JP2015004374A - Hydraulic driving device for seismic control device, seismic control device and seismic control system - Google Patents

Hydraulic driving device for seismic control device, seismic control device and seismic control system Download PDF

Info

Publication number
JP2015004374A
JP2015004374A JP2013128407A JP2013128407A JP2015004374A JP 2015004374 A JP2015004374 A JP 2015004374A JP 2013128407 A JP2013128407 A JP 2013128407A JP 2013128407 A JP2013128407 A JP 2013128407A JP 2015004374 A JP2015004374 A JP 2015004374A
Authority
JP
Japan
Prior art keywords
fluid
energy
pressure
energy source
drive device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013128407A
Other languages
Japanese (ja)
Other versions
JP6125921B2 (en
JP2015004374A5 (en
Inventor
丹羽 直幹
Naomiki Niwa
直幹 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2013128407A priority Critical patent/JP6125921B2/en
Publication of JP2015004374A publication Critical patent/JP2015004374A/en
Publication of JP2015004374A5 publication Critical patent/JP2015004374A5/ja
Application granted granted Critical
Publication of JP6125921B2 publication Critical patent/JP6125921B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate necessity in an active type seismic control system for always continuously supplying pressure liquid from a pressure accumulator during vibration of a structure and enable a surplus control power to be outputted efficiently further.SOLUTION: This invention relates to a driving device 2 for outputting a control force to be applied to a structure by using pressure liquid got from a source of energy 1 storing pressure liquid. The driving device 2 comprises: a cylinder 21 filled with pressure liquid; a piston 22 reciprocated in the cylinder 21; a servo valve 25 connected between each of cylinder chambers 23 and 24 at both sides holding the piston 22 and the source of energy 1 for controlling a flowing of pressure liquid within the source of energy 1 into each of the cylinder chambers 23 and 24; and a flow rate control valve 26 connected between the cylinder chambers 23 and 24 at both sides so as to control the amount of motion of pressure liquid between the cylinder chambers 23 and 24 at both sides.

Description

本発明は圧液を蓄えたエネルギ源からの圧液を用いて構造物に付与すべき制御力として出力する制震装置用液圧式駆動装置、及びそれを含む制震装置、並びにそれを使用して構造物の振動を抑制する制震システムに関するものである。   The present invention relates to a hydraulic drive device for a vibration control device that outputs pressure as a control force to be applied to a structure using pressure fluid from an energy source that stores pressure fluid, a vibration control device including the same, and the use of the same. The present invention relates to a vibration control system that suppresses vibrations of structures.

例えば地震時等の外力作用時に構造物に入力した振動エネルギを、構造物の振動を抑制する制御力を発生するための流体エネルギとして蓄積し、蓄積された流体エネルギを駆動装置(アクチュエータ)から制御力として構造物に出力するエネルギ変換形式のアクティブ型制震方法(制震システム)は、構造物に蓄積される振動エネルギを自らの振動抑制のために有効に利用できることで、外部からのエネルギの供給を必要とせず、構造物に生ずる振動の程度に応じて振動を抑制できる利点を有する(特許文献1〜3参照)。   For example, vibration energy input to a structure when an external force is applied, such as an earthquake, is stored as fluid energy to generate a control force that suppresses the vibration of the structure, and the stored fluid energy is controlled from a drive device (actuator). The energy conversion type active seismic control method (seismic control system) that outputs to the structure as force can effectively use the vibration energy accumulated in the structure for its own vibration suppression, and can reduce the energy from the outside. There is an advantage that vibration can be suppressed according to the degree of vibration generated in the structure without requiring supply (see Patent Documents 1 to 3).

この形態の制震システムは特許文献3のように振動エネルギを流体エネルギに変換する変換装置(液圧シリンダ)と、流体エネルギを蓄積する、エネルギ源としての蓄圧装置(アキュムレータ)と、流体エネルギを制御力として発生する駆動装置(液圧アクチュエータ)と、制御力の発生時に駆動装置から放出された流体を回収する回収装置(液圧タンク)から構成される。   This type of vibration control system includes a converter (hydraulic cylinder) that converts vibration energy into fluid energy, a pressure accumulator (accumulator) that stores fluid energy, and fluid energy as disclosed in Patent Document 3. A driving device (hydraulic actuator) that is generated as a control force and a recovery device (hydraulic tank) that recovers the fluid released from the driving device when the control force is generated.

変換装置はシリンダ内を往復動するピストンを挟んで区分されたシリンダ室を持つ油圧シリンダ等の液圧シリンダであり、構造物に入力した外力を受けて圧力の高まった圧油等の圧液を蓄圧装置に送る。蓄圧装置は圧液を流体エネルギとして一旦、蓄積した後、駆動装置の制御力発生時に圧液を駆動装置に送り込み、駆動装置が構造物、あるいは構造物内の耐震要素に制御力を付与する。駆動装置はシリンダ内を往復動するピストンを挟んで区分されたシリンダ室を持つ油圧アクチュエータ等の液圧アクチュエータであり、両側のシリンダ室内に供給される圧液量の差に応じた圧力を制御力として発生する。   The conversion device is a hydraulic cylinder such as a hydraulic cylinder having a cylinder chamber that is divided across a piston that reciprocates in the cylinder, and receives pressure fluid such as pressurized oil that has received an external force input to the structure. Send to the accumulator. The pressure accumulator once accumulates the pressure fluid as fluid energy, and then sends the pressure fluid to the drive device when the control force of the drive device is generated, and the drive device applies the control force to the structure or the seismic element in the structure. The drive device is a hydraulic actuator such as a hydraulic actuator that has a cylinder chamber divided across a piston that reciprocates in the cylinder, and controls the pressure according to the difference in the amount of hydraulic fluid supplied to the cylinder chambers on both sides. Occurs as.

図9−(a)はエネルギ源として油圧ポンプを使用した場合の、エネルギ源からの圧液の駆動装置への流れを示す。エネルギ源からの圧液の量はサーボ弁が、駆動装置が発生すべき制御力の大きさに応じて駆動装置の各シリンダ室に振り分ける。   FIG. 9A shows the flow of the hydraulic fluid from the energy source to the driving device when a hydraulic pump is used as the energy source. The amount of pressurized fluid from the energy source is distributed to each cylinder chamber of the drive device by the servo valve according to the magnitude of the control force to be generated by the drive device.

図9−(a)ではサーボ弁の開放時にQ1+Q3の量の圧液が駆動装置に送り込まれ、Q2+Q4の量の圧液が回収装置に回収され、Q1−Q2とQ3−Q4の量の圧液が駆動装置の両側のシリンダ室に供給されている様子を示している。(b)は(a)におけるサーボ弁の詳細を示す。駆動装置の各シリンダ室にはQ1−Q2に応じた圧力Pa1とQ3−Q4に応じた圧力Pa2が発生し、これらの圧力差が制御力として構造物等に付与される。駆動装置が制御力を発生した後の圧液は油圧タンク等の回収装置に回収され、エネルギ源で再利用される。   In FIG. 9- (a), when the servo valve is opened, Q1 + Q3 amount of pressurized fluid is sent to the driving device, Q2 + Q4 amount of pressurized fluid is recovered by the recovery device, and Q1-Q2 and Q3-Q4 amounts of pressurized fluid are collected. Is shown being supplied to the cylinder chambers on both sides of the drive unit. (B) shows the details of the servo valve in (a). A pressure Pa1 corresponding to Q1-Q2 and a pressure Pa2 corresponding to Q3-Q4 are generated in each cylinder chamber of the drive device, and a difference between these pressures is applied to a structure or the like as a control force. The pressurized liquid after the driving device generates the control force is recovered by a recovery device such as a hydraulic tank and reused by the energy source.

特開平11−94013号公報(請求項1、段落0008〜0015、図1〜図3)JP 11-94013 A (Claim 1, paragraphs 0008 to 0015, FIGS. 1 to 3) 特開平11−247489号公報(請求項1、段落0022〜0030、図3、図4)Japanese Patent Laid-Open No. 11-247489 (Claim 1, paragraphs 0022 to 0030, FIGS. 3 and 4) 特開2005−214304号公報(請求項1、段落0023〜0033、図1〜図4)JP-A-2005-214304 (Claim 1, paragraphs 0023 to 0033, FIGS. 1 to 4)

駆動装置が発生する制御力は発生状況で見れば、以下のように2通りの時間帯に区分されるにも拘わらず、上記いずれの例も2通りに区分される時間帯を利用した効率的な制御力の発生方法を提示する段階には至っていない。   Even if the control force generated by the drive device is divided into two time zones as shown below, each of the above examples is efficient using two time zones. It has not yet reached the stage of presenting a method for generating a sufficient control force.

上記アクティブ型の制震システムでは図2−(a)〜(c)に示すように構造物の各層に、または下部構造と上部構造間に設置された駆動装置から、各層、または上部構造の応答速度に比例した制御力を各層、または上部構造に付与する制御(フィードバック制御)が行われる。フィードバック制御の結果を示す指標として、制御力の時刻歴を図3−(a)〜(c)に示す。ここに示すように制御力の発生時期は駆動装置が構造物の振動(揺れ)を打ち消すために構造物を加力している、実線で示す「加振」の時間帯と、「加振」以外の構造物の揺れを抑制するための抵抗力を発生している、破線で示す「吸収」の時間帯に区分されるが、制御力はいずれの時間帯にも発生させられている。(a)、(b)、(c)は制御ゲインGをそれぞれ10、20、30に設定した場合の結果を示す。   In the active type vibration control system, as shown in FIGS. 2A to 2C, the response of each layer or the upper structure is received from each layer of the structure or from a driving device installed between the lower structure and the upper structure. Control (feedback control) is performed in which a control force proportional to the speed is applied to each layer or superstructure. As an index indicating the result of the feedback control, the time history of the control force is shown in FIGS. As shown here, when the control force is generated, the drive unit is applying force to the structure to cancel the vibration (swing) of the structure, the “vibration” time zone indicated by the solid line, and “vibration” Although it is divided into “absorption” time zones indicated by broken lines, which generate a resistance force for suppressing the shaking of structures other than the above, the control force is generated in any time zone. (A), (b), and (c) show the results when the control gain G is set to 10, 20, and 30, respectively.

図3−(a)〜(c)から、制御ゲインが大きくなる程、「加振」の時間帯が多く、制御力の絶対値が大きくなっているが、このことは制御力の付与による高い制震効果を得ようとする程、制御力の発生のためにエネルギ源である蓄圧装置から多くの圧液を供給しなければならないことを意味する。供給と同時に駆動装置で使用された後の圧液の回収装置への排出も伴う。   3 (a) to (c), the greater the control gain, the more “vibration” time zones and the greater the absolute value of the control force. This is higher due to the application of the control force. It means that more pressure fluid must be supplied from the pressure accumulator which is an energy source for the generation of the control force so as to obtain the vibration control effect. Simultaneously with the supply, discharge of the pressurized liquid to the recovery device after being used in the drive device is also accompanied.

制御力を発生することはエネルギ源(蓄圧装置)から多くの圧液の供給を要することであり、このことは「加振」以外の「吸収」の時間帯にも言えることであるから、構造物の振動中は常にエネルギ源から圧液を供給し続けることになる。結果として圧液の供給が追いつかなくなることが発生し得、十分な大きさの制御力が発生せず、制御力の不足による制震効果の低下を招くことも想定され得るが、上記の例にはこのような状況を想定した対策が用意されていない。   Generating a control force requires supplying a large amount of pressurized fluid from an energy source (pressure accumulator), and this is also true for “absorption” time zones other than “vibration”. During the vibration of the object, the pressurized liquid is continuously supplied from the energy source. As a result, the supply of pressurized fluid may not be able to catch up, a sufficiently large control force may not be generated, and it may be assumed that the damping effect is reduced due to a lack of control force. No countermeasures are prepared for this situation.

本発明は上記背景より、上記したエネルギ変換形式とそれ以外のアクティブ型制震システム全般において構造物の振動中に常に蓄圧装置から圧液を供給し続ける必要性を解消し、より効率的で、余裕のある制御力を出力することを可能にする制震装置用液圧式駆動装置及び制震装置並びに制震システムを提案するものである。   From the above background, the present invention eliminates the need to constantly supply pressure fluid from a pressure accumulator during vibration of a structure in the above-described energy conversion type and other active type seismic control systems in general, and is more efficient. The present invention proposes a hydraulic drive device for a vibration control device, a vibration control device, and a vibration control system that make it possible to output a sufficient control force.

請求項1に記載の発明の制震装置用液圧式駆動装置は、圧液を蓄えたエネルギ源からの圧液を用いて構造物に付与すべき制御力を出力する駆動装置であり、
圧液が充填されたシリンダと、このシリンダ内を往復道するピストンと、このピストンを挟んだ両側の各シリンダ室と前記エネルギ源との間に接続され、前記エネルギ源内の圧液の前記各シリンダ室への流入を制御するサーボ弁と、前記両側のシリンダ室間に接続され、前記両側のシリンダ室間の圧液の移動量を制御する流量制御弁とを備えていることを構成要件とする。
The hydraulic drive device for a vibration control device of the invention according to claim 1 is a drive device that outputs a control force to be applied to a structure using a pressure fluid from an energy source in which the pressure fluid is stored,
A cylinder filled with pressure fluid, a piston that reciprocates in the cylinder, and each cylinder chamber on both sides sandwiching the piston and the energy source, and each cylinder of pressure fluid in the energy source And a servo valve that controls inflow into the chamber and a flow rate control valve that is connected between the cylinder chambers on both sides and controls the amount of pressure fluid that moves between the cylinder chambers on both sides. .

駆動装置に流体エネルギを供給するエネルギ源としては、主に振動エネルギから変換された流体エネルギを保持する蓄圧装置(アキュムレータ)が使用されるが、図1に示すように必ずしもその必要はなく、流体(圧油)を高圧状態で駆動装置2に供給できる油圧ポンプ等も使用される。その場合、駆動装置2で使用された流体を回収し、油圧ポンプ(エネルギ源1)に戻すための油圧タンク等の回収装置3が駆動装置2と油圧ポンプとの間に配置され、双方に接続される。この場合のエネルギ源1としての油圧ポンプ等は特許文献1〜3における変換装置(液圧シリンダ)を伴わないため、駆動装置2、または駆動装置2を含む制震装置4はエネルギ変換形式ではない。   As an energy source for supplying fluid energy to the driving device, a pressure accumulator (accumulator) that retains fluid energy converted from vibration energy is mainly used. However, as shown in FIG. A hydraulic pump or the like that can supply (pressure oil) to the drive device 2 in a high pressure state is also used. In that case, a recovery device 3 such as a hydraulic tank for recovering the fluid used in the drive device 2 and returning it to the hydraulic pump (energy source 1) is disposed between the drive device 2 and the hydraulic pump and connected to both. Is done. Since the hydraulic pump or the like as the energy source 1 in this case does not involve the conversion device (hydraulic cylinder) in Patent Documents 1 to 3, the drive device 2 or the vibration control device 4 including the drive device 2 is not an energy conversion type. .

エネルギ源1として蓄圧装置(アキュムレータ)6が使用される場合には、図5に示すように構造物に入力した振動エネルギを流体エネルギに変換する変換装置(液圧シリンダ)5が回収装置3と蓄圧装置6との間に配置され、双方に接続される。変換装置5は構造物に入力した振動エネルギを流体(液体)の圧力(液圧)として発生し、蓄圧装置6に送り出す。この場合の流体エネルギは液圧の上昇した状態にある圧液、あるいは圧液から変換されて蓄えられたエネルギを指す。圧液は主に圧油であり、変換装置(液圧シリンダ)5は主に油圧シリンダである。この場合、エネルギ源1は構造物に入力した振動エネルギから変換された流体エネルギを蓄え、流体エネルギを駆動装置2に圧液として供給するから(請求項2)、駆動装置2、または駆動装置2を含む制震装置4はエネルギ変換形式になる。   When a pressure accumulator (accumulator) 6 is used as the energy source 1, a conversion device (hydraulic cylinder) 5 that converts vibration energy input to the structure into fluid energy as shown in FIG. It arrange | positions between the pressure accumulators 6, and is connected to both. The conversion device 5 generates the vibration energy input to the structure as the pressure (hydraulic pressure) of the fluid (liquid) and sends it to the pressure accumulator 6. The fluid energy in this case indicates the pressure fluid in a state where the fluid pressure has increased, or the energy stored by being converted from the fluid pressure. The pressure fluid is mainly pressure oil, and the converter (hydraulic pressure cylinder) 5 is mainly a hydraulic cylinder. In this case, the energy source 1 stores the fluid energy converted from the vibration energy input to the structure, and supplies the fluid energy to the driving device 2 as pressurized liquid (Claim 2). Therefore, the driving device 2 or the driving device 2 The vibration control device 4 including the energy conversion type.

蓄圧装置6は蓄積した流体エネルギを圧液の放出によりサーボ弁25を経由させて駆動装置2に送り込み、駆動装置2はサーボ弁25で振り分けられた圧液を各シリンダ室23、24内に流入させることにより両シリンダ室23、24間の圧力差を制御力として構造物等に付与する。駆動装置2が制御力の発生のために使用し、圧力の低下した圧液は変換装置5への復帰のために油圧タンクやアキュムレータ等の回収装置3へ放出される。変換装置5と蓄圧装置6と駆動装置2、及び回収装置3は制震システムを構成する単位となる制震装置4を構成する(請求項4)。   The pressure accumulating device 6 sends the accumulated fluid energy to the driving device 2 via the servo valve 25 by releasing the pressure fluid, and the driving device 2 flows the pressure fluid distributed by the servo valve 25 into the cylinder chambers 23 and 24. As a result, the pressure difference between the cylinder chambers 23 and 24 is applied to the structure or the like as a control force. The driving device 2 is used for generating the control force, and the pressurized liquid whose pressure has been reduced is discharged to the recovery device 3 such as a hydraulic tank or an accumulator for return to the conversion device 5. The converter 5, the pressure accumulator 6, the drive device 2, and the recovery device 3 constitute a seismic control device 4 that is a unit constituting the seismic control system.

図5に示す制震装置4は構造物に入力した外力により生じた振動エネルギを変換装置5が流体エネルギに変換し、蓄圧装置6が流体エネルギを蓄積し、駆動装置2が流体エネルギを制御力として発生する点では図9に示す例と同様である。但し、本発明の駆動装置2にはサーボ弁25に流量制御弁26が併設されていることで、蓄圧装置6等のエネルギ源1から駆動装置2の各シリンダ室23、24に流れ込む圧液の量が制御される点で図9の例とは相違する。流量制御弁26はサーボ弁25の流路内に設置される場合と、サーボ弁25の流路とは別に並列する流路に設置される場合がある。流量制御弁26は両シリンダ室23、24間にはサーボ弁25と並列に配置されることで、両シリンダ室23、24間を直接つなぎ、両シリンダ室23、24間の圧液の移動を制御できる状態にする。   In the seismic control device 4 shown in FIG. 5, the vibration energy generated by the external force input to the structure is converted by the conversion device 5 into fluid energy, the pressure accumulating device 6 stores the fluid energy, and the drive device 2 controls the fluid energy. Is similar to the example shown in FIG. However, the drive device 2 of the present invention is provided with the flow rate control valve 26 in addition to the servo valve 25, so that the pressure fluid flowing into the cylinder chambers 23, 24 of the drive device 2 from the energy source 1 such as the pressure accumulator 6 or the like. It differs from the example of FIG. 9 in that the amount is controlled. The flow control valve 26 may be installed in the flow path of the servo valve 25 or may be installed in a flow path parallel to the flow path of the servo valve 25. The flow control valve 26 is arranged between the cylinder chambers 23 and 24 in parallel with the servo valve 25 so as to directly connect the cylinder chambers 23 and 24 to move the hydraulic fluid between the cylinder chambers 23 and 24. Make it controllable.

サーボ弁25はエネルギ源1内の圧液の、駆動装置2の各シリンダ室23、24への流入を制御することで、各シリンダ室23、24内の圧液の圧力を制御し、駆動装置2が発生する制御力の発生時期と大きさを制御するが、流量制御弁26は両側のシリンダ室23、24間の圧液の移動量を制御することで、サーボ弁25との組み合わせにより0の場合を含め、エネルギ源1からの圧液の駆動装置2への供給量を制御する。同時に回収装置3への放出量も制御する。   The servo valve 25 controls the pressure of the hydraulic fluid in each of the cylinder chambers 23 and 24 by controlling the flow of the hydraulic fluid in the energy source 1 into each of the cylinder chambers 23 and 24 of the driving device 2. 2 controls the generation time and magnitude of the control force generated, but the flow rate control valve 26 controls the amount of pressure fluid moved between the cylinder chambers 23, 24 on both sides, and is combined with the servo valve 25. In this case, the supply amount of the pressurized fluid from the energy source 1 to the driving device 2 is controlled. At the same time, the discharge amount to the collection device 3 is controlled.

流量制御弁26が両側のシリンダ室23、24間の圧液の移動量を制御することは、図1に示すように駆動装置2の両側のシリンダ室23、24間に流量Q0を生じさせることであるから、サーボ弁25の開放時にQ1+Q3の量の圧液が駆動装置2に送り込まれるときに、一方のシリンダ室23にQ1−Q2−Q0の流量の圧液が送り込まれ、他方のシリンダ室24にQ1−Q2+Q0の流量の圧液が送り込まれることになる。このとき、駆動装置2の各シリンダ室23、24にはQ1−Q2−Q0に応じた圧力Pa1とQ3−Q4+Q0に応じた圧力Pa2が発生し、これらの圧力差ΔPが制御力Fとして構造物等に付与される。サーボ弁25と流量制御弁26の制御は図1に示すように両側のシリンダ室23、24内の圧力差ΔP、またはピストン22の移動速度V、及び制御力指令Fを用いたコントローラからの指令に基づいて行われる。流量制御弁に流量Q0を生じさせるかどうかは、速度V、または圧力差ΔPと制御力指令Fの積の正負で判定される。   When the flow control valve 26 controls the movement amount of the pressure fluid between the cylinder chambers 23 and 24 on both sides, the flow rate Q0 is generated between the cylinder chambers 23 and 24 on both sides of the driving device 2 as shown in FIG. Therefore, when the amount of pressurized fluid of Q1 + Q3 is sent to the driving device 2 when the servo valve 25 is opened, the pressurized fluid having a flow rate of Q1-Q2-Q0 is sent to one cylinder chamber 23, and the other cylinder chamber is sent. 24 is supplied with the pressurized fluid having a flow rate of Q1-Q2 + Q0. At this time, a pressure Pa1 corresponding to Q1-Q2-Q0 and a pressure Pa2 corresponding to Q3-Q4 + Q0 are generated in the cylinder chambers 23, 24 of the driving device 2, and these pressure differences ΔP serve as a control force F. Etc. As shown in FIG. 1, the servo valve 25 and the flow rate control valve 26 are controlled by a command from the controller using the pressure difference ΔP in the cylinder chambers 23 and 24 on both sides, or the moving speed V of the piston 22 and the control force command F. Based on. Whether the flow rate control valve generates the flow rate Q0 is determined by the sign of the product of the speed V or the pressure difference ΔP and the control force command F.

請求項1では流量制御弁26を用いてエネルギ源1からの圧液の駆動装置2への供給量を制御することで、例えば図3に示す「加振」の時間帯にエネルギ源1からの圧液のサーボ弁25の通過を許容し、「吸収」の時間帯の少なくとも一部の時間帯にはエネルギ源1からの圧液のサーボ弁25の通過を遮断するようにエネルギ源1からの圧液の駆動装置2への供給状態を切り替えることが可能になる(請求項3)。「エネルギ源1からの圧液のサーボ弁25の通過を許容する」とは、駆動装置2がエネルギ源1の圧液(流体エネルギ)を使用して制御力を発生することであり、「エネルギ源1からの圧液のサーボ弁25の通過を遮断する」とは、駆動装置2がエネルギ源1の圧液を使用することなく、駆動装置2に蓄えられている圧液のみを使用して制御力を発生することである。   In the first aspect, the flow rate control valve 26 is used to control the supply amount of the pressurized fluid from the energy source 1 to the driving device 2, for example, during the “vibration” time period shown in FIG. The hydraulic fluid from the energy source 1 is allowed to pass through the servo valve 25 and is blocked from passing through the servo fluid 25 from the energy source 1 in at least a part of the “absorption” time zone. It is possible to switch the supply state of the hydraulic fluid to the driving device 2 (claim 3). “Permit passage of pressurized fluid from the energy source 1 through the servo valve 25” means that the driving device 2 uses the pressurized fluid (fluid energy) of the energy source 1 to generate a control force. “The passage of the hydraulic fluid from the source 1 through the servo valve 25 is blocked” means that the driving device 2 uses only the hydraulic fluid stored in the driving device 2 without using the hydraulic fluid of the energy source 1. It is to generate control force.

このように流量制御弁26が「加振」時と「吸収」時とで圧液の供給状態を切り替えることで、例えば「吸収」時の少なくとも一部の時間帯には両シリンダ室23、24内に存在する圧液のみを使用し、両シリンダ室23、24間の圧液の流出入のみにより駆動装置2に必要な制御力を発生させる操作(制御)が可能になる。「必要な制御力」は「大きさが制御された制御力」を言う。「吸収時の少なくとも一部の時間帯」は「吸収」の時間帯全体を含む。   Thus, by switching the supply state of the pressure fluid between the time of “vibration” and the time of “absorption” of the flow control valve 26, for example, both cylinder chambers 23 and 24 in at least a part of the time zone of “absorption” An operation (control) for generating a necessary control force for the drive device 2 is possible by using only the pressure fluid existing in the cylinder chamber and only the flow of the pressure fluid between the cylinder chambers 23 and 24. “Necessary control force” means “control force whose size is controlled”. “At least part of the time zone during absorption” includes the entire time zone of “absorption”.

結果として常に、すなわち「加振」と「吸収」の間、蓄圧装置6等のエネルギ源1から駆動装置2に圧液を供給し続ける必要性がなくなるため、圧液の供給が追いつかなくなる事態の発生が回避され、例えば「吸収」の時間帯中にエネルギ源1を一時的に休止状態にし、エネルギ源1が保有する流体エネルギを温存することが可能になる。「加振」は制御力が構造物の振動(揺れ)を打ち消す(相殺させる)ための能動的な加力として構造物に付与される時間帯であり、「吸収」は「加振」以外の、制御力が構造物の揺れを抑制するための受動的な抵抗力として構造物に付与される時間帯である。   As a result, there is no need to keep supplying pressure fluid from the energy source 1 such as the pressure accumulator 6 to the drive device 2 at all times, that is, during “vibration” and “absorption”, so that the supply of pressure fluid cannot catch up. Occurrence is avoided and, for example, during the “absorption” time period, the energy source 1 can be temporarily suspended and the fluid energy held by the energy source 1 can be preserved. “Excitation” is a time period that is applied to the structure as an active force for the control force to cancel (cancel) the vibration (swing) of the structure. “Absorption” is other than “Excitation” This is a time zone in which the control force is applied to the structure as a passive resistance force for suppressing the shaking of the structure.

流量制御弁26が蓄圧装置6等のエネルギ源1を一時的に(「吸収」時等に)休止状態にできることで、駆動装置2が制御力を発生する「加振」時と「吸収」時の少なくともいずれかのときにのみ、例えば「加振」時にのみ、エネルギ源1の圧液を使用して制御力を発生すればよくなり、そのときにエネルギ源1が圧液を駆動装置2に放出するときに十分な圧力を保持した状態で駆動装置2に供給することが可能になる。また圧液の供給が追いつかなくなる事態がなくなることで、常に十分な大きさの制御力を発生することが可能になり、制御力の不足による制震効果の低下は回避される。   The flow rate control valve 26 can temporarily stop the energy source 1 such as the pressure accumulator 6 (when “absorbing” or the like), so that the drive device 2 generates control force during “vibration” and “absorption”. Only when at least one of the above, for example, only during “vibration”, it is only necessary to generate the control force using the pressure fluid of the energy source 1, and at that time the energy source 1 sends the pressure fluid to the driving device 2. It becomes possible to supply to the drive device 2 while maintaining a sufficient pressure when discharging. In addition, since the situation where supply of pressurized fluid cannot be caught up is eliminated, it becomes possible to always generate a sufficiently large control force, and a reduction in the vibration control effect due to a lack of control force is avoided.

例えば「加振」の時間帯にのみ、エネルギ源1の圧液を使用して制御力を発生する場合、「吸収」の時間帯には上記のようにエネルギ源1の圧液を使用することなく、両側のシリンダ室23、24内の圧液のみを使用して制御力を発生すればよいことになる。この結果、「吸収」の全時間帯中、エネルギ源1からの圧液のサーボ弁25の通過を遮断する場合には、「吸収」の時間帯中、エネルギ源1を完全な休止状態にすることもできるため、より少ないエネルギ源1の使用でのアクティブ制震が実現されることになる。「吸収」の時間帯にエネルギ源1を休止状態にできることで、「加振」の時間帯にエネルギ源1の流体エネルギを有効に利用することが可能になる。   For example, when the control force is generated using the pressure fluid of the energy source 1 only during the “vibration” time zone, the pressure fluid of the energy source 1 should be used as described above during the “absorption” time zone. Instead, it is only necessary to generate the control force using only the pressure fluid in the cylinder chambers 23 and 24 on both sides. As a result, when blocking the passage of the pressurized fluid from the energy source 1 through the servo valve 25 during the entire “absorption” time period, the energy source 1 is put into a completely dormant state during the “absorption” time period. Therefore, active vibration control with less energy source 1 is realized. Since the energy source 1 can be in a resting state during the “absorption” time period, the fluid energy of the energy source 1 can be effectively used during the “vibration” time period.

「吸収」の時間帯にエネルギ源1を完全な休止状態にしたときに、駆動装置2が使用した流体エネルギ量の、エネルギ源1が保有する全流体エネルギ量に対する割合を図4−(a)〜(c)に示す。ここに示すようにエネルギ源1を完全な休止状態にしながらも、エネルギ源1の全流体エネルギ量に対する、駆動装置2が「吸収」時に使用する利用(出力)エネルギ量の比率が、構造物が振動したときの応答速度と目標速度との相対速度を用いてフィードバック制御した場合に最小でも60%程度以上の大きさを維持していることが分かる。このことは、「吸収」時にはエネルギ源1からの流体エネルギ(圧液)の供給がなくても、駆動装置2がエネルギ源1から供給済みの60%以上の流体エネルギ(圧液)を用いて必要な制御力を発生していることを意味しているから、少ないエネルギ源(エネルギ量)でも十分なアクティブ制震が行えることを裏付けている。   FIG. 4- (a) shows the ratio of the amount of fluid energy used by the driving device 2 to the total amount of fluid energy held by the energy source 1 when the energy source 1 is completely stopped during the "absorption" time period. Shown in (c). As shown here, the ratio of the utilization (output) energy amount used when the drive device 2 “absorbs” to the total fluid energy amount of the energy source 1 while the energy source 1 is in a completely inactive state is It can be seen that when the feedback control is performed using the relative speed between the response speed when vibrating and the target speed, the magnitude of at least about 60% is maintained. This means that even when fluid energy (pressure fluid) is not supplied from the energy source 1 during "absorption", the drive device 2 uses 60% or more of fluid energy (pressure fluid) already supplied from the energy source 1. This means that the necessary control force is generated, which supports that sufficient active vibration control can be performed with a small energy source (energy amount).

図4−(a)は図7、図8に示すように本発明の制震システムが隣接する構造物A、Bから成立する場合に、変換装置5が設置された、例えば免震構造の一方の構造物Aの剛性K1の、駆動装置2が設置された他方の構造物Bの剛性K2に対する比(剛性比N(K1/K2))と制御ゲインGを一定にしたときの使用地震波毎の違いを、(b)は地震波と剛性比Nを一定にしたときの制御ゲインG毎の違いを、(c)は地震波と制御ゲインGを一定にしたときの剛性比N毎の違いを示している。   FIG. 4- (a) shows, for example, one of the seismic isolation structures in which the conversion device 5 is installed when the seismic control system of the present invention is composed of adjacent structures A and B as shown in FIGS. The ratio of the rigidity K1 of the structure A to the rigidity K2 of the other structure B where the driving device 2 is installed (stiffness ratio N (K1 / K2)) and the control gain G are constant for each seismic wave used. (B) shows the difference for each control gain G when the seismic wave and the stiffness ratio N are constant, and (c) shows the difference for each stiffness ratio N when the seismic wave and the control gain G are constant. Yes.

上記した「加振の時間帯にエネルギ源1からの圧液のサーボ弁25の通過を許容し、吸収の時間帯の少なくとも一部の時間帯にエネルギ源1からの圧液のサーボ弁25の通過を遮断するようにエネルギ源1からの圧液の駆動装置2への供給状態を切り替えること」は流量制御弁26が、駆動装置2が構造物を加力している時間帯(加振時)にエネルギ源1からの圧液のサーボ弁25の通過を許容し、駆動装置2が構造物の揺れに抵抗している時間帯(吸収時)の少なくとも一部の時間帯にエネルギ源1からの圧液のサーボ弁25の通過を遮断する設定がされていることである(請求項3)。「吸収時に圧液のサーボ弁25の通過を遮断すること」は「流量制御弁26が吸収時に駆動装置2の各シリンダ室23、24とエネルギ源1との間の圧液の移動を阻止し、両側のシリンダ室23、24間の圧液の移動のみを許容した状態に保持すること」とも言い換えられる。   As described above, “the passage of the hydraulic fluid from the energy source 1 through the servo valve 25 is allowed during the excitation time period, and the servo valve 25 of the hydraulic fluid from the energy source 1 is allowed to pass through at least a part of the absorption time period. “Switching the supply state of the pressurized fluid from the energy source 1 to the driving device 2 so as to cut off the passage” means that the flow rate control valve 26 is in a time zone in which the driving device 2 is applying force to the structure (during excitation) ) Allows passage of pressurized fluid from the energy source 1 through the servo valve 25, and from the energy source 1 during at least a part of the time zone (at the time of absorption) in which the drive device 2 resists shaking of the structure. Is set so as to block the passage of the pressurized fluid through the servo valve 25 (Claim 3). “To block the passage of the pressure fluid through the servo valve 25 at the time of absorption” means that the flow rate control valve 26 prevents the pressure fluid from moving between the cylinder chambers 23 and 24 of the driving device 2 and the energy source 1 at the time of absorption. In other words, it is held in a state in which only the movement of the pressure fluid between the cylinder chambers 23 and 24 on both sides is permitted.

請求項1以下では流量制御弁26を用いてシリンダ室23、24間の圧液の移動量を制御することで、エネルギ源1(蓄圧装置6)からの圧液の駆動装置2のシリンダ室23、24への供給量が制御されるが、前記のように駆動装置2はエネルギ源1からの流体エネルギの供給を受けなくても、必要な制御力を発生することができ、その場合にも、駆動装置2は高いエネルギの使用効率を確保することができる。エネルギ源1からの流体エネルギの、駆動装置2への供給がない状態はエネルギ源1の休止状態であり、この状態はエネルギ源1の流体エネルギを温存している状態であり、「加振」の時間帯に備えた状態であるから、エネルギ源1を最も効率的に利用する状態であると言える。   In the first aspect of the present invention, by controlling the amount of movement of the hydraulic fluid between the cylinder chambers 23 and 24 using the flow control valve 26, the cylinder chamber 23 of the driving device 2 for the hydraulic fluid from the energy source 1 (accumulator 6). , 24, the drive device 2 can generate the necessary control force without receiving the supply of fluid energy from the energy source 1 as described above. The drive device 2 can ensure high energy use efficiency. The state in which the fluid energy from the energy source 1 is not supplied to the driving device 2 is a resting state of the energy source 1, and this state is a state in which the fluid energy of the energy source 1 is preserved. Therefore, it can be said that the energy source 1 is used most efficiently.

従って流量制御弁26が「吸収」時にエネルギ源1(蓄圧装置6)を休止状態にし、「加振」時にエネルギ源1の流体エネルギ(圧液)が駆動装置2に供給される設定がされていれば(請求項3)、流量制御弁26による流体エネルギ(圧液)の制御のみによってエネルギ源1の休止状態と、流体エネルギ(圧液)の供給がされる稼働状態とを切り替えることが可能になるため、エネルギ源1を最も効率的に利用し、駆動装置2を最も効果的に機能させる使用状態が得られる。この場合、駆動装置2のシリンダ21内に存在する圧液のみによって制御力の発生を賄うことができるため、エネルギ量の使用効率が向上し、同時にエネルギ源1を完全な休止状態にすることができることになる。   Therefore, when the flow rate control valve 26 is “absorbed”, the energy source 1 (pressure accumulator 6) is put into a dormant state, and the fluid energy (pressure fluid) of the energy source 1 is supplied to the drive device 2 at “vibration”. (Claim 3), it is possible to switch between the resting state of the energy source 1 and the operating state in which the fluid energy (pressure fluid) is supplied only by controlling the fluid energy (pressure fluid) by the flow control valve 26. Therefore, the use state in which the energy source 1 is used most efficiently and the drive device 2 functions most effectively is obtained. In this case, the control force can be generated only by the pressure fluid present in the cylinder 21 of the drive device 2, so that the energy usage efficiency is improved and at the same time the energy source 1 can be put into a completely dormant state. It will be possible.

液圧式駆動装置2は前記のように変換装置5と蓄圧装置6、及び回収装置3と組み合わせられることで制震装置4を構成し(請求項4)、制震システムを構成する単位として構造物に設置される(請求項5)。   As described above, the hydraulic drive device 2 is combined with the conversion device 5, the pressure accumulating device 6, and the recovery device 3 to constitute the vibration control device 4 (Claim 4), and a structure as a unit constituting the vibration control system. (Claim 5).

液圧式駆動装置2、あるいは制震装置4の設置対象となる構造物の形態は問われないが、例えば図6に示すように隣接する構造物A、Bが対になることで制震システムを構成する場合、隣接する構造物A、Bの内、一方の構造物Aが免震装置12を挟んで下部構造13と上部構造14に上下に区分された免震構造物である場合に、下部構造13と上部構造14との間に変換装置5を設置することをすれば(請求項6)、外力の作用時に上部構造14の下部構造13に対する相対移動量が大きくなるため、変換装置5に入力する振動エネルギと発生すべき流体エネルギをより大きく稼ぐことが可能になる。   The structure of the structure to which the hydraulic drive device 2 or the vibration control device 4 is to be installed is not limited, but for example, as shown in FIG. In the case of configuring, if one of the adjacent structures A and B is a seismic isolation structure vertically divided into a lower structure 13 and an upper structure 14 with the seismic isolation device 12 interposed therebetween, If the conversion device 5 is installed between the structure 13 and the upper structure 14 (Claim 6), the amount of relative movement of the upper structure 14 relative to the lower structure 13 increases when an external force is applied. It becomes possible to earn more vibration energy to be input and fluid energy to be generated.

流量制御弁が駆動装置の両側のシリンダ室間の圧液の移動量を制御することで、サーボ弁との組み合わせにより0の場合を含め、エネルギ源からの圧液の駆動装置への供給量を制御するため、両シリンダ室内に存在する圧液の流出入のみにより駆動装置に必要な制御力を発生させることが可能になる。この結果、常に蓄圧装置等のエネルギ源から圧液を供給し続ける必要がなくなり、エネルギ源を一時的に休止状態にし、エネルギ源が保有する流体エネルギを温存することが可能になる。   The flow rate control valve controls the amount of hydraulic fluid moved between the cylinder chambers on both sides of the drive unit, so that the amount of pressure fluid supplied from the energy source to the drive unit can be reduced. In order to control, it becomes possible to generate the control force required for the driving device only by the inflow and outflow of the pressure fluid existing in the cylinder chambers. As a result, it is not always necessary to continuously supply the pressure liquid from an energy source such as a pressure accumulator, and the energy source can be temporarily suspended to save the fluid energy held by the energy source.

エネルギ源を一時的に休止状態にできることで、例えば「加振」時の時間帯にのみ、エネルギ源の圧液を使用して制御力を発生すればよくなり、「吸収」時の時間帯にはエネルギ源の圧液を使用することなく、両側のシリンダ室内の圧液のみを使用して制御力を発生することが可能になる。結果として「吸収」の時間帯にエネルギ源を完全な休止状態にすることができるため、より少ないエネルギ源の使用でのアクティブ制震を実現することができる。   Since the energy source can be temporarily stopped, for example, it is only necessary to generate the control force using the pressure fluid of the energy source only during the time period of “vibration”, and during the time period of “absorption”. It is possible to generate a control force using only the hydraulic fluid in the cylinder chambers on both sides without using the hydraulic fluid of the energy source. As a result, since the energy source can be brought into a completely dormant state during the “absorption” time period, active vibration control using a smaller energy source can be realized.

本発明の制震装置を構成する液圧式駆動装置(アクチュエータ)の例とエネルギ源及び回収装置との関係を示した概要図である。It is the schematic which showed the relationship between the example of the hydraulic-type drive device (actuator) which comprises the seismic control apparatus of this invention, an energy source, and a collection | recovery apparatus. (a)は図1に示す駆動装置を柱・梁のフレームとフレーム内に架設されたブレースとの間に跨設した様子を示した立面図、(b)は駆動装置を柱・梁のフレームとフレーム内に設置された耐震壁との間に跨設した様子を示した立面図、(c)は駆動装置を免震装置を挟んで上下に区分された上部構造と下部構造間に跨設した様子を示した立面図である。1A is an elevational view showing a state in which the driving device shown in FIG. 1 is straddled between a column / beam frame and a brace installed in the frame, and FIG. (C) is an elevation view showing a state of straddling between the frame and the seismic wall installed in the frame, (c) is between the upper structure and the lower structure divided vertically with the drive device sandwiched by the seismic isolation device It is the elevation which showed a mode that it straddled. 制御ゲインを変化させた場合のフィードバック制御の結果としての制御力の時刻歴を示したグラフであり、(a)〜(c)はそれぞれ制御ゲインが10、20、30の場合である。It is the graph which showed the time history of control power as a result of feedback control at the time of changing control gain, and (a)-(c) is a case where control gain is 10, 20, and 30, respectively. (a)〜(c)は蓄圧装置が発生し得る全エネルギ量に占める「吸収」の時間帯に使用するエネルギ量の比率を示したグラフである。(A)-(c) is the graph which showed the ratio of the energy amount used in the time zone of "absorption" which occupies for the total energy amount which a pressure accumulator can generate | occur | produce. 制震システムの構成例、または制震構造物に設置された制震装置の構成例を示した概要図である。It is the schematic which showed the structural example of the damping system, or the structural example of the damping device installed in the damping structure. 図5に示す制震装置の設置対象としての隣接する構造物と設置状態を示した立面図である。It is the elevation which showed the adjacent structure as an installation object of the damping device shown in FIG. 5, and the installation state. 図6に示す隣接構造物の振動モデルを示した模式図である。It is the schematic diagram which showed the vibration model of the adjacent structure shown in FIG. 図6に示す隣接構造物の内、駆動装置が設置された構造物における変換装置による変換エネルギ量に対する、駆動装置による利用(出力)エネルギ量の比率を示したグラフである。It is the graph which showed the ratio of the utilization (output) energy amount by a drive device with respect to the conversion energy amount by the conversion device in the structure in which the drive device was installed among the adjacent structures shown in FIG. (a)は従来の制震装置を構成する駆動装置の構成例を示した概要図、(b)は(a)における駆動装置のサーボ弁の詳細図である。(A) is the schematic which showed the structural example of the drive device which comprises the conventional seismic control apparatus, (b) is the detail figure of the servo valve of the drive device in (a).

図1は圧油等の流体を高圧状態で駆動装置1に供給する油圧ポンプ、アキュムレータ等のエネルギ源1と、エネルギ源1に接続され、エネルギ源1から供給される流体エネルギを用いて構造物に付与すべき制御力を出力する油圧シリンダ、油圧アクチュエータ等の駆動装置2と、駆動装置2に接続され、駆動装置2で使用された流体を回収し、エネルギ源1に戻すための油圧タンク等の回収装置3との関係を示している。エネルギ源1と駆動装置2、駆動装置2と回収装置3はそれぞれ流路で結ばれる。エネルギ源1は後述の蓄圧装置6を含む。図1に示す駆動装置2を含む各要素はエネルギ変換形式ではないアクティブ型制震システムを構成する。   FIG. 1 shows a structure using an energy source 1 such as a hydraulic pump and an accumulator for supplying a fluid such as pressure oil to a driving device 1 in a high pressure state, and fluid energy connected to the energy source 1 and supplied from the energy source 1. A hydraulic cylinder that outputs a control force to be applied to the motor, a hydraulic actuator, and the like, and a hydraulic tank that is connected to the drive device 2 to collect the fluid used in the drive device 2 and return it to the energy source 1 The relationship with the collection device 3 is shown. The energy source 1 and the drive device 2, and the drive device 2 and the recovery device 3 are each connected by a flow path. The energy source 1 includes a pressure accumulator 6 which will be described later. Each element including the drive device 2 shown in FIG. 1 constitutes an active vibration control system that is not an energy conversion type.

駆動装置2は圧油等の圧液が充填されたシリンダ21と、シリンダ21内を往復道するピストン22と、ピストン22を挟んだ両側の各シリンダ室23、24とエネルギ源1との間に接続され、エネルギ源1内の圧液の各シリンダ室23、24への流入を制御するサーボ弁25と、両側のシリンダ室23、24間に接続され、両側のシリンダ室23、24間の圧液の移動量を制御する流量制御弁26とを備える。   The drive device 2 includes a cylinder 21 filled with pressure fluid such as pressurized oil, a piston 22 that reciprocates in the cylinder 21, and between the cylinder chambers 23 and 24 on both sides of the piston 22 and the energy source 1. Connected between the servo valve 25 that controls the flow of the pressure fluid in the energy source 1 into the cylinder chambers 23 and 24 and the cylinder chambers 23 and 24 on both sides, and the pressure between the cylinder chambers 23 and 24 on both sides. And a flow control valve 26 for controlling the amount of movement of the liquid.

駆動装置2は図1に示すエネルギ源1と回収装置3と組み合わせられた形で上記の通り、エネルギ変換形式ではないアクティブ型制震システムとして図2に示すように構造物、または構造物内の耐震要素10に連結された状態で使用されることもあるが、駆動装置2が使用するエネルギ源1の流体エネルギ(圧液)を効率的に使用する上では、図5に示すように制震装置4を構成した形で構造物内に設置される。   As described above, the drive device 2 is combined with the energy source 1 and the recovery device 3 shown in FIG. 1 as an active type vibration control system that is not an energy conversion type as shown in FIG. Although it may be used in a state where it is connected to the seismic element 10, in order to efficiently use the fluid energy (pressure fluid) of the energy source 1 used by the drive device 2, as shown in FIG. It is installed in the structure in the form of the device 4.

図5に示す制震装置4は構造物に入力した振動エネルギを流体エネルギに変換する油圧シリンダ等の変換装置5と、変換装置5に接続され、変換装置5で変換された流体エネルギを蓄積するアキュムレータ等の蓄圧装置6と、蓄圧装置6に接続され、蓄圧装置6に蓄積された流体エネルギ(圧液)を用いて構造物に付与すべき制御力を出力する駆動装置2と、駆動装置2に接続され、駆動装置2の出力時にシリンダ室23、24から放出された圧液を回収し、変換装置5に復帰させる回収装置3から構成される。回収装置3は変換装置5に接続される。回収装置3には油圧タンク、またはアキュムレータが使用される。蓄圧装置6は図1におけるエネルギ源1に相当する。図5に示す制震装置5はエネルギ変換形式のアクティブ型制震システムを構成する。   The vibration control device 4 shown in FIG. 5 is connected to the conversion device 5 such as a hydraulic cylinder that converts vibration energy input to the structure into fluid energy, and stores the fluid energy converted by the conversion device 5. A pressure accumulator 6 such as an accumulator; a drive device 2 connected to the pressure accumulator 6 and outputting a control force to be applied to the structure using fluid energy (pressure fluid) accumulated in the pressure accumulator 6; And a recovery device 3 that recovers the pressure fluid discharged from the cylinder chambers 23 and 24 at the time of output of the drive device 2 and returns it to the conversion device 5. The collection device 3 is connected to the conversion device 5. The recovery device 3 uses a hydraulic tank or an accumulator. The pressure accumulator 6 corresponds to the energy source 1 in FIG. The vibration control device 5 shown in FIG. 5 constitutes an energy conversion type active vibration control system.

変換装置5は駆動装置2と同様にシリンダ51と、シリンダ51内を往復道するピストン52からなり、シリンダ51内はピストン52を挟んだ両側のシリンダ室53、54に区分され、例えば図6に示すように隣接する構造物A、Bの内、一方の構造物Aの免震装置12を挟んで上下に区分された下部構造13と上部構造14との間に跨った状態で設置される。変換装置5は外力作用時に上部構造14が下部構造13に対して相対移動を生じたときに、一方のシリンダ室53(54)内の液圧が上昇することで、高圧の圧液を発生させ、高圧の状態のまま蓄圧装置6に送り込む。蓄圧装置6は高圧の圧液を流体エネルギとして保存する。構造物Aの振動時にはシリンダ51内をピストン52が往復動するため、高圧の圧液は両側のシリンダ室53、54内に交互に発生する。   The conversion device 5 includes a cylinder 51 and a piston 52 that reciprocates in the cylinder 51 as in the drive device 2, and the cylinder 51 is divided into cylinder chambers 53 and 54 on both sides of the piston 52. For example, FIG. As shown, the adjacent structures A and B are installed in a state straddling between the lower structure 13 and the upper structure 14 that are divided vertically with the seismic isolation device 12 of one structure A interposed therebetween. When the upper structure 14 moves relative to the lower structure 13 when an external force is applied, the conversion device 5 generates a high-pressure pressurized liquid by increasing the hydraulic pressure in one of the cylinder chambers 53 (54). Then, it is fed into the pressure accumulator 6 in a high pressure state. The pressure accumulator 6 stores high-pressure pressure fluid as fluid energy. Since the piston 52 reciprocates in the cylinder 51 when the structure A vibrates, high-pressure fluid is alternately generated in the cylinder chambers 53 and 54 on both sides.

駆動装置2は主に図2−(a)、(b)に示すように構造物内のブレース、耐震壁等の耐震要素10とそれを構面内で包囲するフレーム11との間に跨って設置される場合と、図6の例における変換装置5と同様に(c)に示すように免震装置12を挟んで上下に区分された下部構造13と上部構造14との間に跨って設置される場合がある。いずれの場合も駆動装置2は図3に示す「加振」と「吸収」の各時間帯の内、基本的に「加振」の時間帯にエネルギ源1(蓄圧装置6)内の流体エネルギを用いて耐震要素10、または上部構造14に構造物の揺れを打ち消すための力としての制御力を付与し、「吸収」の時間帯にはエネルギ源1(蓄圧装置6)内の流体エネルギを用いずに、両側のシリンダ室53、54内に存在する圧液を用いて構造物の揺れを抑制するための抵抗力としての制御力を構造物に付与する。   As shown in FIGS. 2 (a) and 2 (b), the drive device 2 straddles between a seismic element 10 such as a brace or a seismic wall in the structure and a frame 11 that surrounds the seismic element 10 within the construction surface. As in the case of the conversion device 5 in the example of FIG. 6 and the case where it is installed, as shown in (c), it is installed across the lower structure 13 and the upper structure 14 that are divided vertically with the seismic isolation device 12 interposed therebetween. May be. In any case, the drive device 2 basically uses the fluid energy in the energy source 1 (pressure accumulator 6) in the “vibration” time zone in the “vibration” and “absorption” time zones shown in FIG. Is used to apply a control force as a force for canceling the shaking of the structure to the seismic element 10 or the upper structure 14, and fluid energy in the energy source 1 (pressure accumulator 6) is applied during the “absorption” time period. Without using, a control force as a resistance force for suppressing the shaking of the structure is applied to the structure using the pressure liquid existing in the cylinder chambers 53 and 54 on both sides.

図5は図6に示す隣接する構造物A、Bの内、一方の構造物Aの振動を利用して他方の構造物Bの揺れを抑制する場合に適した構成を持つ制震装置4の例を示す。図5に示す制震装置4は図1に示すエネルギ源1としての油圧ポンプが蓄圧装置(アキュムレータ)6に置き換わり、図1における回収装置3としての油圧タンクとエネルギ源1との間に変換装置5が介在し、変換装置5が回収装置3からエネルギ源1側へ圧液が流れる状態に双方に接続した形になっている。   FIG. 5 shows a structure of the vibration control device 4 having a configuration suitable for suppressing the vibration of the other structure B using the vibration of one structure A among the adjacent structures A and B shown in FIG. An example is shown. 5 is replaced with a pressure accumulator (accumulator) 6 as the energy source 1 shown in FIG. 1, and a converter between the hydraulic tank as the recovery device 3 and the energy source 1 in FIG. 5 is interposed, and the converter 5 is connected to both sides so that the pressurized liquid flows from the recovery device 3 to the energy source 1 side.

図6は隣接する構造物A、Bの内の一方の構造物Aが免震装置12に支持された免震構造物であり、他方の構造物Bが各層内にブレース等の耐震要素10が配置された非免震構造物である場合に、一方の構造物Aの、相対変位量が大きくなる基礎等の下部構造13と上部構造14との間に変換装置5を跨設し、他方の構造物Bの各層の耐震要素10とこれを包囲するフレーム11との間に駆動装置2を跨設した場合の例を示す。変換装置5と駆動装置2との間に配置される蓄圧装置6は変換装置5と駆動装置2を結ぶ線上の任意の位置に設置される。変換装置5と蓄圧装置6、蓄圧装置6と各層の駆動装置2とは流路で結ばれ、各駆動装置2と変換装置5とも流路で結ばれ、各駆動装置2と変換装置5の間に回収装置3が接続される。   FIG. 6 shows a seismic isolation structure in which one of the adjacent structures A and B is supported by the seismic isolation device 12, and the other structure B has seismic elements 10 such as braces in each layer. When the non-base-isolated structure is arranged, the conversion device 5 is straddled between the lower structure 13 and the upper structure 14 such as a foundation in which the relative displacement amount of one structure A becomes large, and the other structure A An example in which the drive device 2 is straddled between the seismic element 10 of each layer of the structure B and the frame 11 surrounding the seismic element 10 is shown. The pressure accumulating device 6 disposed between the conversion device 5 and the drive device 2 is installed at an arbitrary position on a line connecting the conversion device 5 and the drive device 2. The conversion device 5 and the pressure accumulating device 6, and the pressure accumulation device 6 and the driving device 2 of each layer are connected by a flow path, and each driving device 2 and the conversion device 5 are also connected by a flow path, and between each driving device 2 and the converting device 5. The recovery device 3 is connected to

図6の例では外力作用時に免震構造物である一方の構造物Aの上部構造14が下部構造13に対して相対移動するため、変換装置5の両シリンダ室53、54内では相対移動量に応じた圧液が形成され、一定の圧力を超えた圧液が蓄圧装置6に送り込まれる。蓄圧装置6内では圧液が他の形の流体エネルギとして蓄積され、保存される。   In the example of FIG. 6, the upper structure 14 of one structure A that is a seismic isolation structure is moved relative to the lower structure 13 when an external force is applied. The pressure fluid corresponding to the pressure is formed, and the pressure fluid exceeding a certain pressure is sent to the pressure accumulator 6. In the pressure accumulator 6, the pressure fluid is stored and stored as other forms of fluid energy.

駆動装置2は蓄圧装置6内に保存された流体エネルギの使用を節約するために、上記のように主に制御力が構造物Bの振動を打ち消すための能動的な加力として構造物Bに付与される「加振」の時間帯に蓄圧装置6の流体エネルギ(圧液)を使用して制御力を発生する。制御力が構造物Bの揺れを抑制するための受動的な抵抗力として付与される「吸収」の時間帯には蓄圧装置6の流体エネルギ(圧液)を使用せず、駆動装置2のシリンダ21内に存在する圧液のみの使用により制御力を発生する。   In order to save the use of fluid energy stored in the pressure accumulator 6, the driving device 2 mainly applies a force to the structure B as an active force for the control force to cancel the vibration of the structure B as described above. The control force is generated using the fluid energy (pressure fluid) of the pressure accumulator 6 during the applied “vibration” time period. In the “absorption” time zone in which the control force is applied as a passive resistance force for suppressing the shaking of the structure B, the fluid energy (pressure fluid) of the pressure accumulating device 6 is not used and the cylinder of the driving device 2 is used. The control force is generated by using only the pressure fluid existing in 21.

駆動装置2が「加振」時のみ蓄圧装置6の流体エネルギを使用して制御力を発生し、「吸収」時に蓄圧装置6の流体エネルギを使用せずに制御力を発生する機構は、「加振」時にエネルギ源1からの圧液のサーボ弁25の通過を許容し、「吸収」時の少なくとも一部の時間帯にエネルギ源1からの圧液のサーボ弁25の通過を遮断する設定がされた流量制御弁26によって制御される。流量制御弁26が圧液のサーボ弁25の通過を遮断した状態では、流量制御弁26は両側のシリンダ室23、24内の圧液(圧油)を相互に流出入させることにより駆動装置2が発生すべき制御力に必要な圧液を賄う。   The mechanism that generates the control force using the fluid energy of the pressure accumulator 6 only when the drive device 2 is “vibrated” and generates the control force without using the fluid energy of the pressure accumulator 6 when “absorbed” is “ Setting that allows passage of the servo fluid 25 from the energy source 1 during the “vibration” and blocks passage of the servo valve 25 from the energy source 1 during at least part of the time period during the “absorption”. The flow rate control valve 26 is controlled. In a state where the flow control valve 26 blocks the passage of the pressure fluid through the servo valve 25, the flow control valve 26 causes the pressure fluid (pressure oil) in the cylinder chambers 23, 24 on both sides to flow in and out of the drive device 2. Covers the pressure fluid necessary for the control force to be generated.

図6に示す隣接する構造物A、Bを1質点系モデルに等価置換した図7に示す振動モデルを用いた解析により図6に示す構造物A、Bに設置された制震装置4による制震効果を検討する。図7中、Cは変換装置5(液圧シリンダ)を、Fdは駆動装置2(液圧アクチュエータ)を示す。この振動モデルにおける変換装置5と駆動装置2にそれぞれ図5に示す油圧ダンパ(変換装置5)と油圧アクチュエータ(駆動装置2)を用い、最大速度を50kineに規準化した八戸(ha)地震波を入力した応答結果を図8に示す。   Analysis by using the vibration model shown in FIG. 7 in which the adjacent structures A and B shown in FIG. 6 are equivalently replaced with a one-mass system model is used to control the vibration control device 4 installed in the structures A and B shown in FIG. Examine the seismic effect. In FIG. 7, C indicates the conversion device 5 (hydraulic cylinder), and Fd indicates the drive device 2 (hydraulic actuator). In this vibration model, the Hachinohe (ha) seismic wave with the maximum speed normalized to 50 kine is input to the converter 5 and the drive device 2 using the hydraulic damper (converter 5) and the hydraulic actuator (drive device 2) shown in FIG. The response results are shown in FIG.

図8は構造物Bに対し、構造物Bが振動したときの応答速度と目標速度との相対速度を用いてフィードバック制御した場合の変換装置5による変換エネルギ量の、駆動装置2の「加振」時の使用エネルギ量に対する比率(エネルギ収支)を制御ゲイン毎に示している。エネルギ収支が1より大きいことは、駆動装置2が使用する全エネルギを変換装置5が発生し、蓄圧装置6が蓄積した流体エネルギ(圧液)内で賄えることを意味する。   FIG. 8 shows the “vibration” of the drive device 2 of the conversion energy amount by the conversion device 5 when feedback control is performed on the structure B using the relative speed between the response speed and the target speed when the structure B vibrates. The ratio (energy balance) to the amount of energy used is shown for each control gain. When the energy balance is larger than 1, it means that the converter 5 generates all the energy used by the driving device 2 and can cover the fluid energy (pressure fluid) accumulated by the pressure accumulating device 6.

図8中、横軸は制御を示すが、制御ゲインが大きい程、エネルギ収支は低下する傾向がある。但し、図9に示す従来のサーボ弁のみを備える駆動装置を使用した場合の制御ゲインとエネルギ収支の関係を破線で示しているが、本発明の流量制御弁26を備えた駆動装置2はいずれの制御ゲインでも従来の駆動装置の2倍以上のエネルギ収支を得ていることが分かる。   In FIG. 8, the horizontal axis indicates control, but the energy balance tends to decrease as the control gain increases. However, the relationship between the control gain and the energy balance in the case of using the drive device having only the conventional servo valve shown in FIG. 9 is indicated by a broken line, but the drive device 2 having the flow control valve 26 of the present invention is any It can be seen that an energy balance more than twice that of the conventional drive device is obtained even with a control gain of.

1……エネルギ源、
2……駆動装置、21……シリンダ、22……ピストン、23、24……シリンダ室、25……サーボ弁、26……流量制御弁、
3……回収装置、
4……制震装置、
5……変換装置、51……シリンダ、52……ピストン、53、54……シリンダ室、
6……蓄圧装置、
10……耐震要素、11……フレーム、
12……免震装置、13……下部構造、14……上部構造。
1 …… Energy source,
2 ... Drive device, 21 ... Cylinder, 22 ... Piston, 23, 24 ... Cylinder chamber, 25 ... Servo valve, 26 ... Flow control valve,
3 …… Recovery device,
4 …… Damping device,
5 ... Conversion device, 51 ... Cylinder, 52 ... Piston, 53, 54 ... Cylinder chamber,
6 …… Accumulator,
10 ... seismic element, 11 ... frame,
12 ... Seismic isolation device, 13 ... Substructure, 14 ... Superstructure.

Claims (6)

圧液を蓄えたエネルギ源からの圧液を用いて構造物に付与すべき制御力を出力する駆動装置であり、
圧液が充填されたシリンダと、このシリンダ内を往復道するピストンと、このピストンを挟んだ両側の各シリンダ室と前記エネルギ源との間に接続され、前記エネルギ源内の圧液の、前記各シリンダ室への流入を制御するサーボ弁と、前記両側のシリンダ室間に接続され、前記両側のシリンダ室間の圧液の移動量を制御する流量制御弁とを備えていることを特徴とする制震装置用液圧式駆動装置。
A drive device that outputs a control force to be applied to a structure using pressure fluid from an energy source that stores pressure fluid,
A cylinder filled with pressure fluid, a piston that reciprocates in the cylinder, each cylinder chamber on both sides of the piston, and the energy source connected between the energy sources, and each of the pressure fluid in the energy source A servo valve that controls inflow into the cylinder chamber, and a flow rate control valve that is connected between the cylinder chambers on both sides and controls the amount of pressure fluid that moves between the cylinder chambers on both sides. Hydraulic drive unit for vibration control device.
前記エネルギ源は前記構造物に入力した振動エネルギから変換された流体エネルギを蓄え、この流体エネルギを前記駆動装置に圧液として供給することを特徴とする請求項1に記載の制震装置用液圧式駆動装置。   2. The vibration control device liquid according to claim 1, wherein the energy source stores fluid energy converted from vibration energy input to the structure, and supplies the fluid energy as pressure fluid to the drive device. Pressure drive device. 前記流量制御弁は、前記駆動装置が前記構造物を加力している時間帯に前記エネルギ源からの圧液のサーボ弁の通過を許容し、前記駆動装置が前記構造物の揺れに抵抗している時間帯の少なくとも一部の時間帯に前記エネルギ源からの圧液のサーボ弁の通過を遮断する設定がされていることを特徴とする請求項1、もしくは請求項2に記載の制震装置用液圧式駆動装置。   The flow rate control valve allows passage of pressurized fluid from the energy source through the servo valve during a time period when the drive device is applying force to the structure, and the drive device resists shaking of the structure. 3. The vibration control according to claim 1, wherein a setting is made to block passage of the hydraulic fluid from the energy source through the servo valve during at least a part of the time zone. Hydraulic drive device for equipment. 構造物に入力した振動エネルギを流体エネルギに変換する変換装置と、この変換装置で変換された流体エネルギを蓄積する蓄圧装置と、この蓄圧装置に蓄積された流体エネルギを用いて前記構造物に付与すべき制御力を出力する請求項2、もしくは請求項3に記載の液圧式駆動装置と、前記駆動装置の出力時に前記シリンダ室から放出された圧液を回収し、前記変換装置に復帰させる回収装置とを備えていることを特徴とする制震装置。   A conversion device that converts vibration energy input to the structure into fluid energy, a pressure storage device that stores the fluid energy converted by the conversion device, and the fluid energy stored in the pressure storage device is applied to the structure. The hydraulic drive device according to claim 2 or 3 that outputs a control force to be collected, and a recovery device that recovers the pressure fluid discharged from the cylinder chamber at the time of output of the drive device and returns the converted fluid to the conversion device. And a vibration control device. 請求項4に記載の制震装置4を備えた制震システム。   A vibration control system comprising the vibration control device 4 according to claim 4. 前記制震装置を構成する前記変換装置は隣接する構造物の内、一方の構造物の免震装置を挟んで上下に区分された下部構造と上部構造との間に設置され、前記駆動装置は他方の構造物内に設置されていることを特徴とする請求項5に記載の制震システム。
The conversion device constituting the seismic control device is installed between a lower structure and an upper structure, which are divided vertically with the seismic isolation device of one structure among the adjacent structures, and the drive device is The vibration control system according to claim 5, wherein the vibration control system is installed in the other structure.
JP2013128407A 2013-06-19 2013-06-19 Hydraulic drive device for vibration control device, vibration control device and vibration control system Expired - Fee Related JP6125921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013128407A JP6125921B2 (en) 2013-06-19 2013-06-19 Hydraulic drive device for vibration control device, vibration control device and vibration control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013128407A JP6125921B2 (en) 2013-06-19 2013-06-19 Hydraulic drive device for vibration control device, vibration control device and vibration control system

Publications (3)

Publication Number Publication Date
JP2015004374A true JP2015004374A (en) 2015-01-08
JP2015004374A5 JP2015004374A5 (en) 2016-03-24
JP6125921B2 JP6125921B2 (en) 2017-05-10

Family

ID=52300450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013128407A Expired - Fee Related JP6125921B2 (en) 2013-06-19 2013-06-19 Hydraulic drive device for vibration control device, vibration control device and vibration control system

Country Status (1)

Country Link
JP (1) JP6125921B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019019646A (en) * 2017-07-21 2019-02-07 鹿島建設株式会社 Vibration control system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06146653A (en) * 1992-11-10 1994-05-27 Hitachi Ltd Hybrid vibration control device for structure
JPH09324552A (en) * 1996-06-04 1997-12-16 Kajima Corp Energy storage type earthquake-control structure
JP2000257666A (en) * 1999-01-08 2000-09-19 Takenaka Komuten Co Ltd Multifunctional damping device
JP2005214304A (en) * 2004-01-29 2005-08-11 Kajima Corp Energy conversion and supply system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06146653A (en) * 1992-11-10 1994-05-27 Hitachi Ltd Hybrid vibration control device for structure
JPH09324552A (en) * 1996-06-04 1997-12-16 Kajima Corp Energy storage type earthquake-control structure
JP2000257666A (en) * 1999-01-08 2000-09-19 Takenaka Komuten Co Ltd Multifunctional damping device
JP2005214304A (en) * 2004-01-29 2005-08-11 Kajima Corp Energy conversion and supply system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019019646A (en) * 2017-07-21 2019-02-07 鹿島建設株式会社 Vibration control system

Also Published As

Publication number Publication date
JP6125921B2 (en) 2017-05-10

Similar Documents

Publication Publication Date Title
CN103216022B (en) A kind of viscoelastic-mild steel shear-type combined energy comsuming device
US20150192114A1 (en) Energy-Recuperating Fluid Vibration Damper
JP2014047876A (en) Actuator
JP6385121B2 (en) Rotating mass damper
JP6125921B2 (en) Hydraulic drive device for vibration control device, vibration control device and vibration control system
CN104674976A (en) Tuned mass damper
JPH01119377A (en) Vibration-producing apparatus
CN102912881A (en) Adjustable fluid viscous damper
KR20130090068A (en) Hybrid vibration control device
EA038406B1 (en) Tamping unit for tamping sleepers of a track
CN103216021B (en) Pulse-type vertical earthquake isolating equipment
CN203238805U (en) Viscoelastic-mild steel shear-type combined energy consumer
JP4572542B2 (en) Energy conversion and supply system
CN107061605A (en) The inertia forcer of piezoelectric stack actuator driving
JP6093284B2 (en) Energy conversion type active absolute seismic control system
JP6491085B2 (en) Energy storage active vibration control system
JP2014040129A (en) Active damper
JP6647904B2 (en) Energy conversion type active vibration control device with fail-safe function
JP2015169317A (en) Vibration reduction device and base isolation structure
JP6510326B2 (en) Energy conversion type active control system
JP2015203452A (en) Vibration reduction device and base isolation structure
JP2019124334A (en) Active semiactive changeover type seismic isolation device
JP6084920B2 (en) Deformation frame straightening device
JP2015004374A5 (en)
JP2021167619A (en) Cylinder device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170406

R150 Certificate of patent or registration of utility model

Ref document number: 6125921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees