JP2015002669A - Voltage abnormality protection circuit for uninterruptible power supply system - Google Patents

Voltage abnormality protection circuit for uninterruptible power supply system Download PDF

Info

Publication number
JP2015002669A
JP2015002669A JP2014108247A JP2014108247A JP2015002669A JP 2015002669 A JP2015002669 A JP 2015002669A JP 2014108247 A JP2014108247 A JP 2014108247A JP 2014108247 A JP2014108247 A JP 2014108247A JP 2015002669 A JP2015002669 A JP 2015002669A
Authority
JP
Japan
Prior art keywords
voltage
unit
power supply
supply system
uninterruptible power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014108247A
Other languages
Japanese (ja)
Inventor
旻▲ケイ▼ 謝
Min-Jing Hsieh
旻▲ケイ▼ 謝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2015002669A publication Critical patent/JP2015002669A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/12Energy storage units, uninterruptible power supply [UPS] systems or standby or emergency generators, e.g. in the last power distribution stages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/248UPS systems or standby or emergency generators

Landscapes

  • Stand-By Power Supply Arrangements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an uninterruptible system with stable quality and safety by overcoming defects of a monitoring circuit in a conventional uninterruptible power supply system.SOLUTION: In a voltage abnormality protection circuit for an uninterruptible power supply system, a rectification unit, a filter unit, a battery unit, at least one voltage regulation unit and at least two voltage monitoring units are connected in order. The voltage regulation unit includes at least one voltage drop element and a bypass switch unit connected to the voltage drop element in parallel. The voltage monitoring units are connected to an input side and an output side of the voltage regulation unit, respectively, and used for monitoring voltages at the input side and the output side of the voltage regulation unit, thereby controlling the rectification unit provided in one terminal of an external power source, a breaker and the bypass switch unit.

Description

本発明は、直流給電機器の電圧異常保護システムであって、特に、直流給電機器が負荷にかかる電圧を制御するために用いる回路に関するものである。   The present invention relates to a voltage abnormality protection system for a DC power supply device, and more particularly to a circuit used by a DC power supply device to control a voltage applied to a load.

商用電源が正常な状態において、無停電電源システムは商用電源に接続し、通常、SCR(シリコン制御整流器)を整流器とすることで、負荷側に対して給電を行うことができると同時に、さらに高い電圧でバックアップバッテリに対して急速充電を行うことができるが、上述の高い電圧は、負荷側の需要に適する使用電圧にするため、DC/DC電力コンバータのような降圧装置をさらに介さなくてはならない。   When the commercial power supply is in a normal state, the uninterruptible power supply system is connected to the commercial power supply. Normally, the SCR (silicon control rectifier) is used as a rectifier, so that power can be supplied to the load side and at the same time higher. The backup battery can be quickly charged with a voltage, but the above-mentioned high voltage must be further passed through a step-down device such as a DC / DC power converter in order to make the voltage suitable for the demand on the load side. Don't be.

商用電源に停電が発生した場合、無停電電源システムは自動転換を行うことで、負荷側はバックアップバッテリによる給電に切換わるが、もし、この時、バックアップバッテリが降圧装置を介して負荷側にも給電していると、バックアップバッテリの電力は継続的に消費され、負荷側も商用電源が停電した後、間もなく作動停止するという窮地に陥ってしまう。そのため、バックアップバッテリはバイパススイッチを増設し、これを介して負荷側に対して継続的に給電しなけらばならないが、単一のバイパススイッチのみ設置しただけでは、前記バイパススイッチが故障した場合、バイパスに導通することができず、給電することができなくなってしまう。   When a power failure occurs in the commercial power supply, the uninterruptible power supply system automatically switches, and the load side is switched to the power supply by the backup battery. At this time, the backup battery is also connected to the load side via the step-down device. When power is supplied, the power of the backup battery is continuously consumed, and the load side also falls into a trap where the operation stops soon after the commercial power supply fails. Therefore, the backup battery has to add a bypass switch, and it is necessary to continuously supply power to the load side through this, but if the bypass switch fails only by installing a single bypass switch, The bypass cannot be conducted, and power cannot be supplied.

また、暫くの間停電して商用電源が復旧した場合、前記無停電電源システムは高い電圧でバックアップバッテリに対して急速充電を行い且つ負荷側に給電するが、もしバイパススイッチが商用電源の復旧に伴い適時にスイッチを切換えしていないと、バックアップバッテリの高い電圧がバイパススイッチを介し負荷側に対して直接給電され、負荷側の機器が破損し、また、前記無停電電源システムは過電圧保護機構をさらに作動させ、整流器を遮断することで、バックアップバッテリの電力消費をさらに加速させ、最後には長期的に給電することができなくなってしまう。   Also, when the commercial power supply is restored after a power failure for a while, the uninterruptible power supply system charges the backup battery at a high voltage and supplies power to the load side, but if the bypass switch restores the commercial power supply If the switch is not switched in a timely manner, the high voltage of the backup battery is supplied directly to the load side via the bypass switch, the load side equipment is damaged, and the uninterruptible power supply system has an overvoltage protection mechanism. By further operating and shutting off the rectifier, the power consumption of the backup battery is further accelerated, and finally power cannot be supplied for a long time.

以上のことから、負荷側の設備は重要且つ高価で、バックアップバッテリも高コストな投資項目であるため、無停電電源システムにおいて、たとえ停電、復旧及び通常作動等の三種類の状況下にあっても、直流側は過電圧或いは低電圧の異常が発生する恐れがあり、周知において、これ等直流給電設備の電圧異常保護回路は、関連する異常状況に対して考慮されていない。   From the above, the equipment on the load side is important and expensive, and the backup battery is also an expensive investment item. Therefore, in an uninterruptible power system, there are three types of situations such as power outage, recovery, and normal operation. However, overvoltage or undervoltage abnormality may occur on the DC side, and it is well known that the voltage abnormality protection circuit of these DC power supply facilities is not considered for related abnormal situations.

完備された保護回路は、停電時にバッテリの電力を十分に活用し、復旧時に負荷が過電圧にならないよう保護し、通常時に整流器の故障或いは外部電源の過電圧によって負荷及びバッテリが損傷することを防ぐものである。   A complete protection circuit fully utilizes the power of the battery during a power failure, protects the load from overvoltage during recovery, and prevents damage to the load and the battery due to a rectifier failure or an external power supply overvoltage during normal operation It is.

本発明の目的は、従来の無停電電源システムにある対電圧異常の保護回路が不完全且つ信頼性が不足しているという欠点を克服することにある。   An object of the present invention is to overcome the disadvantage that a protection circuit against abnormal voltage in a conventional uninterruptible power supply system is incomplete and lacks reliability.

上述の目的を達成するため、本発明は、外部電源に接続する遮断器と、前記遮断器に接続し、出力側に直流電圧を出力する整流ユニットと、前記整流ユニットの出力側に接続するフィルタユニットと、前記整流ユニットの出力側に接続し、前記フィルタユニットと並列に設置するバッテリユニットと、少なくとも一つの降圧素子及び前記降圧素子に並列に接続するバイパススイッチユニットを含み、そのうち、前記降圧素子は前記バッテリユニットと負荷との間に直列に接続し、前記バイパススイッチユニットは並列に接続する少なくとも二つのバイパススイッチが少なくとも一つのバイパススイッチに直列に接続する少なくとも一つの電圧調整ユニットと、前記電圧調整ユニットの入力側と出力側とにそれぞれ接続する少なくとも二つの電圧モニタリングユニットと、を包括する無停電電源システムの電圧異常保護回路を提供している。   To achieve the above object, the present invention includes a circuit breaker connected to an external power source, a rectifier unit connected to the circuit breaker and outputting a DC voltage to the output side, and a filter connected to the output side of the rectifier unit. A unit, a battery unit connected to the output side of the rectifying unit and installed in parallel with the filter unit, at least one step-down element and a bypass switch unit connected in parallel to the step-down element, of which the step-down element Is connected in series between the battery unit and the load, and the bypass switch unit is connected in parallel to at least one voltage regulation unit in which at least two bypass switches are connected in series to at least one bypass switch, and the voltage At least two power supplies connected to the input and output sides of the adjustment unit respectively. It provides a voltage abnormality protection circuit of an uninterruptible power supply system encompassing and monitoring unit.

本発明の特徴は、電圧調整ユニット内の素子と電圧モニタリングユニットとをダブリングし、制御不能を防ぎ、全体のモニタリング機能の信用性を向上させ、過電圧によるバッテリ或いは負荷設備が焼損する、又は低電圧によるシャットダウンの事故が発生する、まで至らないように確保することができる。   The feature of the present invention is that the device in the voltage regulation unit and the voltage monitoring unit are doubled to prevent uncontrollability, improve the reliability of the overall monitoring function, and the battery or load equipment due to overvoltage is burned out or low voltage It can be ensured that a shutdown accident will not occur.

図1は本発明を示す構成図である。FIG. 1 is a block diagram showing the present invention. 図2は本発明に係るモニタリングノードを示す回路模式図(一)である。FIG. 2 is a circuit schematic diagram (1) showing a monitoring node according to the present invention. 図3は本発明に係るモニタリングノードを示す回路模式図(二)である。FIG. 3 is a circuit schematic diagram (2) showing the monitoring node according to the present invention. 図4は本発明のもう一つの実施例に係るモニタリングを示す回路模式図である。FIG. 4 is a schematic circuit diagram showing monitoring according to another embodiment of the present invention. 図5は本発明の第三実施例に係る二重式回路を示す回路模式図である。FIG. 5 is a circuit schematic diagram showing a dual circuit according to a third embodiment of the present invention.

具体的な実施例により図面を参照しつつ、以下において、本発明の構成及びそれをどのように組合せ、使用するかを詳細に説明することで、本発明の目的、技術内容、特徴及びこれが達成する効果をより容易に理解できる。   The objects, technical contents, features, and the objects of the present invention can be achieved by describing the configuration of the present invention and how to combine and use the same in detail below with reference to the drawings by specific embodiments. You can more easily understand the effect.

図1及び図2で図示されているものを参照すると、本発明に係る無停電電源システムの電圧異常保護回路Eは、構成上、主に、整流ユニット1と、フィルタユニット2と、バッテリユニット3と、電圧調整ユニット4と、電圧モニタリングユニット5と、遮断器6とを包括している。   With reference to what is illustrated in FIG. 1 and FIG. 2, the voltage abnormality protection circuit E of the uninterruptible power supply system according to the present invention mainly includes a rectification unit 1, a filter unit 2, and a battery unit 3 in configuration. And a voltage adjustment unit 4, a voltage monitoring unit 5, and a circuit breaker 6.

図1及び図2を参照しつつ、まず、本発明の電力を供給するための回路構成及び効果について説明すると、前記遮断器6は商用電源のような外部電源7の一端に接続し、且つ前記遮断器6は常時閉(Normally Closed,導通)に設定されており、そのうち、前記遮断器6はさらにヒューズ9を直列に接続して前記整流ユニット1に接続することもでき、これによって、前記遮断器6は過電圧のような重大な事故の遮断を制御することができ、また、前記遮断器6は電磁式或いはノンヒューズ(NFB)のような制御可能な電子式遮断器であって、本実施例では、ノンヒューズ遮断器を用いて実施している。   First, the circuit configuration and effect for supplying power according to the present invention will be described with reference to FIGS. 1 and 2. The circuit breaker 6 is connected to one end of an external power source 7 such as a commercial power source, and the circuit The circuit breaker 6 is set to be normally closed (normally closed). Among them, the circuit breaker 6 can be further connected to the rectifying unit 1 by connecting a fuse 9 in series, whereby the circuit breaker 6 can be connected. The breaker 6 can control the breaking of a serious accident such as overvoltage, and the breaker 6 is a controllable electronic breaker such as an electromagnetic or non-fuse (NFB). In the example, a non-fuse breaker is used.

前記整流ユニット1は、シリコン制御整流器(SCR)或いは絶縁ゲートバイポーラトランジスタ(IGBT)等の制御可能な半導体スイッチで実施し、前記遮断器6に接続し、出力側で直流電圧を出力しており、前記フィルタユニット2は、本実施例において、フィルタリングのため、コンデンサで前記整流ユニット1の出力側に並列に接続しており、前記バッテリユニット3は、前記整流ユニット1の出力側に接続し、前記フィルタユニット2と並列に呈して設置し、ノンヒューズ遮断器31、ヒューズ32及びバッテリ33を直列に接続して実施しており、そのうち、前記フィルタユニット2の一端及び前記バッテリユニット3の一端には、手動負荷電流切換スイッチS1及びS2をそれぞれ有し、作業員が点検を容易に行えるようにするために絶縁することができ、前記手動負荷電流切換スイッチS1は前記バッテリユニット3の電力を絶縁するために用いられ、前記手動負荷電流切換スイッチS2は前記整流ユニット1の電力を絶縁するために用いられている。   The rectifying unit 1 is implemented by a controllable semiconductor switch such as a silicon controlled rectifier (SCR) or an insulated gate bipolar transistor (IGBT), connected to the circuit breaker 6, and outputs a DC voltage on the output side, In the present embodiment, the filter unit 2 is connected in parallel to the output side of the rectifying unit 1 with a capacitor for filtering in the present embodiment, the battery unit 3 is connected to the output side of the rectifying unit 1, The non-fuse breaker 31, the fuse 32, and the battery 33 are connected in series, and are arranged in parallel with the filter unit 2, of which one end of the filter unit 2 and one end of the battery unit 3 are connected to each other. , Manual load current selector switch S1 and S2, respectively, so that workers can easily check The manual load current changeover switch S1 is used to insulate the power of the battery unit 3, and the manual load current changeover switch S2 is used to insulate the power of the rectifying unit 1. It is used.

次に、図3を併せて参照しつつ、本発明の電圧をモニタリングするための回路構成及び効果について説明すると、負荷8は常に高い起動電流を必要とするため、前記電圧調整ユニット4は、本実施例において、瞬間大電流を提供できないDC/DC電力コンバータを用いず、複数の降圧素子41a乃至41n及びこれ等降圧素子41a乃至41nに並列に接続するバイパススイッチユニット42で実施し、これ等降圧素子41a乃至41nは直列に呈して前記バッテリユニット3と前記負荷8との間に設置し、前記バイパススイッチユニット42はこれ等降圧素子41a乃至41nに並列に接続しており、本実施例における前記バイパススイッチユニット42は、並列に接続する二つのバイパススイッチ42a及び42bに、直列に接続する二つのバイパススイッチ42c及び42dを直列に接続することで実施しており、これ等バイパススイッチ42a、42b、42c及び42dはそれぞれ電磁式スイッチのような制御可能な電子式スイッチで実施し、且つこれ等バイパススイッチ42a及び42bは常時開(Normally Open,不導通)、これ等バイパススイッチ42c及び42dは常時閉に設定することで、前記電圧調整ユニット4を前記負荷8の電圧調整として用いており、そのうち、前記電圧調整ユニット4の一端には、電圧調整ユニット4をその他の素子とを絶縁して作業員が点検を容易に行えるようにするため、手動負荷電流切換スイッチS3も有している。   Next, the circuit configuration and effect for monitoring the voltage of the present invention will be described with reference to FIG. 3. Since the load 8 always requires a high starting current, the voltage adjusting unit 4 In the embodiment, the DC / DC power converter that cannot provide an instantaneous large current is used, and the step-down elements 41a to 41n and the bypass switch unit 42 connected in parallel to the step-down elements 41a to 41n are implemented. The elements 41a to 41n are provided in series and installed between the battery unit 3 and the load 8, and the bypass switch unit 42 is connected in parallel to these step-down elements 41a to 41n. The bypass switch unit 42 is connected in series to two bypass switches 42a and 42b connected in parallel. The bypass switches 42c and 42d are connected in series, and these bypass switches 42a, 42b, 42c and 42d are each implemented by a controllable electronic switch such as an electromagnetic switch, and the like. Bypass switches 42a and 42b are normally open (normally open, non-conducting), and these bypass switches 42c and 42d are normally closed so that the voltage adjustment unit 4 is used for voltage adjustment of the load 8, of which One end of the voltage adjustment unit 4 is also provided with a manual load current changeover switch S3 in order to insulate the voltage adjustment unit 4 from other elements so that an operator can easily check.

前記整流器ユニット1の素子に故障或いは前記遮断器6の機構に故障が発生して機能しなくなり、さらに前記電圧モニタリングユニット5も図1のように、同時に故障していたとすると、前記外部電源7との接続が遮断できず、過電圧が発生し、前記バッテリユニット3或いは前記負荷8の設備に損傷を与えてしまうという状況を防ぐため、図2のように、二つの電圧モニタリングユニット5a及び5bを設置しており、そのうち、これ等電圧モニタリングユニット5a及び5bは、前記電圧調整ユニット4の入力側及び出力側、即ち、第一ノードa及び第二ノードbにそれぞれ設置することで、前記電圧調整ユニット4の入力側と出力側との電圧値をモニタリングしており、また、これ等電圧モニタリングユニット5a及び5b内には、前記遮断器6と、前記整流器ユニット1と、これ等各バイパススイッチ42a、42b、42c及び42dとを個別に制御する駆動回路(図示されていない)がそれぞれ備えられることで、適時に、前記遮断器6、前記整流ユニット1及び前記バイパススイッチユニット42を制御し、且つ、これ等電圧モニタリングユニット5a及び5bがより正確に現在のこれ等バイパススイッチ42a、42b、42c及び42dの状態を測定するため、さらにこれ等バイパススイッチ42a、42b、42c及び42dの状態補助ノード(図示されていない)をこれ等電圧モニタリングユニット5a及び5bとの接続に盛り込むことによって、本発明の全体がさらに精確なモニタリング効果を達成することができる。   If the element of the rectifier unit 1 fails or the mechanism of the circuit breaker 6 fails and does not function, and the voltage monitoring unit 5 also fails simultaneously as shown in FIG. In order to prevent the situation in which the connection of the battery unit 3 cannot be interrupted and an overvoltage occurs and damages the equipment of the battery unit 3 or the load 8, two voltage monitoring units 5a and 5b are installed as shown in FIG. Among them, these voltage monitoring units 5a and 5b are installed on the input side and the output side of the voltage adjustment unit 4, that is, the first node a and the second node b, respectively, so that the voltage adjustment unit 4 monitors the voltage values at the input side and output side, and in these voltage monitoring units 5a and 5b, The circuit breaker 6, the rectifier unit 1, and drive circuits (not shown) that individually control the bypass switches 42 a, 42 b, 42 c, and 42 d are provided, so that the circuit breaker can be used at the appropriate time. 6. In order to control the rectifying unit 1 and the bypass switch unit 42 and more accurately measure the current state of these bypass switches 42a, 42b, 42c and 42d, the voltage monitoring units 5a and 5b Furthermore, by incorporating the state auxiliary nodes (not shown) of these bypass switches 42a, 42b, 42c and 42d into the connection with these voltage monitoring units 5a and 5b, the whole of the present invention has a more accurate monitoring effect. Can be achieved.

図1乃至3を続けて参照しつつ、本発明が異なる状況下における作業工程を以下において説明する。   The working steps under different circumstances of the present invention will be described below with continued reference to FIGS.

前記無停電電源システムが、異常がない状態にあると、前記外部電源7は、前記整流ユニット1により前記バッテリユニット3に対して充電を行い、前記負荷8に対して給電を行っており、前記外部電源7に異常が発生して給電が停止すると、前記無停電電源システムは自動的に前記バッテリユニット3より前記電圧調整ユニット4を介して前記負荷8に電力を給電し、前記バッテリユニット3の電圧値が低く早期にその電力を消費してしまうことを防ぐため、これ等電圧モニタリングユニット5a及び5bは、前記第一ノードaの電圧を同時にモニタリングし、且つ前記第一ノードaが既定の臨界電圧値より低かった場合、これ等バイパススイッチ42a及び42bを同時に制御して適時に導通させており、これによって、前記バッテリユニット3の電力がこれ等バイパススイッチ42a、42b、42c及び42dを介して前記負荷8に対して継続的に給電できるだけでなく、周知技術における単一のバイパススイッチしか設置しないために正常に作動できず、バッテリの電力を十分に発揮できないということを防止することもでき、その結果、前記バッテリユニット3は順調に蓄電され、停電後から前記外部電源7が復旧するまでの期間、前記負荷8に対して給電を行うことで、前記バッテリユニット3はバックアップ時に十分にその効果を発揮している。   When the uninterruptible power supply system is in an abnormal state, the external power supply 7 charges the battery unit 3 with the rectifying unit 1 and supplies power to the load 8. When an abnormality occurs in the external power supply 7 and power supply is stopped, the uninterruptible power supply system automatically supplies power from the battery unit 3 to the load 8 via the voltage adjustment unit 4. These voltage monitoring units 5a and 5b monitor the voltage of the first node a at the same time, and the first node a is set to a predetermined critical value in order to prevent the voltage value from being low and consuming the power at an early stage. When the voltage value is lower than the voltage value, these bypass switches 42a and 42b are simultaneously controlled to conduct in a timely manner. Not only can the power of the power station 3 be continuously supplied to the load 8 via these bypass switches 42a, 42b, 42c and 42d, but it operates normally because only a single bypass switch in the known art is installed. It is also possible to prevent the battery power from being sufficiently exerted, and as a result, the battery unit 3 is smoothly charged, and during the period from the power failure until the external power source 7 is restored, the load 8 By supplying power to the battery unit 3, the battery unit 3 is sufficiently effective during backup.

前記外部電源7が復旧すると、これ等電圧モニタリングユニット5a及び5bは、すぐさまこれ等バイパススイッチ42a及び42bを遮断することで、前記外部電源7は高い電圧で前記バッテリユニット3に対して継続的に充電し、これ等降圧素子41a乃至41nを正常に介して前記負荷8に対して継続に給電している。   When the external power supply 7 is restored, the voltage monitoring units 5a and 5b immediately shut off the bypass switches 42a and 42b, so that the external power supply 7 is continuously connected to the battery unit 3 at a high voltage. The battery is charged, and power is continuously supplied to the load 8 through the step-down elements 41a to 41n normally.

また、復旧後のこれ等バイパススイッチ42a及び42bが全部正常に遮断されないと、前記第一ノードaの高電圧が直接前記バイパススイッチユニット42を介して前記負荷8に対して給電し、前記負荷8に過電圧が発生して前記負荷8の設備が損傷する恐れがあるため、本発明が提供するもう一つの効果は、これ等電圧モニタリングユニット5a及び5bが前記第二ノードbの電圧を同時にモニタリングすることであって、前記第二ノードbの電圧値が高いことを発見するとすぐさま制御し、常時閉に設定されていた前記バイパススイッチ42c及び42dを遮断することで前記第二ノードbが過電圧にならないように確保し、前記遮断器6或いは前記整流ユニット1を再度遮断することがないので、負荷の長時間停電を有効的に防ぎ、前記外部電圧7は、この時、これ等降圧素子41a乃至41nを安全且つ確実に介して前記負荷8に対して給電している。   Further, if the bypass switches 42a and 42b after the restoration are not all cut off normally, the high voltage of the first node a directly supplies power to the load 8 via the bypass switch unit 42, and the load 8 Another effect provided by the present invention is that these voltage monitoring units 5a and 5b simultaneously monitor the voltage of the second node b, because overvoltage may occur and the equipment of the load 8 may be damaged. That is, as soon as it finds that the voltage value of the second node b is high, the second node b does not become an overvoltage by controlling the bypass switches 42c and 42d that are normally closed. So that the circuit breaker 6 or the rectifying unit 1 is not interrupted again, effectively preventing a long-time power outage of the load, Kigaibu voltage 7, this time, are feeding this like buck elements 41a to 41n with respect to the load 8 through safely and reliably.

また、これ等バイパススイッチ42c及び42dの切換えにも失敗が生じ、正常に遮断ができなくなると、これ等電圧モニタリングユニット5a及び5bはすぐさま前記遮断器6及び前記整流ユニット1を遮断して前記負荷8の設備損傷しないように保護し、且つこれ等電圧モニタリングユニット5a及び5b内にそれぞれ設ける警告ノードのような警報素子(図示されていない)を介し、信号を制御室に送信して警報を発したり、警報ランプを設置して点滅させたりすることで、すぐに点検するように作業員に通知している。   In addition, when the switching of the bypass switches 42c and 42d also fails and cannot be normally shut off, the voltage monitoring units 5a and 5b immediately shut off the circuit breaker 6 and the rectifier unit 1 to load the load. 8 Protect the equipment from damage and send a signal to the control room via an alarm element (not shown) such as a warning node provided in each of these voltage monitoring units 5a and 5b to issue an alarm. Or a warning lamp is installed and flashed to notify the worker to check immediately.

次に、図4のように、本発明に係る第二実施例は、電圧調整ユニット4をもう一つ増設しており、これ等電圧モニタリングユニット5a及び5bと本実施例において増設する前記電圧調整ユニット4との接続方式は、上述の実施例と類似しているが、その差異は二つの前記電圧調整ユニット4の間に第三ノードcをさらに包括することであって、前記第三ノードcもこれ等電圧モニタリングユニット5a及び5bにそれぞれ接続していることから、これ等電圧モニタリングユニット5a及び5bは、前記第一ノードaと前記第三ノードcとをそれぞれ一つの前記電圧調整ユニット4の入力電圧及び出力電圧として同時且つ個別にモニタリングし、前記第三ノードcと前記第二ノードbとをそれぞれもう一つの前記電圧調整ユニット4の入力電圧及び出力電圧として同時且つ個別にモニタリングしている。   Next, as shown in FIG. 4, in the second embodiment according to the present invention, another voltage adjusting unit 4 is added, and the voltage adjusting units 5a and 5b and the voltage adjusting unit added in the present embodiment are added. The connection method with the unit 4 is similar to that of the above-described embodiment, but the difference is that the third node c is further included between the two voltage regulation units 4, and the third node c Are connected to these voltage monitoring units 5a and 5b, respectively, so that these voltage monitoring units 5a and 5b connect the first node a and the third node c to one of the voltage adjustment units 4, respectively. The input voltage and the output voltage are monitored simultaneously and individually, and the third node c and the second node b are respectively connected to the input voltage of the other voltage regulation unit 4. It is simultaneously and individually monitored and as the output voltage.

そのため、第二実施例の効果は、上述の実施例には単一の電圧調整ユニット4しか設置されてなく、前記切換え工程において大きい出力電圧の変化(例えば、出力電圧を一回の調整の切換えで起こる変動の幅はおよそ10%に達する)が引き起こり、回路の制御及び安定性において、負荷に対して好ましくない影響を及ぼしているため、二つの電圧調整ユニット4を設置することによって、本発明は二段式の降圧制御として改善し、即ち、それぞれのノードの電圧臨界値をモニタリングし、ノード毎の臨界値に基づき、バイパススイッチユニット42を前後してそれぞれオンにする(例えば、出力電圧を前後してそれぞれ調整することで起こる変動の幅は5%である)ことで、精確な出力電圧の制御を達しており、同じように、三つ以上の電圧調整ユニット4を設置することで、より精確な出力電圧の制御を達することもできる。   Therefore, the effect of the second embodiment is that only the single voltage adjustment unit 4 is installed in the above-described embodiment, and a large change in the output voltage (for example, the output voltage is switched once in the switching step). The range of fluctuations that occur in the circuit is about 10%), which has an unfavorable effect on the load in the control and stability of the circuit. The invention is improved as a two-stage step-down control, that is, the voltage critical value of each node is monitored, and the bypass switch unit 42 is turned on and off based on the critical value of each node (for example, the output voltage). The range of fluctuation caused by adjusting each before and after each is 5%), so that precise output voltage control has been achieved. By installing the adjustment unit 4, it is also possible to achieve the control of a more accurate output voltage.

また、図5のように、本発明に係る第三実施例は、二つの無停電電源システムの電圧異常保護回路Eを包括する二重式(或いは多重式)で実施しており、これ等無停電電源システムの電圧異常保護回路Eは、前記外部電源7にそれぞれ接続し、且つ直流バスFにそれぞれ接続して前記負荷8に対して給電している。この構成で実施する場合、出力側と前記負荷8との間に、直列に接続する少なくとも一つのダイオードと手動スイッチとをそれぞれ加えなければならず、本実施例では、直列に接続するダイオードD1及びD2と手動負荷電流切換スイッチS4及びS5とをそれぞれ設けることで実施しており、そのうち、これ等ダイオードD1及びD2は、これ等無停電電源システムの電圧異常保護回路E同士で循環電流が発生しないようにするためにそれぞれ用いられ、これ等手動負荷電流切換スイッチS4及びS5は、点検時に手動でオン/オフにして絶縁にするためにそれぞれ用いられている。   Further, as shown in FIG. 5, the third embodiment according to the present invention is implemented in a double type (or multiple type) including the voltage abnormality protection circuit E of two uninterruptible power supply systems. The voltage abnormality protection circuit E of the power failure power supply system is connected to the external power supply 7 and connected to the DC bus F to supply power to the load 8. When implemented in this configuration, at least one diode connected in series and a manual switch must be added between the output side and the load 8, respectively. In this embodiment, the diode D1 connected in series and D2 and manual load current change-over switches S4 and S5 are provided respectively. Among these, these diodes D1 and D2 do not generate a circulating current between the voltage abnormality protection circuits E of these uninterruptible power supply systems. These manual load current changeover switches S4 and S5 are respectively used to manually turn on / off and insulate at the time of inspection.

以上のことから、無停電電源システムの電圧異常で起こる影響はそれぞれが関係しているため、本発明は全体の回路動作のリスクにより、対応を考慮して完備する保護回路であって、以下のような利点がある。   From the above, since the influence caused by the voltage abnormality of the uninterruptible power supply system is related to each other, the present invention is a complete protection circuit considering the countermeasures due to the risk of the entire circuit operation. There are such advantages.

1.二重化したバイパススイッチユニット(並列に接続するバイパススイッチ42a及び42bと直列に接続するバイパススイッチ42c及び42d)によって、単一のスイッチが機能せずに導通或いは遮断できないため、バッテリバックアップの時効が有効に発揮できない、或いは過電圧が出力して負荷が破損するということを防ぐことができる。   1. Duplicate bypass switch unit (bypass switches 42c and 42d connected in series with bypass switches 42a and 42b connected in parallel) makes it impossible to conduct or shut off without a single switch functioning, so battery backup aging is effective It can be prevented that the load cannot be exhibited or the load is damaged due to the output of overvoltage.

2.二重化した電圧モニタリングユニット(電圧モニタリングユニット5a及び5b)によって、個別且つ独立にそれぞれのスイッチ(整流ユニット1と、バイパススイッチ42a、42b、42c及び42dと、遮断器6)を制御することで、過電圧及び低電圧が負荷の設備及びバッテリユニットに対する損傷を有効に防ぐことができ、無停電電源システムの給電品質及び安全を向上することができる。   2. By controlling the respective switches (rectifier unit 1, bypass switches 42a, 42b, 42c and 42d, and circuit breaker 6) individually and independently by the duplicated voltage monitoring units (voltage monitoring units 5a and 5b), overvoltage In addition, the low voltage can effectively prevent damage to the load equipment and the battery unit, and the power supply quality and safety of the uninterruptible power supply system can be improved.

3.過電圧或いは低電圧が発生すると警報が発せられるため、作業員が即座に点検することができる。   3. When an overvoltage or undervoltage occurs, an alarm is issued so that an operator can immediately check.

1 整流ユニット
2 フィルタユニット
3 バッテリユニット
31 ノンヒューズ遮断器
32 ヒューズ
33 バッテリ
4 電圧調整ユニット
41a〜41n 降圧素子
42 バイパススイッチユニット
42a バイパススイッチ
42b バイパススイッチ
42c バイパススイッチ
42d バイパススイッチ
5 電圧モニタリングユニット
5a 電圧モニタリングユニット
5b 電圧モニタリングユニット
6 遮断器
7 外部電圧
8 負荷
9 ヒューズ
a 第一ノード
b 第二ノード
c 第三ノード
D1 ダイオード
D2 ダイオード
E 無停電電源システムの電圧異常保護回路
F 直流バス
S1 手動負荷電流切換スイッチ
S2 手動負荷電流切換スイッチ
S3 手動負荷電流切換スイッチ
S4 手動負荷電流切換スイッチ
S5 手動負荷電流切換スイッチ
DESCRIPTION OF SYMBOLS 1 Rectification unit 2 Filter unit 3 Battery unit 31 Non-fuse breaker 32 Fuse 33 Battery 4 Voltage adjustment unit 41a-41n Step-down element 42 Bypass switch unit 42a Bypass switch 42b Bypass switch 42c Bypass switch 42d Bypass switch 5 Voltage monitoring unit 5a Voltage monitoring Unit 5b Voltage monitoring unit 6 Circuit breaker 7 External voltage 8 Load 9 Fuse a First node b Second node c Third node D1 Diode D2 Diode E Uninterruptible power supply system voltage abnormality protection circuit F DC bus S1 Manual load current selector switch S2 Manual load current selector switch S3 Manual load current selector switch S4 Manual load current selector switch S5 Manual load current selector switch

Claims (4)

外部電源に接続する遮断器と、
前記遮断器に接続し、出力側に直流電圧を出力する整流ユニットと、
前記整流ユニットの出力側に接続するフィルタユニットと、
前記整流ユニットの出力側に接続し、前記フィルタユニットと並列に設置するバッテリユニットと、
少なくとも一つの降圧素子及び前記降圧素子に並列に接続するバイパススイッチユニットを含み、そのうち、前記降圧素子は前記バッテリユニットと負荷との間に直列に接続し、前記バイパススイッチユニットは並列に接続する少なくとも二つのバイパススイッチが少なくとも一つのバイパススイッチに直列に接続する少なくとも一つの電圧調整ユニットと、
前記電圧調整ユニットの入力側と出力側とにそれぞれ接続する少なくとも二つの電圧モニタリングユニットと、を包括することを特徴とする無停電電源システムの電圧異常保護回路。
A circuit breaker connected to an external power source;
A rectifying unit connected to the circuit breaker and outputting a DC voltage to the output side;
A filter unit connected to the output side of the rectifying unit;
A battery unit connected to the output side of the rectifying unit and installed in parallel with the filter unit;
At least one step-down element and a bypass switch unit connected in parallel to the step-down element, wherein the step-down element is connected in series between the battery unit and a load, and the bypass switch unit is connected in parallel At least one voltage regulation unit in which two bypass switches are connected in series to at least one bypass switch;
A voltage abnormality protection circuit for an uninterruptible power supply system, comprising at least two voltage monitoring units respectively connected to an input side and an output side of the voltage adjustment unit.
これ等電圧モニタリングユニットは、前記遮断器を個別に制御する駆動回路、前記整流ユニットを個別に制御する駆動回路、或いは各バイパススイッチを個別に制御する駆動回路をそれぞれ有することを特徴とする請求項1に記載の無停電電源システムの電圧異常保護回路。   The voltage monitoring unit includes a drive circuit that individually controls the circuit breaker, a drive circuit that individually controls the rectifier unit, or a drive circuit that individually controls each bypass switch. The voltage abnormality protection circuit of the uninterruptible power supply system according to 1. これ等電圧モニタリングユニットは、警報素子をそれぞれ有することを特徴とする請求項1に記載の無停電電源システムの電圧異常保護回路。   The voltage abnormality protection circuit of the uninterruptible power supply system according to claim 1, wherein each of these voltage monitoring units has an alarm element. これ等降圧素子は、ダイオードであって、これ等バイパススイッチはそれぞれ制御可能な電子式スイッチであって、前記遮断器はヒューズを直列に接続する制御可能な電子式スイッチであって、前記整流ユニットは制御可能な半導体スイッチであることを特徴とする請求項1に記載の無停電電源システムの電圧異常保護回路。   The step-down elements are diodes, the bypass switches are controllable electronic switches, and the circuit breaker is a controllable electronic switch connecting fuses in series. The voltage abnormality protection circuit of the uninterruptible power supply system according to claim 1, wherein is a controllable semiconductor switch.
JP2014108247A 2013-06-17 2014-05-26 Voltage abnormality protection circuit for uninterruptible power supply system Pending JP2015002669A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW102121326A TW201501441A (en) 2013-06-17 2013-06-17 Voltage abnormality protection circuit for uninterruptible power supply system
TW102121326 2013-06-17

Publications (1)

Publication Number Publication Date
JP2015002669A true JP2015002669A (en) 2015-01-05

Family

ID=52296883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014108247A Pending JP2015002669A (en) 2013-06-17 2014-05-26 Voltage abnormality protection circuit for uninterruptible power supply system

Country Status (2)

Country Link
JP (1) JP2015002669A (en)
TW (1) TW201501441A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113675815A (en) * 2021-08-25 2021-11-19 深圳市杰芯创电子科技有限公司 Power supply management system and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111157831B (en) * 2020-03-10 2021-02-05 浙江禾川科技股份有限公司 Performance test method, device and equipment for power-on buffer resistor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001069689A (en) * 1999-08-31 2001-03-16 Fuji Electric Co Ltd Bypass circuit for uninterruptible power supply
JP2013046501A (en) * 2011-08-24 2013-03-04 Toshiba Tec Corp Power supply switching circuit and electronic apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009131066A (en) * 2007-11-26 2009-06-11 Fujitsu Ltd Power supply circuit and electronic apparatus
TWI364901B (en) * 2008-12-11 2012-05-21 Delta Electronics Inc Uninterruptible power supply with low power loss
TW201128906A (en) * 2010-04-13 2011-08-16 Eneraiser Technology Co Ltd High-reliability dual power automatic switching loop and isolation device thereof
TWM393681U (en) * 2010-07-05 2010-12-01 Eneraiser Technology Co Ltd Online detect circuit for capacitance in attenuation of rectification filtering capacitor
TW201236337A (en) * 2011-02-25 2012-09-01 Spirox Corp A circuit apparatus with boost and bi-directional power converting function and a power converting system
TWM450133U (en) * 2012-06-28 2013-04-01 zhi-cheng Huang Dc dynamic load power supply voltage drop automatic compensation device
TWM464913U (en) * 2013-06-17 2013-11-01 Min-Jing Xie Voltage abnormality protection circuit for uninterruptable power supply

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001069689A (en) * 1999-08-31 2001-03-16 Fuji Electric Co Ltd Bypass circuit for uninterruptible power supply
JP2013046501A (en) * 2011-08-24 2013-03-04 Toshiba Tec Corp Power supply switching circuit and electronic apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113675815A (en) * 2021-08-25 2021-11-19 深圳市杰芯创电子科技有限公司 Power supply management system and method
CN113675815B (en) * 2021-08-25 2023-09-01 深圳市拓邦威电子科技有限公司 Power supply management system and method

Also Published As

Publication number Publication date
TWI505594B (en) 2015-10-21
TW201501441A (en) 2015-01-01

Similar Documents

Publication Publication Date Title
US7911352B2 (en) Method and apparatus for protection of AC-DC power converters
US7839665B2 (en) System interconnection inverter including overvoltage and negative voltage protection
US20140292105A1 (en) Static switch circuit for high reliability uninterruptible power supply systems
EP3996239B1 (en) Troubleshooting method and apparatus for power supply device
JP2001075880A (en) Device for electronically monitoring supply currents of module connected with bus
JPWO2018043319A1 (en) Power supply system
US9793711B2 (en) Modularly redundant DC-DC power supply arrangement having outputs that can be connected in parallel
TWI534579B (en) Power supply control device and programmable logic controller
CN105576642B (en) System and method for monitoring power system power converter
TWM464913U (en) Voltage abnormality protection circuit for uninterruptable power supply
JP2015002669A (en) Voltage abnormality protection circuit for uninterruptible power supply system
JP2008220136A (en) Protection relay system of distribution system
KR20170116697A (en) Fail-safe control apparatus of the connection switch for the applicable High-voltage at the time of discharge
KR101246036B1 (en) Emergency transport switch
JP7255249B2 (en) Power supply circuit and electronic device
JP2014055902A (en) Dc power supply facility for nuclear power plant
RU2215355C1 (en) No-break power installation for railway automatic-control systems
Xiaofei et al. How to ensure the modular UPS with high reliability
CN106329701A (en) Failure determining and switching system for dual-machine uninterruptible power supply
JPH01222635A (en) Uninterruptible power supply equipment
KR102514585B1 (en) Digital protection relay and controlling method thereof
JP4940978B2 (en) Overvoltage protection device for DC parallel power supply
JP2016073011A (en) Power storage system and extended control device
CN217335072U (en) Nuclear power station system wiring scheme
JP2002272016A (en) Uninterruptible power supply unit

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150909