carriage 101 that can move in the main scanning direction inside the apparatus main body. In addition, a droplet discharge head 1 mounted on the carriage 101 and a printing mechanism 103 including an ink cartridge 102 that supplies ink to the droplet discharge head 1 are stored. A paper feed cassette (or a paper feed tray) 104 capable of stacking a large number of recording sheets from the front side is detachably attached to the lower part of the apparatus main body. Further, it has a manual feed tray 105 that is opened to manually feed the recording paper, and takes in the recording paper fed from the paper feed cassette 104 or the manual feed tray 105. Then, after a required image is recorded by the printing mechanism unit 103, the image is discharged to a discharge tray 106 mounted on the rear side.

印字機構部103は、図示しない左右の側板に横架したガイド部材である主ガイドロッド107と従ガイドロッド108とでキャリッジ101を主走査方向に摺動自在に保持する。そして、このキャリッジ101には、イエロー(Y)、シアン(C)、マゼンタ(M)、ブラック(Bk)の各色のインク滴を吐出する液滴吐出ヘッド1を複数のインク吐出口(後述する「ノズル孔11」)を、主走査方向に対して直交する方向に配列している。さらには、キャリッジ101には、液滴吐出ヘッド1をインク滴吐出方向を下方に向けて装着している。また、キャリッジ101には液滴吐出ヘッド1に各色のインクを供給するための各インクカートリッジ102を交換可能に装着している。   The printing mechanism 103 holds the carriage 101 slidably in the main scanning direction with a main guide rod 107 and a sub guide rod 108 which are guide members horizontally mounted on left and right side plates (not shown). The carriage 101 has a plurality of ink ejection openings (described later, “Electric droplet ejection head 1 for ejecting ink droplets of each color of yellow (Y), cyan (C), magenta (M), and black (Bk)”). Nozzle holes 11 ") are arranged in a direction perpendicular to the main scanning direction. Furthermore, the droplet discharge head 1 is mounted on the carriage 101 with the ink droplet discharge direction facing downward. In addition, each ink cartridge 102 for supplying ink of each color to the droplet discharge head 1 is replaceably mounted on the carriage 101.

インクカートリッジ102は上方に大気と連通する大気口、下方には液滴吐出ヘッド1へインクを供給する供給口が設けられ、内部にはインクが充填された多孔質体を有している。多孔質体の毛管力により液滴吐出ヘッド1へ供給されるインクをわずかな負圧に維持している。また、液滴吐出ヘッド1としては各色毎に液滴吐出ヘッドを用いているが、各色のインク滴を吐出するノズルを有する1個の液滴吐出ヘッドでもよい。   The ink cartridge 102 is provided with an air opening communicating with the atmosphere above, and a supply opening for supplying ink to the droplet discharge head 1 below, and has a porous body filled with ink inside. The ink supplied to the droplet discharge head 1 is maintained at a slight negative pressure by the capillary force of the porous body. Further, although the droplet discharge head is used for each color as the droplet discharge head 1, one droplet discharge head having nozzles for discharging ink droplets of each color may be used.

ここで、キャリッジ101は後方側(用紙搬送方向の下流側)を主ガイドロッド107に摺動自在に嵌装し、前方側(用紙搬送方向の上流側)を従ガイドロッド108に摺動自在に載置している。そして、このキャリッジ101を主走査方向に移動走査するため、主走査モータ109aで回転駆動される駆動プーリ110と従動プーリ111との間にタイミングベルト112を張装している。そして、このタイミングベルト112をキャリッジ101に固定し、主走査モータ109aの正逆回転によりキャリッジ101が往復に走査される。   Here, the carriage 101 is slidably fitted to the main guide rod 107 on the rear side (downstream side in the paper conveyance direction) and slidable on the front guide rod 108 on the front side (upstream side in the paper conveyance direction). It is placed. In order to move and scan the carriage 101 in the main scanning direction, a timing belt 112 is stretched between a driving pulley 110 and a driven pulley 111 that are rotationally driven by a main scanning motor 109a. The timing belt 112 is fixed to the carriage 101, and the carriage 101 is reciprocally scanned by forward and reverse rotation of the main scanning motor 109a.

一方、給紙カセット104にセットした記録紙を液滴吐出ヘッド1の下方側に搬送する。このために、給紙カセット104から記録紙を分離給装する給紙ローラ113及びフリクションパッド114と、記録紙を案内するガイド部材115とを有している。更には、給紙された記録紙を反転させて搬送する搬送ローラ116と、この搬送ローラ116の周面に押し付けられる搬送コロ117及び搬送ローラ116からの記録紙の送り出し角度を規定する先端コロ118を有している。搬送ローラ116は副走査モータ109bによってギヤ列を介して回転駆動される。   On the other hand, the recording paper set in the paper feed cassette 104 is conveyed to the lower side of the droplet discharge head 1. For this purpose, a paper feed roller 113 and a friction pad 114 for separating and feeding the recording paper from the paper feed cassette 104 and a guide member 115 for guiding the recording paper are provided. Furthermore, a conveyance roller 116 that reverses and conveys the fed recording paper, a conveyance roller 117 that is pressed against the peripheral surface of the conveyance roller 116, and a leading end roller 118 that defines a feeding angle of the recording paper from the conveyance roller 116. have. The conveyance roller 116 is rotationally driven via a gear train by the sub-scanning motor 109b.

そして、キャリッジ101の主走査方向の移動範囲に対応して搬送ローラ116から送り出された記録紙を液滴吐出ヘッド1の下方側で案内するため用紙ガイド部材である印写受け部材119を設けている。この印写受け部材119の用紙搬送方向下流側には、記録紙を排紙方向へ送り出すために回転駆動される搬送コロ120と拍車121を設けている。さらには、記録紙を排紙トレイ106に送り出す排紙ローラ123と拍車124と、排紙経路を形成するガイド部材125、126とを配設している。   In addition, a printing receiving member 119 that is a paper guide member is provided to guide the recording paper fed from the transport roller 116 corresponding to the movement range of the carriage 101 in the main scanning direction on the lower side of the droplet discharge head 1. Yes. On the downstream side of the printing receiving member 119 in the paper conveyance direction, a conveyance roller 120 and a spur 121 that are rotationally driven to send the recording paper in the paper discharge direction are provided. Further, a discharge roller 123 and a spur 124 for feeding the recording paper to the discharge tray 106, and guide members 125 and 126 for forming a discharge path are provided.

このインクジェット記録装置100で記録時には、キャリッジ101を移動させながら画像信号に応じて液滴吐出ヘッド1を駆動することにより、停止している記録紙にインクを吐出して1行分を記録し、その後、記録紙を所定量搬送後次の行の記録を行う。記録終了信号または記録紙の後端が記録領域に到達した信号を受けることにより、記録動作を終了させ記録紙を排紙する。   When recording with the inkjet recording apparatus 100, the droplet discharge head 1 is driven according to the image signal while moving the carriage 101, thereby discharging ink onto the stopped recording paper to record one line, Thereafter, after the recording paper is conveyed by a predetermined amount, the next line is recorded. Upon receiving a recording end signal or a signal that the trailing edge of the recording paper reaches the recording area, the recording operation is terminated and the recording paper is discharged.

また、キャリッジ101の移動方向右端側の記録領域を外れた位置には、液滴吐出ヘッド1の吐出不良を回復するための回復装置127を配置している。回復装置127はそれぞれ図示していないキャップ手段と吸引手段とワイピング手段とを有している。キャリッジ101は印字待機中にはこの回復装置127側に移動されてキャッピング手段で液滴吐出ヘッド1をキャッピングして吐出口部を湿潤状態に保つことによりインク乾燥による吐出不良を防止する。また、記録途中などに記録と関係しないインクを吐出することにより、全ての吐出口のインク粘度を一定にし、安定した吐出性能を維持する。   A recovery device 127 for recovering the ejection failure of the droplet ejection head 1 is disposed at a position outside the recording area on the right end side in the movement direction of the carriage 101. Each of the recovery devices 127 includes a cap unit, a suction unit, and a wiping unit (not shown). During printing standby, the carriage 101 is moved to the recovery device 127 side, and the droplet discharge head 1 is capped by the capping unit to keep the discharge port portion in a wet state, thereby preventing discharge failure due to ink drying. Further, by ejecting ink that is not related to recording during recording or the like, the ink viscosity of all the ejection ports is made constant and stable ejection performance is maintained.

更に、吐出不良が発生した場合等には、キャッピング手段で液滴吐出ヘッド1の吐出口(ノズル)を密封し、チューブを通して吸引手段で吐出口からインクとともに気泡等を吸い出す。続いて、吐出口面に付着したインクやゴミ等はワイピング手段により吐出口面を払拭することで除去され、吐出不良が回復される。また、吸引されたインクは、本体下部に設置された廃インク溜(不図示)に排出され、廃インク溜内部のインク吸収体に吸収保持される。   Further, when a discharge failure occurs, the discharge port (nozzle) of the droplet discharge head 1 is sealed with a capping unit, and bubbles and the like are sucked out from the discharge port through the tube with a suction unit. Subsequently, ink, dust or the like adhering to the discharge port surface is removed by wiping the discharge port surface with a wiping means, and the discharge failure is recovered. Further, the sucked ink is discharged to a waste ink reservoir (not shown) installed at the lower part of the main body and absorbed and held by an ink absorber inside the waste ink reservoir.

次に、液滴吐出ヘッドについて説明する。まず、ピエゾ方式の液滴吐出ヘッド全般について説明する。
ピエゾ方式の液滴吐出ヘッドは、複数の加圧液室の一面を形成する振動板上に加圧液室に対応する圧電素子を設け、圧電素子に駆動電圧を印加して生じる変形により振動板を振動させ、これにより加圧液室内のインクを昇圧する。圧電素子の軸方向に伸長、収縮する縦振動モードの圧電アクチュエータを使用したものと、たわみ振動モードの圧電アクチュエータを使用したものが実用化されている。
Next, the droplet discharge head will be described. First, an overall description will be given of a piezo-type droplet discharge head.
A piezo-type liquid droplet ejection head is provided with a piezoelectric element corresponding to a pressurized liquid chamber on a vibrating plate forming one surface of a plurality of pressurized liquid chambers, and the diaphragm is deformed by applying a driving voltage to the piezoelectric element. Is oscillated to increase the pressure of the ink in the pressurized liquid chamber. One using a longitudinal vibration mode piezoelectric actuator that expands and contracts in the axial direction of the piezoelectric element and one using a flexural vibration mode piezoelectric actuator have been put into practical use.

前者は圧電素子の端面を振動板に当接させることにより加圧液室の容積を変化させることができて、高密度印刷に適したヘッドの製作が可能である。反面、圧電素子をノズル孔の配列ピッチに一致させて櫛歯状に切り分けるという困難な工程や、切り分けられた圧電素子を加圧液室に位置決めして固定する作業が必要となり、製造工程が複雑であるという問題がある。   In the former, the volume of the pressurized liquid chamber can be changed by bringing the end face of the piezoelectric element into contact with the diaphragm, and a head suitable for high-density printing can be manufactured. On the other hand, the manufacturing process is complicated because it requires a difficult process of cutting the piezoelectric element into a comb-teeth shape according to the arrangement pitch of the nozzle holes, and positioning and fixing the divided piezoelectric element in the pressurized liquid chamber. There is a problem that.

これに対して後者は、圧電材料のグリーンシートを加圧液室の形状に合わせて貼付し、これを焼成するという比較的簡単な工程で振動板に圧電素子を作り付けることができる。しかし、たわみ振動を利用する関係上、ある程度の面積が必要となり、高密度配列が困難であるという問題がある。   On the other hand, in the latter, a piezoelectric element can be formed on the diaphragm by a relatively simple process of attaching a green sheet of a piezoelectric material in accordance with the shape of the pressurized liquid chamber and firing the sheet. However, there is a problem that a certain amount of area is required because of the use of flexural vibration, and high-density arrangement is difficult.

