JP2015003307A - Cleaning liquid regeneration method and device - Google Patents

Cleaning liquid regeneration method and device Download PDF

Info

Publication number
JP2015003307A
JP2015003307A JP2013130800A JP2013130800A JP2015003307A JP 2015003307 A JP2015003307 A JP 2015003307A JP 2013130800 A JP2013130800 A JP 2013130800A JP 2013130800 A JP2013130800 A JP 2013130800A JP 2015003307 A JP2015003307 A JP 2015003307A
Authority
JP
Japan
Prior art keywords
cleaning liquid
water
evaporation tank
pressure
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013130800A
Other languages
Japanese (ja)
Other versions
JP6196077B2 (en
JP2015003307A5 (en
Inventor
郁男 石井
Ikuo Ishii
郁男 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Act Five Co Ltd
Original Assignee
Act Five Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Act Five Co Ltd filed Critical Act Five Co Ltd
Priority to JP2013130800A priority Critical patent/JP6196077B2/en
Publication of JP2015003307A publication Critical patent/JP2015003307A/en
Publication of JP2015003307A5 publication Critical patent/JP2015003307A5/ja
Application granted granted Critical
Publication of JP6196077B2 publication Critical patent/JP6196077B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a cleaning liquid regeneration method which can separate water contaminated in the cleaning liquid from the cleaning liquid with smaller heat energy.SOLUTION: A cleaning liquid to which water is contaminated is stored in an evaporation tank 11. The inside of the evaporation tank 11 is decompressed to pressure in which water boils and the component of the cleaning liquid does not boil, and in an upper space of the evaporation tank 11, a cooling body 12 having temperature higher than the boiling point of the water at the pressure is provided, for discharging gas phase from the evaporation tank 11. Thereby without boiling the cleaning liquid component, water can be separated from the cleaning liquid. Therefore, heat energy consumption is suppressed.

Description

本発明は、水溶性切削剤等、水溶性の異物が付着したワークを洗浄する際に用いられる洗浄液に混入した水分を除去することにより、洗浄液を再生する方法及び装置に関する。   The present invention relates to a method and an apparatus for regenerating a cleaning liquid by removing moisture mixed in a cleaning liquid used when cleaning a workpiece to which a water-soluble foreign matter adheres, such as a water-soluble cutting agent.

金属等の切削加工を行う際に摩擦の抑制と冷却のために用いられる切削剤は、かつては油性のものが用いられていたが、近年では、主成分である水に添加剤が添加された水溶性切削剤が、冷却効率がより高いという理由によって主流になっている。このような水溶性切削剤が付着したワークは、一般的に、アルコール性溶剤やグリコールエーテル系溶剤等の水溶性洗浄液や、炭化水素溶液のようにそれ自体は非水溶性である溶剤に界面活性剤を添加することによって水溶性異物を除去できるようにした洗浄液を用いて洗浄される。   In the past, oil-based cutting agents used for friction suppression and cooling when cutting metal or the like have been used, but in recent years, additives have been added to the main component of water. Water-soluble cutting agents have become mainstream because of their higher cooling efficiency. In general, a workpiece with such a water-soluble cutting agent is surface-active with a water-soluble cleaning solution such as an alcoholic solvent or a glycol ether solvent, or a solvent that is itself water-insoluble such as a hydrocarbon solution. Cleaning is performed using a cleaning liquid that can remove water-soluble foreign matters by adding an agent.

同じ洗浄液を用いて上述の洗浄を繰り返し行うと、洗浄液中の水溶性切削剤の量が徐々に増加し、洗浄能力が低下してゆく。そのため、従来は多くの場合、一定回数使用する毎に洗浄液を新品と交換するという使い捨てを行っていたが、そうすると洗浄液の消費量が多くなってしまう。実際には、水溶性切削剤の成分の大半を水が占めているため、使用後の洗浄液に混入した水溶性切削剤のうち、水さえ除去できれば、洗浄液の洗浄能力が実用上十分に回復し、洗浄液を再利用することができる。   When the above-described cleaning is repeatedly performed using the same cleaning liquid, the amount of the water-soluble cutting agent in the cleaning liquid gradually increases and the cleaning ability decreases. Therefore, in the past, in many cases, a disposable was used in which the cleaning liquid was replaced with a new one every time it was used a certain number of times. However, this would increase the consumption of the cleaning liquid. Actually, water accounts for most of the components of the water-soluble cutting agent, so if the water-soluble cutting agent mixed in the cleaning liquid after use can remove even water, the cleaning ability of the cleaning liquid will be sufficiently restored to practical use. The cleaning liquid can be reused.

特許文献1には、このような使用後の洗浄液から水を除去する装置が記載されている。この装置では、水が混入した洗浄液を蒸留釜に投入し、所定の圧力に減圧すると共に、当該圧力において水の沸点及び洗浄液の成分(以下、純粋な洗浄液の成分を「洗浄液成分」と呼び、水が混合した洗浄液と区別する。)の沸点よりも高い温度に加熱する。これにより、水及び洗浄液成分が共に気化し、両者が混合した気体が生成される。この気体を、内部を減圧した第1ガス冷却器内に導入し、その圧力において水の沸点よりも高く且つ洗浄液成分の沸点よりも低い温度(一般に、洗浄液成分の沸点は水の沸点よりも高いことから、このようなことが可能となる。)に冷却する。これにより、水は気体(水蒸気)の状態のままで、洗浄液成分のみが液化して回収される。こうして水が除去された洗浄液が得られ、再利用に供することができる。残った水蒸気は、第2ガス冷却器内において沸点以下の温度に冷却することにより液化されて水になり、廃棄される。   Patent Document 1 describes an apparatus for removing water from such a used cleaning liquid. In this apparatus, the cleaning liquid mixed with water is put into a distillation kettle and depressurized to a predetermined pressure. At the pressure, the boiling point of water and the components of the cleaning liquid (hereinafter, the components of the pure cleaning liquid are called “cleaning liquid components” Distinguish from cleaning liquid mixed with water.) Heat to a temperature higher than the boiling point. Thereby, both the water and the cleaning liquid components are vaporized, and a gas in which both are mixed is generated. This gas is introduced into a first gas cooler whose inside is depressurized, and at that pressure, the temperature is higher than the boiling point of water and lower than the boiling point of the cleaning liquid component (in general, the boiling point of the cleaning liquid component is higher than the boiling point of water. Therefore, this is possible.) Thereby, only the cleaning liquid component is liquefied and recovered while the water remains in a gas (water vapor) state. Thus, a cleaning liquid from which water has been removed is obtained and can be reused. The remaining water vapor is liquefied by cooling to a temperature below the boiling point in the second gas cooler, becomes water, and is discarded.

特開2009-172468号公報JP 2009-172468

特許文献1の装置では、蒸留釜において水及び洗浄液成分の双方の沸点よりも温度を高くすることにより、両者ともに蒸発(気化)させるため、気化潜熱も含め、大きな熱エネルギーが必要となる。また、蒸留釜で生成される気体には、処理前の洗浄液と同様に洗浄液成分の方が水よりも圧倒的に多く含まれている。そのため、第1ガス冷却器内において洗浄液成分を完全には液化させることは困難であり、洗浄液成分の気体の一部が水蒸気に混入したまま第2ガス冷却器に導入されてしまう。そのため、洗浄液の一部が無駄になるうえに、最終的に廃棄される水の中に当該成分が混入してしまう。   In the apparatus of Patent Document 1, since both are evaporated (vaporized) by making the temperature higher than the boiling points of both the water and the cleaning liquid components in the distillation pot, a large amount of heat energy including latent heat of vaporization is required. In addition, the gas generated in the distillation kettle contains an overwhelmingly larger amount of cleaning liquid components than water as in the case of the cleaning liquid before treatment. For this reason, it is difficult to completely liquefy the cleaning liquid component in the first gas cooler, and a part of the cleaning liquid component gas is introduced into the second gas cooler while being mixed in the water vapor. Therefore, a part of the cleaning liquid is wasted and the component is mixed into the water finally discarded.

本発明が解決しようとする課題は、洗浄液に混入した水を、より小さい熱エネルギー且つより高い精度で該洗浄液から分離することができる、洗浄液再生方法及び装置を提供することである。   The problem to be solved by the present invention is to provide a cleaning liquid regeneration method and apparatus capable of separating water mixed in the cleaning liquid from the cleaning liquid with less thermal energy and higher accuracy.

上記課題を解決するために成された本発明に係る洗浄液再生方法は、
水が混入した洗浄液を蒸発槽内に貯留し、
前記蒸発槽内を、水が沸騰し且つ前記洗浄液の成分が沸騰しない圧力に減圧し、
前記蒸発槽内の上部空間に、前記圧力における水の沸点よりも高い温度の冷却体を設け、
前記蒸発槽から気体を排出する
ことを特徴とする。
The cleaning liquid regeneration method according to the present invention made to solve the above problems is as follows.
Store the cleaning liquid mixed with water in the evaporation tank,
The inside of the evaporation tank is depressurized to a pressure at which water boils and the components of the cleaning liquid do not boil,
In the upper space in the evaporation tank, a cooling body having a temperature higher than the boiling point of water at the pressure is provided,
Gas is discharged from the evaporation tank.

本発明の方法によれば、上記のように蒸発槽内を減圧することにより、水は沸騰するが洗浄液成分は沸騰しないため、従来の方法よりも低いエネルギーで洗浄液から水を分離(気化)することができる。また、洗浄液成分は飽和蒸気圧に達するまで気化するものの沸騰しないため、洗浄液が気化した気体の成分の大半を水が占めることとなる。そのため、従来の方法よりも高い精度で洗浄液から水を分離することができる。   According to the method of the present invention, by depressurizing the inside of the evaporation tank as described above, water is boiled but the cleaning liquid component is not boiled. Therefore, water is separated (vaporized) from the cleaning liquid with lower energy than the conventional method. be able to. In addition, since the cleaning liquid component evaporates until reaching the saturated vapor pressure but does not boil, water accounts for most of the gas components evaporated by the cleaning liquid. Therefore, water can be separated from the cleaning liquid with higher accuracy than the conventional method.

洗浄液が気化した気体は、蒸発槽内の上部空間において、冷却体により冷却される。ここで、冷却体の温度が(もちろん当該気体の温度よりは低いが)水の沸点よりも高いため、当該気体中の水はほとんど液化することなく、洗浄液成分が液化する。これにより、当該気体中の水はそのまま蒸発槽から排出され、液化した洗浄液成分は、蒸発槽内に貯留された洗浄液中に戻るため、無駄になることがない。   The gas vaporized by the cleaning liquid is cooled by the cooling body in the upper space in the evaporation tank. Here, since the temperature of the cooling body is higher than the boiling point of water (although lower than the temperature of the gas), the water in the gas hardly liquefies and the cleaning liquid component liquefies. Thereby, the water in the gas is discharged from the evaporation tank as it is, and the liquefied cleaning liquid component returns to the cleaning liquid stored in the evaporation tank, so that it is not wasted.

本発明に係る洗浄液再生方法では、蒸発槽内の洗浄液を加熱する必要はない。このように加熱を行わないことにより、エネルギーの消費量を抑えることができる。もっとも、水の気化を促進するために、洗浄液成分が沸騰しない温度範囲内で洗浄液を加熱してもよい。   In the cleaning liquid regeneration method according to the present invention, it is not necessary to heat the cleaning liquid in the evaporation tank. Thus, energy consumption can be suppressed by not performing heating. But in order to accelerate | stimulate vaporization of water, you may heat a washing | cleaning liquid within the temperature range in which a washing | cleaning-liquid component does not boil.

本発明に係る洗浄液再生方法において、蒸発槽から排出された気体をさらに、水の沸点よりも高い温度範囲内で冷却する2次冷却を行ってもよい。これにより、当該気体中にわずかに残留する洗浄液成分を除去することができる。   In the cleaning liquid regeneration method according to the present invention, secondary cooling may be performed in which the gas discharged from the evaporation tank is further cooled within a temperature range higher than the boiling point of water. Thereby, it is possible to remove a cleaning liquid component slightly remaining in the gas.

本発明に係る洗浄液再生方法において、前記気体が前記冷却体で冷却されることにより生成される液体中における水の含有率を検出し、該検出結果に基づいて水の含有量を減少させるように前記冷却体の温度を調整する操作を行ってもよい。水の含有率は、例えば当該液体の比重や屈折率を測定することにより求めることができる。   In the cleaning liquid regeneration method according to the present invention, the water content in the liquid generated by cooling the gas with the cooling body is detected, and the water content is reduced based on the detection result. You may perform operation which adjusts the temperature of the said cooling body. The water content can be determined, for example, by measuring the specific gravity or refractive index of the liquid.

本発明に係る洗浄液再生装置は、
a) 水が混入した洗浄液を貯留する蒸発槽と、
b) 前記蒸発槽内を、水が沸騰し且つ前記洗浄液の成分が沸騰しない圧力に減圧する減圧手段と、
c) 前記蒸発槽内の上部空間に設けられた、前記圧力における水の沸点よりも高い温度の冷却体と、
d) 前記蒸発槽から気体を排出する排出手段と
を備えることを特徴とする。
The cleaning liquid regenerating apparatus according to the present invention includes:
a) an evaporation tank for storing a cleaning solution mixed with water;
b) Depressurizing means for depressurizing the inside of the evaporation tank to a pressure at which water boils and components of the cleaning liquid do not boil;
c) a cooling body having a temperature higher than the boiling point of water at the pressure, provided in the upper space in the evaporation tank;
d) Discharging means for discharging gas from the evaporation tank.

前記減圧手段と前記排出手段には、共通の減圧ポンプを用いることができる。   A common decompression pump can be used for the decompression means and the discharge means.

本発明に係る洗浄液再生方法及び装置によれば、洗浄液に混入した水を、従来よりも小さい熱エネルギー且つより高い精度で、該洗浄液から分離することができる。   According to the cleaning liquid regeneration method and apparatus of the present invention, water mixed in the cleaning liquid can be separated from the cleaning liquid with lower thermal energy and higher accuracy than in the past.

本発明に係る洗浄液再生装置の一実施例を示す概略構成図。1 is a schematic configuration diagram showing an embodiment of a cleaning liquid regenerating apparatus according to the present invention. 本実施例を実施する際に用いた洗浄液成分及び水につき、沸点の圧力変化を示すグラフ。The graph which shows the pressure change of a boiling point about the washing | cleaning-liquid component and water which were used when implementing a present Example. 図2のグラフを拡大したうえで、本実施例における温度及び圧力の変化を→で示したグラフ。The graph which expanded the graph of FIG. 2, and showed the change of the temperature and pressure in a present Example by->. 洗浄液S110中の水の含有率と比重の関係を示すグラフ(温度:22℃)。The graph which shows the relationship between the content rate of the water in washing | cleaning liquid S110, and specific gravity (temperature: 22 degreeC). 洗浄液S110中の水の含有率と屈折率の関係を示すグラフ。The graph which shows the relationship between the content rate of water in cleaning liquid S110, and refractive index. 本実施例の洗浄液再生装置の変形例を示す概略構成図。The schematic block diagram which shows the modification of the washing | cleaning-liquid reproduction | regeneration apparatus of a present Example.

本発明に係る洗浄液再生方法及び装置の実施例を、図1〜図6を用いて説明する。以下ではまず、洗浄液再生装置の実施例の構成を説明したうえで、該装置の動作とともに洗浄液再生方法の実施例を説明する。   Embodiments of the cleaning liquid regeneration method and apparatus according to the present invention will be described with reference to FIGS. In the following, first, the configuration of the embodiment of the cleaning liquid regenerating apparatus will be described, and then the embodiment of the cleaning liquid regenerating method will be described together with the operation of the apparatus.

本実施例の洗浄液再生装置10は、図1に示すように、蒸発槽11と、冷却体12と、排出管13と、減圧ポンプ14と、2次冷却部15を有する。   As shown in FIG. 1, the cleaning liquid regenerating apparatus 10 of this embodiment includes an evaporation tank 11, a cooling body 12, a discharge pipe 13, a decompression pump 14, and a secondary cooling unit 15.

蒸発槽11は、円筒の両端を半球状にした形状を有する。蒸発槽11には、洗浄液再生装置10外に設けられた洗浄槽21内に貯留された再生処理前の洗浄液を該蒸発槽11に導入する導入管111と、再生処理後に蒸発槽11内の洗浄液を洗浄槽21に返送する返送管112が接続されている。洗浄液の導入及び返送のための具体的な構成は後述する。   The evaporation tank 11 has a shape in which both ends of the cylinder are hemispherical. The evaporation tank 11 includes an introduction pipe 111 for introducing the cleaning liquid before the regeneration process stored in the cleaning tank 21 provided outside the cleaning liquid regeneration apparatus 10 into the evaporation tank 11, and the cleaning liquid in the evaporation tank 11 after the regeneration process. A return pipe 112 is connected to the cleaning tank 21. A specific configuration for introducing and returning the cleaning liquid will be described later.

冷却体12は、蒸発槽11内の上部空間に設けられており、蒸発槽11の円筒状の内面に沿って巻回するコイル状の管である。該管は、冷却水を流すことができるように、蒸発槽11の外にある冷却水源(図示せず)と接続されている。   The cooling body 12 is a coiled tube that is provided in the upper space in the evaporation tank 11 and is wound along the cylindrical inner surface of the evaporation tank 11. The pipe is connected to a cooling water source (not shown) outside the evaporation tank 11 so that cooling water can flow.

排出管13は、一端が蒸発槽11の上端に接続されており、該排出管13の途中に減圧ポンプ14及び2次冷却部15が設けられている。排出管13の減圧ポンプ14よりも上流側(蒸発槽11側)には、圧力調整バルブ131が設けられている。この圧力調整バルブ131の開度を調整することにより、蒸発槽11内の圧力、及び蒸発槽11内の気体の排出速度を制御することができる。排出管13の他端は、洗浄液から除去された水の排出口として機能する。   One end of the discharge pipe 13 is connected to the upper end of the evaporation tank 11, and a decompression pump 14 and a secondary cooling unit 15 are provided in the middle of the discharge pipe 13. A pressure adjustment valve 131 is provided on the upstream side (evaporation tank 11 side) of the discharge pipe 13 from the decompression pump 14. By adjusting the opening degree of the pressure adjusting valve 131, the pressure in the evaporation tank 11 and the discharge speed of the gas in the evaporation tank 11 can be controlled. The other end of the discharge pipe 13 functions as a discharge port for water removed from the cleaning liquid.

2次冷却部15は、減圧ポンプ14から排出された気体を通過させる気体流路と、該気体流路の周囲に設けられた冷却水流路(気体流路及び冷却水流路は図示せず)と、気体流路内で液化した液体を洗浄槽21に返送する第2返送管151を有する。冷却水流路には、2次冷却部15の外部から冷却水が供給される。   The secondary cooling unit 15 includes a gas passage through which the gas discharged from the decompression pump 14 passes, and a cooling water passage (a gas passage and a cooling water passage are not shown) provided around the gas passage. The second return pipe 151 for returning the liquid liquefied in the gas flow path to the cleaning tank 21 is provided. Cooling water is supplied to the cooling water flow path from the outside of the secondary cooling unit 15.

冷却体12の一部の下方には、冷却体12の該一部の表面から落下する液体を受ける受液部116が設けられている。また、受液部116には、受けた液を蒸発槽11の外に回収する管が接続されており、この管は蒸発槽11の壁を通過して、蒸発槽11の外に設けられた回収容器117に接続されている。これら受液部116及び回収容器117は、後述のように、蒸発槽11内の気体が液化した液体中における水の含有率を測定するサンプルを回収するために用いられるものである。   Below a part of the cooling body 12, a liquid receiving part 116 that receives liquid falling from the surface of the part of the cooling body 12 is provided. Further, a pipe for collecting the received liquid outside the evaporation tank 11 is connected to the liquid receiving unit 116, and this pipe passes through the wall of the evaporation tank 11 and is provided outside the evaporation tank 11. A recovery container 117 is connected. As will be described later, the liquid receiver 116 and the recovery container 117 are used for recovering a sample for measuring the content of water in the liquid in which the gas in the evaporation tank 11 is liquefied.

次に、洗浄液の導入及び返送のための具体的な構成を説明する。導入管111及び返送管112にはそれぞれ導入バルブ111V及び返送バルブ112Vが設けられている。蒸発槽11内には液面の高さを測定するボールタップ113が設けられている。ボールタップ113は、洗浄液の導入中に液面が所定の高さまで達したときに洗浄液の導入が停止されるように、導入バルブ111Vと連動している。返送管112の途中には送液ポンプ114が設けられている。蒸発槽11内の液面は常に洗浄槽21内の液面よりも低くなるように設定されているため、導入時には導入バルブ111Vを開放するだけでよいのに対して、返送時には返送バルブ112Vを開放したうえで、送液ポンプ114を用いて洗浄液を移動させる。返送管112の途中には、洗浄液中の固形の異物を除去するフィルタ115が設けられている。   Next, a specific configuration for introducing and returning the cleaning liquid will be described. The introduction pipe 111 and the return pipe 112 are provided with an introduction valve 111V and a return valve 112V, respectively. A ball tap 113 for measuring the height of the liquid level is provided in the evaporation tank 11. The ball tap 113 is interlocked with the introduction valve 111V so that the introduction of the cleaning liquid is stopped when the liquid level reaches a predetermined height during the introduction of the cleaning liquid. A liquid feed pump 114 is provided in the middle of the return pipe 112. Since the liquid level in the evaporation tank 11 is always set to be lower than the liquid level in the cleaning tank 21, it is only necessary to open the introduction valve 111V at the time of introduction, whereas the return valve 112V is set at the time of return. After opening, the cleaning liquid is moved using the liquid feeding pump 114. In the middle of the return pipe 112, a filter 115 for removing solid foreign matters in the cleaning liquid is provided.

次に、洗浄液再生装置10の動作(本発明に係る洗浄液再生方法の実施例)を、図1〜図5を用いて説明する。ここでは、洗浄液として、グリコールエーテルが主成分(含有率:99重量%以上)である「ファイントップS110」及び「ファイントップNS110」(いずれも、株式会社クラレ製。以下、「S110」及び「NS110」とする。)を用いる例を示す。   Next, the operation of the cleaning liquid regeneration apparatus 10 (an embodiment of the cleaning liquid regeneration method according to the present invention) will be described with reference to FIGS. Here, as a cleaning liquid, “Fine Top S110” and “Fine Top NS110” (both made by Kuraray Co., Ltd.), whose main components (content ratio: 99% by weight or more) are glycol ethers, hereinafter “S110” and “NS110 ")") Is shown.

(1) 蒸発槽11への洗浄液の導入
まず、導入バルブ111Vを開放することにより、洗浄槽21内に貯留された再生処理前の洗浄液を、導入管111を通して蒸発槽11に導入する。蒸発槽11内に所定量まで洗浄液が貯留されると、そのことをボールタップ113が検知し、導入バルブ111Vが閉鎖される。
(1) Introduction of the cleaning liquid into the evaporation tank 11 First, the pre-regeneration cleaning liquid stored in the cleaning tank 21 is introduced into the evaporation tank 11 through the introduction pipe 111 by opening the introduction valve 111V. When the cleaning liquid is stored up to a predetermined amount in the evaporation tank 11, the ball tap 113 detects this and the introduction valve 111V is closed.

(2) 蒸発槽11内の減圧
次に、圧力調整バルブ131を開放し、減圧ポンプ14によって蒸発槽11内の気体を蒸発槽11外に排出する。その際、圧力調整バルブ131を所定の開度とすることにより、蒸発槽11内は、当該開度に対応した圧力まで減圧され、当該圧力で均衡する。ここで、圧力調整バルブ131の開度と蒸発槽11内の到達圧力の関係は、同じ洗浄液であって且つ貯留量及び温度が同程度であればある程度の再現性があるため、当該開度は、必要な到達圧力(後述)に対応する大きさを予備実験で求めておいたものを用いればよい。もちろん、蒸発槽11内の到達圧力をその都度圧力計を用いて測定し、その値によって開度を微調整してもよい。
(2) Decompression in the evaporation tank 11 Next, the pressure adjusting valve 131 is opened, and the gas in the evaporation tank 11 is discharged out of the evaporation tank 11 by the decompression pump 14. At that time, by setting the pressure adjustment valve 131 to a predetermined opening, the inside of the evaporation tank 11 is depressurized to a pressure corresponding to the opening, and is balanced at the pressure. Here, since the relationship between the opening degree of the pressure adjustment valve 131 and the ultimate pressure in the evaporation tank 11 is the same cleaning liquid and has a certain degree of reproducibility if the storage amount and temperature are similar, the opening degree is What is necessary is just to use the thing which calculated | required the magnitude | size corresponding to required ultimate pressure (after-mentioned) by the preliminary experiment. Of course, the ultimate pressure in the evaporation tank 11 may be measured each time using a pressure gauge, and the opening degree may be finely adjusted according to the value.

ここで、蒸発槽11内における必要な到達圧力を説明するための前提として、図2及び図3に示したグラフについて説明する。図2は、水及び洗浄液(水等の不純物を含有していないもの)における圧力と沸点(温度)の関係を示したグラフであり、図3はその拡大図である。洗浄液は、上記の通り、その主成分であるグリコールエーテルが99重量%以上を占めているため、この洗浄液に関するグラフは、洗浄液成分(グリコールエーテル)に関するグラフである、とみなしてよい。S110及びNS110の沸点は、全ての圧力範囲において水の沸点よりも高い。例えば、大気圧(760mmHg=1.013×105Pa。「常圧」ともいう。)では、S110及びNS110の沸点はいずれも約175℃である。そして、水の沸点を示す曲線と、洗浄液成分の沸点を示す曲線の間の領域(図2に、S110に関して当該領域を斜線で示す)が、「水が沸騰し、且つ、洗浄液成分が沸騰しない」領域である。以下、この領域を「中間圧力領域」と呼ぶ。 Here, the graph shown in FIG.2 and FIG.3 is demonstrated as a premise for demonstrating the required ultimate pressure in the evaporation tank 11. FIG. FIG. 2 is a graph showing the relationship between pressure and boiling point (temperature) in water and a cleaning liquid (which does not contain impurities such as water), and FIG. 3 is an enlarged view thereof. As described above, since the glycol ether which is the main component of the cleaning liquid accounts for 99% by weight or more, the graph regarding the cleaning liquid may be regarded as a graph regarding the cleaning liquid component (glycol ether). The boiling points of S110 and NS110 are higher than the boiling point of water in all pressure ranges. For example, at atmospheric pressure (760 mmHg = 1.013 × 10 5 Pa. Also referred to as “normal pressure”), the boiling points of S110 and NS110 are both about 175 ° C. A region between the curve indicating the boiling point of water and the curve indicating the boiling point of the cleaning liquid component (in FIG. 2, the region is indicated by a slanted line with respect to S110) indicates that “water is boiling and the cleaning liquid component is not boiling. Area. Hereinafter, this region is referred to as “intermediate pressure region”.

蒸発槽11内における必要な到達圧力は、この中間圧力領域内の圧力とする。すなわち、図3に示すように、蒸発槽11内がある温度T1のとき、グラフ上で下方に移動するように、温度T1はそのままで、圧力のみを中間圧力領域中の所定値P1まで減圧する(図3中の矢印(a))。 The necessary ultimate pressure in the evaporation tank 11 is the pressure in this intermediate pressure region. That is, as shown in FIG. 3, when the inside of the evaporation tank 11 is at a certain temperature T 1 , the temperature T 1 is kept as it is so as to move downward on the graph, and only the pressure is set to a predetermined value P 1 in the intermediate pressure region. (Arrow (a) in FIG. 3).

この減圧により、洗浄液の温度は当該圧力P1における水の沸点を上回るため、洗浄液からは、その中に混入した水が沸騰して気化する。一方、洗浄液成分は、その温度が当該圧力P1における沸点を下回っているものの、わずかに気化する。これら気化した水及び洗浄液成分の気体は、蒸発槽11内の上部空間に移動する。 Since the temperature of the cleaning liquid exceeds the boiling point of water at the pressure P 1 due to this pressure reduction, the water mixed in the cleaning liquid boils and vaporizes. On the other hand, the cleaning solution components, although its temperature is below the boiling point at the pressure P 1, slightly vaporizes. The vaporized water and the gas of the cleaning liquid component move to the upper space in the evaporation tank 11.

(3) 気体の冷却
蒸発槽11内の上部空間では、冷却体12の管内に冷却水が流されており、該管の表面において、水及び洗浄液成分の気体が温度T2まで冷却される(図3中の矢印(b))。温度T2は、前記温度T1よりも低く、且つ圧力P1における水の沸点よりも高くする。これにより、当該気体は、中間圧力領域内に収まる範囲内で冷却される。そして、当該気体中の水はその沸点よりも温度T2が高いためほとんど液化することなく、洗浄液成分が液化する。この温度T2は冷却水の流量によって調整することができ、上述の温度T1と同様にある程度の再現性がある。そのため、本実施例では予備実験で適切な流量を求めておき、洗浄液再生方法の実施中にはその流量に設定したままで調整を行っていないが、冷却体12の表面又はその近傍に温度センサを設けて、冷却体12の温度を常時監視しつつ該流量の調整を行ってもよい。
(3) Cooling of gas In the upper space in the evaporating tank 11, cooling water is flowing into the pipe of the cooling body 12, and the water and the gas of the cleaning liquid component are cooled to the temperature T 2 on the surface of the pipe ( Arrow (b) in FIG. The temperature T 2 is lower than the temperature T 1 and higher than the boiling point of water at the pressure P 1 . As a result, the gas is cooled within a range that falls within the intermediate pressure region. Then, the water of the in gas with little liquefied due to the high temperature T 2 than its boiling point, the cleaning solution components are liquefied. This temperature T 2 can be adjusted by the flow rate of the cooling water, and has a certain degree of reproducibility as with the temperature T 1 described above. For this reason, in this embodiment, an appropriate flow rate is obtained in a preliminary experiment, and adjustment is not performed while the flow rate is set to the flow rate during the cleaning liquid regeneration method. The flow rate may be adjusted while constantly monitoring the temperature of the cooling body 12.

冷却体12で気体が冷却されることにより液化した液体は、冷却体12の表面から、蒸発槽11に貯留された洗浄液中へ落下する。前記気体中の水がほとんど液化しないことから、この液体の成分の大半は洗浄液成分であるため、ここまでの操作によって、蒸発槽11内の洗浄液中の洗浄液成分の濃度は上昇する。そこで、冷却体12の表面から落下する液体を受液部116及び回収容器117によって回収し、当該液体中における水の含有率を測定するとよい。この測定結果を参照しつつ、該含有率が減少するように、冷却体12に流す冷却水の流量を調整することにより、洗浄液から水を分離する効率を高めることができる。水の含有率は、例えば回収した液体の比重を測定したうえで、図4に示したS110中の水の含有率と比重の関係を示すグラフから求めることができる。あるいは、水の含有率は、回収した液体の屈折率を測定したうえで、図5に示したS110中の水の含有率と屈折率の関係を示すグラフから求めることもできる。なお、屈折率は温度にはそれほど依存しないのに対して、比重は温度に強く依存するため、図4では特定の温度(22℃)における含有率と比重の関係を示した。   The liquid liquefied when the gas is cooled by the cooling body 12 falls from the surface of the cooling body 12 into the cleaning liquid stored in the evaporation tank 11. Since the water in the gas hardly liquefies, most of the components of the liquid are cleaning liquid components, so that the concentration of the cleaning liquid component in the cleaning liquid in the evaporation tank 11 is increased by the operations so far. Therefore, the liquid falling from the surface of the cooling body 12 may be collected by the liquid receiving unit 116 and the collection container 117, and the water content in the liquid may be measured. By referring to this measurement result, the efficiency of separating water from the cleaning liquid can be increased by adjusting the flow rate of the cooling water flowing through the cooling body 12 so that the content rate decreases. The water content can be determined from, for example, a graph showing the relationship between the water content and the specific gravity in S110 shown in FIG. 4 after measuring the specific gravity of the recovered liquid. Or after measuring the refractive index of the collect | recovered liquid, the content rate of water can also be calculated | required from the graph which shows the relationship between the content rate of water and refractive index in S110 shown in FIG. The refractive index does not depend so much on the temperature, but the specific gravity strongly depends on the temperature. Therefore, FIG. 4 shows the relationship between the content and specific gravity at a specific temperature (22 ° C.).

(4) 蒸発槽11からの気体の排出
冷却体12で冷却されることによって洗浄液成分が液化した後に残った気体は、減圧ポンプ14によって蒸発槽11の外に排出される。この排出後の気体は、ほとんどが水から成るものの、冷却体12で液化しきれなかった洗浄液成分がわずかに残留している可能性がある。そこで、この気体を2次冷却部15に送り、水の沸点よりも高く、且つ当該気体の温度よりも低い温度に冷却する。これにより、当該気体に残留した洗浄液成分を液化させる。そして、液化せずに気体のまま残った水は、気体のまま、又は液化したうえで廃棄される。また、ここで液化した洗浄液成分は、第2返送管151を通して洗浄槽21に返送される。
(4) Discharge of gas from the evaporation tank 11 The gas remaining after the cleaning liquid component is liquefied by being cooled by the cooling body 12 is discharged out of the evaporation tank 11 by the decompression pump 14. The exhausted gas is mostly composed of water, but there may be a slight residual cleaning liquid component that could not be liquefied by the cooling body 12. Therefore, this gas is sent to the secondary cooling unit 15 and cooled to a temperature higher than the boiling point of water and lower than the temperature of the gas. Thereby, the cleaning liquid component remaining in the gas is liquefied. Then, the water that remains in a gas state without being liquefied is discarded after being in a gas state or liquefied. The cleaning liquid component liquefied here is returned to the cleaning tank 21 through the second return pipe 151.

(5) 再生処理後の洗浄液の洗浄槽21への返送
上記(2)〜(4)の処理を十分な時間行うと、蒸発槽11内の洗浄液には水がほとんど残留しなくなり、2次冷却部15から水がほとんど排出されなくなる。その時点で蒸発槽11内の減圧を停止し、リークバルブ(図示せず)を開放して蒸発槽11内を大気圧にする。そして、返送バルブ112Vを開放し、送液ポンプ114によって蒸発槽11内の洗浄液を、返送管112を通して洗浄槽21に返送する。ここで、返送管112の途中に設けられたフィルタ115により、洗浄液中の固形の異物が除去される。
(5) Returning the cleaning liquid after the regeneration process to the cleaning tank 21 If the above processes (2) to (4) are performed for a sufficient time, the cleaning liquid in the evaporation tank 11 is hardly left in the secondary cooling. Water is hardly discharged from the part 15. At that time, the decompression in the evaporation tank 11 is stopped, and a leak valve (not shown) is opened to bring the inside of the evaporation tank 11 to atmospheric pressure. Then, the return valve 112 </ b> V is opened, and the cleaning liquid in the evaporation tank 11 is returned to the cleaning tank 21 through the return pipe 112 by the liquid supply pump 114. Here, solid foreign matters in the cleaning liquid are removed by the filter 115 provided in the middle of the return pipe 112.

本発明は上記の実施例には限定されない。
例えば、上記実施例で用いた2次冷却部15、受液部116及び回収容器117は、本発明の必須要件ではなく、これらを用いなくてもよい。
The present invention is not limited to the above embodiments.
For example, the secondary cooling unit 15, the liquid receiving unit 116, and the collection container 117 used in the above embodiment are not essential requirements of the present invention, and these may not be used.

また、図6に示すように、蒸発槽11内に、洗浄液を加熱するためのヒータ19を設けてもよい。このヒータ19は、洗浄液をその沸点以上に加熱するためのものではなく、蒸発槽11内を減圧する際に温度が降下するのを補うように加熱することにより、洗浄液の温度変化を小さくするために用いられる。もちろん、単に減圧するだけで中間圧力領域内に収まるのであれば、このようなヒータを用いる必要はない。   Further, as shown in FIG. 6, a heater 19 for heating the cleaning liquid may be provided in the evaporation tank 11. This heater 19 is not intended to heat the cleaning liquid above its boiling point, but to reduce the temperature change of the cleaning liquid by heating so as to compensate for the temperature drop when the inside of the evaporation tank 11 is depressurized. Used for. Of course, it is not necessary to use such a heater as long as the pressure is simply reduced and within the intermediate pressure region.

上記実施例では、冷却水を流す管を蒸発槽11内に設けることによって冷却体12を構成しているが、例えば冷却水を流す管を蒸発槽11の外壁面に接するように設け、この外壁面を冷却体として用いてもよい。   In the above embodiment, the cooling body 12 is configured by providing a pipe for flowing cooling water in the evaporation tank 11. For example, a pipe for flowing cooling water is provided so as to be in contact with the outer wall surface of the evaporation tank 11. The wall surface may be used as a cooling body.

10…洗浄液再生装置
11…蒸発槽
111…導入管
111V…導入バルブ
112…返送管
112V…返送バルブ
113…ボールタップ
114…送液ポンプ
115…フィルタ
116…受液部
117…回収容器
12…冷却体
13…排出管
131…圧力調整バルブ
14…減圧ポンプ
15…2次冷却部
151…第2返送管
19…ヒータ
21…洗浄槽
DESCRIPTION OF SYMBOLS 10 ... Cleaning-liquid reproduction | regeneration apparatus 11 ... Evaporating tank 111 ... Introducing pipe 111V ... Introducing valve 112 ... Returning pipe 112V ... Returning valve 113 ... Ball tap 114 ... Liquid feeding pump 115 ... Filter 116 ... Liquid receiving part 117 ... Collection container 12 ... Cooling body 13 ... Exhaust pipe 131 ... Pressure adjustment valve 14 ... Decompression pump 15 ... Secondary cooling section 151 ... Second return pipe 19 ... Heater 21 ... Cleaning tank

Claims (6)

水が混入した洗浄液を蒸発槽内に貯留し、
前記蒸発槽内を、水が沸騰し且つ前記洗浄液の成分が沸騰しない圧力に減圧し、
前記蒸発槽内の上部空間に、前記圧力における水の沸点よりも高い温度の冷却体を設け、
前記蒸発槽から気体を排出する
ことを特徴とする洗浄液再生方法。
Store the cleaning liquid mixed with water in the evaporation tank,
The inside of the evaporation tank is depressurized to a pressure at which water boils and the components of the cleaning liquid do not boil,
In the upper space in the evaporation tank, a cooling body having a temperature higher than the boiling point of water at the pressure is provided,
A cleaning liquid regeneration method, wherein gas is discharged from the evaporation tank.
前記洗浄液を加熱することなく前記減圧を行うことを特徴とする請求項1に記載の洗浄液再生方法。   2. The cleaning liquid regeneration method according to claim 1, wherein the pressure reduction is performed without heating the cleaning liquid. 前記洗浄液を前記成分が沸騰しない温度範囲内で加熱しつつ前記減圧を行うことを特徴とする請求項1に記載の洗浄液再生方法。   The cleaning liquid regeneration method according to claim 1, wherein the pressure reduction is performed while heating the cleaning liquid within a temperature range in which the components do not boil. 前記蒸発槽から排出された気体を水の沸点よりも高い温度範囲内で冷却する2次冷却を行うことを特徴とする請求項1〜3のいずれかに記載の洗浄液再生方法。   The cleaning liquid regeneration method according to any one of claims 1 to 3, wherein secondary cooling is performed to cool the gas discharged from the evaporation tank within a temperature range higher than the boiling point of water. 前記気体が前記冷却体で冷却されることにより生成される液体中における水の含有率を検出し、該検出結果に基づいて水の含有量を減少させるように前記冷却体の温度を調整することを特徴とする請求項1〜4のいずれかに記載の洗浄液再生方法。   Detecting the content of water in the liquid produced by cooling the gas with the cooling body, and adjusting the temperature of the cooling body so as to reduce the water content based on the detection result The method for regenerating a cleaning liquid according to claim 1. a) 水が混入した洗浄液を貯留する蒸発槽と、
b) 前記蒸発槽内を、水が沸騰し且つ前記洗浄液の成分が沸騰しない圧力に減圧する減圧手段と、
c) 前記蒸発槽内の上部空間に設けられた、前記圧力における水の沸点よりも高い温度の冷却体と、
d) 前記蒸発槽から気体を排出する排出手段と
を備えることを特徴とする洗浄液再生装置。
a) an evaporation tank for storing a cleaning solution mixed with water;
b) Depressurizing means for depressurizing the inside of the evaporation tank to a pressure at which water boils and components of the cleaning liquid do not boil;
c) a cooling body having a temperature higher than the boiling point of water at the pressure, provided in the upper space in the evaporation tank;
d) A cleaning liquid regenerating apparatus comprising a discharging means for discharging gas from the evaporation tank.
JP2013130800A 2013-06-21 2013-06-21 Cleaning liquid regeneration method and apparatus Active JP6196077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013130800A JP6196077B2 (en) 2013-06-21 2013-06-21 Cleaning liquid regeneration method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013130800A JP6196077B2 (en) 2013-06-21 2013-06-21 Cleaning liquid regeneration method and apparatus

Publications (3)

Publication Number Publication Date
JP2015003307A true JP2015003307A (en) 2015-01-08
JP2015003307A5 JP2015003307A5 (en) 2016-07-28
JP6196077B2 JP6196077B2 (en) 2017-09-13

Family

ID=52299655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013130800A Active JP6196077B2 (en) 2013-06-21 2013-06-21 Cleaning liquid regeneration method and apparatus

Country Status (1)

Country Link
JP (1) JP6196077B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015113480A (en) * 2013-12-10 2015-06-22 アクトファイブ株式会社 Cleaning method and cleaning apparatus
CN109154065A (en) * 2017-04-07 2019-01-04 应用材料公司 For cleaning the method for vacuum chamber, the equipment for being vacuum-treated substrate and the system for manufacturing the device with organic material
JP2021058821A (en) * 2019-10-03 2021-04-15 活水プラント株式会社 Distillation plant

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56145981A (en) * 1980-04-14 1981-11-13 Toyo Eng Corp Separation of water
JPH08127766A (en) * 1994-10-28 1996-05-21 Hitachi Ltd Apparatus for recycling antifreeze
JPH08252401A (en) * 1995-03-15 1996-10-01 Matsushita Electric Ind Co Ltd Purification and recovery apparatus for detergent
JPH0957003A (en) * 1995-08-23 1997-03-04 Olympus Optical Co Ltd Batch-wise vacuum distillation apparatus for regenerating washing liquid
JPH09314075A (en) * 1996-06-04 1997-12-09 Shibafu Eng Kk Washing device of part
WO2000010922A1 (en) * 1998-08-21 2000-03-02 Hydrotech Distallation Technologies Pty Limited Treatment of aqueous wastes
JP2001179192A (en) * 1999-12-24 2001-07-03 Hitoshi Kokubu Recycle system for aqueous cleaning liquid
JP2008183512A (en) * 2007-01-30 2008-08-14 World Kiko:Kk Vacuum distillation regenerating apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56145981A (en) * 1980-04-14 1981-11-13 Toyo Eng Corp Separation of water
JPH08127766A (en) * 1994-10-28 1996-05-21 Hitachi Ltd Apparatus for recycling antifreeze
JPH08252401A (en) * 1995-03-15 1996-10-01 Matsushita Electric Ind Co Ltd Purification and recovery apparatus for detergent
JPH0957003A (en) * 1995-08-23 1997-03-04 Olympus Optical Co Ltd Batch-wise vacuum distillation apparatus for regenerating washing liquid
JPH09314075A (en) * 1996-06-04 1997-12-09 Shibafu Eng Kk Washing device of part
WO2000010922A1 (en) * 1998-08-21 2000-03-02 Hydrotech Distallation Technologies Pty Limited Treatment of aqueous wastes
JP2001179192A (en) * 1999-12-24 2001-07-03 Hitoshi Kokubu Recycle system for aqueous cleaning liquid
JP2008183512A (en) * 2007-01-30 2008-08-14 World Kiko:Kk Vacuum distillation regenerating apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015113480A (en) * 2013-12-10 2015-06-22 アクトファイブ株式会社 Cleaning method and cleaning apparatus
CN109154065A (en) * 2017-04-07 2019-01-04 应用材料公司 For cleaning the method for vacuum chamber, the equipment for being vacuum-treated substrate and the system for manufacturing the device with organic material
CN109154065B (en) * 2017-04-07 2021-09-03 应用材料公司 Method for cleaning a vacuum chamber, apparatus for vacuum processing a substrate and system for manufacturing a device with an organic material
JP2021058821A (en) * 2019-10-03 2021-04-15 活水プラント株式会社 Distillation plant
JP7341466B2 (en) 2019-10-03 2023-09-11 活水プラント株式会社 distillation plant

Also Published As

Publication number Publication date
JP6196077B2 (en) 2017-09-13

Similar Documents

Publication Publication Date Title
JP6196077B2 (en) Cleaning liquid regeneration method and apparatus
JP5614418B2 (en) Liquid processing apparatus, liquid processing method, and storage medium
JP6309750B2 (en) Cleaning method and cleaning device
KR20150094759A (en) Continuous extractor, concentrator and dryer
JP6568114B2 (en) Solid-liquid separator
KR20080021477A (en) Distillation apparatus
JP6227905B2 (en) Emulsion waste oil regeneration processing apparatus and method
JP6109772B2 (en) Separation / reproduction apparatus and substrate processing apparatus
JP2008237943A (en) Vacuum distillation method and vacuum distillation device
CA2897553C (en) Solid-liquid separator
CN105457322A (en) Microtube distillation and condensation method and device
JP2009172468A (en) Regeneration apparatus of cleaning solvent, and distilling regeneration method of cleaning solvent
US11485645B2 (en) System for ammonia distillation
JP2014113539A5 (en)
JP2017538571A (en) Method for separating water from gaseous working medium and water separator for working medium
JP6017856B2 (en) Vacuum cooling device
MY183801A (en) Heat exchangers for low temperature carbon dioxide separation from natural gas
JP6235687B1 (en) Leak detection device
JP6908950B1 (en) Vaporization cleaning liquid recovery device
TWI794202B (en) Method and device for purifying liquefied gas
CN207658453U (en) A kind of restoration of the ecosystem liquid production apparatus for placing
US20220340798A1 (en) Frozen material formation prevention systems
CN204275553U (en) Vacuum system alcohol recovering device
JP5888601B2 (en) Method for removing non-condensable gas in pure steam generator, and pure steam generator
US1646520A (en) Absorption refrigerating apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160610

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170817

R150 Certificate of patent or registration of utility model

Ref document number: 6196077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250