JP2015002711A - Air conditioner for greenhouse - Google Patents

Air conditioner for greenhouse Download PDF

Info

Publication number
JP2015002711A
JP2015002711A JP2013130255A JP2013130255A JP2015002711A JP 2015002711 A JP2015002711 A JP 2015002711A JP 2013130255 A JP2013130255 A JP 2013130255A JP 2013130255 A JP2013130255 A JP 2013130255A JP 2015002711 A JP2015002711 A JP 2015002711A
Authority
JP
Japan
Prior art keywords
heat
greenhouse
absorber
heat storage
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013130255A
Other languages
Japanese (ja)
Inventor
英敏 金尾
Hidetoshi Kanao
英敏 金尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hachiyo Engineering Co Ltd
Original Assignee
Hachiyo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hachiyo Engineering Co Ltd filed Critical Hachiyo Engineering Co Ltd
Priority to JP2013130255A priority Critical patent/JP2015002711A/en
Publication of JP2015002711A publication Critical patent/JP2015002711A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Landscapes

  • Greenhouses (AREA)
  • Central Air Conditioning (AREA)
  • Central Heating Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To develop a novel air conditioner for a greenhouse, which avoids a situation where a heat absorber of a heat pump causes performance degradation or inactivation due to adhesion of frost in winter and is capable of efficiently air-conditioning inside the greenhouse without requiring the use of a boiler.SOLUTION: An air conditioner 1 for a greenhouse of the invention comprising a heat absorber 2 which uses air in a greenhouse R as heat source, a heat absorber 3 which uses outside air as haet source, and a heat storage device 4 in which heat storage material H is housed, is characterized by transferring a heat medium from the heat absorber 2 which uses air in the greenhouse R as heat source to the heat storage device 4 to store in the heat storage material H the heat recovered in the greenhouse R in such a case that temperature in the greenhouse R rises in the daytime and a user wants to cool or dehumidify inside the greenhouse R, as well as by transferring a heat medium from the heat absorber 3 which uses outside air as heat source to the heat storage device 4 also to store in the heat storage material H the heat recovered from outside air in the heat absorber 3.

Description

本発明は、温室内の温度や湿度を調整する空気調和装置に関するものである。   The present invention relates to an air conditioner that adjusts temperature and humidity in a greenhouse.

例えば、野菜や果物等の栽培にあたっては、冬季や夜間の低温雰囲気から植物を保護するために、建屋の壁面や天井面をビニールやガラス等の透光素材で覆った温室が採用されることが多い。
そして、このような温室にあっては、従来、室内の加温、冷却、除湿をするのにヒートポンプを使用して行っているものがあった(例えば特許文献1参照)。
しかしながら、ヒートポンプを用いて温室内の空調を行う場合には、冬季(特に厳寒期)にヒートポンプの吸熱器に霜が付着して性能が落ち、運転不能に陥ることがあった。そのため、このような温室ではボイラーを併設して、冬季の暖房を行う温室設備が多く、イニシャルコスト及びランニングコストともに無駄が多かった。
また、ボイラーによる暖房は、二酸化炭素の排出量も少なくなく、環境的な観点からも疑問視されており、他の手法が求められていた。
For example, in the cultivation of vegetables and fruits, a greenhouse in which the walls and ceiling of the building are covered with a light-transmitting material such as vinyl or glass is used in order to protect plants from the low temperature atmosphere in winter and at night. Many.
And in such a greenhouse, there existed what was conventionally performed using the heat pump for heating, cooling, and dehumidification of a room (for example, refer to patent documents 1).
However, when air conditioning in a greenhouse is performed using a heat pump, frost may adhere to the heat pump heat sink in winter (especially in the severe cold season), resulting in poor performance and inability to operate. For this reason, in such a greenhouse, there are many greenhouse facilities that are equipped with a boiler and perform heating in winter, and both initial costs and running costs are wasted.
In addition, heating by a boiler has a low carbon dioxide emission and is questioned from an environmental point of view, and other methods have been demanded.

特開平5−336847号公報JP-A-5-336847

本発明は、このような背景を認識してなされたものであって、冬季にヒートポンプの吸熱器に霜が付くことによって性能劣化や運転不能となる事態を回避し、またボイラーを使用する必要もなく、温室内を効率良く空気調和できるようにした新規な空調装置の開発を試みたものである。   The present invention has been made in view of such a background, and avoids a situation in which performance deterioration or inability to operate due to frost on the heat sink of the heat pump in winter, and it is also necessary to use a boiler. It is an attempt to develop a new air conditioner that can efficiently air-condition the greenhouse.

まず請求項1記載の温室空調装置は、
温室内の空気を熱源とする吸熱器と、
外気を熱源とする吸熱器と、
蓄熱材を収容した蓄熱装置とを具え、ヒートポンプにより温室の空調を行う装置であって、
この装置は、昼間温室内の気温が上昇して温室内を冷却や除湿したい場合に、温室内の空気を熱源とする吸熱器から蓄熱装置に熱媒体を移送し、温室内で回収した熱を蓄熱材に蓄えるものであり、
また、この蓄熱装置には、外気を熱源とする吸熱器からも熱媒体を移送できるように構成され、当該吸熱器において外気から回収した熱も蓄熱材に蓄えられるようにしたことを特徴として成るものである。
First, the greenhouse air conditioner according to claim 1 is:
A heat absorber that uses air in the greenhouse as a heat source;
A heat absorber that uses outside air as a heat source;
A heat storage device containing a heat storage material, and a device for air conditioning a greenhouse with a heat pump,
This device transfers the heat medium from a heat absorber that uses air in the greenhouse as a heat source to the heat storage device when the temperature in the greenhouse rises during the daytime, and the heat collected in the greenhouse is collected. Is stored in the heat storage material,
In addition, the heat storage device is configured such that the heat medium can be transferred also from a heat absorber using outside air as a heat source, and heat collected from the outside air in the heat absorber is also stored in the heat storage material. Is.

また請求項2記載の温室空調装置は、前記請求項1記載の要件に加え、
前記蓄熱装置における蓄熱材は、温室内や外気から回収した熱を蓄えることに伴い、徐々に固体から液体へと変化するものであり、当該蓄熱材が液体となるまで蓄熱装置に充分に蓄熱した後も、前記温室の冷却や除湿の運転を継続して行う場合には、温室内の空気を熱源とする吸熱器から蓄熱装置に移送していた熱媒体を、外気を熱源とする吸熱器に送り、当該吸熱器を放熱器に切り換えて、温室の冷却や除湿を継続して行うようにしたことを特徴として成るものである。
Further, the greenhouse air conditioner according to claim 2 has the requirements of claim 1,
The heat storage material in the heat storage device gradually changes from a solid to a liquid as the heat collected from the greenhouse or outside air is stored, and the heat storage device sufficiently stores heat until the heat storage material becomes liquid. After that, when the cooling and dehumidifying operation of the greenhouse is continued, the heat medium transferred from the heat absorber using the air in the greenhouse as a heat source to the heat storage device is changed to a heat absorber using the outside air as the heat source. This is characterized in that the heat sink is switched to a heat radiator and cooling and dehumidification of the greenhouse are continuously performed.

また請求項3記載の温室空調装置は、前記請求項1または2記載の要件に加え、
前記温室内を加温する場合には、蓄熱装置において加熱された熱媒体を、温室内の空気を熱源とする吸熱器に移送し、当該吸熱器を加熱器として機能させるものであり、
また、当該温室内の空気を熱源とする加熱器には、外気を熱源とする吸熱器で加熱された熱媒体も移送できるように構成し、
前記温室内の加温が、蓄熱装置から取り出した熱と、外気を熱源とする吸熱器から回収した熱とを利用して行えるようにしたことを特徴として成るものである。
Further, the greenhouse air conditioner according to claim 3 is in addition to the requirement according to claim 1 or 2,
When heating the inside of the greenhouse, the heating medium heated in the heat storage device is transferred to a heat absorber using air in the greenhouse as a heat source, and the heat absorber functions as a heater.
In addition, the heater using the air in the greenhouse as a heat source is configured so that the heat medium heated by the heat absorber using the outside air as the heat source can also be transferred,
Heating in the greenhouse can be performed using heat extracted from a heat storage device and heat recovered from a heat absorber using outside air as a heat source.

また請求項4記載の温室空調装置は、前記請求項1、2または3記載の要件に加え、
前記温室空調装置は、蓄熱装置において加熱された熱媒体を、外気を熱源とする吸熱器に接触させる経路を具え、厳寒期等に当該吸熱器に霜が付着し、吸熱機能が低下した場合に、当該吸熱器のファンを停止して、蓄熱装置において加熱された熱媒体を接触させ、当該吸熱器のデフロストを行うようにしたことを特徴として成るものである。
Further, the greenhouse air conditioner according to claim 4 has the requirements of claim 1, 2, or 3,
The greenhouse air conditioner is provided with a path for contacting the heat medium heated in the heat storage device with a heat absorber using outside air as a heat source, and when the frost adheres to the heat absorber in a severe cold season or the like and the heat absorption function is lowered. The fan of the heat absorber is stopped, the heat medium heated in the heat storage device is brought into contact, and the heat absorber is defrosted.

また請求項5記載の温室空調装置は、前記請求項1、2、3または4記載の要件に加え、
前記蓄熱装置における蓄熱材には、硫酸ナトリウムが適用され、水その他の添加物を加えることにより、約10℃〜32℃の間で適宜の凝固点と融解点を有するように設定されることを特徴として成るものである。
Further, the greenhouse air conditioner according to claim 5 is in addition to the requirement according to claim 1, 2, 3 or 4,
Sodium sulfate is applied to the heat storage material in the heat storage device, and water and other additives are added, so that the heat storage material has an appropriate freezing point and melting point between about 10 ° C. and 32 ° C. It consists of

これら各請求項記載の発明の構成を手段として前記課題の解決が図られる。
まず請求項1記載の発明によれば、昼間温度が上昇する温室内から回収した熱と、比較的高温となる外気から回収した熱とを併せて蓄熱装置の蓄熱材に蓄えることができ、温室内からの回収熱が不足する場合にも、効率良く外気から熱を回収し、蓄熱装置に蓄える(補う)ことができる。
なお温室は、冬でも昼間は過剰な温度上昇を防止する目的から、天窓や側窓を開放して温度調整されることがあるが、本発明の場合には、温室の冷却や除湿が効率的に行えるため、このような開放操作(夜間は閉鎖するため開閉操作となる)が不要もしくは最小限に抑えることができる。
The above-described problems can be solved by using the configuration of the invention described in each of the claims.
According to the first aspect of the present invention, the heat recovered from the greenhouse in which the daytime temperature rises and the heat recovered from the outside air having a relatively high temperature can be combined and stored in the heat storage material of the heat storage device. Even when the heat recovered from the inside is insufficient, the heat can be efficiently recovered from the outside air and stored (supplemented) in the heat storage device.
The temperature of the greenhouse may be adjusted by opening skylights and side windows for the purpose of preventing excessive temperature rise in the daytime even in winter. In the present invention, cooling and dehumidification of the greenhouse are efficient. Therefore, such an opening operation (because it closes at night and becomes an opening / closing operation) is unnecessary or can be minimized.

また請求項2記載の発明によれば、蓄熱材が液体となるまで充分に熱を蓄えたら、温室内の空気を熱源とする吸熱器から蓄熱装置に移送していた熱媒体を、外気を熱源とした吸熱器に移送するようにし(蓄熱装置への移送はやめて)、当該吸熱器を放熱器に切り換えて、温室の冷却や除湿を継続して行うため、このような継続運転(温室の冷却や除湿)をその後も効率良く行うことができる。   According to the second aspect of the present invention, when heat is sufficiently stored until the heat storage material becomes liquid, the heat medium transferred from the heat absorber using air in the greenhouse as the heat source to the heat storage device is used as the heat source. In order to continue the cooling and dehumidification of the greenhouse by switching the heat absorber to a heat radiator (stopping the transfer to the heat storage device) And dehumidification) can be performed efficiently thereafter.

また請求項3記載の発明によれば、外気から回収した熱と、蓄熱装置(蓄熱材)から回収した熱とを温室の加温に使用できるため、温室空調装置の加熱能力が低下する厳寒期等でも充分な温室暖房が可能となる。なお、蓄熱材から熱を取り出して温室内を加温するには、上記のようにヒートポンプの蒸発器(加熱器)を使用するほか、温室内に水循環コイルやヒートパイプ等を設け、これに蓄熱装置で加熱された熱媒体(水循環コイルでは水)を移送し、温室内を加温することが可能である。
またヒートポンプ装置を使用して温室を加温するにあたり、ヒートポンプ装置の能力に余裕があるとき、余裕分の熱を蓄熱材(蓄熱装置)に蓄えることができる。なお蓄熱材に熱を蓄えるのは、ヒートポンプ装置の効率の良い時間(通常は昼間)である。
According to the invention described in claim 3, since the heat recovered from the outside air and the heat recovered from the heat storage device (heat storage material) can be used for heating the greenhouse, the severe cold season in which the heating capacity of the greenhouse air conditioner decreases. Etc., sufficient greenhouse heating is possible. In addition, in order to extract heat from the heat storage material and warm the inside of the greenhouse, in addition to using an evaporator (heater) of a heat pump as described above, a water circulation coil, a heat pipe, etc. are provided in the greenhouse to store heat. It is possible to transfer the heat medium heated by the apparatus (water in the water circulation coil) and heat the greenhouse.
Moreover, when heating a greenhouse using a heat pump apparatus, when there is a margin in the capability of the heat pump apparatus, the heat for the margin can be stored in a heat storage material (heat storage apparatus). Note that heat is stored in the heat storage material during an efficient time of the heat pump device (usually daytime).

また請求項4記載の発明によれば、例えば厳寒期に、外気を熱源とする吸熱器に霜が付着して吸熱器の能力が低下した場合に、蓄熱装置の熱を使用して当該吸熱器のデフロストが行えるため、当該吸熱器の能力を復元させ、効率良く温室の暖房を行うことができる。   According to the invention of claim 4, for example, in the severe cold season, when frost adheres to the heat absorber using the outside air as a heat source and the capacity of the heat absorber decreases, the heat absorber is used by using the heat of the heat storage device. Therefore, it is possible to restore the capacity of the heat sink and efficiently heat the greenhouse.

また請求項5記載の発明によれば、蓄熱材として硫酸ナトリウムを用い、水その他の添加物により凝固点(融解点)を約10℃〜32℃の間に調整することができるため、温室空調装置にとって最も効率の良い温度に調整することができ、温室の冷却・除湿・加温を効率良く行うことができる。   According to the invention of claim 5, since sodium sulfate is used as the heat storage material and the freezing point (melting point) can be adjusted between about 10 ° C. and 32 ° C. with water and other additives, the greenhouse air conditioner Temperature can be adjusted to the most efficient temperature, and the cooling, dehumidification and heating of the greenhouse can be performed efficiently.

本発明の温室空調装置を適用して主に日中に温度上昇する温室内を冷却や除湿する場合を示す図であり、温室内の空気を熱源とする吸熱器から蓄熱装置に熱媒体を移送し、温室内で回収した熱を蓄熱材に蓄えながら、併せて外気を熱源とする吸熱器からも熱媒体を蓄熱装置に移送し、外気から回収した熱も蓄熱材に蓄えられるようにした様子を示す説明図である。It is a figure which shows the case where the inside of the greenhouse which temperature rises mainly during the day is cooled and dehumidified by applying the greenhouse air conditioner of the present invention, and transfers the heat medium from the heat absorber using the air in the greenhouse as a heat source to the heat storage device In addition, while storing the heat recovered in the greenhouse in the heat storage material, the heat medium is also transferred to the heat storage device from the heat absorber using the outside air as the heat source, so that the heat recovered from the outside air can also be stored in the heat storage material It is explanatory drawing which shows. 温室内や外気から回収した熱を蓄熱装置に蓄えることに伴い、蓄熱材が固体から液体になった後も、温室内の冷却や除湿を継続して行う場合を示す図であり、温室内の空気を熱源とする吸熱器から蓄熱装置に移送していた熱媒体を、外気を熱源とする吸熱器に移送し(切り換え)、当該吸熱器を放熱器として使用して、温室の冷却や除湿を継続して行うようにした様子を示す説明図である。It is a figure showing the case where cooling and dehumidification in the greenhouse are continuously performed after the heat storage material changes from solid to liquid in association with storing heat recovered from the inside of the greenhouse and outside air in the heat storage device. Transfer (switch) the heat medium that has been transferred from the heat absorber that uses air as the heat source to the heat storage device to the heat absorber that uses outside air as the heat source, and use the heat absorber as a radiator to cool and dehumidify the greenhouse. It is explanatory drawing which shows a mode made to perform continuously. 温室内を加温する場合に、蓄熱装置において加熱された熱媒体を、温室内の空気を熱源とする吸熱器に移送し、当該吸熱器を加熱器として温室内の加温を図りながら、外気を熱源とする吸熱器で加温された熱媒体を、温室内の空気を熱源とする吸熱器に移送し、蓄熱装置から取り出した熱と、外気を熱源とする吸熱器から回収した熱とを温室の加温に利用するようにした様子を示す説明図である。When heating the inside of a greenhouse, the heat medium heated in the heat storage device is transferred to a heat absorber using air in the greenhouse as a heat source, and the outside air is heated while using the heat absorber as a heater to heat the greenhouse. The heat medium heated by the heat absorber using the heat source is transferred to the heat absorber using the air in the greenhouse as the heat source, and the heat extracted from the heat storage device and the heat recovered from the heat absorber using the outside air as the heat source are It is explanatory drawing which shows a mode that it utilized for the heating of a greenhouse. 蓄熱装置に蓄えた熱を利用して温室内を加温する加熱器として、水循環コイルやヒートパイプ熱交換器を適用する場合と、厳寒期等に外気を熱源とする吸熱器に付着する霜を除去するデフロスト経路を設ける場合とを併せ示す説明図である。When using a water circulation coil or heat pipe heat exchanger as a heater that heats the greenhouse using the heat stored in the heat storage device, frost adhering to the heat sink using the outside air as a heat source in the severe cold season, etc. It is explanatory drawing which shows collectively the case where the defrost path | route to remove is provided. 図1に対し、外気を熱源とする吸熱器(蒸発器)を併設し、蓄熱装置に効率良く熱を蓄えられるようにした様子を示す説明図である。FIG. 2 is an explanatory diagram showing a state in which a heat absorber (evaporator) using outside air as a heat source is provided in addition to FIG. 1 so that heat can be efficiently stored in the heat storage device.

本発明を実施するための形態は、以下の実施例に述べるものをその一つとするとともに、更にその技術思想内において改良し得る種々の手法を含むものである。   The mode for carrying out the present invention includes one described in the following embodiments, and further includes various methods that can be improved within the technical idea.

本発明の温室空調装置1は、温室R内の空調(いわゆる冷房・除湿・暖房など)を効率的に行うものであって、一例として図1に示すように、温室R内の空気を熱源とする吸熱器2と、外気を熱源とする吸熱器3と、蓄熱材Hを収容した蓄熱装置4とを具えたヒートポンプ構造により構成される。
また、この温室空調装置1は、温室R内の空調状況(運転の仕方)によって、種々の経路を機能させるようにしており、例えば図1は、温室R内を冷却や除湿する場合の運転状況を示しており、温室R内で回収した熱を蓄熱装置4の蓄熱材Hに蓄える経路(これを蓄熱材蓄熱温室冷却経路L1)と、外気から回収した熱を同様の蓄熱材Hに蓄える経路(これを蓄熱材蓄熱外気吸熱経路L2)とを機能させている。
The greenhouse air conditioner 1 of the present invention efficiently performs air conditioning (so-called cooling, dehumidification, heating, etc.) in the greenhouse R. As shown in FIG. 1, as an example, air in the greenhouse R is used as a heat source. It is comprised by the heat pump structure provided with the heat absorber 2 which uses the external air as a heat source, and the heat storage apparatus 4 which accommodated the heat storage material H.
In addition, the greenhouse air conditioner 1 allows various routes to function depending on the air conditioning status (operation method) in the greenhouse R. For example, FIG. 1 shows the operation status when the greenhouse R is cooled or dehumidified. A path for storing the heat recovered in the greenhouse R in the heat storage material H of the heat storage device 4 (this is the heat storage material heat storage greenhouse cooling path L1) and a path for storing the heat recovered from the outside air in the same heat storage material H (This is the heat storage material heat storage outside air heat absorption path L2).

また、図2は、上記の冷却・除湿運転によって蓄熱装置4の蓄熱材Hに充分に蓄熱された後も、温室R内の冷却や除湿運転を継続して行う場合の運転状況を示しており、外気を熱源とする吸熱器3を放熱器(同じ符号「3」を付す)に切り換え、ここで温室R内で回収した熱を放出させるものである。ここで、このような経路を本明細書では、外気放熱温室冷却経路L3としている。
更に、図3は、温室R内を加温する場合の運転状況を示しており、この場合には、温室R内の空気を熱源とする吸熱器2を加熱器に切り換え(以下、同じ符号「2」を付す)、ここで上記蓄熱装置4に蓄えた熱を放出させ、温室R内を加温する経路(これを蓄熱材放熱温室加温経路L4とする)と、外気から回収した熱を上記加熱器2で放出させ温室R内を加温する経路(これを外気吸熱温室加温経路L5とする)とを機能させている。
以下、これらの各経路を説明しながら、実質的に本発明の温室空調装置1について説明する。
Moreover, FIG. 2 has shown the driving | running state in the case of continuing the cooling in the greenhouse R, or a dehumidification operation, after fully storing in the thermal storage material H of the thermal storage apparatus 4 by said cooling / dehumidification operation. The heat absorber 3 using the outside air as a heat source is switched to a heat radiator (same as “3”), and here, the heat recovered in the greenhouse R is released. Here, such a path is referred to as an outside air radiation greenhouse cooling path L3 in this specification.
Further, FIG. 3 shows an operation situation when the inside of the greenhouse R is heated. In this case, the heat absorber 2 using the air in the greenhouse R as a heat source is switched to a heater (hereinafter, the same reference numeral “ 2 ”), where the heat stored in the heat storage device 4 is released and the inside of the greenhouse R is heated (this is referred to as a heat storage material radiating greenhouse heating path L4), and the heat recovered from the outside air is A path for heating the inside of the greenhouse R by discharging with the heater 2 (this is referred to as an outside air endothermic greenhouse heating path L5) is functioning.
Hereinafter, the greenhouse air conditioner 1 of the present invention will be substantially described while explaining each of these paths.

まず、図1の蓄熱材蓄熱温室冷却経路L1と蓄熱材蓄熱外気吸熱経路L2とについて説明する。これらの経路は、昼間、温室R内の気温が上昇し過ぎて、温室R内を冷却や除湿したい場合に稼働させる経路である。
このうち蓄熱材蓄熱温室冷却経路L1は、上述したように温室R内の空気を熱源とする吸熱器2から蓄熱装置4に熱媒体を移送し、温室R内で回収した熱を蓄熱材Hに蓄える経路である。このため、蓄熱材蓄熱温室冷却経路L1の主な構成部材は、温室R内の空気を熱源とする吸熱器2と蓄熱装置4と圧縮機5となる。
First, the heat storage material heat storage greenhouse cooling path L1 and the heat storage material heat storage outside air heat absorption path L2 of FIG. 1 will be described. These routes are operated when the temperature in the greenhouse R rises excessively in the daytime and it is desired to cool or dehumidify the greenhouse R.
Among these, the heat storage material heat storage greenhouse cooling path L1 transfers the heat medium from the heat absorber 2 using the air in the greenhouse R as a heat source to the heat storage device 4 as described above, and the heat collected in the greenhouse R is transferred to the heat storage material H. It is a path to store. For this reason, the main structural members of the heat storage material heat storage greenhouse cooling path L1 are the heat absorber 2, the heat storage device 4, and the compressor 5 that use air in the greenhouse R as a heat source.

一方、蓄熱材蓄熱外気吸熱経路L2は、外気を熱源とする吸熱器3から熱媒体を蓄熱装置4に移送し、当該吸熱器3において外気から回収した熱を蓄熱材Hに蓄える経路である。そして、本実施例では、この蓄熱材蓄熱外気吸熱経路L2が、上記蓄熱材蓄熱温室冷却経路L1と併設(合成)されている。具体的には、上記図1に示すように、両経路において蓄熱装置4に熱媒体を移送する前後部分が共通する回路として形成され、この共通部分に、双方の吸熱器2・3から蓄熱装置4に熱媒体を移送する圧縮機5が設けられる。
このように、本発明の温室空調装置1は、温室R内から回収した熱と、外気から回収した熱とを蓄熱装置4の蓄熱材Hに併せて蓄えることができるものである。これにより、温室R内からの回収熱が不足する場合にも、効率良く外気から熱を回収し、蓄熱装置4に蓄える(補う)ことができる。
因みに、蓄熱材蓄熱外気吸熱経路L2の主な構成部材は、吸熱器3と蓄熱装置4と圧縮機5となる。
On the other hand, the heat storage material heat storage outside air heat absorption path L <b> 2 is a path for transferring a heat medium from the heat absorber 3 using the outside air as a heat source to the heat storage device 4 and storing heat collected from the outside air in the heat storage material H in the heat absorber 3. In this embodiment, the heat storage material heat storage outside air heat absorption path L2 is provided (combined) with the heat storage material heat storage greenhouse cooling path L1. Specifically, as shown in FIG. 1, the front and rear portions for transferring the heat medium to the heat storage device 4 in both paths are formed as a common circuit, and the heat storage devices from both the heat absorbers 2 and 3 are formed in this common portion. 4 is provided with a compressor 5 for transferring the heat medium.
Thus, the greenhouse air conditioner 1 of the present invention can store heat collected from the inside of the greenhouse R and heat collected from the outside air together with the heat storage material H of the heat storage device 4. Thereby, even when the recovered heat from the greenhouse R is insufficient, the heat can be efficiently recovered from the outside air and stored (supplemented) in the heat storage device 4.
Incidentally, the main components of the heat storage material heat storage outside air heat absorption path L2 are the heat absorber 3, the heat storage device 4, and the compressor 5.

次に、図2の外気放熱温室冷却経路L3について説明するが、これに先立ち、蓄熱装置4における蓄熱材Hについて説明する。蓄熱材Hは、蓄熱の進行すなわち温室R内及び外気から回収した熱を蓄えることに伴い、徐々に固体から液体へと変化するものが好ましく(潜熱利用のため効率的)、このような蓄熱材Hは、充分、熱を蓄えた状態で液体となる。このため、当該蓄熱材Hが液体となった以降も、前記温室Rの冷却や除湿運転を継続して行いたい場合には、上記図2に示すように、外気放熱温室冷却経路L3を機能させ、温室R内の空気を熱源とする吸熱器2から蓄熱装置4に移送していた熱媒体を、外気を熱源とする吸熱器3に移送し(つまり蓄熱装置4への移送はやめて)、当該吸熱器3を放熱器3に切り換えて、温室R内の冷却や除湿を継続して行うものである。
ここで、本実施例では、熱媒体の流路の切り換えを四方弁6によって行っている。
なお、このような外気放熱温室冷却経路L3では、外気を熱源とする放熱器3に流入・流出する熱媒体が、上記図1に示した冷却・除湿運転(蓄熱材蓄熱外気吸熱経路L2)とは逆方向になるものである。
因みに、外気放熱温室冷却経路L3の主な構成部材は、蓄熱装置4は実質的に機能させないため、吸熱器2と放熱器3と圧縮機5となる。
Next, the outside air radiation greenhouse cooling path L3 in FIG. 2 will be described. Prior to this, the heat storage material H in the heat storage device 4 will be described. The heat storage material H is preferably one that gradually changes from solid to liquid with the progress of heat storage, that is, the heat collected from the inside and outside of the greenhouse R (effective for using latent heat). H becomes a liquid in a state where heat is sufficiently stored. Therefore, after the heat storage material H becomes liquid, when it is desired to continue cooling and dehumidifying operation of the greenhouse R, as shown in FIG. 2, the outside heat radiation greenhouse cooling path L3 is made to function. The heat medium transferred from the heat absorber 2 using the air in the greenhouse R as the heat source to the heat storage device 4 is transferred to the heat absorber 3 using the outside air as the heat source (that is, the transfer to the heat storage device 4 is stopped). The heat absorber 3 is switched to the heat radiator 3 to continuously cool and dehumidify the greenhouse R.
Here, in the present embodiment, the flow path of the heat medium is switched by the four-way valve 6.
In such an outside air radiation greenhouse cooling path L3, the heat medium flowing into and out of the radiator 3 using the outside air as a heat source is the cooling / dehumidifying operation (heat storage material heat storage outside air heat absorption path L2) shown in FIG. Is the opposite direction.
Incidentally, the main components of the outside air radiation greenhouse cooling path L3 are the heat absorber 2, the radiator 3, and the compressor 5 because the heat storage device 4 is not allowed to function substantially.

また、蓄熱装置4における蓄熱材Hとしては、一例として硫酸ナトリウムが適用され、水その他の添加物を加えることにより、約10℃〜32℃の間で適宜の凝固点と融解点を有するように設定される。すなわち、蓄熱材Hとしての硫酸ナトリウムの適用は、蓄熱材Hの凝固点(融解点)を、温室空調装置1にとって最も効率の良い温度に調整することができるものであり、このため温室R内の加温、冷却、除湿を効率良く行うことができる。
更に、硫酸ナトリウムは、人体に全く無害で自然界に存在する塩であり、不燃物であるため火災などの心配もないものであり、コスト的にも極めて安価であり、また熱伝導性にも優れている。
因みに、蓄熱材Hとしてはパラフィンの利用も考えられるが、パラフィンは硫酸ナトリウムに比べ熱伝導性が低く、システム全体の性能低下が懸念される。またパラフィンは目的の凝固点(融解点)を得るための調整(配合)にも比較的手間が掛かり、硫酸ナトリウムの方が現実的である。
Moreover, as the heat storage material H in the heat storage device 4, sodium sulfate is applied as an example, and it is set to have an appropriate freezing point and melting point between about 10 ° C. and 32 ° C. by adding water and other additives. Is done. That is, the application of sodium sulfate as the heat storage material H is capable of adjusting the freezing point (melting point) of the heat storage material H to a temperature that is most efficient for the greenhouse air conditioner 1. Heating, cooling, and dehumidification can be performed efficiently.
In addition, sodium sulfate is a salt that is completely harmless to the human body and exists in nature. It is an incombustible material, so there is no fear of fire, etc., and it is extremely inexpensive and has excellent thermal conductivity. ing.
Incidentally, the use of paraffin as the heat storage material H is also conceivable, but paraffin has lower thermal conductivity than sodium sulfate, and there is a concern that the performance of the entire system may be reduced. In addition, paraffin is relatively troublesome for adjustment (mixing) for obtaining a desired freezing point (melting point), and sodium sulfate is more realistic.

次に、図3の蓄熱材放熱温室加温経路L4と外気吸熱温室加温経路L5とについて説明する。これらの経路は、気温が低下する夜間や冬季等に、温室R内を加温する経路である。
このうち、蓄熱材放熱温室加温経路L4は、蓄熱装置4において加熱された熱媒体を、温室R内の空気を熱源とする吸熱器2に移送し、当該吸熱器2を加熱器とし、蓄熱材Hから回収した熱で温室R内の加温を図る経路である。このため、蓄熱材放熱温室加温経路L4の主な構成部材は、吸熱器2と蓄熱装置4と圧縮機5となる。
Next, the heat storage material heat radiation greenhouse heating path L4 and the outside air endothermic greenhouse heating path L5 of FIG. 3 will be described. These routes are routes that warm the inside of the greenhouse R at night or in winter when the temperature decreases.
Among them, the heat storage material radiating greenhouse heating path L4 transfers the heat medium heated in the heat storage device 4 to the heat absorber 2 using air in the greenhouse R as a heat source, and the heat absorber 2 is used as a heater. This is a route for heating the inside of the greenhouse R with the heat recovered from the material H. For this reason, the main structural members of the heat storage material heat radiation greenhouse heating path L4 are the heat absorber 2, the heat storage device 4, and the compressor 5.

一方、外気吸熱温室加温経路L5は、外気を熱源とする吸熱器3から、温室R内の空気を熱源とする加熱器2に熱媒体を移送し、外気から回収した熱で温室R内を加温する経路である。
そして、本実施例では、この外気吸熱温室加温経路L5が、上記蓄熱材放熱温室加温経路L4と併設(合成)されている。
具体的には、図3に示すように、蓄熱装置4から加熱器2(温室R内の空気を熱源とする加熱器2)に熱媒体を移送する経路途中で、吸熱器3(外気を熱源とする吸熱器3)で加熱された熱媒体を合流させて、上記加熱器2に移送するものであり、また加熱器2(温室R内の空気を熱源とする加熱器2)から蓄熱装置4に熱媒体を移送する経路途中から、吸熱器3(外気を熱源とする吸熱器3)に、温室R内を加熱した後の熱媒体を分流させるようにしている。
因みに、外気吸熱温室加温経路L5の主な構成部材は、加熱器2と吸熱器3と圧縮機5となる。
On the other hand, the outside air endothermic greenhouse heating path L5 transfers the heat medium from the heat absorber 3 that uses outside air as a heat source to the heater 2 that uses air inside the greenhouse R as a heat source, and heat inside the greenhouse R is recovered from the outside air. It is a route to heat.
In this embodiment, the outdoor air endothermic greenhouse heating path L5 is provided (combined) with the heat storage material heat dissipation greenhouse heating path L4.
Specifically, as shown in FIG. 3, the heat absorber 3 (external air is used as a heat source) in the course of transferring a heat medium from the heat storage device 4 to the heater 2 (heater 2 using air in the greenhouse R as a heat source). The heat medium heated by the heat absorber 3) is joined and transferred to the heater 2, and from the heater 2 (heater 2 using air in the greenhouse R as a heat source) to the heat storage device 4 The heat medium after heating the inside of the greenhouse R is divided into the heat absorber 3 (the heat absorber 3 using the outside air as a heat source) from the middle of the path for transferring the heat medium.
Incidentally, the main components of the outdoor air endothermic greenhouse heating path L5 are the heater 2, the heat absorber 3, and the compressor 5.

なお、蓄熱装置4から熱を取り出して温室R内を加温するにあたっては、蓄熱材放熱温室加温経路L4の加熱器2(ヒートポンプの蒸発器)だけでなく、例えば図4に示すように、温室R内に水循環コイル7やヒートパイプ熱交換器8等を設け、ここに蓄熱材H(蓄熱装置4)で加熱した熱媒体(水循環コイル7の場合は水)を移送し、蓄熱材Hから回収した熱で温室R内を加温することが可能である。もちろん、これらを全て併用することも可能であるし、適宜選択して適用することも可能である。
ここで、図中符号「7P」は、水循環ポンプに付した符号である。また、ヒートパイプ熱交換器8に熱媒体を移送する際には、いわゆる自然循環により熱媒体を移送する(循環させる)ことが可能である。
In addition, in taking out heat from the heat storage device 4 and heating the inside of the greenhouse R, not only the heater 2 (heat pump evaporator) of the heat storage material heat radiation greenhouse heating path L4, but also, for example, as shown in FIG. A water circulation coil 7 and a heat pipe heat exchanger 8 are provided in the greenhouse R, and a heat medium (water in the case of the water circulation coil 7) heated by the heat storage material H (heat storage device 4) is transferred to the greenhouse R from the heat storage material H. It is possible to heat the inside of the greenhouse R with the recovered heat. Of course, all of these can be used together, or can be appropriately selected and applied.
Here, the symbol “7P” in the figure is a symbol attached to the water circulation pump. Further, when the heat medium is transferred to the heat pipe heat exchanger 8, it is possible to transfer (circulate) the heat medium by so-called natural circulation.

また、厳寒期等には外気を熱源とする吸熱器3に霜が付着し、吸熱機能の低下ひいては装置全体の運転停止等が考えられるため、温室空調装置1には、吸熱器3のデフロスト経路LDを具備することが好ましい。そのため、例えば上記図4に併せて示すように、蓄熱装置4で加熱された熱媒体を、外気を熱源とする吸熱器3に接触させるように形成することが可能であり、これが図中符号「LD」で示したデフロスト経路である。具体的には蓄熱材Hによって加熱された熱媒体を、吸熱器3にシャワーリングして霜取りする態様が挙げられる。ここで図中符号「9」は、デフロストポンプである。
なお、デフロスト経路LDにおける熱媒体や、上記ヒートパイプ熱交換器8に流す熱媒体は、温室Rを冷却・除湿・加温する経路L1〜L5の熱媒体とは異種のものを使用しても構わないし、同種のものを使用しても構わないものである。
In addition, frost adheres to the heat sink 3 that uses outside air as a heat source in severe cold seasons, etc., and it is considered that the heat absorption function is lowered and the entire apparatus is shut down. Therefore, the greenhouse air conditioner 1 includes a defrost path of the heat absorber 3. It is preferable to include an LD. Therefore, for example, as shown in FIG. 4, the heat medium heated by the heat storage device 4 can be formed so as to come into contact with the heat absorber 3 using outside air as a heat source. This is a defrost route indicated by “LD”. Specifically, a mode in which the heat medium heated by the heat storage material H is defrosted by showering on the heat absorber 3 is exemplified. Here, reference numeral “9” in the figure denotes a defrost pump.
Note that the heat medium in the defrost path LD and the heat medium flowing through the heat pipe heat exchanger 8 may be different from the heat medium in the paths L1 to L5 for cooling, dehumidifying and heating the greenhouse R. It does not matter, and the same type may be used.

また、上記図1は、温室R内を冷却・除湿して、ここで回収した熱を蓄熱装置4(蓄熱材H)に蓄えながら、なお且つ必要に応じて、外気を熱源とする吸熱器3も稼働させて、双方から効率良く熱を回収するようにしたものである。しかしながら、例えば図5に示すように、外気を熱源とする吸熱器10を更に設け、外気からより一層効率良く熱回収を図ることも可能である。   Further, FIG. 1 shows a heat absorber 3 that cools and dehumidifies the inside of the greenhouse R and stores the collected heat in the heat storage device 4 (heat storage material H) while using outside air as a heat source if necessary. In order to efficiently recover heat from both sides. However, for example, as shown in FIG. 5, it is possible to further provide a heat absorber 10 that uses outside air as a heat source to recover heat from the outside air more efficiently.

また、本発明の温室空調装置1(ヒートポンプ装置)を適用するにあたり、天気予報や気象条件等により温室Rを設置した該当地区において夜間は冷えそうで、昼間もそれほど気温が上昇しないと判断された場合には、昼間、温室Rからの熱回収には限界がある(低い)と考えられるため、例えば昼間のうちから外気を熱源とする吸熱器3をフル稼働あるいは新たな吸熱器10も併せて稼働させ、充分に蓄熱装置4に熱を蓄えておく態様などが採り得る。
このように、その日の気象条件や使用条件に合わせて、ヒートポンプ装置に最大限の効率を発揮させ、蓄熱装置4の最適な熱の出し入れをIT(インフォメーション・テクノロジー:情報技術)を利用して行うことができる。また、このようなヒートポンプ装置(温室)を多数具えた農園を最適の効率で運営するのに通信設備で接続して能率的に集中管理を行うことも可能である。
In addition, when applying the greenhouse air conditioner 1 (heat pump device) of the present invention, it was judged that the temperature in the corresponding area where the greenhouse R was installed would be cooled at night due to weather forecasts and meteorological conditions, and the temperature would not rise so much in the daytime. In this case, since it is considered that there is a limit (low) in the heat recovery from the greenhouse R in the daytime, for example, the heat absorber 3 using the outside air as a heat source from the daytime is fully operated or a new heat absorber 10 is also used. For example, a mode in which heat is stored in the heat storage device 4 sufficiently can be employed.
In this way, the heat pump device is made to exhibit the maximum efficiency in accordance with the weather conditions and usage conditions of the day, and the optimum heat input / output of the heat storage device 4 is performed using IT (Information Technology). be able to. In addition, in order to operate a farm having a large number of such heat pump devices (greenhouses) with optimum efficiency, it is possible to connect them with a communication facility and perform centralized management efficiently.

1 温室空調装置
2 温室内の空気を熱源とする吸熱器(加熱器)
3 外気を熱源とする吸熱器(放熱器)
4 蓄熱装置
5 圧縮機
6 四方弁
7 水循環コイル
7P 水循環ポンプ
8 ヒートパイプ熱交換器
9 デフロストポンプ
10 吸熱器

H 蓄熱材
R 温室

L1 蓄熱材蓄熱温室冷却経路
L2 蓄熱材蓄熱外気吸熱経路
L3 外気放熱温室冷却経路
L4 蓄熱材放熱温室加温経路
L5 外気吸熱温室加温経路
LD デフロスト経路
1 Greenhouse air conditioner 2 Heat absorber (heater) using air in the greenhouse as a heat source
3 Heat absorber (heat radiator) using outside air as heat source
4 Heat storage device 5 Compressor 6 Four-way valve 7 Water circulation coil 7P Water circulation pump 8 Heat pipe heat exchanger 9 Defrost pump 10 Heat absorber

H Thermal storage material R Greenhouse

L1 heat storage material heat storage greenhouse cooling path L2 heat storage material heat storage outdoor air heat absorption path L3 outdoor air heat dissipation greenhouse cooling path L4 heat storage material heat dissipation greenhouse heating path L5 outdoor air heat absorption greenhouse heating path LD defrost path

Claims (5)

温室内の空気を熱源とする吸熱器と、
外気を熱源とする吸熱器と、
蓄熱材を収容した蓄熱装置とを具え、ヒートポンプにより温室の空調を行う装置であって、
この装置は、昼間温室内の気温が上昇して温室内を冷却や除湿したい場合に、温室内の空気を熱源とする吸熱器から蓄熱装置に熱媒体を移送し、温室内で回収した熱を蓄熱材に蓄えるものであり、
また、この蓄熱装置には、外気を熱源とする吸熱器からも熱媒体を移送できるように構成され、当該吸熱器において外気から回収した熱も蓄熱材に蓄えられるようにしたことを特徴とする温室空調装置。
A heat absorber that uses air in the greenhouse as a heat source;
A heat absorber that uses outside air as a heat source;
A heat storage device containing a heat storage material, and a device for air conditioning a greenhouse with a heat pump,
This device transfers the heat medium from a heat absorber that uses air in the greenhouse as a heat source to the heat storage device when the temperature in the greenhouse rises during the daytime, and the heat collected in the greenhouse is collected. Is stored in the heat storage material,
Further, the heat storage device is configured so that the heat medium can be transferred also from a heat absorber using outside air as a heat source, and heat collected from the outside air in the heat absorber is also stored in the heat storage material. Greenhouse air conditioner.
前記蓄熱装置における蓄熱材は、温室内や外気から回収した熱を蓄えることに伴い、徐々に固体から液体へと変化するものであり、当該蓄熱材が液体となるまで蓄熱装置に充分に蓄熱した後も、前記温室の冷却や除湿の運転を継続して行う場合には、温室内の空気を熱源とする吸熱器から蓄熱装置に移送していた熱媒体を、外気を熱源とする吸熱器に送り、当該吸熱器を放熱器に切り換えて、温室の冷却や除湿を継続して行うようにしたことを特徴とする請求項1記載の温室空調装置。
The heat storage material in the heat storage device gradually changes from a solid to a liquid as the heat collected from the greenhouse or outside air is stored, and the heat storage device sufficiently stores heat until the heat storage material becomes liquid. After that, when the cooling and dehumidifying operation of the greenhouse is continued, the heat medium transferred from the heat absorber using the air in the greenhouse as a heat source to the heat storage device is changed to a heat absorber using the outside air as the heat source. 2. The greenhouse air conditioner according to claim 1, wherein the heat sink is switched to a radiator to continuously cool and dehumidify the greenhouse.
前記温室内を加温する場合には、蓄熱装置において加熱された熱媒体を、温室内の空気を熱源とする吸熱器に移送し、当該吸熱器を加熱器として機能させるものであり、
また、当該温室内の空気を熱源とする加熱器には、外気を熱源とする吸熱器で加熱された熱媒体も移送できるように構成し、
前記温室内の加温が、蓄熱装置から取り出した熱と、外気を熱源とする吸熱器から回収した熱とを利用して行えるようにしたことを特徴とする請求項1または2記載の温室空調装置。
When heating the inside of the greenhouse, the heating medium heated in the heat storage device is transferred to a heat absorber using air in the greenhouse as a heat source, and the heat absorber functions as a heater.
In addition, the heater using the air in the greenhouse as a heat source is configured so that the heat medium heated by the heat absorber using the outside air as the heat source can also be transferred,
The greenhouse air conditioning according to claim 1 or 2, wherein heating in the greenhouse can be performed using heat extracted from a heat storage device and heat recovered from a heat absorber using outside air as a heat source. apparatus.
前記温室空調装置は、蓄熱装置において加熱された熱媒体を、外気を熱源とする吸熱器に接触させる経路を具え、厳寒期等に当該吸熱器に霜が付着し、吸熱機能が低下した場合に、当該吸熱器のファンを停止して、蓄熱装置において加熱された熱媒体を接触させ、当該吸熱器のデフロストを行うようにしたことを特徴とする請求項1、2または3記載の温室空調装置。
The greenhouse air conditioner is provided with a path for contacting the heat medium heated in the heat storage device with a heat absorber using outside air as a heat source, and when the frost adheres to the heat absorber in a severe cold season or the like and the heat absorption function is lowered. The greenhouse air conditioner according to claim 1, 2 or 3, wherein the fan of the heat absorber is stopped, the heat medium heated in the heat storage device is brought into contact with the heat absorber, and the defrost of the heat absorber is performed. .
前記蓄熱装置における蓄熱材には、硫酸ナトリウムが適用され、水その他の添加物を加えることにより、約10℃〜32℃の間で適宜の凝固点と融解点を有するように設定されることを特徴とする請求項1、2、3または4記載の温室空調装置。   Sodium sulfate is applied to the heat storage material in the heat storage device, and water and other additives are added, so that the heat storage material has an appropriate freezing point and melting point between about 10 ° C. and 32 ° C. The greenhouse air conditioner according to claim 1, 2, 3 or 4.
JP2013130255A 2013-06-21 2013-06-21 Air conditioner for greenhouse Pending JP2015002711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013130255A JP2015002711A (en) 2013-06-21 2013-06-21 Air conditioner for greenhouse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013130255A JP2015002711A (en) 2013-06-21 2013-06-21 Air conditioner for greenhouse

Publications (1)

Publication Number Publication Date
JP2015002711A true JP2015002711A (en) 2015-01-08

Family

ID=52299173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013130255A Pending JP2015002711A (en) 2013-06-21 2013-06-21 Air conditioner for greenhouse

Country Status (1)

Country Link
JP (1) JP2015002711A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102064258B1 (en) 2017-12-07 2020-01-09 주식회사 쉘파스페이스 Temperature and humidity controlling device for plant cultivation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102064258B1 (en) 2017-12-07 2020-01-09 주식회사 쉘파스페이스 Temperature and humidity controlling device for plant cultivation

Similar Documents

Publication Publication Date Title
Mavroudaki et al. The potential for solar powered single-stage desiccant cooling in southern Europe
JP6718871B2 (en) Liquid desiccant air conditioning system
KR101347523B1 (en) Air conditioning and heating system and method for greenhouse
US11846454B2 (en) Heat pump utilizing thermal energy storage
JP2007327671A (en) Solar heat pump system
KR101044616B1 (en) Defrosting method for heat pump evaporator
JP2015002711A (en) Air conditioner for greenhouse
JP4376023B2 (en) Heat utilization equipment for air conditioning
JP2017535741A (en) System and method for cooling by latent energy transfer
JP2005134104A (en) Solar system and operation method of solar system
JP4404731B2 (en) Air-conditioning system using geothermal heat
CN104566719A (en) Anti-freezing air conditioner
JPS6131866A (en) Air-conditioning hot-water supply system
CN204534915U (en) A kind of aircondition of anti-freeze type
JP2007127291A (en) Heat utilizing system
CN203907863U (en) Temperature and humidity independent control soil natural source capillary pipe air conditioning system
JP2003106681A (en) Solar heat utilizing system provided with heat storage means
CN104089350A (en) Independent-temperature-humidity-control soil natural source capillary air conditioning system
JP2001330278A (en) Radiant cooling method
CN211424598U (en) Seasonal energy transfer building
Reddy et al. Performance evaluation of a solar-aided liquid desiccant evaporative cooling system
NL1041365B1 (en) Insulated greenhouse with climate installation, and method to control the internal climate.
CN205191740U (en) Dehumidifier
Gauthier et al. A control strategy for the operation of a reversible heat-pump in greenhouses
Klinker et al. Heating and cooling using a combination of several TES technologies in the new R&D building of the ZAE Bayern in Würzburg