後者の液滴吐出ヘッドの不都合を解消すべく、特開平5−286131号公報に見られるような技術が提案されている。これは、振動板の表面全体に亙って成膜技術により均一な電極材料層や圧電材料層を形成し、この電極材料層や圧電材料層をリソグラフィ法により加圧液室に対応する形状に切り分けて各加圧液室に独立するように圧電素子を形成したものが提案されている。これによれば圧電素子を振動板に貼付ける作業が不要となって、リソグラフィ法という精密で、かつ簡便な手法で圧電素子を作り付けることができるばかりでなく、圧電素子の厚みを薄くできて高速駆動が可能になるという利点がある。以下、これを薄膜方式の圧電素子という。   In order to eliminate the disadvantages of the latter droplet discharge head, a technique as disclosed in Japanese Patent Laid-Open No. 5-286131 has been proposed. This is because a uniform electrode material layer or piezoelectric material layer is formed over the entire surface of the diaphragm by a film forming technique, and the electrode material layer or piezoelectric material layer is formed into a shape corresponding to the pressurized liquid chamber by lithography. A device in which a piezoelectric element is formed so as to be separated and independent of each pressurized liquid chamber has been proposed. This eliminates the need to affix the piezoelectric element to the diaphragm, so that not only can the piezoelectric element be created by a precise and simple technique called lithography, but also the thickness of the piezoelectric element can be reduced. There is an advantage that high-speed driving is possible. Hereinafter, this is referred to as a thin film type piezoelectric element.

薄膜方式の圧電素子を用いる構成では、圧電特性の経時変化が課題として挙げられており、経時変化の少ない圧電材料からなる圧電体層を選択することが考えられる。しかしながら、経時変化の少ない圧電材料からなる圧電体層の圧電特性が良好(具体的には圧電定数が大きい)とは限らない。このため、特に、薄膜方式の圧電素子を用い、経時安定性が良好で、高密度化した液滴吐出ヘッドの作成には、振動板変位体積を確保しつつ、流路基板を如何に支持するかは重要な課題となっている。   In a configuration using a thin film type piezoelectric element, a change in piezoelectric characteristics with time is cited as an issue, and it is conceivable to select a piezoelectric layer made of a piezoelectric material with little change over time. However, the piezoelectric characteristics of a piezoelectric layer made of a piezoelectric material with little change over time are not necessarily good (specifically, the piezoelectric constant is large). For this reason, in particular, in the production of a liquid droplet ejection head that uses a thin film type piezoelectric element, has good temporal stability, and has a high density, how to support the flow path substrate while ensuring a diaphragm displacement volume. This is an important issue.

次に、本実施形態のインクジェット記録装置100に用いることのできる液滴吐出ヘッド1について、実施例1〜6に基づき図面を参照して説明する。
<実施例1>
図3は、実施例1に係る液滴吐出ヘッドの流路基板を圧電素子を形成した側からみた上面図である。図4は、実施例1に係る液滴吐出ヘッドの加圧液室幅方向断面図であり、(a)は図3のA−A'面、(b)はB−B'面を示している。図5は、実施例1の液滴吐出ヘッドの加圧液室長手方向断面図であり、(a)は図3のC−C'面、(b)はD−D'面を示している。本実施形態の液滴吐出ヘッド1は、液滴を基板の面部に設けたノズルから吐出させるサイドシューター方式の一例である。
Next, a droplet discharge head 1 that can be used in the ink jet recording apparatus 100 of the present embodiment will be described with reference to the drawings based on Examples 1 to 6.
<Example 1>
FIG. 3 is a top view of the flow path substrate of the droplet discharge head according to the first embodiment when viewed from the side on which the piezoelectric element is formed. 4A and 4B are cross-sectional views of the liquid droplet ejection head according to the first embodiment in the pressurized liquid chamber width direction, where FIG. 4A shows the AA ′ plane of FIG. 3 and FIG. 4B shows the BB ′ plane. Yes. FIGS. 5A and 5B are cross-sectional views in the longitudinal direction of the pressurized liquid chamber of the liquid droplet ejection head of Example 1. FIG. 5A is a CC ′ plane of FIG. 3, and FIG. 5B is a DD ′ plane. . The droplet discharge head 1 of the present embodiment is an example of a side shooter system that discharges droplets from nozzles provided on a surface portion of a substrate.

液滴吐出ヘッド1は、主として、液滴を吐出する複数のノズル孔11を有するノズル基板10と、液室基板20上に振動板30および圧電素子50等を積層形成した流路基板2と、支持基板40とを重ねた積層構造である。液室基板20には、複数のノズル孔11にそれぞれ連通する複数の加圧液室12の隔壁となる流路隔壁20aと、流体抵抗部13と、溝部からなる液体供給路14とが形成されている。この液室基板20のノズル基板10と反対側の面に、加圧液室12の一壁面となる振動板30を積層し、振動板30上に圧電素子50を積層形成する。この圧電素子50は、加圧液室12内のインクを昇圧するエネルギー発生手段とし機能するアクチュエータ部である。   The droplet discharge head 1 mainly includes a nozzle substrate 10 having a plurality of nozzle holes 11 for discharging droplets, a flow path substrate 2 in which a vibration plate 30, a piezoelectric element 50, and the like are stacked on the liquid chamber substrate 20, and It is a laminated structure in which the support substrate 40 is stacked. In the liquid chamber substrate 20, a flow path partition 20 a serving as a partition of the plurality of pressurized liquid chambers 12 respectively communicating with the plurality of nozzle holes 11, a fluid resistance portion 13, and a liquid supply path 14 including a groove portion are formed. ing. A vibration plate 30 serving as one wall surface of the pressurized liquid chamber 12 is laminated on the surface of the liquid chamber substrate 20 opposite to the nozzle substrate 10, and the piezoelectric element 50 is laminated on the vibration plate 30. The piezoelectric element 50 is an actuator unit that functions as energy generation means for boosting the ink in the pressurized liquid chamber 12.

ノズル基板10は、厚さ30〜50[μm]のSUS(Steel Use Stainless)基板にプレス加工と研磨加工とによりノズル孔11が形成されたものである。このノズル孔11は液室基板20の加圧液室12と連通している。   The nozzle substrate 10 is a SUS (Steel Use Stainless) substrate having a thickness of 30 to 50 [μm], in which nozzle holes 11 are formed by pressing and polishing. The nozzle hole 11 communicates with the pressurized liquid chamber 12 of the liquid chamber substrate 20.

流路基板2を構成する液室基板20は、例えば、シリコン基板上にシリコン酸化膜を介してシリコンが張り合わされたSOI基板を用いる。振動板30は、液室基板20としてのSOI基板のSi層表面にパイロ酸化法を適用してシリコン酸化膜を形成したものを用いる。さらに、振動板30上に、共通電極である下電極51となる白金膜、圧電体層(PZT)52、個別電極である上電極53となる白金膜の多層構成からなる圧電素子50を形成する。この多層構成からなるアクチュエータ部は、液室基板20のシリコン基板をエッチングすることで形成された加圧液室12に対向する領域に形成される。上電極53は、引出し配線54を介して端子電極としての個別電極パッド部58に接続されている。また、下電極51は、引出し配線54及びバイパス配線57を介して端子電極としての共通電極パッドに接続されている。   As the liquid chamber substrate 20 constituting the flow path substrate 2, for example, an SOI substrate in which silicon is bonded to a silicon substrate via a silicon oxide film is used. As the vibration plate 30, a silicon oxide film formed by applying a pyro-oxidation method to the Si layer surface of an SOI substrate as the liquid chamber substrate 20 is used. Further, a piezoelectric element 50 having a multilayer structure of a platinum film serving as a lower electrode 51 that is a common electrode, a piezoelectric layer (PZT) 52, and a platinum film serving as an upper electrode 53 that is an individual electrode is formed on the diaphragm 30. . The actuator portion having this multilayer structure is formed in a region facing the pressurized liquid chamber 12 formed by etching the silicon substrate of the liquid chamber substrate 20. The upper electrode 53 is connected to an individual electrode pad portion 58 as a terminal electrode through a lead wiring 54. The lower electrode 51 is connected to a common electrode pad as a terminal electrode via a lead wiring 54 and a bypass wiring 57.

さらに、流路基板2上には、上電極53、下電極51と各配線材料との層間に配置する層間絶縁膜55と、引出し配線54の材料を保護する為の耐湿層としてのパッシベーション層56とが、アクチュエータ部の上面及び側面を覆うように配置される。なお、図3の流路基板2の上面図においては、アクチュエータ部を見やすくするため層間絶縁膜55とパッシベーション膜56との図示を省略している。   Further, on the flow path substrate 2, an interlayer insulating film 55 disposed between the upper electrode 53, the lower electrode 51 and each wiring material, and a passivation layer 56 as a moisture resistant layer for protecting the material of the lead-out wiring 54. Are arranged so as to cover the upper surface and the side surface of the actuator part. In the top view of the flow path substrate 2 in FIG. 3, the interlayer insulating film 55 and the passivation film 56 are not shown in order to make the actuator portion easy to see.

流路基板2のアクチュエータ部が形成された面の流路隔壁20aと対向する位置(以下、流路隔壁裏部という)には、引出し配線54の層とパッシベーション層56とからなる凸状の連結部60が形成されている。   A convex connection composed of a layer of the lead-out wiring 54 and a passivation layer 56 is provided at a position facing the flow path partition wall 20a on the surface where the actuator portion of the flow path substrate 2 is formed (hereinafter referred to as a flow path partition wall back). A portion 60 is formed.

支持基板40は、インク流路として共通液室となる溝部59と、圧電素子保護空間41、配線用空間42、及び、支柱部44を形成した基板である。この支柱部44を流路隔壁裏部に形成された連結部60に接着接合することで、支持基板40が流路基板2全体を支持する。すなわち、連結部60は、流路基板2と支持基板40との連結部であり、支持基板40により流路隔壁20aの剛性を高めるよう流路隔壁裏部を支持する際の支持部となる。   The support substrate 40 is a substrate on which a groove 59 serving as a common liquid chamber as an ink flow path, a piezoelectric element protection space 41, a wiring space 42, and a support column 44 are formed. The support substrate 40 supports the entire flow path substrate 2 by adhesively bonding the support column portion 44 to the connecting portion 60 formed on the back of the flow path partition wall. That is, the connecting portion 60 is a connecting portion between the flow path substrate 2 and the support substrate 40, and serves as a support portion when the support substrate 40 supports the back of the flow path partition wall so as to increase the rigidity of the flow path partition wall 20a.

実施例1の液滴吐出ヘッド1では、連結部60を加圧液室12の長手方向に関して、約半分となる個別電極パッド部58側領域に設け、バイパス配線57側領域には設けていない。また、加圧液室12の長手方向に対して流路隔壁20aの幅を変えている。連結部60を設けた個別電極パッド部58側領域は流路隔壁20aの幅を広くし(図3、図5(a)中のW0)、連結部60がないバイパス配線57側領域は流路隔壁20aの幅を狭く(図3、図5(b)中のW1)している。これにより、バイパス配線57側領域の加圧液室12の幅(振動板30の幅)が広くなる。また、連結部60は流路隔壁20aの投影面の内部に位置するよう形成されているため、加圧液室12の配列方向の振動板変位領域は、流路隔壁20aの端部で規定される振動板20の幅となる。   In the droplet discharge head 1 of the first embodiment, the connecting portion 60 is provided in the region on the individual electrode pad portion 58 side, which is about half in the longitudinal direction of the pressurized liquid chamber 12, and is not provided in the region on the bypass wiring 57 side. Further, the width of the flow path partition wall 20 a is changed with respect to the longitudinal direction of the pressurized liquid chamber 12. The individual electrode pad 58 side region provided with the connecting portion 60 widens the width of the flow path partition wall 20a (W0 in FIGS. 3 and 5A), and the bypass wiring 57 side region without the connecting portion 60 is the flow path. The width of the partition wall 20a is narrowed (W1 in FIGS. 3 and 5B). Thereby, the width of the pressurized liquid chamber 12 (the width of the diaphragm 30) in the bypass wiring 57 side region is widened. Further, since the connecting portion 60 is formed so as to be located inside the projection surface of the flow path partition wall 20a, the diaphragm displacement region in the arrangement direction of the pressurized liquid chamber 12 is defined by the end of the flow path partition wall 20a. This is the width of the diaphragm 20.

図5(a)に示すように、振動板30の流路隔壁裏部の、長手方向の約半分程度となる、ノズル孔11が配置された個別電極パッド部58側領域は連結部60を介して支持基板40の支柱部44により固定されている。ここで、基板などの板状振動の場合、支持点間距離による影響が大きく、支持点間距離が短い構成は支持点間距離が長い構成に較べて、流路基板2全体の撓み変形を良好に抑えることができる。このため、本実施例の構成は、流路隔壁裏面に支持のない構成に比べて流路基板2全体の撓み変形を大きく抑えることができる。また、流路隔壁裏面を支持しているので隣接する加圧液室12への振動の伝播が抑制される。これにより、駆動する圧電素子50の数や駆動する圧電素子50の位置により吐出特性が変化してしまう相互干渉を良好に抑えることができる。   As shown in FIG. 5A, the region on the individual electrode pad portion 58 side where the nozzle hole 11 is disposed, which is about half the longitudinal direction of the back of the flow path partition wall of the diaphragm 30, is connected via the connecting portion 60. It is fixed by the support 44 of the support substrate 40. Here, in the case of plate-like vibration of a substrate or the like, the influence of the distance between the support points is large, and the configuration in which the distance between the support points is short is better in the deformation of the entire flow path substrate 2 than the configuration in which the distance between the support points is long. Can be suppressed. For this reason, the structure of the present embodiment can largely suppress the deformation of the entire flow path substrate 2 compared to the structure in which the back surface of the flow path partition wall is not supported. In addition, since the back surface of the flow path partition wall is supported, propagation of vibration to the adjacent pressurized liquid chamber 12 is suppressed. Thereby, it is possible to satisfactorily suppress the mutual interference in which the ejection characteristics change depending on the number of driven piezoelectric elements 50 and the position of the driven piezoelectric elements 50.

一方、図5(b)に示すように、振動板30の流路隔壁裏部のバイパス配線57側領域は、連結部60が形成されておらず、支持基板40の支柱部44が固定されない。このバイパス配線57側領域の流路隔壁裏部は、連結部60を形成する必要がないので、連結部60が形成される個別電極パッド部58側の領域に較べて流路隔壁20aの幅を小さくできる。実施例1では、加圧液室12の長手方向の約半分程度で、流路隔壁20aの幅を小さくすることで加圧液室12の幅(振動板30の変位領域の幅)を広げており、これにより加圧液室12全体として振動板変位体積(排除体積)を大きくできる。このように、本実施例の構成では、吐出特性の相互干渉を抑えつつ、排除体積を確保して吐出効率を向上させることができる。   On the other hand, as shown in FIG. 5B, in the region on the bypass wiring 57 side of the back of the flow path partition wall of the diaphragm 30, the connecting portion 60 is not formed, and the column portion 44 of the support substrate 40 is not fixed. Since the flow path partition wall back side area in the bypass wiring 57 side does not need to form the connection part 60, the width of the flow path partition wall 20 a is larger than the area on the individual electrode pad part 58 side where the connection part 60 is formed. Can be small. In the first embodiment, the width of the pressurizing liquid chamber 12 (the width of the displacement region of the diaphragm 30) is increased by reducing the width of the flow path partition wall 20a in about half of the longitudinal direction of the pressurizing liquid chamber 12. Accordingly, the diaphragm displacement volume (exclusion volume) can be increased as the entire pressurized liquid chamber 12. As described above, in the configuration of the present embodiment, it is possible to secure the excluded volume and improve the discharge efficiency while suppressing the mutual interference of the discharge characteristics.

次に、本実施例の液滴吐出ヘッドの製造方法について、製造工程を示す工程断面図である図6及び図7に従って説明する。
先ず、図6(a)に示すように、厚み400[μm]の<100>シリコン基板201の表面にシリコン酸化膜を0.2[μm]及びシリコンを2.0[μm]を張り合わせたSOI基板を用いる。このSOI基板表面にパイロ(Wet)酸化法によりシリコン酸化膜を0.3[μm]形成し、これを振動板層202とする。その後、図6(b)に示すように、圧電素子の下電極となる白金(Pt)層203をスパッタ法により振動板層202の上に0.2[μm]成膜し、パターニングする。更に、図6(c)に示すように、ゾルゲル法により圧電体層204を下電極となる白金層203の上に2[μm]成膜し、さらに上電極となる白金(Pt)層205を0.1[μm]成膜する。その後、リソエッチ法により上電極となる白金(Pt)層205及び圧電体層204をパターニングする。
Next, the manufacturing method of the droplet discharge head of the present embodiment will be described with reference to FIGS. 6 and 7 which are process sectional views showing the manufacturing process.
First, as shown in FIG. 6A, an SOI in which a silicon oxide film of 0.2 [μm] and silicon of 2.0 [μm] are bonded to the surface of a <100> silicon substrate 201 having a thickness of 400 [μm]. A substrate is used. A silicon oxide film of 0.3 [μm] is formed on the surface of the SOI substrate by a pyro oxidation method, and this is used as a diaphragm layer 202. Thereafter, as shown in FIG. 6B, a platinum (Pt) layer 203 serving as a lower electrode of the piezoelectric element is formed on the diaphragm layer 202 by sputtering, and is patterned. Further, as shown in FIG. 6C, the piezoelectric layer 204 is formed by 2 [μm] on the platinum layer 203 serving as the lower electrode by the sol-gel method, and the platinum (Pt) layer 205 serving as the upper electrode is further formed. A 0.1 [μm] film is formed. Thereafter, the platinum (Pt) layer 205 and the piezoelectric layer 204 to be the upper electrode are patterned by a lithoetch method.

次に、図6(d)に示すように、プラズマCVD(Chemical Vapor Deposition)法により層間絶縁膜206を0.3[μm]成膜し、リソエッチ法により配線コンタクトを取るためのビアホール207を形成する。層間絶縁膜206は、次に形成する配線部材と上電極との導通部208と、バイパス配線部材への導通部209、およびインク供給孔となる貫通部210をパターニングしている。更に、図6(e)に示すように、アルミ材料により、引出し電極層211を形成する。この引出し電極層211は、圧電体の駆動に伴う振動板の振動による応力を受けるので、振動により断線しないように、やわらかいアルミ材料を使い、1[μm]程度の厚い膜厚で形成されている。さらに、図6の(f)に示すように、引出し電極層211保護のためのパッシベーション層としてプラズマCVD法によるシリコン窒化膜212を2[μm]成膜し、パターニングする。   Next, as shown in FIG. 6D, an interlayer insulating film 206 is formed in a thickness of 0.3 [μm] by a plasma CVD (Chemical Vapor Deposition) method, and a via hole 207 for making a wiring contact is formed by a lithoetch method. To do. The interlayer insulating film 206 patterns the conductive portion 208 between the wiring member and the upper electrode to be formed next, the conductive portion 209 to the bypass wiring member, and the penetrating portion 210 serving as the ink supply hole. Further, as shown in FIG. 6E, the extraction electrode layer 211 is formed of an aluminum material. Since this extraction electrode layer 211 receives stress due to vibration of the diaphragm accompanying driving of the piezoelectric body, it is made of a soft aluminum material and has a thickness of about 1 [μm] so as not to be disconnected by vibration. . Further, as shown in FIG. 6F, a silicon nitride film 212 of 2 [μm] is formed by plasma CVD as a passivation layer for protecting the extraction electrode layer 211 and patterned.

そして、図7(a)に示すように、振動板層202のインク供給孔となる部分213を事前にエッチングする。その後、図7(b)に示すように、金をメッキ法により積層して、個別電極パッド部214と共通電極パッド部215とを同時に形成する。個別電極パッド部214及び共通電極パッド部215を金で形成することで、図示しないドライバICとの電気的接続を低温のワイヤボンディングで接続している。また、金は抵抗値が低く、上電極及び下電極の抵抗値を下げる効果が大きい。図示しないドライバICの実装は、ワイヤボンディングではなく、プリップチップ実装を用い、パッド部には図示しないドライバICのチップがフリップチップ実装している。更に、共通電極パッド部215は、個別電極パッド部214と形成工程を分けて形成してもよく、パッド部の材料として銅、アルミなどを使用することもできる。その場合は、外部と保護されていない個別電極パッド部214には腐食から保護する保護層が必要となる場合もある。   Then, as shown in FIG. 7A, the portion 213 that becomes the ink supply hole of the vibration plate layer 202 is etched in advance. Thereafter, as shown in FIG. 7B, gold is laminated by plating to form the individual electrode pad portion 214 and the common electrode pad portion 215 at the same time. By forming the individual electrode pad part 214 and the common electrode pad part 215 with gold, electrical connection with a driver IC (not shown) is connected by low-temperature wire bonding. Also, gold has a low resistance value, and has a great effect of reducing the resistance values of the upper electrode and the lower electrode. The driver IC (not shown) is mounted not by wire bonding but by flip chip mounting, and the driver IC chip (not shown) is flip-chip mounted on the pad portion. Furthermore, the common electrode pad portion 215 may be formed separately from the individual electrode pad portion 214 and the formation process, and copper, aluminum, or the like may be used as a material for the pad portion. In that case, a protective layer that protects against corrosion may be required for the individual electrode pad portion 214 that is not protected from the outside.

その後、図7(c)に示すように別途ガラス基板にブラスト加工で支柱部を形成した支持基板216を液室基板側に接合し、図7(d)に示すように液室基板の支持基板接合面とは反対面を、所望の厚さまで研磨する。支持基板216はシリコン基板にリソエッチ法で凹部を加工したものでも良く、シリコン基板をTMAH、KOHなどのアルカリエッチング液を用いたウェットエッチングにより加工したものでも構わない。また、樹脂モールドやメタルインジェクションモールドなどの成型部品でも構わない。また、ドライバ回路を流路基板上に一体形成する際に、パイロ酸化法で形成した酸化膜をLOCOS(Local Oxidation of Silicon)酸化法で形成し、酸化膜の形成領域を選択することで、駆動回路を同一基板上に形成することもできる。その後、図7(d)に示すようにシリコン基板である液室基板217の反対面にICPドライエッチングにより加圧液室218、流体抵抗部219及びインク供給部220となる凹部を形成する。最後に、図7(e)に示すように、ノズル孔221を形成したノズル基板222を液室基板217の流路隔壁形成面に接着、圧電素子の上電極及び下電極と接続されたアルミ配線部を駆動回路に接続することで液滴吐出ヘッドが完成する。ノズル基板は別途厚さ30〜50[μm]のSUS基板にプレス加工と研磨加工を行い作製する。   Thereafter, as shown in FIG. 7 (c), a support substrate 216 formed separately by a blast process on a glass substrate is joined to the liquid chamber substrate side, and the support substrate of the liquid chamber substrate is shown in FIG. 7 (d). The surface opposite to the bonding surface is polished to a desired thickness. The support substrate 216 may be a silicon substrate obtained by processing a recess by a lithoetch method, or may be a silicon substrate processed by wet etching using an alkaline etching solution such as TMAH or KOH. Further, it may be a molded part such as a resin mold or a metal injection mold. Further, when the driver circuit is integrally formed on the flow path substrate, an oxide film formed by a pyro-oxidation method is formed by a LOCOS (Local Oxidation of Silicon) oxidation method, and driving is performed by selecting an oxide film formation region. The circuit can also be formed on the same substrate. After that, as shown in FIG. 7D, concave portions to be the pressure liquid chamber 218, the fluid resistance portion 219, and the ink supply portion 220 are formed on the opposite surface of the liquid chamber substrate 217, which is a silicon substrate, by ICP dry etching. Finally, as shown in FIG. 7E, an aluminum wiring in which a nozzle substrate 222 having nozzle holes 221 formed is bonded to a flow path partition surface of the liquid chamber substrate 217 and connected to the upper electrode and lower electrode of the piezoelectric element. The droplet discharge head is completed by connecting the part to the drive circuit. The nozzle substrate is separately manufactured by pressing and polishing a SUS substrate having a thickness of 30 to 50 [μm].

このように、実施例1の液滴吐出ヘッドでは、加圧液室12の長手方向の一部ではあるが、流路基板2の流路隔壁裏部を連結部60を介して支持基板40で支持することにより、流路基板2全体の撓み変形を効率的に抑えて、吐出特性の相互干渉を抑える。これと共に、加圧液室12の長手方向の連結部60を設けない部分で流路隔壁20aの幅を狭くして振動板30の変位領域の幅が広い領域を設け、加圧液室12全体として振動板変位体積(排除体積)を大きくすることで吐出能力の低下を抑制する。これにより、インク粘度の制約が小さくなりインク対応性および環境温度対応性(低温高粘度に対応し易い)の高い液滴吐出ヘッドを得ることができる。また、連結部60を形成しないことで振動板30の変位領域の幅を広げているため、特別に高すぎる加工精度/接合精度を要求しないため、この液滴吐出ヘッド1を低コストで安定して製造することができる。   As described above, in the droplet discharge head of Example 1, although it is a part of the pressurizing liquid chamber 12 in the longitudinal direction, the back of the flow path partition wall of the flow path substrate 2 is supported by the support substrate 40 via the connecting portion 60. By supporting, the deformation deformation of the entire flow path substrate 2 is efficiently suppressed, and the mutual interference of the discharge characteristics is suppressed. At the same time, a portion where the connecting portion 60 in the longitudinal direction of the pressurizing liquid chamber 12 is not provided is provided with a region where the width of the displacement region of the vibration plate 30 is widened by narrowing the width of the flow path partition wall 20a. As described above, the diaphragm displacement volume (excluded volume) is increased to suppress a decrease in discharge capacity. As a result, restrictions on the ink viscosity are reduced, and a droplet discharge head having high ink compatibility and environmental temperature compatibility (easy to cope with low temperature and high viscosity) can be obtained. In addition, since the width of the displacement region of the diaphragm 30 is widened by not forming the connecting portion 60, the processing accuracy / joining accuracy is not particularly high, so that the liquid droplet ejection head 1 can be stabilized at low cost. Can be manufactured.

<実施例2>
図8は、実施例2に係る液滴吐出ヘッドの流路基板を圧電素子を形成した側からみた上面図である。図9は、実施例2の液滴吐出ヘッドの加圧液室幅方向断面図であり、(a)は図8のA−A'面、(b)はB−B'面を示している。図10は、実施例2の液滴吐出ヘッドの加圧液室長手方向断面図であり、(a)は図8のC−C'面、(b)はD−D'面を示している。なお、図3と同様、図8の上面図においてもアクチュエータ部を見やすくするため層間絶縁膜55とパッシベーション膜56との図示を省略している。
<Example 2>
FIG. 8 is a top view of the flow path substrate of the droplet discharge head according to the second embodiment as viewed from the side on which the piezoelectric element is formed. 9A and 9B are cross-sectional views of the droplet discharge head of Example 2 in the direction of the pressurized liquid chamber width, where FIG. 9A shows the AA ′ plane and FIG. 9B shows the BB ′ plane. . 10A and 10B are cross-sectional views in the longitudinal direction of the pressurized liquid chamber of the liquid droplet ejection head of Example 2. FIG. 10A is a CC ′ plane of FIG. 8, and FIG. 10B is a DD ′ plane. . As in FIG. 3, in the top view of FIG. 8, the interlayer insulating film 55 and the passivation film 56 are not shown in order to make the actuator portion easy to see.

実施例2の液滴吐出ヘッド1は、流路基板2の流路隔壁裏部に引出し配線54の層とパッシベーション層56とからなる凸状の連結部60を有している。この連結部60は、加圧液室12の長手方向に関して、約半分となるバイパス配線57側領域に設けられ、個別電極パッド部58側領域には設けていない。また、加圧液室12の長手方向に対して流路隔壁20aの幅を変えている。連結部60を設けたバイパス配線57側領域は流路隔壁20aの幅を広くし(図8、図10(b)中のW0)、連結部60がない個別電極パッド部58側領域は流路隔壁20aの幅を狭く(図8、図10(a)中のW1)している。これにより、ノズル孔11が配置された個別電極パッド部58側領域の加圧液室12の幅(振動板30の変位領域の幅)が広くなる。さらに、個別電極パッド部58側領域では、バイパス配線57側領域に較べて、振動板30上の圧電体層52と上電極53の幅も広げている。個別電極パッド部58側領域では、連結部60を設けていないので、圧電体層52と上電極53の幅を広げても、同じ加工精度/接合精度でよく、寸法的に干渉することはない。   The droplet discharge head 1 according to the second embodiment has a convex connecting portion 60 including a layer of the lead-out wiring 54 and a passivation layer 56 on the back of the flow path partition wall of the flow path substrate 2. The connecting portion 60 is provided in a region on the bypass wiring 57 side, which is about half of the longitudinal direction of the pressurized liquid chamber 12, and is not provided in the region on the individual electrode pad 58 side. Further, the width of the flow path partition wall 20 a is changed with respect to the longitudinal direction of the pressurized liquid chamber 12. The bypass wiring 57 side region provided with the connecting part 60 widens the width of the flow path partition wall 20a (W0 in FIGS. 8 and 10B), and the individual electrode pad part 58 side area without the connecting part 60 is a flow path. The width of the partition wall 20a is narrowed (W1 in FIGS. 8 and 10A). As a result, the width of the pressurized liquid chamber 12 (the width of the displacement region of the vibration plate 30) in the region on the individual electrode pad 58 side where the nozzle holes 11 are arranged is increased. Further, in the region on the individual electrode pad 58 side, the widths of the piezoelectric layer 52 and the upper electrode 53 on the vibration plate 30 are wider than those in the region on the bypass wiring 57 side. Since the connecting portion 60 is not provided in the region on the individual electrode pad 58 side, even if the width of the piezoelectric layer 52 and the upper electrode 53 is widened, the same processing accuracy / bonding accuracy may be obtained and there is no dimensional interference. .

実施例2においては、図10(b)に示すように、振動板30の流路隔壁裏部の、長手方向の約半分程度となる、ノズル孔11と反対側のバイパス配線57側領域は連結部60を介して支持基板40の支柱部44により固定されている。このため、流路隔壁裏面に支持のない構成に比べて流路基板2全体の撓み変形や、隣接する加圧液室12への振動の伝播が抑制され相互干渉を抑えられる。   In the second embodiment, as shown in FIG. 10B, the bypass wiring 57 side region opposite to the nozzle hole 11 that is about half the longitudinal direction of the back of the flow path partition wall of the diaphragm 30 is connected. It is fixed by the support 44 of the support substrate 40 via the part 60. For this reason, compared with a configuration in which the back surface of the flow path partition wall is not supported, the deformation deformation of the entire flow path substrate 2 and the propagation of vibration to the adjacent pressurized liquid chamber 12 are suppressed, thereby suppressing mutual interference.

一方、図10(a)に示すように、振動板30の流路隔壁裏部のノズル孔11側となる個別電極パッド部58側領域では連結部60が形成されておらず、支持基板40の支柱部44が固定されない。この連結部60が形成されない個別電極パッド部58側領域は、連結部60を形成する必要がないので、連結部60が形成されるバイパス電極57側の領域に較べて流路隔壁20aの幅を小さくできる。加圧液室12の長手方向の約半分程度で、流路隔壁20aの幅を小さくすることで加圧液室12の幅(振動板30の変位領域の幅)を広げており、これにより加圧液室12全体として振動板変位体積(排除体積)を大きくできる。   On the other hand, as shown in FIG. 10A, the connecting portion 60 is not formed in the region on the individual electrode pad portion 58 side on the nozzle hole 11 side on the back of the flow path partition wall of the diaphragm 30, and the support substrate 40 The column part 44 is not fixed. Since the region on the individual electrode pad 58 side where the connecting portion 60 is not formed does not need to be formed with the connecting portion 60, the width of the flow path partition wall 20a is larger than the region on the bypass electrode 57 side where the connecting portion 60 is formed. Can be small. The width of the pressure liquid chamber 12 (the width of the displacement region of the vibration plate 30) is increased by reducing the width of the flow path partition wall 20a in about half of the longitudinal direction of the pressure liquid chamber 12, thereby adding pressure. The diaphragm displacement volume (exclusion volume) can be increased as the entire pressurized fluid chamber 12.

さらに、実施例2では、個別電極パッド部58側領域で、圧電体層52と上電極53の幅も広げたことにより、アクチュエータ部の発生力も大きくしており、吐出効率が更に向上する。また、圧電素子50の幅を広く構成することで、流路基板2の剛性が高くなり、加圧液室12内のコンプライアンスが小さくなる。このため、共振周期が短くなり、吐出ヘッドの駆動周波数を高くすることができる。これは、振動板30の幅を広げた分、共振周波数が下がり、駆動が少し下がることを補正することができる。これにより、さらに吐出効率の低下を抑制でき、インク対応性や環境温度対応性の高い液滴吐出ヘッドを得ることができる。   Further, in the second embodiment, since the width of the piezoelectric layer 52 and the upper electrode 53 is increased in the region on the individual electrode pad 58 side, the generated force of the actuator portion is increased, and the discharge efficiency is further improved. Further, by configuring the width of the piezoelectric element 50 wide, the rigidity of the flow path substrate 2 is increased and the compliance in the pressurized liquid chamber 12 is reduced. For this reason, the resonance period is shortened, and the drive frequency of the ejection head can be increased. This can correct that the resonance frequency is lowered and driving is slightly reduced by the increase in the width of the diaphragm 30. Thereby, it is possible to further suppress a drop in the discharge efficiency, and it is possible to obtain a liquid droplet discharge head having high ink compatibility and environmental temperature compatibility.

なお、実施例1のように、個別電極パッド部58側の領域に連結部60を形成し、バイパス配線57側領域の加圧液室12の幅(振動板30の変位領域の幅)を広げている構成においても、圧電体層52や上電極53の幅を広げることで、同様の効果が期待できる。   As in the first embodiment, the connecting portion 60 is formed in the region on the individual electrode pad 58 side, and the width of the pressurized liquid chamber 12 in the region on the bypass wiring 57 side (the width of the displacement region of the diaphragm 30) is increased. Even in such a configuration, the same effect can be expected by widening the width of the piezoelectric layer 52 and the upper electrode 53.

さらに、実施例2の構成では、ノズル孔11側で加圧液室12の幅を広くしたことで、ノズル孔11と流路隔壁20aの距離が広がり、流路基板2にノズル基板10を接合する際の位置ズレ、および、ノズル接合の接着剤のはみ出しに対して余裕度が高くなる。これによって歩留りの向上が見込めて、低コストで安定した液滴吐出ヘッド1の生産が可能になる。   Furthermore, in the configuration of the second embodiment, the width of the pressurized liquid chamber 12 is increased on the nozzle hole 11 side, so that the distance between the nozzle hole 11 and the flow path partition wall 20a is increased, and the nozzle substrate 10 is bonded to the flow path substrate 2. In this case, a margin is increased with respect to the positional deviation and the protrusion of the adhesive for nozzle bonding. As a result, the yield can be improved, and the liquid droplet ejection head 1 can be produced stably at a low cost.

<実施例3>
図11は、実施例3に係る液滴吐出ヘッドの流路基板を圧電素子を形成した側からみた上面図である。図12は、図11の液滴吐出ヘッドの加圧液室幅方向断面図であり、(a)はA−A’面、(b)はB−B’面を示している。また、図8の液滴吐出ヘッドの加圧液室長手方向のC−C’面の断面図、D−D’面の断面図は、それぞれ、実施例2に記載の図10(a)、(b)と同じであり、ここでは図示を省略する。なお、図3と同様、図11の上面図においてもアクチュエータ部を見やすくするため層間絶縁膜55とパッシベーション膜56との図示を省略している。
<Example 3>
FIG. 11 is a top view of the flow path substrate of the droplet discharge head according to the third embodiment when viewed from the side on which the piezoelectric element is formed. 12 is a cross-sectional view of the droplet discharge head of FIG. 11 in the pressurized liquid chamber width direction, in which (a) shows an AA ′ plane and (b) shows a BB ′ plane. Further, the sectional view of the CC ′ plane in the longitudinal direction of the pressurized liquid chamber of the droplet discharge head of FIG. 8 and the sectional view of the DD ′ plane are respectively shown in FIG. This is the same as (b) and is not shown here. As in FIG. 3, in the top view of FIG. 11, the interlayer insulating film 55 and the passivation film 56 are not shown in order to make the actuator portion easy to see.

実施例3の液滴吐出ヘッド1では、連結部60を加圧液室12の長手方向中央領域に設け、両端の領域には設けていない。また、加圧液室12の長手方向に対して流路隔壁20aの幅を変えており、連結部60を設けた中央領域は流路隔壁20aの幅を広くし(図11中のW0)、連結部60がない両端の領域は流路隔壁20aの幅を小さく(図11中のW1)している。これにより、両端の領域の加圧液室12の幅(振動板30の変位領域の幅)が広くなる。また、両端の領域において、振動板30上の圧電体層52と上電極53の幅も広げている。   In the droplet discharge head 1 according to the third embodiment, the connecting portion 60 is provided in the central region in the longitudinal direction of the pressurized liquid chamber 12 and is not provided in the regions at both ends. Further, the width of the flow path partition wall 20a is changed with respect to the longitudinal direction of the pressurized liquid chamber 12, and the central region provided with the connecting portion 60 increases the width of the flow path partition wall 20a (W0 in FIG. 11). Regions at both ends where the connecting portion 60 is not provided have a smaller width of the flow path partition wall 20a (W1 in FIG. 11). Thereby, the width of the pressurized liquid chamber 12 (the width of the displacement region of the diaphragm 30) in the regions at both ends is increased. In addition, the widths of the piezoelectric layer 52 and the upper electrode 53 on the vibration plate 30 are widened in both end regions.

この構成では、振動板30の流路隔壁裏部における長手方向中央領域の連結部60を介して支持基板40の支柱部44により支持することで、流路基板2全体の撓み変形や、隣接する加圧液室12への振動の伝播が抑制され相互干渉を抑える。また、加圧液室12の長手方向中央領域で加圧液室12の幅(振動板30の変位領域の幅)、圧電体層52および上電極53の幅を広げることで、加圧液室全体として振動板変位体積(排除体積)をさらに大きくし、かつ、アクチュエータ部の発生力も大きくしている。これにより、さらに吐出効率の低下を抑制でき、インク対応性や環境温度対応性の高い液滴吐出ヘッド1を得ることができる。   In this configuration, the flow channel substrate 2 as a whole is deformed or adjoined by being supported by the column portion 44 of the support substrate 40 via the connecting portion 60 in the center region in the longitudinal direction at the back of the flow channel partition wall of the diaphragm 30. Propagation of vibration to the pressurized liquid chamber 12 is suppressed and mutual interference is suppressed. Further, by increasing the width of the pressurizing liquid chamber 12 (the width of the displacement area of the diaphragm 30), the width of the piezoelectric layer 52 and the upper electrode 53 in the central region in the longitudinal direction of the pressurizing liquid chamber 12, the pressurizing liquid chamber As a whole, the diaphragm displacement volume (exclusion volume) is further increased, and the generated force of the actuator unit is also increased. Thereby, it is possible to further suppress the drop in the discharge efficiency, and it is possible to obtain the droplet discharge head 1 having high ink compatibility and high environmental temperature compatibility.

<実施例4>
実施例4に係る液滴吐出ヘッドの流路基板を圧電素子を形成した側からみた上面図は、実施例3に記載の図11と同じであり、ここでは図示を省略する。図13は、実施例4の液滴吐出ヘッドの加圧液室幅方向断面図であり、(a)はA−A’面、(b)はB−B’面を示している。また、図14は、実施例4の液滴吐出ヘッドの加圧液室長手方向断面図であり、(a)は図11のC−C'面、(b)はD−D'面を示している。なお、実施例4において、実施例3と同様の部分は詳細な説明を省略し、主に異なる部分に関して説明を行う。
<Example 4>
The top view of the flow path substrate of the droplet discharge head according to the fourth embodiment when viewed from the side where the piezoelectric elements are formed is the same as FIG. 11 described in the third embodiment, and is not shown here. 13A and 13B are cross-sectional views of the droplet discharge head of Example 4 in the pressurized liquid chamber width direction, where FIG. 13A shows the AA ′ plane and FIG. 13B shows the BB ′ plane. FIG. 14 is a longitudinal sectional view of the liquid droplet ejection head of Example 4 in the pressurizing liquid chamber, where (a) shows the CC ′ plane of FIG. 11 and (b) shows the DD ′ plane. ing. In the fourth embodiment, detailed description of the same portions as those of the third embodiment is omitted, and different portions are mainly described.

実施例4の液滴吐出ヘッド1は、実施例3と同様、連結部60を加圧液室12の長手方向中央領域に設け、両端の領域には設けていない。また、加圧液室12の長手方向に対して流路隔壁20aの幅を変えており、連結部60を設けた中央領域は流路隔壁20aの幅を広くし(図11中のW0)、連結部60がない両端の領域は流路隔壁20aの幅を小さく(図11中のW1)している。これにより、両端の領域の加圧液室12の幅(振動板30の変位領域の幅)が広くなる。また、両端の領域において、振動板30上の圧電体層52と上電極53の幅も広げている。   As in the third embodiment, the droplet discharge head 1 of the fourth embodiment is provided with the connecting portion 60 in the central region in the longitudinal direction of the pressurized liquid chamber 12 and not in the regions at both ends. Further, the width of the flow path partition wall 20a is changed with respect to the longitudinal direction of the pressurized liquid chamber 12, and the central region provided with the connecting portion 60 increases the width of the flow path partition wall 20a (W0 in FIG. 11). Regions at both ends where the connecting portion 60 is not provided have a smaller width of the flow path partition wall 20a (W1 in FIG. 11). Thereby, the width of the pressurized liquid chamber 12 (the width of the displacement region of the diaphragm 30) in the regions at both ends is increased. In addition, the widths of the piezoelectric layer 52 and the upper electrode 53 on the vibration plate 30 are widened in both end regions.

さらに、実施例4の支持基板40は支柱部44を有していない構成である。実施例4では、実施例1と同様の製造プロセスで流路基板2に連結部60を形成する際、凸状の連結部60を、各成膜プロセスが全て重なる上電極53と引出し配線54のコンタクト部を除くアクチュエータ部よりも高く形成する。そして、図14(b)に示すように、連結部60に支持基板40の平坦部を接着接合するものである。   Further, the support substrate 40 of the fourth embodiment has a configuration that does not have the column portion 44. In the fourth embodiment, when the connecting portion 60 is formed on the flow path substrate 2 in the same manufacturing process as in the first embodiment, the convex connecting portion 60 is formed by connecting the upper electrode 53 and the lead wiring 54 where all the film forming processes overlap. It is formed higher than the actuator part excluding the contact part. And as shown in FIG.14 (b), the flat part of the support substrate 40 is adhere | attached and joined to the connection part 60. As shown in FIG.

本実施例は、連結部60は加圧液室12の長手方向中央領域に設けた構成であり、図13(a)に示すように、コンタクト部が配置される個別電極パッド部58側には連結部60がないので支柱部44は必要ない。支持基板40のコンタクト部と対向する位置に、コンタクト部と干渉しないような空間を形成する加圧液室配列方向と平行な溝45を形成すればよい。このため、支持基板40の加工精度を大幅に粗くでき、低コストの支持基板40で液滴吐出ヘッド1を構成できる。これにより、流路基板2全体の撓み振動を効率的に抑えて吐出の相互干渉を小さくすると共に、更に、吐出能力を向上させてインク対応性や環境温度対応性の高い液滴吐出ヘッド1を、安価に提供できる。   In this embodiment, the connecting portion 60 is provided in the central region in the longitudinal direction of the pressurized liquid chamber 12, and as shown in FIG. 13 (a), on the individual electrode pad portion 58 side where the contact portion is disposed. Since there is no connection part 60, the support | pillar part 44 is unnecessary. What is necessary is just to form the groove | channel 45 parallel to the pressurization liquid chamber arrangement | positioning direction which forms the space which does not interfere with a contact part in the position facing the contact part of the support substrate 40. FIG. For this reason, the processing accuracy of the support substrate 40 can be greatly roughened, and the droplet discharge head 1 can be configured with the low-cost support substrate 40. As a result, it is possible to efficiently suppress the flexural vibration of the entire flow path substrate 2 and reduce the mutual interference of the discharge, and further improve the discharge capability to provide the droplet discharge head 1 having high ink compatibility and high environmental temperature compatibility. Can be provided at low cost.

<実施例5>
実施例5に係る液滴吐出ヘッドの流路基板を圧電素子を形成した側からみた上面図は、実施例3に記載の図11と同じであり、ここでは図示を省略する。図15は、実施例5の液滴吐出ヘッドの加圧液室幅方向断面図であり、(a)はA−A’面、(b)はB−B’面を示している。また、実施例5の液滴吐出ヘッドの加圧液室長手方向断面図は、実施例4に記載の図14と同じであり、ここでは図示を省略する。
<Example 5>
A top view of the flow path substrate of the droplet discharge head according to the fifth embodiment when viewed from the side on which the piezoelectric element is formed is the same as FIG. 11 described in the third embodiment, and is not shown here. 15A and 15B are cross-sectional views of the droplet discharge head of Example 5 in the pressurized liquid chamber width direction, where FIG. 15A shows the AA ′ plane and FIG. 15B shows the BB ′ plane. Further, the longitudinal sectional view of the pressurized liquid chamber of the droplet discharge head of Example 5 is the same as FIG. 14 described in Example 4, and is not shown here.

実施例4と同様に、上記コンタクト部を除くアクチュエータ部よりも高い凸状の連結部60を加圧液室12の長手方向中央領域に設けて、支持基板40を接着接合するものである。また、支持基板40は各加圧液室12に対応する支柱部44を形成せずに、コンタクト部が干渉しない空間を形成する加圧液室配列方向と平行な溝45を形成し、連結部60に支持基板40の平坦部を接合する構成である。さらに、実施例5では、図15(b)に示すように、加圧液室12の長手方向に関して連結部60の長さが支持基板40の接合面46の長さよりも長くなるよう形成し、支持基板40の接合面46を連結部60の内側に接合している。   Similarly to the fourth embodiment, a convex connecting portion 60 higher than the actuator portion excluding the contact portion is provided in the central region in the longitudinal direction of the pressurized liquid chamber 12 and the support substrate 40 is bonded and bonded. Further, the support substrate 40 does not form the support 44 corresponding to each of the pressurizing fluid chambers 12 but forms a groove 45 parallel to the pressurizing fluid chamber arrangement direction that forms a space where the contact portions do not interfere with each other. The flat portion of the support substrate 40 is bonded to 60. Furthermore, in Example 5, as shown in FIG. 15B, the length of the connecting portion 60 is longer than the length of the bonding surface 46 of the support substrate 40 in the longitudinal direction of the pressurized liquid chamber 12, The joint surface 46 of the support substrate 40 is joined to the inside of the connecting portion 60.

流路基板2の連結部60と支持基板40との接合は、支持基板40側に接着剤を塗布して接合する。流路基板2の連結部60が形成された面には、圧電素子50等の機能部品が多く配置され、凹凸があるため、接着剤が塗布し難いためである。しかし、接合の際、余剰接着剤が接合面からはみ出して、連結部60の端部から圧電素子50を形成した流路基板2上にまで流れ出すという問題がある。流路基板2上にまで流れ出すと吐出効率の低下や、液滴吐出ヘッドの歩留まり低下を招いてしまう。特に、支持基板40に支柱部44を設けない構成では接着剤が塗布される面積が大きいため、支柱部44を有する構成に較べて接着剤量が多くなり、接着剤の流路基板2への流れ出しが起こりやすい。また、連結部60を加圧液室12の長手方向の中央部に形成した構成では、接着剤が長手方向の加圧液室12の周辺となる位置に逃げていくことができない。   The connecting portion 60 of the flow path substrate 2 and the support substrate 40 are bonded by applying an adhesive on the support substrate 40 side. This is because a large number of functional parts such as the piezoelectric elements 50 are arranged on the surface of the flow path substrate 2 on which the connecting portion 60 is formed, and the surface is uneven so that it is difficult to apply the adhesive. However, there is a problem that during bonding, excess adhesive protrudes from the bonding surface and flows out from the end of the connecting portion 60 to the flow path substrate 2 on which the piezoelectric element 50 is formed. When it flows out onto the flow path substrate 2, the discharge efficiency is lowered and the yield of the droplet discharge head is lowered. In particular, in the configuration in which the support substrate 40 is not provided with the support column portion 44, the area to which the adhesive is applied is large. Therefore, the amount of the adhesive is increased as compared with the configuration having the support column portion 44, and the adhesive is applied to the flow path substrate 2. Outflow is likely to occur. Further, in the configuration in which the connecting portion 60 is formed in the central portion in the longitudinal direction of the pressurizing liquid chamber 12, the adhesive cannot escape to a position around the pressurizing liquid chamber 12 in the longitudinal direction.

本実施例では、加圧液室12の長手方向に関して連結部60の長さが支持基板40の接合面46の長さよりも長くなるよう形成し、支持基板40の接合面46を連結部60の内側に接合する。これにより、余剰接着剤が接合面46からはみ出しても、接合面46から連結部60の端部までの長さにより流路基板2にまで流れ出すことを抑制できる。このため、流路基板2全体の撓み振動を効率的に抑えて吐出の相互干渉を小さくすると共に、更に、吐出能力を向上させて、インク対応性や環境温度対応性の高い液滴吐出ヘッド1を、安価に提供できる。   In the present embodiment, the length of the connecting portion 60 is longer than the length of the bonding surface 46 of the support substrate 40 in the longitudinal direction of the pressurized liquid chamber 12, and the bonding surface 46 of the support substrate 40 is formed on the connecting portion 60. Join inside. Thereby, even if the excess adhesive protrudes from the joint surface 46, it can be suppressed from flowing out to the flow path substrate 2 due to the length from the joint surface 46 to the end of the connecting portion 60. For this reason, while the deflection vibration of the whole flow path board | substrate 2 is suppressed efficiently, the mutual interference of discharge is made small, and also discharge capability is improved and the droplet discharge head 1 with high ink compatibility and environmental temperature compatibility. Can be provided at low cost.

<実施例6>
実施例6に係る液滴吐出ヘッドの流路基板を圧電素子を形成した側からみた上面図は、実施例2に記載の図8と同じであり、ここでは図示を省略する。図16は、実施例6の液滴吐出ヘッドの加圧液室幅方向断面図であり、(a)はA−A’面、(b)はB−B’面を示している。また、実施例5の液滴吐出ヘッドの加圧液室長手方向断面図は、実施例5に記載の図15と同じであり、ここでは図示を省略する。
<Example 6>
The top view of the flow path substrate of the droplet discharge head according to the sixth embodiment as viewed from the side on which the piezoelectric element is formed is the same as FIG. 8 described in the second embodiment, and is not shown here. 16A and 16B are cross-sectional views of the droplet discharge head of Example 6 in the pressurized liquid chamber width direction, where FIG. 16A shows the AA ′ plane and FIG. 16B shows the BB ′ plane. Further, the longitudinal sectional view of the pressurized liquid chamber of the droplet discharge head of Example 5 is the same as FIG. 15 described in Example 5, and is not shown here.

実施例6の液滴吐出ヘッド1は、実施例2と同様、連結部60を加圧液室12の長手方向に関してバイパス配線57側領域に設け、個別電極パッド部58側領域には設けていない。また、支持基板40は、実施例4と同様、各加圧液室に対応した支柱部44を形成せず、上電極53の引出し配線54のコンタクト部が干渉しないように加圧液室配列方向に平行な溝45を形成し、連結部60に支持基板40の平坦部を接合している。   In the droplet discharge head 1 of the sixth embodiment, as in the second embodiment, the connecting portion 60 is provided in the region on the bypass wiring 57 side in the longitudinal direction of the pressurized liquid chamber 12 and is not provided in the region on the individual electrode pad portion 58 side. . Further, as in the fourth embodiment, the support substrate 40 does not form the column portions 44 corresponding to the respective pressurizing liquid chambers, and the pressurizing liquid chamber arrangement direction so that the contact portions of the lead-out wiring 54 of the upper electrode 53 do not interfere with each other. The flat part of the support substrate 40 is joined to the connecting part 60.

さらに、実施例5と同様に、図16(b)に示すように、加圧液室12の長手方向に関して連結部60の長さが支持基板40の接合面46の長さよりも長くなるよう形成し、支持基板40の接合面を連結部60の内側に接合する。これにより、余剰接着剤が接合面からはみ出しても、接合面から連結部60の端部までの長さにより流路基板2にまで流れ出すことを抑制できる。また、支持基板40の接合面における加圧液室長手方向の端部側に接着剤を逃す空間47を設けてもよい。このため、流路基板2全体の撓み振動を効率的に抑えて吐出の相互干渉を小さくすると共に、更に、吐出能力を向上させて、インク対応性や環境温度対応性の高い液滴吐出ヘッド1を、安価に提供できる。   Further, as in the fifth embodiment, as shown in FIG. 16B, the length of the connecting portion 60 is longer than the length of the bonding surface 46 of the support substrate 40 in the longitudinal direction of the pressurized liquid chamber 12. Then, the bonding surface of the support substrate 40 is bonded to the inside of the connecting portion 60. Thereby, even if an excess adhesive protrudes from a joining surface, it can suppress flowing out to the flow path board | substrate 2 by the length from a joining surface to the edge part of the connection part 60. FIG. In addition, a space 47 for releasing the adhesive may be provided on the end portion side in the longitudinal direction of the pressurized liquid chamber on the bonding surface of the support substrate 40. For this reason, while the deflection vibration of the whole flow path board | substrate 2 is suppressed efficiently, the mutual interference of discharge is made small, and also discharge capability is improved and the droplet discharge head 1 with high ink compatibility and environmental temperature compatibility. Can be provided at low cost.

以上に説明したものは一例であり、本発明は、次の態様毎に特有の効果を奏する。
(態様A)
複数のノズル孔11に連通する複数の加圧液室12の流路隔壁20aなどの隔壁を形成する液室基板20と、加圧液室12の一面を形成するよう液室基板20上に積層された振動板30と、振動板30上に形成された圧電素子50とを有する流路基板2と、流路基板2の圧電素子50が形成された面を圧電素子50の変位を妨げないように支持する支持基板40とを有し、流路基板2の圧電素子50が形成された面における加圧液室12の複数の隔壁に対向する位置に複数の凸状の連結部60を形成し、連結部60を介して支持基板40を流路基板2に接合する液滴吐出ヘッド1において、連結部60を加圧液室12の複数の隔壁に対向する位置における加圧液室12の配列方向と直交する加圧液室12の長手方向に対して部分的に設け、連結部60が設けられた部分に対向する加圧液室12の隔壁の幅W0よりも、連結部60が設けられていない部分に対向する加圧液室12の隔壁20aの幅W1を狭くする。
(態様A)においては、相互干渉を抑えるように流路基板2が加圧液室12の複数の隔壁20aに対向する位置の連結部60を介して支持基板40により支持される構成において、連結部60を加圧液室12の長手方向に対して部分的に設ける。この流路基板2では、加圧液室12の長手方向に関して連結部60が形成されない部分に対向する隔壁の幅は、連結部を形成する必要がないので、連結部60が形成された部分に対向する隔壁の幅に比べて狭くすることができる。加圧液室12の長手方向で部分的に隔壁の幅を狭くすることで、加圧液室12の長手方向で部分的に加圧液室12の幅、すなわち振動板の変位領域が広がり、加圧液室全体として排除体積を大きくすることができる。このように、流路基板を加圧液室12の隔壁に対向する短い支持点間距離で支持することで流路基板全体の撓み変形を抑えて相互干渉を抑える。これと共に、加圧液室12の長手方向で部分的に振動板30の変位領域の幅を広げて、加圧液室全体として排除体積を確保することで吐出効率を向上させることができる。
What has been described above is merely an example, and the present invention has a specific effect for each of the following modes.
(Aspect A)
A liquid chamber substrate 20 forming a partition wall such as a flow channel partition wall 20a of a plurality of pressurized liquid chambers 12 communicating with the plurality of nozzle holes 11 and laminated on the liquid chamber substrate 20 so as to form one surface of the pressurized liquid chamber 12. The flow path substrate 2 having the vibration plate 30 and the piezoelectric element 50 formed on the vibration plate 30, and the surface of the flow path substrate 2 on which the piezoelectric element 50 is formed do not hinder the displacement of the piezoelectric element 50. And a plurality of convex connecting portions 60 are formed at positions facing the plurality of partition walls of the pressurized liquid chamber 12 on the surface of the flow path substrate 2 on which the piezoelectric elements 50 are formed. In the droplet discharge head 1 that joins the support substrate 40 to the flow path substrate 2 via the connecting portion 60, the arrangement of the pressurized liquid chambers 12 at positions where the connecting portion 60 faces the plurality of partition walls of the pressurized liquid chamber 12. Provided partially in the longitudinal direction of the pressurized liquid chamber 12 orthogonal to the direction. Than the width W0 of the partition wall opposing the liquid room 12 to the portion where part 60 is provided to reduce the width W1 of the partition wall 20a of the pressurized liquid chamber 12 facing the portion connecting portion 60 is not provided.
In (Aspect A), in the configuration in which the flow path substrate 2 is supported by the support substrate 40 via the connection portions 60 at positions facing the plurality of partition walls 20a of the pressurized liquid chamber 12 so as to suppress mutual interference, The part 60 is partially provided with respect to the longitudinal direction of the pressurized liquid chamber 12. In this flow path substrate 2, the width of the partition wall facing the portion where the connecting portion 60 is not formed in the longitudinal direction of the pressurized liquid chamber 12 does not need to form the connecting portion. It can be made narrower than the width of the opposing partition. By partially reducing the width of the partition wall in the longitudinal direction of the pressurized liquid chamber 12, the width of the pressurized liquid chamber 12 partially in the longitudinal direction of the pressurized liquid chamber 12, that is, the displacement region of the diaphragm is expanded. The excluded volume can be increased as the entire pressurized liquid chamber. In this way, the flow path substrate is supported at a short distance between the support points facing the partition wall of the pressurized liquid chamber 12, thereby suppressing the bending deformation of the entire flow path substrate and suppressing the mutual interference. At the same time, by partially expanding the width of the displacement region of the vibration plate 30 in the longitudinal direction of the pressurizing liquid chamber 12, the discharge efficiency can be improved by ensuring the excluded volume as the entire pressurizing liquid chamber.

(態様B)
(態様A)において、連結部60は加圧液室12の流路隔壁20aの投影面の内側にある。これによれば、流路隔壁20aで振動板30の変位領域の幅が規定されるため、振動板の変位体積(排除体積)を大きくする効果が顕著に得られる。
(Aspect B)
In (Aspect A), the connecting portion 60 is inside the projection surface of the flow path partition wall 20a of the pressurized liquid chamber 12. According to this, since the width of the displacement region of the diaphragm 30 is defined by the channel partition wall 20a, the effect of increasing the displacement volume (exclusion volume) of the diaphragm is remarkably obtained.

(態様C)
(態様A)または(態様B)において、圧電素子50は下電極51、圧電体層52、上電極53を積層したものであり、加圧液室12の長手方向に対して連結部60を設けた加圧液室12の隔壁の幅が広い部分における圧電素子50を構成する圧電体層52および上電極53の幅に比べ、加圧液室12の隔壁の幅が狭い部分における圧電素子を構成する圧電体層52および上電極53の幅が広くする。これによれば、上記実施例2、3について説明したように、加圧液室12の長手方向に関して、連結部60がない部分の振動板の変位領域の幅を広げることに加え、その部分の圧電素子50を構成する圧電体層52および上電極53の幅を広げて、アクチュエータ部の発生力を大きくする。これにより、より吐出効率が向上する。また、圧電素子50の幅を広く構成することで、流路基板2の剛性が高くなり、加圧液室12内のコンプライアンスが小さくなる。このため、共振周期が短くなり、液滴吐出ヘッド1の駆動周波数を高くすることもできる。
(Aspect C)
In (Aspect A) or (Aspect B), the piezoelectric element 50 is formed by laminating the lower electrode 51, the piezoelectric layer 52, and the upper electrode 53, and the connecting portion 60 is provided in the longitudinal direction of the pressurized liquid chamber 12. The piezoelectric element in the portion where the partition wall width of the pressurized liquid chamber 12 is narrower than the width of the piezoelectric layer 52 and the upper electrode 53 constituting the piezoelectric element 50 in the portion where the partition wall width of the pressurized liquid chamber 12 is wide. The widths of the piezoelectric layer 52 and the upper electrode 53 are increased. According to this, as described in the second and third embodiments, in addition to increasing the width of the displacement region of the diaphragm where there is no connecting portion 60 in the longitudinal direction of the pressurized liquid chamber 12, The width of the piezoelectric layer 52 and the upper electrode 53 constituting the piezoelectric element 50 is increased to increase the generated force of the actuator unit. Thereby, the discharge efficiency is further improved. Further, by configuring the width of the piezoelectric element 50 wide, the rigidity of the flow path substrate 2 is increased and the compliance in the pressurized liquid chamber 12 is reduced. For this reason, the resonance period is shortened, and the drive frequency of the droplet discharge head 1 can be increased.

(態様D)
(態様A)、(態様B)または(態様C)の何れかにおいて、連結部60を加圧液室12の長手方向に関してノズル孔11が配置された位置以外の部分に設ける。これによれば、ノズル孔が配置された位置には連結部が形成されないので、加圧液室12の隔壁の幅が狭く、加圧液室12の幅が広くなる。このため、流路基板2にノズル孔11を形成したノズル基板10を接合する際の、接合の位置ズレ、接着剤流れ出しに対する余裕度を広げることができる。
(Aspect D)
In any one of (Aspect A), (Aspect B), and (Aspect C), the connecting portion 60 is provided in a portion other than the position where the nozzle hole 11 is disposed in the longitudinal direction of the pressurized liquid chamber 12. According to this, since the connecting portion is not formed at the position where the nozzle hole is disposed, the width of the partition wall of the pressurizing liquid chamber 12 is narrow and the width of the pressurizing liquid chamber 12 is widened. For this reason, when joining the nozzle substrate 10 in which the nozzle holes 11 are formed in the flow path substrate 2, it is possible to widen the margin for joining displacement and adhesive flow-out.

(態様E)
(態様A)、(態様B)、(態様C)または(態様D)の何れかにおいて、連結部60を加圧液室12の長手方向の中央部に設ける。通常、支持基板40は、圧電素子列の周辺部となる流路基板2の加圧液室12の長手方向に対して加圧液室12の外側にも接合されている。そこで、隔壁に対向する位置の連結部を加圧液室12の長手方向の中央部に設けることで、長手方向における支持点間距離を短くすることができる。このため、流路基板全体の撓み変形を小さく抑えられ、相互干渉を良好に抑制することができる。
(Aspect E)
In any one of (Aspect A), (Aspect B), (Aspect C), or (Aspect D), the connecting portion 60 is provided in the central portion in the longitudinal direction of the pressurized liquid chamber 12. Usually, the support substrate 40 is also bonded to the outside of the pressurizing fluid chamber 12 with respect to the longitudinal direction of the pressurizing fluid chamber 12 of the flow path substrate 2 that is the peripheral portion of the piezoelectric element array. Therefore, the distance between the support points in the longitudinal direction can be shortened by providing the connecting portion at a position facing the partition wall in the central portion in the longitudinal direction of the pressurized liquid chamber 12. For this reason, the bending deformation of the whole flow path substrate can be suppressed small, and mutual interference can be suppressed satisfactorily.

(態様F)
(態様A)、(態様B)、(態様C)、(態様D)または(態様E)の何れかにおいて、連結部60を圧電素子50を構成する上電極53への配線接続部以外の上面よりも高く形成し、支持基板40は、連結部に接合された際に配線接続部と接触しないような空間45を形成する溝などの凹部を有する。
支持基板40が、流路基板2の圧電素子50の変位を妨げないように複数の隔壁に対向する位置を支持するには、複数の隔壁に対向する精細な複数の支柱部44を形成することが一般的であるが、この構成では支持基板40側にも加工精度が要求される。これに対し、上記実施例4に説明したように、例えば、流路基板上にアクチュエータ部の各層を形成する構成で容易に連結部50aを圧電素子50を構成する上電極53への配線接続部以外の上面よりも高く形成することができる。支持基板40には、配線接続部に接触しないような空間45を形成する凹部を設けることだけで、支持基板40に複数の支柱部44を設けなくとも流路基板2の圧電素子50の変位を妨げないように支持することができる。このため、支持基板40の構成が単純になり、さらに低コスト化できる。
(Aspect F)
In any one of (Aspect A), (Aspect B), (Aspect C), (Aspect D) or (Aspect E), the upper surface of the connecting portion 60 other than the wiring connection portion to the upper electrode 53 constituting the piezoelectric element 50 The support substrate 40 has a recess such as a groove that forms a space 45 that does not come into contact with the wiring connection portion when bonded to the connecting portion.
In order to support the position where the support substrate 40 faces the plurality of partition walls so as not to prevent the displacement of the piezoelectric element 50 of the flow path substrate 2, a plurality of fine column portions 44 facing the plurality of partition walls are formed. However, in this configuration, processing accuracy is also required on the support substrate 40 side. On the other hand, as described in the fourth embodiment, for example, the connecting portion 50a can be easily connected to the upper electrode 53 constituting the piezoelectric element 50 by forming each layer of the actuator portion on the flow path substrate. It can be formed higher than the other upper surface. The support substrate 40 is provided with a recess that forms a space 45 that does not come into contact with the wiring connection portion, so that the displacement of the piezoelectric element 50 of the flow path substrate 2 can be reduced without providing the support substrate 40 with a plurality of support portions 44. Can be supported so as not to interfere. For this reason, the structure of the support substrate 40 becomes simple and the cost can be further reduced.

(態様G)
(態様A)、(態様B)、(態様C)、(態様D)、(態様E)または(態様F)の何れかにおいて、加圧液室12の長手方向に関して連結部60の長さが支持基板40の接合面46の長さよりも長くなるよう形成し、支持基板の接合面46を連結部60の内側に接合する。これによれば、上記実施例5、6について説明したように、支持基板40と連結部60との接合の際、流路基板2上に接着剤が流れ出し難くすることができる。特に、支持基板40に複数の支柱部44を設けない構成では、使用する接着剤量が多いため有効である。
(Aspect G)
In any one of (Aspect A), (Aspect B), (Aspect C), (Aspect D), (Aspect E), or (Aspect F), the length of the connecting portion 60 in the longitudinal direction of the pressurized liquid chamber 12 is The support substrate 40 is formed to be longer than the length of the joint surface 46 of the support substrate 40, and the joint surface 46 of the support substrate is joined to the inside of the connecting portion 60. According to this, as described in the fifth and sixth embodiments, it is possible to make it difficult for the adhesive to flow onto the flow path substrate 2 when the support substrate 40 and the connecting portion 60 are joined. In particular, a configuration in which the support substrate 40 is not provided with a plurality of support portions 44 is effective because a large amount of adhesive is used.

(態様H)
(態様A)乃至(態様G)の何れかにおいて、加圧液室12の流路隔壁20aはドライエッチングを用いて形成されたものである。ドライエッチングでは、流路隔壁20aの幅を加圧液室12内で高精細に制御して変化させることができる。これに対して、結晶面がでてくるウェットエッチングでは、流路隔壁20aの幅を加圧液室12内で高精細に制御して変化させることが難しい。このため、加圧液室12の隔壁をドライエッチングを用いて形成することにより、高精細で安価な液滴吐出ヘッドとすることができる。
(Aspect H)
In any one of (Aspect A) to (Aspect G), the flow path partition wall 20a of the pressurized liquid chamber 12 is formed by dry etching. In the dry etching, the width of the flow path partition wall 20a can be changed with high definition in the pressurized liquid chamber 12. On the other hand, in the wet etching in which the crystal plane appears, it is difficult to control and change the width of the flow path partition wall 20a in the pressurized liquid chamber 12 with high definition. For this reason, by forming the partition walls of the pressurized liquid chamber 12 using dry etching, a high-definition and inexpensive droplet discharge head can be obtained.

(態様I)
媒体を搬送しながら、液滴吐出手段により吐出した液滴を該媒体に付着させて画像形成を行う画像形成装置において、液滴吐出手段として(態様A)乃至(態様H)の何れかの液滴体吐出ヘッドを採用する。これによれば、高品位な画質を得ることができる。
(Aspect I)
In an image forming apparatus that forms an image by adhering droplets ejected by the droplet ejection unit to the medium while conveying the medium, the liquid of any one of (Aspect A) to (Aspect H) is used as the droplet ejection unit. Adopt a droplet discharge head. According to this, high quality image quality can be obtained.

1 液滴吐出ヘッド
2 流路基板
10 ノズル基板
11 ノズル孔
12 加圧液室
13 流体抵抗部
14 供給部
20 液室基板
20a 流路隔壁
30 振動板
40 支持基板
41 圧電素子保護空間
44 支柱部
45 溝部(コンタクト部と干渉しないような空間)
46 支持基板の接合面
50 圧電素子
51 下電極
52 圧電体層
53 上電極
54 配線部材
55 層間絶縁膜
57 バイパス配線
58 個別電極パッド部
59 溝部(共通液室)
60 連結部
DESCRIPTION OF SYMBOLS 1 Droplet discharge head 2 Flow path board | substrate 10 Nozzle board | substrate 11 Nozzle hole 12 Pressurized liquid chamber 13 Fluid resistance part 14 Supply part 20 Liquid chamber board | substrate 20a Flow path partition 30 Diaphragm 40 Support board 41 Piezoelectric element protection space 44 Support | pillar part 45 Groove (space that does not interfere with the contact)
46 Bonding surface 50 of support substrate Piezoelectric element 51 Lower electrode 52 Piezoelectric layer 53 Upper electrode 54 Wiring member 55 Interlayer insulating film 57 Bypass wiring 58 Individual electrode pad portion 59 Groove portion (common liquid chamber)
60 connecting parts

特開2006−116767号公報JP 2006-116767 A 特開2012−76449号公報JP 2012-76449 A 特開2011−183616号公報JP 2011-183616 A

Claims (9)

複数のノズル孔に連通する複数の加圧液室の隔壁を形成する液室基板と、該加圧液室の一面を形成するよう該液室基板上に積層された振動板と、該振動板上に形成された圧電素子とを有する流路基板と、該流路基板の該圧電素子が形成された面を該圧電素子の変位を妨げないように支持する支持基板とを備え、該流路基板の該圧電素子が形成された面における該加圧液室の複数の隔壁に対向する位置に複数の凸状の連結部を形成し、該連結部を介して該支持基板を該流路基板に接合する液滴吐出ヘッドにおいて、
上記連結部を上記加圧液室の複数の隔壁に対向する位置における該加圧液室の配列方向と直交する該加圧液室の長手方向に対して部分的に設け、該連結部が設けられた部分に対向する該加圧液室の隔壁の幅よりも、該連結部が設けられていない部分に対向する該加圧液室の隔壁の幅が狭いことを特徴とする液滴吐出ヘッド。
A liquid chamber substrate forming partition walls of a plurality of pressurized liquid chambers communicating with the plurality of nozzle holes; a diaphragm laminated on the liquid chamber substrate so as to form one surface of the pressurized liquid chamber; and the diaphragm A flow path substrate having a piezoelectric element formed thereon, and a support substrate that supports a surface of the flow path substrate on which the piezoelectric element is formed so as not to prevent displacement of the piezoelectric element. A plurality of convex connection portions are formed at positions facing the plurality of partition walls of the pressurized liquid chamber on the surface of the substrate on which the piezoelectric element is formed, and the support substrate is connected to the flow path substrate via the connection portions. In the droplet discharge head bonded to the
The connecting portion is partially provided with respect to the longitudinal direction of the pressurizing fluid chamber orthogonal to the arrangement direction of the pressurizing fluid chambers at a position facing the plurality of partition walls of the pressurizing fluid chamber, and the connecting portion is provided. A droplet discharge head characterized in that the width of the partition wall of the pressurizing liquid chamber facing the portion where the connecting portion is not provided is narrower than the width of the partition wall of the pressurizing liquid chamber facing the formed portion .
請求項1の液滴吐出ヘッドにおいて、上記連結部は上記加圧液室の隔壁の投影面の内側にあることを特徴とする液滴吐出ヘッド。   2. The droplet discharge head according to claim 1, wherein the connecting portion is located inside a projection surface of the partition wall of the pressurized liquid chamber. 請求項1または2の液滴吐出ヘッドにおいて、上記圧電素子は下電極、圧電体層、上電極を積層したものであり、上記加圧液室の長手方向に対して上記連結部を設けた該加圧液室の隔壁の幅が広い部分における該圧電素子を構成する該圧電体層および該上電極の幅に比べ、該加圧液室の隔壁の幅が狭い部分における該圧電素子を構成する該圧電体層および該上電極の幅が広いことを特徴とする液滴吐出ヘッド。   3. The liquid droplet ejection head according to claim 1, wherein the piezoelectric element is a laminate of a lower electrode, a piezoelectric layer, and an upper electrode, and the connecting portion is provided in the longitudinal direction of the pressurized liquid chamber. The piezoelectric element is formed in a portion where the width of the partition wall of the pressurized liquid chamber is narrower than the width of the piezoelectric layer and the upper electrode constituting the piezoelectric element in the portion where the partition wall of the pressurized liquid chamber is wide. A droplet discharge head characterized in that the piezoelectric layer and the upper electrode are wide. 請求項1、2または3の何れかの液滴吐出ヘッドにおいて、上記連結部を上記加圧液室の長手方向に関して上記ノズル孔が配置された位置以外の部分に設けたことを特徴とする液滴吐出ヘッド。   4. The liquid droplet ejection head according to claim 1, wherein the connecting portion is provided in a portion other than the position where the nozzle hole is disposed in the longitudinal direction of the pressurized liquid chamber. Drop ejection head. 請求項1、2、3または4の何れかの液滴吐出ヘッドにおいて、上記連結部を上記加圧液室の長手方向の中央部に設けたことを特徴とする液滴吐出ヘッド。   5. The droplet discharge head according to claim 1, wherein the connecting portion is provided at a central portion in the longitudinal direction of the pressurized liquid chamber. 請求項1、2、3、4または5の何れかの液滴吐出ヘッドにおいて、上記連結部を上記圧電素子を構成する上電極への配線接続部以外の上面よりも高く形成し、上記支持基板は、上記連結部に接合された際に該配線接続部と接触しないような空間を形成する凹部を有することを特徴とする液滴吐出ヘッド。   6. The droplet discharge head according to claim 1, wherein the connecting portion is formed higher than the upper surface other than the wiring connecting portion to the upper electrode constituting the piezoelectric element, Has a concave portion that forms a space that does not come into contact with the wiring connection portion when joined to the connecting portion. 請求項1、2、3、4、5または6の何れかの液滴吐出ヘッドにおいて、上記加圧液室の長手方向に関して上記連結部の長さが上記支持基板の接合面の長さよりも長くなるよう形成し、該支持基板の接合面を上記連結部の内側に接合することを特徴とする液滴吐出ヘッド。   7. The liquid droplet ejection head according to claim 1, wherein the length of the connecting portion is longer than the length of the bonding surface of the support substrate in the longitudinal direction of the pressurized liquid chamber. The droplet discharge head is formed so that the bonding surface of the support substrate is bonded to the inside of the connecting portion. 請求項1乃至7の何れかの液滴吐出ヘッドにおいて、上記加圧液室の隔壁はドライエッチングを用いて形成されたものであるしたことを特徴とする液滴吐出ヘッド。   8. The droplet discharge head according to claim 1, wherein the partition wall of the pressurized liquid chamber is formed by dry etching. 媒体を搬送しながら、液滴吐出手段により吐出した液滴を該媒体に付着させて画像形成を行う画像形成装置において、
上記液滴吐出手段として請求項1乃至8の何れかの液滴体吐出ヘッドを採用したことを特徴とする画像形成装置。
In an image forming apparatus for forming an image by adhering droplets ejected by droplet ejecting means to the medium while conveying the medium,
9. An image forming apparatus comprising the droplet discharge head according to claim 1 as the droplet discharge unit.
JP2013133699A 2013-06-26 2013-06-26 Droplet discharge head and image forming apparatus Expired - Fee Related JP6218012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013133699A JP6218012B2 (en) 2013-06-26 2013-06-26 Droplet discharge head and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013133699A JP6218012B2 (en) 2013-06-26 2013-06-26 Droplet discharge head and image forming apparatus

Publications (2)

Publication Number Publication Date
JP2015009366A true JP2015009366A (en) 2015-01-19
JP6218012B2 JP6218012B2 (en) 2017-10-25

Family

ID=52303012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013133699A Expired - Fee Related JP6218012B2 (en) 2013-06-26 2013-06-26 Droplet discharge head and image forming apparatus

Country Status (1)

Country Link
JP (1) JP6218012B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019104181A (en) * 2017-12-13 2019-06-27 株式会社リコー Liquid discharge head, liquid discharge unit and device for discharging liquid
JP2020001375A (en) * 2018-06-25 2020-01-09 セイコーエプソン株式会社 Liquid injection head and liquid injection device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001010036A (en) * 1999-06-29 2001-01-16 Ricoh Co Ltd Ink jet head and its manufacture and ink jet recording apparatus
US20120167823A1 (en) * 2010-12-29 2012-07-05 Gardner Deane A Electrode configurations for piezoelectric actuators

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001010036A (en) * 1999-06-29 2001-01-16 Ricoh Co Ltd Ink jet head and its manufacture and ink jet recording apparatus
US20120167823A1 (en) * 2010-12-29 2012-07-05 Gardner Deane A Electrode configurations for piezoelectric actuators

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019104181A (en) * 2017-12-13 2019-06-27 株式会社リコー Liquid discharge head, liquid discharge unit and device for discharging liquid
JP7000833B2 (en) 2017-12-13 2022-01-19 株式会社リコー Liquid discharge head, liquid discharge unit and device for discharging liquid
JP2020001375A (en) * 2018-06-25 2020-01-09 セイコーエプソン株式会社 Liquid injection head and liquid injection device
JP7259386B2 (en) 2018-06-25 2023-04-18 セイコーエプソン株式会社 Liquid ejecting head and liquid ejecting device

Also Published As

Publication number Publication date
JP6218012B2 (en) 2017-10-25

Similar Documents

Publication Publication Date Title
JP5862118B2 (en) Ink jet head and recording apparatus
JP6319645B2 (en) Droplet discharge head and image forming apparatus
JP2012061704A (en) Liquid droplet ejection head, head cartridge, image forming apparatus, and micro pump
JP2012081727A (en) Liquid droplet ejecting head, liquid droplet ejecting device, and image forming apparatus
JP6213815B2 (en) Droplet discharge head and image forming apparatus
JP2012051236A (en) Droplet ejecting head
JP5929264B2 (en) Droplet discharge head, ink cartridge, and image forming apparatus
JP6218012B2 (en) Droplet discharge head and image forming apparatus
JP2012254531A (en) Nozzle plate, liquid droplet ejection head, liquid cartridge, liquid droplet ejection recording device, and method for manufacturing nozzle plate
JP2012121199A (en) Liquid droplet delivering head, ink cartridge and image forming apparatus
JP3954813B2 (en) Droplet discharge head and image recording apparatus
JP6238132B2 (en) Droplet discharge head and image forming apparatus
JP6124108B2 (en) Droplet discharge head and image forming apparatus
JP4307938B2 (en) Electrostatic actuator, droplet discharge head, liquid cartridge, and image forming apparatus
JP3909746B2 (en) Droplet discharge head and inkjet recording apparatus
JP2012139981A (en) Liquid droplet ejection head, liquid droplet ejection apparatus, and printing apparatus
JP6241713B2 (en) Droplet discharge head and image forming apparatus
JP2006231645A (en) Liquid droplet delivering head, liquid cartridge, liquid droplet delivering apparatus and method for manufacturing liquid droplet delivering head
JP4056052B2 (en) Droplet discharge head and inkjet recording apparatus
JP2015009446A (en) Droplet discharge head, droplet discharge device and image forming apparatus
JP2004306396A (en) Liquid droplet ejection head and its manufacturing process, ink cartridge and ink jet recorder
JP2002254642A (en) Ink jet head
JP6037212B2 (en) Droplet discharge head and image forming apparatus
JP6164516B2 (en) Droplet discharge head, droplet discharge apparatus, and image forming apparatus
JP5568854B2 (en) Liquid ejecting head and liquid ejecting apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170914

R151 Written notification of patent or utility model registration

Ref document number: 6218012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees