JP2015006044A - Power supply apparatus and power supply system - Google Patents

Power supply apparatus and power supply system Download PDF

Info

Publication number
JP2015006044A
JP2015006044A JP2013129042A JP2013129042A JP2015006044A JP 2015006044 A JP2015006044 A JP 2015006044A JP 2013129042 A JP2013129042 A JP 2013129042A JP 2013129042 A JP2013129042 A JP 2013129042A JP 2015006044 A JP2015006044 A JP 2015006044A
Authority
JP
Japan
Prior art keywords
power
terminal
power supply
load
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013129042A
Other languages
Japanese (ja)
Inventor
誠 春日井
Makoto Kasugai
誠 春日井
直秀 土本
Naohide Tsuchimoto
直秀 土本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013129042A priority Critical patent/JP2015006044A/en
Publication of JP2015006044A publication Critical patent/JP2015006044A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power supply apparatus and a power supply system, in which an autonomous operation switcher can be introduced to an existing dwelling easily and additionally.SOLUTION: A power supply apparatus supplies power to a load in a dwelling by using power supplied from a power system and power stored in a storage battery, while interconnecting the power system, and when the power system is interrupted, can continuously supply power to the load in the dwelling in use during the interconnection with the power system. The power supply apparatus includes, in one housing, a first terminal to which the power system is connected via a home distribution board, a second terminal to which the load in the dwelling is connected via the home distribution board, power system voltage monitoring means for monitoring a voltage of the power system, an electromagnetic contactor for separating between the first terminal and the second terminal during interruption of power supply, bidirectional power conversion means connected to the storage battery, for charging and discharging the storage battery, a current transformer for detecting an inverse load flow from a side of the bidirectional power conversion means to a side of the first terminal, and control means for controlling the electromagnetic contactor and the bidirectional power conversion means on the basis of the monitoring result by the power system voltage monitoring means and the detection result by the current transformer.

Description

本発明は、電力供給装置及び電力供給システムに関する。   The present invention relates to a power supply device and a power supply system.

近年、太陽光発電などの自然エネルギーを利用した発電と、深夜の安価な電力を蓄電池に充電し、蓄電池に充電された電気エネルギーを昼間に住宅内の負荷に放電して消費するシステムが普及しつつある。商用系統が停電した時には、これらの蓄電池に蓄えられた電力を住宅内の負荷に供給し、停電時でも家電機器を使用することができる。商用系統が停電した時に自立運転を行う場合は、系統連系規定(JEAC 9701−2012 日本電気協会)により、機械的な開閉箇所2箇所または開閉箇所1箇所及び手動操作による開閉箇所1箇所を設置する必要がある。   In recent years, a system that uses natural energy such as solar power generation, and that charges low-cost electric power to the storage battery and discharges the electric energy charged in the storage battery to the load in the house during the day has become widespread. It's getting on. When a commercial power failure occurs, the power stored in these storage batteries can be supplied to a load in the house, and home appliances can be used even during a power failure. In case of independent operation when a commercial power failure occurs, two mechanical switching points or one switching point and one manual switching point are installed in accordance with the grid connection regulations (JEAC 9701-2012 NEC). There is a need to.

これらのシステムでは、停電時の自立運転時は特定の負荷へのみ電力を供給している。それに対して、停電時も系統連系時に使用していた住宅内の同じ負荷に電力を供給するシステムが提案されている。   In these systems, power is supplied only to a specific load during a self-sustaining operation during a power failure. On the other hand, a system that supplies power to the same load in a house that was used during grid connection during a power failure has been proposed.

特許文献1には、電力供給システムにおいて、商用電力供給源が停電した場合、システム連系リレーを「閉」から「開」にして商用電力供給源を解列し、蓄電部の自立運転を行い、蓄電部の電源を基準電源として太陽光発電部及び燃料電池発電部の連系運転を行うことが記載されている。これにより、特許文献1によれば、自立運転においても、太陽光発電部及び燃料電池発電部が系統連系時と同様に発電を行うことができるとされている。   In Patent Document 1, when a commercial power supply source fails in a power supply system, the system interconnection relay is changed from “closed” to “open”, the commercial power supply source is disconnected, and the power storage unit is operated independently. In addition, it is described that the photovoltaic power generation unit and the fuel cell power generation unit are interconnected using the power source of the power storage unit as a reference power source. Thereby, according to patent document 1, it is supposed that a solar power generation part and a fuel cell power generation part can perform electric power generation similarly to the time of grid connection also in independent operation.

特開2011−188607号公報JP 2011-188607 A

特許文献1に記載の技術では、既存の住宅に自立運転用の切替え器を追加導入する場合、大規模な工事が必要になると考えられる。   In the technique described in Patent Literature 1, it is considered that large-scale construction is required when an additional switch for independent operation is introduced into an existing house.

例えば、特許文献1に記載の技術では、蓄電池は、通常、住宅の屋外に置かれ、この蓄電池へ電力を充放電する双方向コンバータ、制御装置等を含んだ蓄電部の筐体も屋外に設置される場合がほとんどであると考えられる。このとき、特許文献1に記載の技術では、蓄電部と分電盤との間に多数の配線を接続しなければならないため、配線工事が複雑であり、誤配線が生じやすい。   For example, in the technology described in Patent Document 1, a storage battery is usually placed outdoors in a house, and a case of a power storage unit including a bidirectional converter that charges and discharges power to the storage battery and a control device is also installed outdoors. It is thought that it is almost done. At this time, in the technique described in Patent Document 1, a large number of wirings must be connected between the power storage unit and the distribution board, so that the wiring work is complicated and miswiring is likely to occur.

例えば、特許文献1に記載の電力供給システムでは、系統が正常時の系統連系運転、系統が停電時の自立運転を行うために、系統が正常か停電かを検出するための電圧検出用センサが分電盤に設置される。電圧検出用センサの検出結果を出力するための信号用配線は、蓄電部の系統電圧監視部まで引き回して配線する必要がある。また、自立運転時に系統と解列するため、電圧検出用センサと同じく分電盤に設置される開閉器(通常は電磁接触器が使用される)を操作する信号用配線を、蓄電部の解列指令部まで引き回して配線する必要もある。また、特許文献1には図示されていないが、蓄電部からの電力は系統側へ逆潮流できないため、分電盤には、逆潮流を検出するための変流器を設置し、その変流器の出力を伝達するための信号用配線を、蓄電部の蓄電部制御装置まで引き回して配線する必要がある。   For example, in the power supply system described in Patent Document 1, a voltage detection sensor for detecting whether the system is normal or a power failure in order to perform grid-connected operation when the system is normal and autonomous operation when the system is power failure. Is installed on the distribution board. The signal wiring for outputting the detection result of the voltage detection sensor needs to be routed to the system voltage monitoring unit of the power storage unit. In addition, in order to disconnect from the system during independent operation, the signal wiring for operating the switch (usually using an electromagnetic contactor) installed on the distribution board as well as the voltage detection sensor is connected to the power storage unit. It is also necessary to route to the column command section. Although not shown in Patent Document 1, since power from the power storage unit cannot flow backward to the grid side, a current transformer for detecting reverse power flow is installed on the distribution board, and the current The signal wiring for transmitting the output of the battery must be routed to the power storage unit control device of the power storage unit.

これらの信号用配線は、屋外に設置させる蓄電部の筐体と受電部の分電盤との距離が長くなることに伴い長くなるため、信号用配線がノイズの影響を受けやすくなり、電力供給システムが誤動作する可能性がある。また、信号用配線に対するノイズの影響を少なくするためには、主回路配線と信号用配線との配管を確実に分離し、シールド線を使用するなど配線工事にかかる手間と費用とが大掛かりなものとなる。さらに、系統電圧の検出、解列用開閉器の操作、逆潮流電流の検出など、数多くの信号用配線を蓄電部の筐体と分電盤との間に施す必要があるため、配線工事で誤った接続をされ、電力供給システムが正常に動作しないことも懸念される。   These signal wirings become longer as the distance between the housing of the power storage unit installed outdoors and the distribution board of the power receiving unit becomes longer, which makes the signal wiring more susceptible to noise and power supply. The system may malfunction. Also, in order to reduce the influence of noise on the signal wiring, the main circuit wiring and the signal wiring are securely separated, and the use of shielded wires and other labor and costs for wiring work are large. It becomes. In addition, many signal wires, such as system voltage detection, disconnection switch operation, and reverse current detection, must be provided between the storage unit housing and the distribution board. There is a concern that the power supply system may not operate normally due to incorrect connection.

例えば、特許文献1に記載の技術では、住宅用の標準分電盤内に主に解列用の開閉器からなる自立運転切替え器を接続する必要がある。このため、既設の分電盤内で、電力会社から受電する主幹漏電遮断器と住宅内負荷に電力を分配する分岐用ブレーカとの間に自立運転切替え器を組み込む必要がある。したがって、分電盤を改造する工事が必要となり、既住宅用分電盤の改造工事に多額の費用や時間を費やす可能性がある。   For example, in the technique described in Patent Document 1, it is necessary to connect a self-sustained operation switching device mainly composed of a disconnection switch in a residential standard distribution board. For this reason, in the existing distribution board, it is necessary to incorporate a self-sustained operation switching device between the main earth leakage circuit breaker receiving power from the power company and the branch breaker that distributes power to the load in the house. Therefore, it is necessary to reconstruct the distribution board, and there is a possibility of spending a large amount of money and time for remodeling the existing distribution board.

また、特許文献1に記載の技術では、自立運転切替え器内に、停電の発生、その後の復電を検出するための系統電圧監視部と自立運転時に商用系統との解列を行うための電磁接触器を「開」、「閉」させる解列指令部とを設けており、図示はされていないが、系統電圧を監視するための配線は主回路配線とは異なる信号用配線のため、配線を保護するための小容量のブレーカまたはヒューズが必用となるため、自立運転切替え器の寸法、質量が大きくなる傾向にある。したがって、分電盤の近傍に自立運転切替え器を設置するための壁面の面積が十分確保できず、また壁面の材質が自立運転切替え器の過重に耐えられないなどの問題が発生する可能性がある。   Further, in the technique described in Patent Document 1, a system voltage monitoring unit for detecting the occurrence of a power failure and a subsequent power recovery in the self-sustained operation switching device and an electromagnetic for disconnecting the commercial system during the self-sustaining operation. A disconnection command unit that opens and closes the contactor is provided, and although not shown, the wiring for monitoring the system voltage is a signal wiring that is different from the main circuit wiring. Therefore, a small-capacity breaker or fuse is required to protect the battery, and the size and mass of the self-sustained operation switching device tend to increase. Therefore, there is a possibility that a sufficient wall area for installing the self-sustaining operation switching device in the vicinity of the distribution board cannot be secured, and that the wall material cannot withstand the overload of the self-sustaining operation switching device. is there.

本発明は、上記に鑑みてなされたものであって、既存の住宅に自立運転切替え器を簡易に追加導入できる電力供給装置及び電力供給システムを得ることを目的とする。   This invention is made | formed in view of the above, Comprising: It aims at obtaining the electric power supply apparatus and electric power supply system which can introduce a self-sustained operation switching device easily into the existing house.

上述した課題を解決し、目的を達成するために、本発明の1つの側面にかかる電力供給装置は、系統と連系しながら、前記系統から供給される電力と蓄電池に蓄積された電力とを用いて住宅内負荷に電力を供給し、前記系統が停電した場合に、系統連系時に使用中の前記住宅内負荷へ継続的に電力を供給可能である電力供給装置であって、住宅用分電盤を介して前記系統が接続される第1の端子と、前記住宅用分電盤を介して前記住宅内負荷が接続される第2の端子と、前記系統の電圧を監視する系統電圧監視手段と、停電時に前記第1の端子と前記第2の端子との間を解列する電磁接触器と、前記蓄電池と接続され、前記蓄電池への充放電を行う双方向電力変換手段と、前記双方向電力変換手段側から前記第1の端子側への逆潮流を検出する変流器と、前記系統電圧監視手段の監視結果と前記変流器の検出結果とに基づいて、前記電磁接触器及び前記双方向電力変換手段を制御する制御手段とを1つの筐体に収めたことを特徴とする。   In order to solve the above-described problems and achieve the object, an electric power supply device according to one aspect of the present invention uses electric power supplied from the system and electric power stored in a storage battery while connecting to the system. A power supply device capable of continuously supplying power to the in-house load being used during grid connection when the grid is interrupted and power is supplied to the in-house load. A first terminal to which the system is connected via an electrical panel; a second terminal to which the residential load is connected via the residential distribution panel; and a system voltage monitor for monitoring the voltage of the system. Means, an electromagnetic contactor separating between the first terminal and the second terminal at the time of a power failure, bidirectional power conversion means connected to the storage battery and charging / discharging the storage battery, Detecting reverse power flow from the bidirectional power conversion means side to the first terminal side A current transformer and a control means for controlling the electromagnetic contactor and the bidirectional power conversion means based on the monitoring result of the system voltage monitoring means and the detection result of the current transformer are housed in one housing. It is characterized by that.

本発明によれば、住宅に自立運転切替え器を簡易に導入できる。   According to the present invention, it is possible to easily introduce a self-sustained operation switching device into a house.

図1は、実施の形態にかかる電力給電システムの構成を示す図である。FIG. 1 is a diagram illustrating a configuration of a power supply system according to an embodiment. 図2は、実施の形態における住宅用分電盤の内部配線を示す図である。FIG. 2 is a diagram showing internal wiring of the residential distribution board in the embodiment. 図3は、実施の形態の変形例にかかる電力給電システムの構成を示す図である。FIG. 3 is a diagram illustrating a configuration of a power supply system according to a modification of the embodiment. 図4は、基本の形態にかかる電力供給システムの構成を示す図である。FIG. 4 is a diagram illustrating a configuration of a power supply system according to a basic form.

以下に、本発明にかかる電力給電システムの実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Hereinafter, embodiments of a power supply system according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

実施の形態.
実施の形態にかかる電力供給システム100について図1を用いて説明する。図1は、電力供給システム100の構成を示す図である。
Embodiment.
A power supply system 100 according to an embodiment will be described with reference to FIG. FIG. 1 is a diagram illustrating a configuration of the power supply system 100.

電力供給システム100は、例えば住宅に設けられ、商用系統1と連系しながら、商用系統1から供給される電力と蓄電池11に蓄積された電力とを用いて住宅内負荷19−1〜19−kに電力を供給する。例えば、昼間など太陽光発電が行われているときには、電力供給システム100は、太陽光発電部6などの自然エネルギーから住宅内負荷19−1〜19−kに電力を供給し余った電力を蓄電池11に充電するとともに、商用系統1からも蓄電池11を充電し、蓄電池11から住宅内負荷19−1〜19−kに電力を供給する。例えば、夜間など太陽光発電がおこなわれていないときには、電力供給システム100は、商用系統1から蓄電池11を充電し、蓄電池11から住宅内負荷19−1〜19−kに電力を供給する。   The power supply system 100 is provided in a house, for example, and is connected to the commercial system 1 and uses the power supplied from the commercial system 1 and the power stored in the storage battery 11 to load in the house 19-1 to 19-. Supply power to k. For example, when solar power generation is performed during the daytime, the power supply system 100 stores excess power from the natural energy such as the solar power generation unit 6 to the residential loads 19-1 to 19-k. 11, the storage battery 11 is also charged from the commercial system 1, and power is supplied from the storage battery 11 to the in-house loads 19-1 to 19-k. For example, when solar power generation is not performed such as at night, the power supply system 100 charges the storage battery 11 from the commercial system 1 and supplies power from the storage battery 11 to the loads 19-1 to 19-k in the house.

また、電力供給システム100では、商用系統1が停電した時に、電力供給装置10内の解列用開閉器である電磁接触器5a,5bが、商用系統1側と解列し、蓄電池11等を用いて、住宅内負荷19−1〜19−kのうち系統連系時と同じ住宅内負荷19に継続して電力を供給できる自立運転を実施させる。   Further, in the power supply system 100, when the commercial system 1 fails, the electromagnetic contactors 5a and 5b, which are disconnecting switches in the power supply device 10, are disconnected from the commercial system 1 side, and the storage battery 11 and the like are connected. It uses and carries out the self-sustained operation which can supply electric power continuously to the load 19 in the house same as the time of grid connection among the loads 19-1 to 19-k in the house.

このように、電力供給システム100は、自然エネルギーと蓄電池11とを利用したシステムで、停電した場合の自立運転時に、系統連系時に使用していた同じ住宅内の負荷に継続して電力を供給できる。   In this way, the power supply system 100 is a system that uses natural energy and the storage battery 11, and continuously supplies power to the load in the same house that was used during grid connection during a self-sustaining operation in the event of a power failure. it can.

ここで、仮に、図4に示すように、自立運転切替え器903の一部が住宅用分電盤918に組み込まれた電力供給システム900について考える。電力供給システム900は、商用系統901、太陽光発電部906、燃料電池発電部908、蓄電部910、及び住宅用分電盤918を備える。また、電力供給システム900は、一部が住宅用分電盤918に組み込まれ、残りの部分が蓄電部910に組み込まれた自立運転切替え器903を備える。   Here, let us consider a power supply system 900 in which a part of a self-sustained operation switch 903 is incorporated in a residential distribution board 918 as shown in FIG. The power supply system 900 includes a commercial system 901, a solar power generation unit 906, a fuel cell power generation unit 908, a power storage unit 910, and a residential distribution board 918. In addition, the power supply system 900 includes a self-sustained operation switching device 903 that is partly incorporated in the residential distribution board 918 and the remaining part is incorporated in the power storage unit 910.

太陽光発電部906は、太陽光を利用して発電する。燃料電池発電部908は、燃料電池により発電する。蓄電部910は、蓄電池911、双方向コンバータ912及び蓄電部制御装置915を有する。双方向コンバータ912は、太陽光発電部906及び燃料電池発電部908から供給される電力を蓄電池911に充電し、充電した電力を放電する機能を有する。蓄電部制御装置915は、電力が蓄電池911に充電されるように、又は、電力が蓄電池911から放電されるように、双方向コンバータ912を制御する。   The solar power generation unit 906 generates power using sunlight. The fuel cell power generation unit 908 generates power using the fuel cell. The power storage unit 910 includes a storage battery 911, a bidirectional converter 912, and a power storage unit control device 915. The bidirectional converter 912 has a function of charging the storage battery 911 with power supplied from the solar power generation unit 906 and the fuel cell power generation unit 908 and discharging the charged power. The power storage unit control device 915 controls the bidirectional converter 912 so that power is charged in the storage battery 911 or power is discharged from the storage battery 911.

商用系統901、太陽光発電部906、燃料電池発電部908および蓄電部910の電力は、それぞれ住宅用分電盤918内で電気的に流れるように切替え可能であり、住宅用分電盤918を介して住宅内負荷19−1〜19−kに供給される。また、住宅内負荷19−1〜19−kの消費電力が少ない時に余剰となる太陽光発電部906の電力は、商用系統901側に逆潮流することもある。   The electric power of the commercial system 901, the solar power generation unit 906, the fuel cell power generation unit 908, and the power storage unit 910 can be switched so as to flow electrically in the residential distribution board 918. To the in-house loads 19-1 to 19-k. Moreover, when the power consumption of the residential loads 19-1 to 19-k is small, the surplus power of the solar power generation unit 906 may flow backward to the commercial system 901 side.

商用系統901が停電した場合にも自立運転として住宅内負荷19−1〜19−kに電力を供給するために、停電時に系統電圧の有無を住宅用分電盤918内のセンサ927で検出する。系統電圧監視部916は、センサ927の検出値を取得し、取得された検出値に応じて系統電圧の有無を監視する。系統電圧監視部916は、系統電圧が無い、すなわち停電が発生したことを認識すると、停電の発生を蓄電部制御装置915に通知する。蓄電部制御装置915は、停電の発生の通知に応じて、解列指令部917が電磁接触器905a,905bを「閉」から「開」とするように、解列指令部917を制御する。これにより、電磁接触器905a,905bは、系統連系規程で規定されるように機械的な開閉箇所2箇所で、蓄電池911、双方向コンバータ912からなる蓄電部910の主回路、太陽光発電部906、燃料電池発電部908を含めた住宅内負荷19側と商用系統901側との電気的接続を遮断し解列する。したがって停電時も、蓄電部910、太陽光発電部906、燃料電池発電部908により、停電前に使用していた同じ住宅内負荷19に電力を供給することができる。   In order to supply power to the in-house loads 19-1 to 19-k as a self-sustained operation even when the commercial system 901 has a power failure, the presence or absence of the system voltage is detected by the sensor 927 in the residential distribution board 918 at the time of the power failure. . The system voltage monitoring unit 916 acquires the detection value of the sensor 927 and monitors the presence or absence of the system voltage according to the acquired detection value. When system voltage monitoring unit 916 recognizes that there is no system voltage, that is, that a power failure has occurred, it notifies power storage unit control device 915 of the occurrence of the power failure. In response to the notification of the occurrence of a power failure, the power storage unit control device 915 controls the disconnection command unit 917 so that the disconnection command unit 917 changes the electromagnetic contactors 905a and 905b from “closed” to “open”. As a result, the electromagnetic contactors 905a and 905b are the main circuit of the power storage unit 910 including the storage battery 911 and the bidirectional converter 912, the photovoltaic power generation unit, at two mechanical opening and closing points as defined by the grid connection regulations. 906, the electrical connection between the residential load 19 side including the fuel cell power generation unit 908 and the commercial system 901 side is cut off and disconnected. Therefore, even during a power failure, the power storage unit 910, the solar power generation unit 906, and the fuel cell power generation unit 908 can supply power to the same in-house load 19 that was used before the power failure.

しかしながら、電力供給システム900では、住宅用分電盤918内に自立運転切替え器903の一部を組み込む必要があるため、既築の住宅に自立運転切替え器903を追加導入する場合、大規模な工事が必要になると考えられる。   However, in the power supply system 900, since it is necessary to incorporate a part of the self-sustained operation switch 903 in the residential distribution board 918, when the self-sustained operation switch 903 is additionally introduced into an existing house, a large scale is required. Construction is considered necessary.

例えば、電力供給システム900では、蓄電池911は、通常、住宅の屋外に置かれ、この蓄電池911へ電力を充放電する双方向コンバータ912、蓄電部制御装置915等を含んだ蓄電部910の筐体も屋外に設置される場合がほとんどであると考えられる。このとき、電力供給システム900では、蓄電部910と住宅用分電盤918との間に多数の信号用配線L901〜L908と主回路配線L909とを接続しなければならないため、配線工事が複雑であり、誤配線が生じやすい。   For example, in the power supply system 900, the storage battery 911 is usually placed outdoors in a house, and a case of the power storage unit 910 including a bidirectional converter 912 that charges and discharges power to the storage battery 911, a power storage unit control device 915, and the like. It is considered that most of them are installed outdoors. At this time, in the power supply system 900, since a large number of signal lines L901 to L908 and the main circuit line L909 must be connected between the power storage unit 910 and the residential distribution board 918, wiring work is complicated. Yes, miswiring is likely to occur.

例えば、電力供給システム900では、商用系統901が正常時の系統連系運転、商用系統901が停電時の自立運転を行うために、商用系統901が正常か停電かを検出するための電圧検出用のセンサ927が住宅用分電盤918内に設置される。電圧検出用のセンサ927の検出結果を出力するための信号用配線L902は、蓄電部910の系統電圧監視部916まで引き回して配線する必要がある。また、自立運転時に商用系統901と解列するため、電圧検出用のセンサ927と同じく住宅用分電盤918内に設置される開閉器(通常は電磁接触器が使用される)905a,905bを操作する信号用配線L903,L904を、蓄電部910の解列指令部917まで引き回して配線する必要もある。また、蓄電部910からの電力は系統側へ逆潮流できないため、住宅用分電盤918内には、逆潮流を検出するための変流器914を設置し、受電部の電力を検出する変流器923、太陽光発電部906の電力を検出する変流器924、燃料電池発電部908の電力を検出する変流器925の出力を伝達するための信号用配線L905〜L908を、蓄電部910の蓄電部制御装置915まで引き回して配線する必要がある。   For example, in the power supply system 900, for commercial grid connection operation when the commercial system 901 is normal, and for the commercial system 901 to perform independent operation during a power failure, voltage detection for detecting whether the commercial system 901 is normal or a power failure The sensor 927 is installed in the residential distribution board 918. The signal wiring L902 for outputting the detection result of the voltage detection sensor 927 needs to be routed to the system voltage monitoring unit 916 of the power storage unit 910 for wiring. Also, in order to disconnect from the commercial system 901 during the independent operation, switches 905a and 905b (usually electromagnetic contactors are used) installed in the residential distribution board 918 as well as the voltage detection sensor 927 are provided. It is also necessary to route the signal wirings L903 and L904 to be operated to the disconnection command unit 917 of the power storage unit 910. In addition, since the power from the power storage unit 910 cannot reversely flow to the grid side, a current transformer 914 for detecting the reverse power flow is installed in the residential distribution board 918 to detect the power of the power receiving unit. A current transformer 923, a current transformer 924 for detecting the power of the solar power generation unit 906, and signal wirings L 905 to L 908 for transmitting the output of the current transformer 925 for detecting the power of the fuel cell power generation unit 908, It is necessary to route and wire to the power storage unit control device 915 of 910.

これらの信号用配線L901〜L908は、屋外に設置させる蓄電部910の筐体と受電部の住宅用分電盤918との距離が長くなることに伴い長くなるため、信号用配線L901〜L908がノイズの影響を受けやすくなり、電力供給システム900が誤動作する可能性がある。また、信号用配線L901〜L908に対するノイズの影響を少なくするためには、主回路配線L909と信号用配線L901〜L908との配管を確実に分離し、シールド線を使用するなど配線工事にかかる手間と費用とが大掛かりなものとなる。さらに、系統電圧の検出、解列用開閉器の操作、逆潮流電流の検出など、数多くの信号用配線L901〜L908を蓄電部910の筐体と住宅用分電盤918との間に施す必要があるため、配線工事で誤った接続をされ、電力供給システム900が正常に動作しないことも懸念される。   Since these signal wirings L901 to L908 become longer as the distance between the housing of the power storage unit 910 installed outdoors and the residential distribution board 918 of the power receiving unit becomes longer, the signal wirings L901 to L908 become longer. There is a possibility that the power supply system 900 may malfunction due to noise. Further, in order to reduce the influence of noise on the signal wirings L901 to L908, it is necessary to separate the main circuit wiring L909 and the signal wirings L901 to L908 from each other and to use a shielded wire. And the cost is large. Furthermore, it is necessary to provide a large number of signal wirings L901 to L908 between the housing of the power storage unit 910 and the residential distribution board 918, such as system voltage detection, disconnection switch operation, and reverse flow current detection. Therefore, there is a concern that the power supply system 900 may not operate normally due to incorrect connection during wiring work.

また、例えば、既設の住宅用分電盤18内で、電力会社から受電する主幹漏電遮断器(受電用ELCB)21と住宅内負荷19−1〜19−kに電力を分配する分岐用ブレーカ20−1〜20−kの間に自立運転切替え器903の一部(センサ927及び電磁接触器905a,905b)を組み込む必要がある。   In addition, for example, in an existing residential distribution board 18, a main circuit breaker (ELCB for power reception) 21 that receives power from an electric power company and a branch breaker 20 that distributes power to residential loads 19-1 to 19-k. It is necessary to incorporate a part (sensor 927 and electromagnetic contactors 905a and 905b) of the self-sustained operation switching unit 903 between −1 and 20-k.

すなわち、標準的な住宅用分電盤18の配線は、図2に示すように、電力会社から引き込む電気方式が単相3線式であり、主幹漏電遮断器(受電用漏電遮断器)21の負荷側端子21a〜21cが分岐用ブレーカ20−1〜20−kの電源側端子20a〜20cに接続され、各部屋のコンセントに配電される。単相3線式の中性線32bと残り2つのライン32a,32cのどちらか一方とにより100Vの電圧を供給し、中性線32b以外の2つのライン32a,32cで200Vを供給する。電源側端子20a〜20cは、銅によるBUSバー31a〜31cにより分岐用ブレーカ20−1〜20−kに接続されている。   That is, as shown in FIG. 2, the standard residential distribution board 18 has a single-phase, three-wire electrical system drawn from the power company, and the main circuit breaker (power leakage circuit breaker) 21. The load side terminals 21a to 21c are connected to the power source side terminals 20a to 20c of the branch breakers 20-1 to 20-k, and are distributed to the outlets in each room. A single-phase three-wire neutral wire 32b and one of the remaining two lines 32a and 32c supply a voltage of 100V, and two lines 32a and 32c other than the neutral wire 32b supply 200V. The power supply side terminals 20a to 20c are connected to the branch breakers 20-1 to 20-k by BUS bars 31a to 31c made of copper.

例えば、中性線32bは、電源側端子20bを介してBUSバー(中性相銅バー)31bにより分岐用ブレーカ20−1〜20−kのN端子に接続されている。ライン32aは、電源側端子20aを介してBUSバー31aにより分岐用ブレーカ20−2,20−4,・・・,20−kのL端子に接続されている。ライン32cは、電源側端子20cを介してBUSバー31cにより分岐用ブレーカ20−1,20−3,・・・,20−(k−1)のL端子に接続されている。   For example, the neutral wire 32b is connected to the N terminals of the branch breakers 20-1 to 20-k by a BUS bar (neutral phase copper bar) 31b via the power supply side terminal 20b. The line 32a is connected to the L terminals of the branch breakers 20-2, 20-4,..., 20-k by the BUS bar 31a through the power supply side terminal 20a. The line 32c is connected to the L terminals of the branch breakers 20-1, 20-3,..., 20- (k−1) by the BUS bar 31c via the power supply side terminal 20c.

なお、図2に示す負荷側端子21a〜21cは、図1に示す負荷側端子21dに対応したものであり、図2に示す電源側端子20a〜20cは、図1に示す電源側端子20dに対応したものである。   The load side terminals 21a to 21c shown in FIG. 2 correspond to the load side terminal 21d shown in FIG. 1, and the power supply side terminals 20a to 20c shown in FIG. 2 are connected to the power supply side terminal 20d shown in FIG. It corresponds.

主幹漏電遮断器21の負荷側端子21a〜21cとBUSバー31a〜31cとは電線33a〜33cで接続されているため、この配線(電線33a〜33c)を取外し、自立運転切替え器903の一部(センサ927及び電磁接触器905a,905b)を配置できるように筐体18aを大型化させる機械的な改造工事が必要になる。   Since the load side terminals 21a to 21c of the main earth leakage circuit breaker 21 and the BUS bars 31a to 31c are connected by electric wires 33a to 33c, this wiring (electric wires 33a to 33c) is removed, and a part of the autonomous operation switching device 903 is removed. A mechanical remodeling work for enlarging the casing 18a is necessary so that the sensors 927 and the magnetic contactors 905a and 905b can be arranged.

また、図4に示す電力供給システム900では、太陽光発電部906、燃料電池発電部908、蓄電部910のそれぞれの電力変換装置は住宅用分電盤918内で接続されるが、実際には、これらの発電部と接続するためには、配線保護用のブレーカを住宅用分電盤918内に設置する必要がある。   Further, in the power supply system 900 shown in FIG. 4, the respective power conversion devices of the solar power generation unit 906, the fuel cell power generation unit 908, and the power storage unit 910 are connected within the residential distribution board 918. In order to connect to these power generation units, it is necessary to install a breaker for protecting the wiring in the residential distribution board 918.

さらに、図4に示す電力供給システム900では、燃料電池発電部908や蓄電部910の電力は商用系統901側に逆潮流することが好ましくないため、この逆潮流電流を検出するための変流器914を住宅用分電盤918内に設置する必要がある。   Further, in the power supply system 900 shown in FIG. 4, it is not preferable that the power of the fuel cell power generation unit 908 and the power storage unit 910 flow backward to the commercial system 901 side, so a current transformer for detecting the reverse flow current It is necessary to install 914 in the residential distribution board 918.

しかし、図2に示すように、既設の住宅用分電盤18では、その筐体18aが、主幹漏電遮断器21及び分岐用ブレーカ20−1〜20−kに応じた大きさになっており、余分なスペースが設けられていない可能性が高いため、ブレーカや変流器を設置する空きスペースの確保が困難である。すなわち、ブレーカや変流器を設置するスペースを確保するためには、既設の住宅用分電盤18を改造する工事が必要となり、既設の住宅用分電盤18の改造工事に多額の費用や時間を費やす可能性がある。   However, as shown in FIG. 2, in the existing residential distribution board 18, the casing 18a is sized according to the main earth leakage breaker 21 and the branch breakers 20-1 to 20-k. Since there is a high possibility that no extra space is provided, it is difficult to secure an empty space for installing a breaker or a current transformer. In other words, in order to secure a space for installing a breaker or a current transformer, it is necessary to remodel the existing residential distribution board 18, which requires a large amount of money for remodeling the existing residential distribution board 18. There is a possibility of spending time.

また、図4に示す電力供給システム900では、自立運転切替え器903内に、停電の発生、その後の復電を検出するための系統電圧監視部916と自立運転時に商用系統901との解列を行うための電磁接触器905a,905bを「開」、「閉」させる解列指令部917とを設けており、自立運転切替え器903の寸法が大きくなる。したがって、住宅用分電盤918の近傍に大きな設置面積が確保できないと、自立運転切替え器903を設置することが困難となる。また、自立運転切替え器903の質量も重くなるため、壁面の材質が自立運転切替え器903の過重に耐えられないなどの問題が発生する可能性がある。   Further, in the power supply system 900 shown in FIG. 4, a disconnection between the system voltage monitoring unit 916 for detecting the occurrence of a power failure and the subsequent power recovery and the commercial system 901 during the independent operation is performed in the autonomous operation switching unit 903. A disconnection command unit 917 for “opening” and “closing” the electromagnetic contactors 905a and 905b for performing the operation is provided, and the size of the self-sustained operation switching unit 903 is increased. Therefore, if a large installation area cannot be secured in the vicinity of the residential distribution board 918, it is difficult to install the self-sustained operation switching device 903. Moreover, since the mass of the self-sustaining operation switching device 903 is also heavy, there is a possibility that a problem such as that the wall surface material cannot withstand the excessive weight of the self-sustaining operation switching device 903 may occur.

そこで、実施の形態では、図1に示すように、自立運転切替え器3を電力供給装置10の筐体10a内に組み込み、電力供給装置10の第1の端子T1が住宅用分電盤18経由で商用系統1に接続され、電力供給装置10の第2の端子T2が住宅用分電盤18経由で住宅内負荷19−1〜19−kに接続されるように構成することで、引き回す信号用配線の数を大幅に減らし電力供給システム100を簡単に構築できるようにする。   Therefore, in the embodiment, as shown in FIG. 1, the self-sustaining operation switching device 3 is incorporated in the housing 10 a of the power supply device 10, and the first terminal T <b> 1 of the power supply device 10 passes through the residential distribution board 18. Is connected to the commercial system 1, and the second terminal T <b> 2 of the power supply device 10 is connected to the residential loads 19-1 to 19-k via the residential distribution board 18, thereby routing the signal. The power supply system 100 can be easily constructed by greatly reducing the number of wiring lines.

すなわち、電力供給装置10では、系統電圧監視部16、電磁接触器5a,5b、解列指令部17、第1のブレーカ7、第2のブレーカ9、変流器14,23,24,25、双方向電力変換装置12、制御装置15が1つの筐体10aに収納されている。系統電圧監視部16は、商用系統1の電圧を監視する。電磁接触器5a,5bは、自立運転時に商用系統1との解列を行う。解列指令部17は、電磁接触器5a,5bを「開」、「閉」させる。ブレーカ7は、太陽光発電部6から過大な電流が流れ込まないように保護する。ブレーカ9は、燃料電池発電部8から過大な電流が流れ込まないように保護する。変流器14は、蓄電池11と燃料電池発電部8の電力のよる商用系統1側への逆潮流を検出する。双方向電力変換装置12は、商用系統1側から伝達された電力を変換して蓄電池11へ充電させたり、蓄電池11から放電された電力を変換して住宅内負荷19−1〜19−k側へ供給したり、双方向の電力変換を行う。制御装置15は、電力供給装置10の各部を全体的に制御する。例えば、系統電圧監視部16の監視結果と変流器14,23,24,25の検出結果とに基づいて、電磁接触器5a,5b及び双方向電力変換装置12を制御する。   That is, in the power supply device 10, the system voltage monitoring unit 16, the magnetic contactors 5a and 5b, the disconnection command unit 17, the first breaker 7, the second breaker 9, the current transformers 14, 23, 24, 25, The bidirectional power conversion device 12 and the control device 15 are accommodated in one housing 10a. The system voltage monitoring unit 16 monitors the voltage of the commercial system 1. The magnetic contactors 5a and 5b are disconnected from the commercial system 1 during the self-sustaining operation. The disconnection command unit 17 “opens” and “closes” the magnetic contactors 5a and 5b. The breaker 7 protects an excessive current from flowing from the solar power generation unit 6. The breaker 9 protects an excessive current from flowing from the fuel cell power generation unit 8. The current transformer 14 detects a reverse power flow toward the commercial system 1 due to the electric power of the storage battery 11 and the fuel cell power generation unit 8. The bidirectional power converter 12 converts the power transmitted from the commercial grid 1 side to charge the storage battery 11 or converts the power discharged from the storage battery 11 to the residential loads 19-1 to 19-k side. Or bi-directional power conversion. The control device 15 controls each part of the power supply device 10 as a whole. For example, the electromagnetic contactors 5a and 5b and the bidirectional power converter 12 are controlled based on the monitoring result of the system voltage monitoring unit 16 and the detection results of the current transformers 14, 23, 24, and 25.

また、電力供給装置10の筐体10aには、例えば、第1の端子T1及び第2の端子T2が設けられる。第1の端子T1は、主回路配線L1を介して、住宅用分電盤18の主幹漏電遮断器21の負荷側端子21dに接続され、第2の端子T2は、主回路配線L2を介して、分岐ブレーカ20の主回路配線の電源側端子20dが接続される。これにより、電力供給装置10と住宅用分電盤18との間には、信号用配線を接続する必要はなく、主回路配線L1、L2の2系統を接続するだけでよい。   Further, the housing 10a of the power supply apparatus 10 is provided with, for example, a first terminal T1 and a second terminal T2. The first terminal T1 is connected to the load side terminal 21d of the main circuit breaker 21 of the residential distribution board 18 via the main circuit wiring L1, and the second terminal T2 is connected to the main circuit wiring L2. The power supply side terminal 20d of the main circuit wiring of the branch breaker 20 is connected. Thereby, it is not necessary to connect the signal wiring between the power supply apparatus 10 and the residential distribution board 18, and it is only necessary to connect the two systems of the main circuit wirings L1 and L2.

より具体的には、電力供給装置10は、その筐体10a上に第1の端子T1及び第2の端子T2を有する。第1の端子T1は、商用系統1が電力量計2を介して供給される住宅用分電盤18内の主幹漏電遮断器21の負荷側端子21dに接続されるための端子であり、筐体10a上に配されている。第1の端子T1は、筐体10a内において、ノードN1に接続されている。第2の端子T2は、住宅用分電盤18の分岐ブレーカ20の電源側端子20dが接続されるための端子であり、筐体10a上に配されている。第2の端子T2は、筐体10a内において、ノードN3に接続されている。   More specifically, the power supply apparatus 10 has a first terminal T1 and a second terminal T2 on the housing 10a. The first terminal T1 is a terminal to be connected to the load side terminal 21d of the main leakage breaker 21 in the residential distribution board 18 to which the commercial system 1 is supplied via the watt hour meter 2. It is arranged on the body 10a. The first terminal T1 is connected to the node N1 in the housing 10a. The second terminal T2 is a terminal for connecting the power supply side terminal 20d of the branch breaker 20 of the residential distribution board 18, and is arranged on the housing 10a. The second terminal T2 is connected to the node N3 in the housing 10a.

第3の端子T3は、太陽光発電部6の電力変換装置(図示せず)が接続されるための端子であり、筐体10a上に配されている。第3の端子T3は、筐体10a内において、第1のブレーカ7を介してノードN2に接続されている。また、太陽光発電部6の電力変換装置(図示せず)から筐体10a内の第1のブレーカ7に直接接続されることもある。   The third terminal T3 is a terminal to which a power conversion device (not shown) of the solar power generation unit 6 is connected, and is arranged on the housing 10a. The third terminal T3 is connected to the node N2 via the first breaker 7 in the housing 10a. Moreover, it may be directly connected to the 1st breaker 7 in the housing | casing 10a from the power converter device (not shown) of the solar power generation part 6. FIG.

第4の端子T4は、燃料電池発電部8の電力変換装置(図示せず)が接続されるための端子であり、筐体10a上に配されている。第4の端子T4は、筐体10a内において、第2のブレーカ9を介してノードN3に接続されている。また、燃料電池発電部8の電力変換装置(図示せず)から筐体10a内の第2のブレーカ9に直接接続されることもある。   The fourth terminal T4 is a terminal to which a power conversion device (not shown) of the fuel cell power generation unit 8 is connected, and is arranged on the housing 10a. The fourth terminal T4 is connected to the node N3 via the second breaker 9 in the housing 10a. Moreover, the power converter (not shown) of the fuel cell power generation unit 8 may be directly connected to the second breaker 9 in the housing 10a.

第5の端子T5は、蓄電池11が接続されるための端子であり、筐体10a上に配されている。第5の端子T5は、筐体10a内において、双方向電力変換装置12に接続されている。   The fifth terminal T5 is a terminal to which the storage battery 11 is connected, and is arranged on the housing 10a. The fifth terminal T5 is connected to the bidirectional power converter 12 in the housing 10a.

第1の端子T1が接続されたノードN1は、直列に2個設置される解列用の電磁接触器5a,5bを介し、ノードN2に接続されている。ノードN1は、信号線16aを介して系統電圧監視部16に接続され、系統電圧監視部16は、信号線16bを介して制御装置15に接続されている。これにより、商用系統1の電圧を検出するため、系統電圧監視部16は、ノードN1の電圧を検出して、検出結果(ノードN1の電圧)を示す信号を制御装置15に供給する。   The node N1 to which the first terminal T1 is connected is connected to the node N2 via two electromagnetic contactors 5a and 5b for disconnection installed in series. The node N1 is connected to the system voltage monitoring unit 16 through the signal line 16a, and the system voltage monitoring unit 16 is connected to the control device 15 through the signal line 16b. Thereby, in order to detect the voltage of the commercial system 1, the system voltage monitoring unit 16 detects the voltage of the node N1, and supplies a signal indicating the detection result (the voltage of the node N1) to the control device 15.

解列指令部17は、信号線17aを介して電磁接触器5aの制御端子に接続され、信号線17bを介して電磁接触器5bの制御端子に接続され、信号線17cを介して制御装置15が接続されている。これにより、解列指令部17は、制御装置15から制御信号を受け、受けた制御信号に従って、電磁接触器5a,5bを開閉する。   The disconnection command unit 17 is connected to the control terminal of the electromagnetic contactor 5a via the signal line 17a, is connected to the control terminal of the electromagnetic contactor 5b via the signal line 17b, and is connected to the control device 15 via the signal line 17c. Is connected. Thereby, the disconnection command part 17 receives a control signal from the control apparatus 15, and opens and closes the electromagnetic contactors 5a and 5b according to the received control signal.

変流器14は、蓄電池11の電力と燃料電池発電部8の電力とが住宅内負荷19で消費しきれず、商用系統1側へ逆潮流する際の電流を検出するために、ノードN2とノードN3との間に設けられている。変流器14は、信号線14aで制御装置15と接続されており、その検出値が制御装置15へ供給される。   The current transformer 14 is configured to detect the current when the power of the storage battery 11 and the power of the fuel cell power generation unit 8 cannot be consumed by the load 19 in the house and reversely flow to the commercial system 1 side. N3 is provided. The current transformer 14 is connected to the control device 15 through a signal line 14 a, and the detected value is supplied to the control device 15.

変流器23は、商用系統1からの買電電力、または太陽光発電部6の余剰電力分である売電電力を検出するために、ノードN1とノードN2との間に設けられている。変流器23は、信号線23aで制御装置15と接続されており、その検出値が制御装置15へ供給される。   The current transformer 23 is provided between the node N1 and the node N2 in order to detect the purchased power from the commercial system 1 or the sold power that is the surplus power of the solar power generation unit 6. The current transformer 23 is connected to the control device 15 through a signal line 23 a, and the detected value is supplied to the control device 15.

変流器24は、太陽光発電部6の発電電力を検出する。例えば、変流器24は第3の端子T3とノードN2との間をつなぐ分岐線上に設けられている。変流器24は、信号線24aで制御装置15と接続されており、その検出値が制御装置15へ供給される。   The current transformer 24 detects the power generated by the solar power generation unit 6. For example, the current transformer 24 is provided on a branch line connecting the third terminal T3 and the node N2. The current transformer 24 is connected to the control device 15 through a signal line 24 a, and the detected value is supplied to the control device 15.

変流器25は、燃料電池発電部8の発電電力を検出する。例えば、変流器25は第4の端子T4とノードN3との間をつなぐ分岐線上に設けられている。変流器25は、信号線25aで制御装置15と接続されており、その検出値が制御装置15へ供給される。   The current transformer 25 detects the power generated by the fuel cell power generation unit 8. For example, the current transformer 25 is provided on the branch line connecting the fourth terminal T4 and the node N3. The current transformer 25 is connected to the control device 15 via a signal line 25 a, and the detected value is supplied to the control device 15.

解列用の電磁接触器5a,5bは、停電時に電力供給装置10の商用系統1側である第1の端子T1側を解列する。解列用の電磁接触器5a,5bは、例えば、解列指令部17から指令を受け、指令に応じて開閉する。解列用の電磁接触器5a,5bは、筐体10a内に収容されている。   The magnetic contactors 5a and 5b for disconnection disconnect the first terminal T1 side that is the commercial system 1 side of the power supply apparatus 10 at the time of a power failure. The electromagnetic contactors 5a and 5b for disconnection receive a command from the disconnection command unit 17, for example, and open and close according to the command. The electromagnetic contactors 5a and 5b for disconnecting are accommodated in the housing 10a.

第1のブレーカ7は、太陽光発電部6の電力変換装置(図示しない)を商用系統1と接続するため、電力供給装置10の第3の端子T3に接続され、配線保護用として筐体10a内に収容されている。第1のブレーカ7は、通常は閉状態にあるが、保守点検などで例えば、ユーザによるスイッチの手動操作に応じて、接続を開閉する。   The first breaker 7 is connected to the third terminal T3 of the power supply device 10 in order to connect the power conversion device (not shown) of the photovoltaic power generation unit 6 to the commercial system 1, and the housing 10a is used for wiring protection. Is housed inside. The first breaker 7 is normally in a closed state, but opens and closes a connection in accordance with a manual operation of a switch by a user, for example, in a maintenance check.

第2のブレーカ9は、燃料電池発電部8の電力変換装置(図示しない)を商用系統1と接続するため、電力供給装置10の第4の端子T4に接続され、配線保護用として筐体10a内に収容されている。第2のブレーカ9は、通常は閉状態にあるが、保守点検などで例えば、ユーザによるスイッチの手動操作に応じて、接続を開閉する。   The second breaker 9 is connected to the fourth terminal T4 of the power supply device 10 in order to connect the power conversion device (not shown) of the fuel cell power generation unit 8 to the commercial system 1, and the housing 10a is used for wiring protection. Is housed inside. The second breaker 9 is normally in a closed state, but opens and closes a connection in accordance with a manual operation of a switch by a user, for example, in maintenance and inspection.

第3のブレーカ13は、電力供給装置10の双方向電力変換装置12を商用系統1と接続するため、筐体10a内に収納されている。詳細な説明は割愛するが、自立運転時の漏電保護のため、第3のブレーカ13は漏電遮断器が設置される。第3のブレーカ13は、通常は閉状態にあるが、保守点検などで例えば、ユーザによるスイッチの手動操作に応じて、接続を開閉する。   The third breaker 13 is housed in the housing 10 a in order to connect the bidirectional power conversion device 12 of the power supply device 10 to the commercial system 1. Although a detailed description is omitted, an earth leakage breaker is installed in the third breaker 13 in order to protect the earth leakage during the independent operation. The third breaker 13 is normally in a closed state, but opens and closes a connection in accordance with a manual operation of a switch by a user, for example, in maintenance and inspection.

なお、主幹漏電遮断器21は、住宅用分電盤18内に収容されていて、商用系統1から電力量計2を介して接続される。主幹漏電遮断器21は、引込口装置とも呼ばれ、主開閉器を兼ねる。また、図示しないが、主幹漏電遮断器21は、契約ブレーカを含む。主幹漏電遮断器21は、例えば、漏電が発生していない通常時に閉状態であり、漏電発生時に自律的に開状態になる。また、主幹漏電遮断器21は、例えば、ユーザによるスイッチの手動操作に応じて、閉状態に復帰する。   The main earth leakage circuit breaker 21 is housed in the residential distribution board 18 and is connected from the commercial system 1 via the watt-hour meter 2. The main earth leakage circuit breaker 21 is also called a service port device, and also serves as a main switch. Moreover, although not shown in figure, the main earth leakage circuit breaker 21 contains a contract breaker. For example, the main earth leakage breaker 21 is closed at a normal time when no electric leakage occurs, and is autonomously opened when the electric leakage occurs. Moreover, the main earth leakage circuit breaker 21 returns to a closed state, for example according to the manual operation of the switch by a user.

次に、通常時(商用系統1が停電していないとき)における電力供給システム100の動作を説明する。   Next, the operation of the power supply system 100 during normal times (when the commercial system 1 is not out of power) will be described.

住宅用分電盤18内の主幹漏電遮断器21、全ての分岐ブレーカ20(図2参照)は通常は「閉」状態にある。商用系統1が正常の時は、商用系統1から住宅内負荷19に電力を供給させるために、電力供給装置10の制御装置15は、解列指令部17が解列用の電磁接触器5a,5bに対して閉じる指令を出力するように、解列指令部17を制御する。太陽光発電部6で発電した電力は、電力供給装置10内の第1のブレーカ7を経由し、住宅用分電盤18を介して住宅内負荷19に供給される。   The main earth leakage breaker 21 and all branch breakers 20 (see FIG. 2) in the residential distribution board 18 are normally in the “closed” state. When the commercial system 1 is normal, the control device 15 of the power supply device 10 has the disconnection command unit 17 for the disconnection electromagnetic contactor 5a, The release command unit 17 is controlled so as to output a close command to 5b. The electric power generated by the solar power generator 6 is supplied to the residential load 19 via the residential distribution board 18 via the first breaker 7 in the power supply device 10.

住宅内負荷19での消費電力より太陽光発電部6での発電電力が上回った場合は、余剰電力が商用系統1に逆潮流する可能性がある。燃料電池発電部8で発電した電力は、電力供給装置10内の第2のブレーカ9を経由し、住宅用分電盤18を介して住宅内負荷19に供給される。住宅内負荷19の消費電力が少なくなり、燃料電池発電部8の余剰発電電力が商用系統1側へ逆潮流する場合は、電力供給装置10内の変流器14が逆潮流電力を検出し、逆潮流の検出結果を受けた制御装置15が燃料電池発電部8の電力変換装置を停止させる。   When the power generated by the solar power generation unit 6 exceeds the power consumed by the load 19 in the house, there is a possibility that surplus power flows backward to the commercial system 1. The electric power generated by the fuel cell power generation unit 8 is supplied to the residential load 19 via the residential distribution board 18 via the second breaker 9 in the power supply device 10. When the power consumption of the load 19 in the house is reduced and the surplus power generated by the fuel cell power generation unit 8 flows backward to the commercial grid 1, the current transformer 14 in the power supply device 10 detects the reverse power flow, The control device 15 that has received the detection result of the reverse power flow stops the power conversion device of the fuel cell power generation unit 8.

電力供給装置10は、商用系統1や太陽光発電部6、燃料電池発電部8の電力を蓄電池11に充電し、また、蓄電池11から住宅内負荷19に電力を供給するため、双方向電力変換装置12により電力の充放電を行う。燃料電池発電部8と同様に蓄電池11の電力の商用系統1への逆潮流は好ましくないため、電力供給装置10内の変流器14で逆潮流電力を検出し、逆潮流の検出結果を受けた制御装置15が逆潮流を抑制するように双方向電力変換装置12の放電電力を制御する(例えば、放電電力を低下させる)。   The power supply device 10 charges the storage battery 11 with the electric power of the commercial system 1, the solar power generation unit 6, and the fuel cell power generation unit 8, and supplies electric power from the storage battery 11 to the residential load 19. The device 12 charges and discharges power. Similarly to the fuel cell power generation unit 8, the reverse power flow of the power of the storage battery 11 to the commercial system 1 is not preferable. Therefore, the reverse power flow is detected by the current transformer 14 in the power supply device 10, and the detection result of the reverse power flow is received. The control device 15 controls the discharge power of the bidirectional power converter 12 so as to suppress the reverse power flow (for example, the discharge power is reduced).

次に、停電時(商用系統1が停電したとき)における電力供給システム100の動作を説明する。   Next, the operation of the power supply system 100 at the time of a power failure (when the commercial system 1 fails) will be described.

商用系統1が停電すると、太陽光発電部6の電力変換装置、燃料電池発電部8の電力変換装置、電力供給装置10の双方向電力変換装置12が、それぞれ系統電圧がないこと(停電状態)を検出し、通常は不足電圧の系統連系保護機能が動作することで運転を停止する。電力供給装置10の系統電圧監視部16が、停電により系統電圧が0Vになったことを検出すると、制御装置15は、その検出結果(監視結果)及び手動操作に応じて、またはその検出結果(監視結果)に応じた自動操作により、自立運転への切替えを行う。例えば、制御装置15は、商用系統1との電気的接続を遮断するため、解列指令部17が電力供給装置10内の解列用の電磁接触器5a,5bに「開」にする指令を与えるように、解列指令部17を制御する。電力供給装置10の制御装置15は、解列用の電磁接触器5a,5bからの補助接点信号により確実に商用系統1と解列したことを確認してから、電力供給装置10、太陽光発電部6、燃料電池発電部8により住宅内負荷19に電力を供給する自立運転を行う。なお、複数の発電設備が同時に運転しながら自立運転を行うためには、位相を同期させるなどの特殊な制御を必要とするが、詳細な制御の内容については割愛する。   When the commercial system 1 is blacked out, the power conversion device of the solar power generation unit 6, the power conversion device of the fuel cell power generation unit 8, and the bidirectional power conversion device 12 of the power supply device 10 each have no system voltage (power failure state). Usually, the operation is stopped when the grid connection protection function of undervoltage operates. When the system voltage monitoring unit 16 of the power supply device 10 detects that the system voltage has become 0 V due to a power failure, the control device 15 responds to the detection result (monitoring result) and manual operation, or the detection result ( Switch to self-sustaining operation by automatic operation according to the monitoring result. For example, the control device 15 instructs the disconnection command unit 17 to “open” the disconnecting electromagnetic contactors 5 a and 5 b in the power supply device 10 in order to cut off the electrical connection with the commercial system 1. The disconnection command unit 17 is controlled so as to be given. The control device 15 of the power supply device 10 confirms that the power supply device 10 is disconnected from the commercial system 1 by an auxiliary contact signal from the electromagnetic contactors 5a and 5b for disconnection, and then the power supply device 10 and solar power generation. Unit 6 and the fuel cell power generation unit 8 perform self-sustaining operation for supplying power to the load 19 in the house. In order to perform independent operation while a plurality of power generation facilities are operating simultaneously, special control such as phase synchronization is required, but details of the detailed control are omitted.

上記の電力供給装置10を準備することで、既設の住宅、新設の住宅を問わず、電力供給システム100を構築する時の施工を容易化できる。   By preparing the power supply apparatus 10 described above, it is possible to facilitate the construction when the power supply system 100 is constructed regardless of whether the house is an existing house or a new house.

例えば、既設の住宅の場合、図4に示す電力供給システム900を構築するためには、既に設置してある図2に示す住宅用分電盤18内の契約ブレーカを兼ねた主幹漏電遮断器21と分岐用ブレーカ20−1〜20−kを接続している配線(電線33a〜33c)を取外し、この間に自立運転切替え器903の一部(センサ927及び電磁接触器905a,905b)を接続する電気的な配線工事が必要となるとともに、自立運転切替え器903の一部(センサ927及び電磁接触器905a,905b)を配置できるように筐体18aを大型化させる機械的な改造工事が必要になる。このように、既設の住宅用分電盤18を改造する大規模な工事が必要となり、既設の住宅用分電盤18の改造工事に多額の費用や時間を費やす可能性がある。   For example, in the case of an existing house, in order to construct the power supply system 900 shown in FIG. 4, the main earth leakage circuit breaker 21 also serving as the contract breaker in the residential distribution board 18 shown in FIG. And the wiring (electric wires 33a to 33c) connecting the branch breakers 20-1 to 20-k are removed, and a part of the self-sustaining operation switch 903 (the sensor 927 and the electromagnetic contactors 905a and 905b) is connected during this period. Electrical wiring work is required, and mechanical remodeling work is required to increase the size of the housing 18a so that a part of the self-sustained operation switching device 903 (sensor 927 and electromagnetic contactors 905a and 905b) can be arranged. Become. As described above, a large-scale construction for remodeling the existing residential distribution board 18 is required, and there is a possibility that a large amount of cost and time are spent on the modification work for the existing residential distribution board 18.

それに対して、実施の形態では、図1に示すように、住宅用分電盤18の主幹漏電遮断器21の負荷側端子21dと分岐ブレーカ20の主回路配線の電源側端子20dとの間に主回路配線L1,L2で電力供給装置10の筐体10aを接続するだけで簡単に電力供給システム100を構築できる。   On the other hand, in the embodiment, as shown in FIG. 1, between the load side terminal 21 d of the main earth leakage circuit breaker 21 of the residential distribution board 18 and the power source side terminal 20 d of the main circuit wiring of the branch breaker 20. The power supply system 100 can be easily constructed simply by connecting the casing 10a of the power supply apparatus 10 with the main circuit wires L1 and L2.

以上のように、実施の形態では、電力供給装置10において、第1の端子T1、第2の端子T2、系統電圧監視部16、電磁接触器5a,5b、双方向電力変換装置12、変流器14,23,24,25、及び制御装置15が1つの筐体に収められている。第1の端子T1には、住宅用分電盤18を介して商用系統1が接続される。第2の端子T2には、住宅用分電盤18を介して住宅内負荷19が接続される。系統電圧監視部16は、商用系統1の電圧を監視する。電磁接触器5a,5bは、停電時に第1の端子T1と第2の端子T2との間を解列する。双方向電力変換装置12は、蓄電池11と接続され、蓄電池11への充放電を行う。変流器14は、双方向電力変換装置12側から第1の端子T1側への逆潮流を検出する。制御装置15は、系統電圧監視部16の監視結果と変流器14,23,24,25の検出結果とに基づいて、電磁接触器5a,5b及び双方向電力変換装置12を制御する。電力供給装置10の筐体10a内において、系統電圧監視部16及び電磁接触器5a,5bは、商用系統1が停電した場合に電力供給システム100の運転を自立運転に切り替えるための自立運転切替え器3として機能することができる。   As described above, in the embodiment, in the power supply device 10, the first terminal T1, the second terminal T2, the system voltage monitoring unit 16, the electromagnetic contactors 5a and 5b, the bidirectional power conversion device 12, the current transformation. The containers 14, 23, 24, 25 and the control device 15 are housed in one housing. The commercial system 1 is connected to the first terminal T1 via a residential distribution board 18. A residential load 19 is connected to the second terminal T2 via a residential distribution board 18. The system voltage monitoring unit 16 monitors the voltage of the commercial system 1. The magnetic contactors 5a and 5b disconnect between the first terminal T1 and the second terminal T2 during a power failure. The bidirectional power converter 12 is connected to the storage battery 11 and performs charging / discharging to the storage battery 11. The current transformer 14 detects a reverse power flow from the bidirectional power converter 12 side to the first terminal T1 side. The control device 15 controls the electromagnetic contactors 5a and 5b and the bidirectional power converter 12 based on the monitoring result of the system voltage monitoring unit 16 and the detection results of the current transformers 14, 23, 24, and 25. In the housing 10a of the power supply apparatus 10, the system voltage monitoring unit 16 and the magnetic contactors 5a and 5b are independent operation switching devices for switching the operation of the power supply system 100 to the independent operation when the commercial system 1 fails. 3 can function.

すなわち、実施の形態では、自立運転切替え器3を電力供給装置10の1つの筐体10a内に搭載することで、基本の形態(図4参照)に比べて、電力供給装置10と住宅用分電盤18との間の配線の数を大幅に(例えば主回路配線L1、L2の2つに)削減できる。これにより、システム施工時に、系統電圧を検出するための配線、解列用開閉器を操作するための配線、変流器の出力を接続するための配線など、基本の形態(図4参照)で必要だった各種の信号用配線の工事が不要となるため、誤配線を防ぐことができ、システムを確実に稼動させることができる。すなわち、既存の住宅に自立運転切替え器3を簡易に追加導入できる。   That is, in the embodiment, the self-sustained operation switching device 3 is mounted in one housing 10a of the power supply device 10 so that the power supply device 10 and the residential use can be compared with the basic configuration (see FIG. 4). The number of wirings to and from the board 18 can be greatly reduced (for example, to two main circuit wirings L1 and L2). As a result, at the time of system construction, in the basic form (see Fig. 4), such as wiring for detecting system voltage, wiring for operating the disconnecting switch, and wiring for connecting the output of the current transformer Various necessary signal wiring work is no longer necessary, so that incorrect wiring can be prevented and the system can be operated reliably. That is, the self-sustained operation switching device 3 can be easily added to an existing house.

また、実施の形態では、各種の信号線を電力供給装置10の1つの筐体10a内で集約できるため、各種の信号線を短くでき、筐体10a内で主回路配線と信号用配線を分けるなど自由度の大きいノイズ対策を施すことができるため、施工時の配線工事の不備によるノイズの影響を受けにくい品質の高いシステムを構築できる。すなわち、電力供給装置10を含む電力供給システム100の信頼性を容易に向上できる。   Further, in the embodiment, since various signal lines can be aggregated in one casing 10a of the power supply apparatus 10, various signal lines can be shortened, and main circuit wiring and signal wiring are separated in the casing 10a. Therefore, it is possible to build a high-quality system that is less susceptible to noise due to inadequate wiring work during construction. That is, the reliability of the power supply system 100 including the power supply device 10 can be easily improved.

また、実施の形態では、基本の形態(図4参照)に比べて、電力会社からの受電引き込み部の住宅用分電盤18の近くに、比較的、体積、質量の大きい自立運転切替え器を設置する必要がなくなるため、設置スペースの確保、壁の補強をする必要もない。さらに、標準的な住宅用分電盤の主幹漏電ブレーカと分岐ブレーカとを接続している配線を外し、主幹漏電ブレーカの負荷側、分岐ブレーカの電源側から主回路配線だけを電力供給装置10の筐体10aと接続するだけでシステムが構築でき、標準的な住宅用分電盤18を大きなものに改造をする必要もなく使用することが可能となる。すなわち、この観点からも、既存の住宅に自立運転切替え器3を簡易に追加導入できる。   Further, in the embodiment, a self-sustained operation switching device having a relatively large volume and mass is provided near the residential distribution board 18 in the power receiving section from the electric power company as compared with the basic mode (see FIG. 4). Since there is no need for installation, it is not necessary to secure installation space and reinforce the walls. Further, the wiring connecting the main earth leakage breaker and the branch breaker of the standard residential distribution board is removed, and only the main circuit wiring is connected to the power supply device 10 from the load side of the main earth leakage breaker and the power supply side of the branch breaker. A system can be constructed simply by connecting to the housing 10a, and the standard residential distribution board 18 can be used without having to be remodeled into a large one. That is, also from this point of view, the independent operation switching device 3 can be easily added to an existing house.

また、実施の形態では、電力供給装置10において、自立運転切替え器3を電力供給装置10の1つの筐体10a内に搭載するので、基本の形態(図4参照)において必要であった自立運転切替え器903が不要となるため、自立運転切替え器903を取り付ける壁の確保や、壁の補強が不要となり、据付工事を安価で楽に実施することができる。   Further, in the embodiment, since the self-sustained operation switching device 3 is mounted in one housing 10a of the power supply device 10 in the power supply device 10, the self-sustained operation required in the basic mode (see FIG. 4). Since the switch 903 is not required, it is not necessary to secure a wall to which the self-sustained operation switch 903 is attached or to reinforce the wall, and the installation work can be easily performed at a low cost.

また、実施の形態では、電力供給システム100において、分電盤18の主幹漏電遮断器21の負荷側を筐体10aの第1の端子T1に接続し、分電盤18の分岐ブレーカ20の電源側を筐体10aの第2の端子T2に接続するだけでシステムを構築できるので、据付け時に信号線の配線工事を不要とすることができる。   In the embodiment, in the power supply system 100, the load side of the main leakage breaker 21 of the distribution board 18 is connected to the first terminal T1 of the housing 10a, and the power supply of the branch breaker 20 of the distribution board 18 is established. Since the system can be constructed simply by connecting the side to the second terminal T2 of the housing 10a, it is possible to dispense with signal line wiring work during installation.

また、実施の形態では、電力供給装置10において、制御装置15が、変流器14の検出結果に基づいて、双方向電力変換装置12を制御する。これにより、双方向電力変換装置12側から第1の端子T1側(商用系統1側)への逆潮流が発生した場合に、双方向電力変換装置12の電力変換動作を抑制でき、逆潮流を抑制できる。   In the embodiment, in the power supply device 10, the control device 15 controls the bidirectional power conversion device 12 based on the detection result of the current transformer 14. Thereby, when the reverse power flow from the bidirectional power converter 12 side to the first terminal T1 side (commercial system 1 side) occurs, the power conversion operation of the bidirectional power converter device 12 can be suppressed, and the reverse power flow can be reduced. Can be suppressed.

また、実施の形態では、電力供給装置10において、第3の端子T3に、太陽光発電部6が接続され、第4の端子T4に、燃料電池発電部8が接続される。電力供給装置10は、第3の端子T3及び第4の端子T4の少なくとも一方を介して入力された電力を、系統連系時において商用系統1の電力と蓄電池11の電力とともに住宅内負荷19に供給可能であり、停電時において住宅内負荷19に継続的に電力を供給可能である。そして、変流器14は、双方向電力変換装置12又は第4の端子T4側から第1の端子T1側への逆潮流を検出する。制御装置15が、変流器14の検出結果に基づいて、双方向電力変換装置12を制御する。これにより、燃料電池発電部8側又は双方向電力変換装置12側から第1の端子T1側(商用系統1側)への逆潮流が発生した場合にも、双方向電力変換装置12の電力変換動作を抑制でき、逆潮流を抑制できる。   In the embodiment, in the power supply device 10, the solar power generation unit 6 is connected to the third terminal T3, and the fuel cell power generation unit 8 is connected to the fourth terminal T4. The power supply device 10 supplies the power input via at least one of the third terminal T3 and the fourth terminal T4 to the load 19 in the house together with the power of the commercial system 1 and the power of the storage battery 11 at the time of grid connection. The power can be supplied, and power can be continuously supplied to the load 19 in the house at the time of a power failure. The current transformer 14 detects a reverse power flow from the bidirectional power converter 12 or the fourth terminal T4 side to the first terminal T1 side. The control device 15 controls the bidirectional power conversion device 12 based on the detection result of the current transformer 14. Thereby, even when a reverse power flow from the fuel cell power generation unit 8 side or the bidirectional power conversion device 12 side to the first terminal T1 side (commercial system 1 side) occurs, the power conversion of the bidirectional power conversion device 12 is performed. Operation can be suppressed and reverse power flow can be suppressed.

なお、実施の形態では、電力供給装置10の電力供給源を蓄電池11としているが、これに限定するものではない。図3に示す電力供給システム200のように、電力供給源を将来普及が見込まれる電気自動車230の蓄電池229に置き換えても同様な効果を奏でることは言うまでもない。すなわち、電力供給装置10の双方向電力変換装置212は、電気自動車230に搭載される蓄電池229に対して電力の充放電を実施する。例えば、蓄電池229が蓄電池11より容量が大きい場合、双方向電力変換装置212の許容電力は、双方向電力変換装置12の許容電力より大きくすればよい。この場合、蓄電可能な電気エネルギーを大きく確保できる。   In addition, in embodiment, although the electric power supply source of the electric power supply apparatus 10 is set as the storage battery 11, it is not limited to this. It goes without saying that the same effect can be obtained even if the power supply source is replaced with the storage battery 229 of the electric vehicle 230, which is expected to be spread in the future, as in the power supply system 200 shown in FIG. That is, the bidirectional power conversion device 212 of the power supply device 10 performs power charging / discharging on the storage battery 229 mounted on the electric vehicle 230. For example, when the capacity of the storage battery 229 is larger than that of the storage battery 11, the allowable power of the bidirectional power conversion device 212 may be larger than the allowable power of the bidirectional power conversion device 12. In this case, a large amount of electrical energy that can be stored can be secured.

なお、各実施の形態において個別に特徴的な動作を説明したが、各実施の形態を自由に組み合わせ、また、各実施の形態を適宜、変形、省略することが可能である。   In addition, although the characteristic operation | movement was demonstrated separately in each embodiment, each embodiment can be combined freely and it can change and abbreviate | omit each embodiment suitably.

以上のように、本発明にかかる電力供給システムは、自然エネルギーと蓄電池を利用したシステムで、停電した場合の自立運転時に、系統連系時に使用していた同じ住宅内の負荷に継続して電力を供給するシステムの配線工事に有用である。   As described above, the power supply system according to the present invention is a system that uses natural energy and a storage battery. During a self-sustained operation in the event of a power failure, the power supply system continues to power the same house used during grid connection. It is useful for the wiring work of the system that supplies power.

1,901 商用系統、2 電力量計、3,903 自立運転切替え器、21 主幹漏電遮断器、5a,5b,905a,905b 解列用の電磁接触器、6,906 太陽光発電部、7 第1のブレーカ、8,908 燃料電池発電部、9 第2のブレーカ、10,910 蓄電部、11,911 蓄電池、12,212 双方向電力変換装置、13 第3のブレーカ、14,23,24,25 変流器、15 制御装置、16,916 系統電圧監視部、17,917 解列指令部、18,918 住宅用分電盤、19,19−1〜19−k 住宅内負荷、20,20−1〜20−k 分岐用ブレーカ、100,900 電力供給システム、915 蓄電部制御装置、912 双方向コンバータ。   1,901 Commercial system, 2 Electricity meter, 3,903 Self-sustained operation switcher, 21 Main earth leakage circuit breaker, 5a, 5b, 905a, 905b Magnetic contactor for disconnection, 6,906 Solar power generation unit, 7th 1 breaker, 8,908 fuel cell power generation unit, 9 second breaker, 10,910 power storage unit, 11,911 storage battery, 12,212 bidirectional power converter, 13 third breaker, 14, 23, 24, 25 Current transformer, 15 Control device, 16,916 System voltage monitoring unit, 17, 917 Disconnection command unit, 18,918 Residential distribution board, 19, 19-1 to 19-k Residential load, 20, 20 -1 to 20-k Branch breaker, 100,900 power supply system, 915 power storage unit control device, 912 bidirectional converter.

Claims (4)

系統と連系しながら、前記系統から供給される電力と蓄電池に蓄積された電力とを用いて住宅内負荷に電力を供給し、前記系統が停電した場合に、系統連系時に使用中の前記住宅内負荷へ継続的に電力を供給可能である電力供給装置であって、
住宅用分電盤を介して前記系統が接続される第1の端子と、
前記住宅用分電盤を介して前記住宅内負荷が接続される第2の端子と、
前記系統の電圧を監視する系統電圧監視手段と、
停電時に前記第1の端子と前記第2の端子との間を解列する電磁接触器と、
前記蓄電池と接続され、前記蓄電池への充放電を行う双方向電力変換手段と、
前記双方向電力変換手段側から前記第1の端子側への逆潮流を検出する変流器と、
前記系統電圧監視手段の監視結果と前記変流器の検出結果とに基づいて、前記電磁接触器及び前記双方向電力変換手段を制御する制御手段と、
を1つの筐体に収めた
ことを特徴とする電力供給装置。
While interconnecting with the grid, supplying power to the load in the house using the power supplied from the grid and the power stored in the storage battery, and when the grid fails, the power in use during grid interconnection A power supply device capable of continuously supplying power to a load in a house,
A first terminal to which the system is connected via a residential distribution board;
A second terminal to which the residential load is connected via the residential distribution board;
System voltage monitoring means for monitoring the voltage of the system;
An electromagnetic contactor that disconnects between the first terminal and the second terminal during a power failure;
Bidirectional power conversion means connected to the storage battery and charging / discharging the storage battery;
A current transformer for detecting a reverse power flow from the bidirectional power conversion means side to the first terminal side;
Control means for controlling the electromagnetic contactor and the bidirectional power conversion means based on the monitoring result of the system voltage monitoring means and the detection result of the current transformer;
An electric power supply device characterized in that it is housed in a single casing.
太陽光発電部が接続される第3の端子と、
燃料電池発電部が接続される第4の端子と、
をさらに備え、
前記電力供給装置は、前記第3の端子及び前記第4の端子の少なくとも一方を介して入力された電力を、系統連系時において前記系統の電力と前記蓄電池の電力とともに前記住宅内負荷に供給可能であり、停電時において前記住宅内負荷に継続的に電力を供給可能であり、
前記変流器は、前記双方向電力変換手段又は前記第4の端子側から前記第1の端子側への逆潮流を検出する
ことを特徴とする請求項1に記載の電力供給装置。
A third terminal to which the solar power generation unit is connected;
A fourth terminal to which the fuel cell power generation unit is connected;
Further comprising
The power supply device supplies power input via at least one of the third terminal and the fourth terminal to the load in the house together with the power of the system and the power of the storage battery at the time of grid connection. Is possible, and can continuously supply power to the load in the house at the time of a power failure,
The power supply device according to claim 1, wherein the current transformer detects a reverse power flow from the bidirectional power conversion unit or the fourth terminal side to the first terminal side.
主幹漏電遮断器と分岐ブレーカとを有し、前記系統が前記主幹漏電遮断器の電源側に接続され、前記住宅内負荷が前記分岐ブレーカの負荷側に接続される住宅用分電盤と、
前記主幹漏電遮断器の負荷側が第1の端子に接続され、前記分岐ブレーカの電源側が第2の端子に接続される請求項1又は2に記載の電力供給装置と、
前記電力供給装置に接続される蓄電池と、
前記電力供給装置に接続される太陽光発電部と、
を備えたことを特徴とする電力供給システム。
A mains earth leakage circuit breaker and a branch breaker, wherein the grid is connected to the power source side of the main earth leakage circuit breaker, and the residential load panel is connected to the load side of the branch breaker;
The power supply device according to claim 1 or 2, wherein a load side of the main leakage breaker is connected to a first terminal, and a power source side of the branch breaker is connected to a second terminal;
A storage battery connected to the power supply device;
A solar power generation unit connected to the power supply device;
A power supply system comprising:
前記蓄電池は、電気自動車に搭載される蓄電池である
ことを特徴とする請求項3に記載の電力供給システム。
The power storage system according to claim 3, wherein the storage battery is a storage battery mounted on an electric vehicle.
JP2013129042A 2013-06-19 2013-06-19 Power supply apparatus and power supply system Pending JP2015006044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013129042A JP2015006044A (en) 2013-06-19 2013-06-19 Power supply apparatus and power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013129042A JP2015006044A (en) 2013-06-19 2013-06-19 Power supply apparatus and power supply system

Publications (1)

Publication Number Publication Date
JP2015006044A true JP2015006044A (en) 2015-01-08

Family

ID=52301531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013129042A Pending JP2015006044A (en) 2013-06-19 2013-06-19 Power supply apparatus and power supply system

Country Status (1)

Country Link
JP (1) JP2015006044A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016034185A (en) * 2014-07-31 2016-03-10 株式会社デンソー Power supply system
JPWO2016067603A1 (en) * 2014-10-27 2017-04-27 京セラ株式会社 Power supply device, power supply system, and control method for power supply device
JP2017153304A (en) * 2016-02-26 2017-08-31 三菱電機株式会社 Power Conditioner
JP2018029441A (en) * 2016-08-18 2018-02-22 東京瓦斯株式会社 Construction method of power system and power system
JP2024021398A (en) * 2022-08-03 2024-02-16 ニチコン株式会社 Switching unit, distribution board, and method for expanding function of distribution board

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11308774A (en) * 1998-04-23 1999-11-05 Matsushita Electric Works Ltd Linked self-sustaining automatic switcher
JP2000224770A (en) * 1999-02-03 2000-08-11 Misawa Homes Co Ltd Building
JP2011188607A (en) * 2010-03-08 2011-09-22 Seiko Electric Co Ltd Power supply system, power supply method, and control device
JP2011229368A (en) * 2010-04-02 2011-11-10 Omron Corp Control apparatus and control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11308774A (en) * 1998-04-23 1999-11-05 Matsushita Electric Works Ltd Linked self-sustaining automatic switcher
JP2000224770A (en) * 1999-02-03 2000-08-11 Misawa Homes Co Ltd Building
JP2011188607A (en) * 2010-03-08 2011-09-22 Seiko Electric Co Ltd Power supply system, power supply method, and control device
JP2011229368A (en) * 2010-04-02 2011-11-10 Omron Corp Control apparatus and control method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016034185A (en) * 2014-07-31 2016-03-10 株式会社デンソー Power supply system
JPWO2016067603A1 (en) * 2014-10-27 2017-04-27 京セラ株式会社 Power supply device, power supply system, and control method for power supply device
JP2017153304A (en) * 2016-02-26 2017-08-31 三菱電機株式会社 Power Conditioner
JP2018029441A (en) * 2016-08-18 2018-02-22 東京瓦斯株式会社 Construction method of power system and power system
JP2024021398A (en) * 2022-08-03 2024-02-16 ニチコン株式会社 Switching unit, distribution board, and method for expanding function of distribution board

Similar Documents

Publication Publication Date Title
JP6095407B2 (en) Power supply system
JP5497115B2 (en) Power switching device and switchboard
US11316471B2 (en) Manual transfer switch for onsite energy generation and storage systems
EP2451042A1 (en) Power distribution system
EP3370334A1 (en) Power control device, control method for power control device, power control system and control method for power control system
US20170214225A1 (en) Interconnect and metering for renewables, storage and additional loads with electronically controlled disconnect capability for increased functionality
JP2011083089A (en) Dc power distribution system
US12062901B2 (en) Integrated electrical management system and architecture
JP2015006044A (en) Power supply apparatus and power supply system
JP2015220791A (en) Power supply control device
US9461468B2 (en) Transfer switch with neutral disconnect
JP2016214003A (en) Power supply system
WO2014167782A1 (en) Linkage adapter, distribution board, distribution board system
US20080084645A1 (en) Emergency solar power supply
JP2014147278A (en) Power supply system and power storage type power supply device
JP5734481B2 (en) Monitoring device, power switching method and program
JP5652814B2 (en) Distributed power supply system
JP2015220821A (en) Power supply system and power supply control device
CN115280630A (en) Conversion device, retrofit kit and method for supplying power to a load
AU2015285887B2 (en) Residual current protection device and residual current protection system
JP6620346B2 (en) Power supply system
JP2017153304A (en) Power Conditioner
JP7244344B2 (en) Distributed power system
JP2015208204A (en) power supply control device
WO2012133144A1 (en) Switch circuit device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170606