JP2015000090A - Particle beam treatment apparatus - Google Patents

Particle beam treatment apparatus Download PDF

Info

Publication number
JP2015000090A
JP2015000090A JP2013124287A JP2013124287A JP2015000090A JP 2015000090 A JP2015000090 A JP 2015000090A JP 2013124287 A JP2013124287 A JP 2013124287A JP 2013124287 A JP2013124287 A JP 2013124287A JP 2015000090 A JP2015000090 A JP 2015000090A
Authority
JP
Japan
Prior art keywords
particle beam
deflection
irradiation
electromagnet
charged particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013124287A
Other languages
Japanese (ja)
Other versions
JP6253268B2 (en
Inventor
孝道 青木
Takamichi Aoki
孝道 青木
文章 野田
Fumiaki Noda
文章 野田
秋山 浩
Hiroshi Akiyama
浩 秋山
貴啓 山田
Takahiro Yamada
貴啓 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2013124287A priority Critical patent/JP6253268B2/en
Publication of JP2015000090A publication Critical patent/JP2015000090A/en
Application granted granted Critical
Publication of JP6253268B2 publication Critical patent/JP6253268B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a compact particle beam treatment apparatus.SOLUTION: A particle beam treatment apparatus 100 includes: a synchrotron 400; and a beam transport device 500, the transport device 500 is set with two or more inclined set deflection parts, and inclinedly linear parts are formed between the inclined deflection parts. By generating a dispersion function in the inclined linear part, size of an opening part of an electromagnet installed in the linear part is reduced to suppress power consumption.

Description

本発明は荷電粒子ビーム(陽子線または炭素イオン線等の重イオン線)の照射によって、がんなどの腫瘍を治療する粒子線治療装置に関する。   The present invention relates to a particle beam therapy apparatus for treating a tumor such as cancer by irradiation with a charged particle beam (a heavy ion beam such as a proton beam or a carbon ion beam).

がん治療法の一つとして、患部に荷電粒子ビーム(陽子線あるいは炭素イオン等の重粒子線)を照射する粒子線治療が知られている。陽子や炭素イオン等のイオンを高エネルギーで物質に入射すると、飛程の終端で多くのエネルギーを失う。粒子線治療では、この性質を利用し、がん細胞で多くのエネルギーを失うように、荷電粒子ビームを患者に照射する。すると、周囲の健康な組織に損傷を与えることなく、がん細胞を破壊できる。粒子線治療では荷電粒子ビームの空間的な広がりとエネルギーを調整し、患部の形状に合わせた線量分布を形成する。   As one of the cancer treatment methods, particle beam therapy is known in which an affected area is irradiated with a charged particle beam (a heavy particle beam such as a proton beam or carbon ion). When ions such as protons and carbon ions are incident on a material with high energy, a lot of energy is lost at the end of the range. In particle beam therapy, this property is used to irradiate a patient with a charged particle beam so that much energy is lost in cancer cells. Then, cancer cells can be destroyed without damaging surrounding healthy tissues. In particle beam therapy, the spatial spread and energy of the charged particle beam are adjusted to form a dose distribution that matches the shape of the affected area.

粒子線治療に用いる粒子線治療装置は、イオン源、イオン源で発生したイオンを加速する加速器、加速器から出射した荷電粒子ビームを輸送するビーム輸送装置、所望の線量分布で患部に荷電粒子ビームを照射する照射装置を備える。   A particle beam therapy system used for particle beam therapy includes an ion source, an accelerator for accelerating ions generated from the ion source, a beam transport device for transporting a charged particle beam emitted from the accelerator, and a charged particle beam to an affected area with a desired dose distribution. An irradiation device for irradiation is provided.

粒子線治療装置で用いられる加速器には、シンクロトロンやサイクロトロン等が挙げられる。これら加速器は入射したイオンを所定のエネルギーまで加速し、荷電粒子ビームとして出射する機能を持つ。   Examples of the accelerator used in the particle beam therapy system include a synchrotron and a cyclotron. These accelerators have a function of accelerating incident ions to a predetermined energy and emitting them as charged particle beams.

加速器から出射された荷電粒子ビームはビーム輸送装置によって照射装置まで輸送される。ビーム輸送装置には荷電粒子ビームの進行方向を大きく変える偏向電磁石、荷電粒子ビームの進行方向を微調整するステアリング電磁石、荷電粒子ビームに収束・発散の作用を与える四極電磁石が備えられており、これらの電磁石の励磁量を適切に調整することで照射装置に適切なサイズ,位置の荷電粒子ビームが輸送される。   The charged particle beam emitted from the accelerator is transported to the irradiation device by the beam transport device. The beam transport device is equipped with a deflecting electromagnet that greatly changes the traveling direction of the charged particle beam, a steering electromagnet that finely adjusts the traveling direction of the charged particle beam, and a quadrupole electromagnet that imparts convergence and divergence to the charged particle beam. By appropriately adjusting the amount of excitation of the electromagnet, a charged particle beam having an appropriate size and position is transported to the irradiation device.

粒子線治療装置では一台の加速器から輸送装置の途中でビーム経路を分岐させ、複数の治療室を設置することや、患部に複数方向から荷電粒子ビームを照射するために、一つの治療室に例えば水平方向からと鉛直方向からの二方向など複数のビーム輸送装置と照射装置を設置することもある。複数の治療室を備える場合、荷電粒子ビームの輸送経路の分岐点には偏向電磁石が設置され、偏向電磁石の励磁の有無で荷電粒子ビームを輸送する経路を決めることができる。また、一つの治療室に対して複数の方向(例えば、水平方向と鉛直方向)から荷電粒子ビームを出射する場合、粒子線治療装置は、水平方向から荷電粒子ビームを出射する第1の照射装置と鉛直方向から荷電粒子ビームを出射する第2の照射装置を備える。このように、水平方向とは異なる方向から荷電粒子ビームを照射する場合は、輸送装置で少なくとも一度荷電粒子ビームを振り上げるか振り下げる必要がある。この振り上げあるいは振り下げの際にも偏向電磁石が用いられる。このような従来の輸送系配置の例が特許文献1に開示されている。   In the particle beam therapy system, the beam path is branched from one accelerator in the middle of the transport system, and multiple treatment rooms are set up, or a charged particle beam is irradiated to the affected area from multiple directions. For example, a plurality of beam transport devices and irradiation devices such as two directions from the horizontal direction and the vertical direction may be installed. When a plurality of treatment rooms are provided, a deflecting electromagnet is installed at a branching point of the charged particle beam transport path, and a path for transporting the charged particle beam can be determined depending on whether the deflecting electromagnet is excited. In addition, when a charged particle beam is emitted from a plurality of directions (for example, a horizontal direction and a vertical direction) with respect to one treatment room, the particle beam therapy apparatus is a first irradiation device that emits a charged particle beam from the horizontal direction. And a second irradiation device for emitting a charged particle beam from the vertical direction. Thus, when the charged particle beam is irradiated from a direction different from the horizontal direction, the charged particle beam needs to be swung up or down at least once by the transport device. A deflecting electromagnet is also used when swinging up or down. An example of such a conventional transportation system arrangement is disclosed in Patent Document 1.

特許3574334号公報Japanese Patent No. 3574334

従来の粒子線治療装置では、ビーム輸送装置に備えられる偏向電磁石が、複数の治療室や複数の照射装置に荷電粒子ビームを輸送するためのコースの切り替え、及び多方向照射のためのコースの振り上げに用いられる。このような振り上げ部では偏向電磁石の小型化のために同一の偏向角を持つ複数台の偏向電磁石で偏向部を構成し、その間に分散関数を消すために四極電磁石を挿入することがある。しかし、その場合には偏向電磁石のギャップ方向の荷電粒子ビームのビームサイズが大きくなり偏向電磁石のギャップを広くとる必要が生じる。そのため偏向電磁石電源の電流が大きくなり、装置の消費電力や導入コストの増加の要因となっている。   In the conventional particle beam therapy system, the deflection electromagnet provided in the beam transport device switches the course for transporting the charged particle beam to a plurality of treatment rooms and a plurality of irradiation devices, and swings up the course for multi-directional irradiation. Used for. In such a swing-up unit, a deflection unit may be composed of a plurality of deflection electromagnets having the same deflection angle in order to reduce the size of the deflection electromagnet, and a quadrupole electromagnet may be inserted in order to eliminate the dispersion function between them. However, in that case, the beam size of the charged particle beam in the gap direction of the deflecting electromagnet becomes large, and it becomes necessary to widen the gap of the deflecting electromagnet. For this reason, the current of the deflecting electromagnet power source is increased, which causes an increase in power consumption and introduction cost of the apparatus.

本発明における粒子線治療装置のビーム輸送装置が有する偏向部を構成する複数の偏向電磁石間におかれた四極電磁石の励磁量を下流での分散関数を0とできる値よりも小さくする。結果、四極電磁石の発散効果が抑制され、下流でのギャップ方向のビームサイズを従来より抑制できる。   In the present invention, the excitation amount of the quadrupole electromagnet placed between the plurality of deflecting electromagnets constituting the deflecting unit included in the beam transport device of the particle beam therapy system is made smaller than a value that can make the downstream dispersion function zero. As a result, the divergence effect of the quadrupole electromagnet is suppressed, and the downstream beam size in the gap direction can be suppressed as compared with the prior art.

本発明によれば、ビーム輸送装置での荷電粒子ビームのコースの切替と荷電粒子ビームの振り上げを一か所で実現できるようになり、装置小型化を達成できるようになる。   According to the present invention, the course of the charged particle beam and the swinging up of the charged particle beam in the beam transport apparatus can be realized in one place, and the apparatus can be downsized.

本発明の第1の実施形態の粒子線治療装置の全体構成図である。1 is an overall configuration diagram of a particle beam therapy system according to a first embodiment of the present invention. 本発明の第1の実施形態の粒子線治療装置における偏向部の機器配置図である。It is equipment arrangement | positioning of the deflection | deviation part in the particle beam therapy system of the 1st Embodiment of this invention. 第1の実施形態の粒子線治療装置に備えられる偏向部を用いた場合と、従来の粒子線治療装置に備えられる偏向部を用いた場合での荷電粒子ビームのビームサイズの変化を示す図である。It is a figure which shows the change of the beam size of the charged particle beam at the time of using the deflection | deviation part with which the particle beam therapy apparatus of 1st Embodiment is equipped, and the deflection | deviation part with which the conventional particle beam therapy apparatus is used. is there. 第1の実施形態の粒子線治療装置に備えられる偏向部を用いた場合と、従来の粒子線治療装置に備えられる偏向部を用いた場合での荷電粒子ビームの分散関数の変化を示す図である。It is a figure which shows the change of the dispersion function of a charged particle beam in the case where the deflection | deviation part with which the particle beam therapy apparatus of 1st Embodiment is equipped, and the deflection | deviation part with which the conventional particle beam therapy system is used. is there. 本発明の第1の実施形態の粒子線治療装置を構成する治療室と傾斜直線部の立面図である。It is an elevational view of a treatment room and an inclined straight part constituting the particle beam therapy system according to the first embodiment of the present invention. 本発明の第1の実施形態の粒子線治療装置を構成する治療室と傾斜直線部の立面図である。It is an elevational view of a treatment room and an inclined straight part constituting the particle beam therapy system according to the first embodiment of the present invention. 本発明の第2の実施形態の粒子線治療装置に全体構成図である。It is a whole block diagram in the particle beam therapy system of the 2nd Embodiment of this invention.

(第1の実施形態)
以下、図面を参照しつつ本発明の第1の実施形態を説明する。本実施例は炭素イオンビーム(以下、イオンビーム)を患部に照射する炭素線治療装置を例に説明する。
(First embodiment)
The first embodiment of the present invention will be described below with reference to the drawings. In the present embodiment, a carbon beam therapy apparatus that irradiates an affected area with a carbon ion beam (hereinafter referred to as an ion beam) will be described as an example.

図1に本実施例の粒子線治療装置(炭素線治療装置)100の概略図を示す。炭素線治療装置100は、イオン源200、入射用直線加速器300、シンクロトロン400、輸送装置500、2室の治療室(第1の治療室)610、治療室(第2の治療室)620を備える。   FIG. 1 shows a schematic diagram of a particle beam therapy system (carbon beam therapy system) 100 of the present embodiment. The carbon beam treatment apparatus 100 includes an ion source 200, an incident linear accelerator 300, a synchrotron 400, a transport device 500, two treatment rooms (first treatment room) 610, and a treatment room (second treatment room) 620. Prepare.

イオン源200で発生させた炭素イオンは入射用加速器によって核子あたり6MeVまで加速された後にシンクロトロン400に入射される。シンクロトロン400では入射した炭素イオンを治療に用いる運動エネルギー(最大1核子あたり430MeV)まで加速し、輸送装置500に取り出される。   The carbon ions generated by the ion source 200 are accelerated to 6 MeV per nucleon by the incident accelerator and then incident on the synchrotron 400. In the synchrotron 400, the incident carbon ions are accelerated to the kinetic energy used for the treatment (up to 430 MeV per nucleon) and taken out to the transport device 500.

治療室610及び治療室620は、高さが異なる複数の照射ポートを有する。具体的には、炭素線治療装置100には6台の照射ポートが設けられる。治療室610及び治療室620は、それぞれが三方向からイオンビームを照射可能な構成となっている。第1の治療室610が、水平方向からイオンビームを照射する水平照射ポート(第1の水平照射ポート)511と、鉛直方向からイオンビームを照射する鉛直照射ポート(第1の鉛直照射ポート)521と、斜め方向からイオンビームを照射する斜め照射ポート(第1の斜め照射ポート)531を備える。第2の治療室610が、水平方向からイオンビームを照射する水平照射ポート(第2の水平照射ポート)512と、鉛直方向からイオンビームを照射する鉛直照射ポート(第2の鉛直照射ポート)522と、斜め方向からイオンビームを照射する斜め照射ポート(第2の斜め照射ポート)532を備える。シンクロトロン400から出射されたイオンビームは、輸送装置500によって定められたビーム経路を通過し、6台の照射ポートのいずれか一つの照射ポートに輸送される。   The treatment room 610 and the treatment room 620 have a plurality of irradiation ports having different heights. Specifically, the carbon beam therapy apparatus 100 is provided with six irradiation ports. Each of the treatment room 610 and the treatment room 620 can be irradiated with an ion beam from three directions. The first treatment room 610 irradiates the ion beam from the horizontal direction (first horizontal irradiation port) 511 and the vertical irradiation port (first vertical irradiation port) 521 that irradiates the ion beam from the vertical direction. And an oblique irradiation port (first oblique irradiation port) 531 for irradiating an ion beam from an oblique direction. The second treatment room 610 irradiates the ion beam from the horizontal direction (second horizontal irradiation port) 512 and the vertical irradiation port (second vertical irradiation port) 522 that irradiates the ion beam from the vertical direction. And an oblique irradiation port (second oblique irradiation port) 532 for irradiating an ion beam from an oblique direction. The ion beam emitted from the synchrotron 400 passes through the beam path determined by the transport device 500 and is transported to any one of the six irradiation ports.

輸送装置500には、イオンビームが通過するダクトと、当該ダクトの内部を真空引きするための真空ポンプ(図示せず)が備えられ、イオンビームは真空中を通過する。輸送装置500は、イオンビームを偏向させる偏向部561〜569とイオンビームを直進させる直線部571〜585を有する。輸送装置500の偏向部には、ビーム経路を曲げるための偏向電磁石が用いられる。   The transport apparatus 500 includes a duct through which the ion beam passes and a vacuum pump (not shown) for evacuating the inside of the duct, and the ion beam passes through the vacuum. The transport apparatus 500 includes deflecting units 561 to 569 that deflect the ion beam and linear portions 571 to 585 that linearly move the ion beam. A deflecting electromagnet for bending the beam path is used for the deflection unit of the transport apparatus 500.

高さが異なる複数の照射ポートを備える場合、輸送装置はイオンビームの経路を少なくとも一度は上方に振り上げる必要がある。本実施例の炭素線治療装置100では、シンクロトロン400、第1の水平照射ポート511及び第2の水平照射ポート512が同じ階層(フロア)に配置される。第1の鉛直照射ポート521、第1の斜め照射ポート531、第2の鉛直照射ポート522及び第2の斜め照射ポート532は、シンクロトロン400よりも上に配置される。本実施例では、偏向部561を傾けて設置することによって、イオンビームの振り上げを実現する。偏向部561とは、第1の鉛直照射ポート521、第1の斜め照射ポート531、第2の鉛直照射ポート522、第2の斜め照射ポート532につながる共通の偏向部である。偏向部561に備えられる偏向電磁石541及び偏向電磁石542と、偏向部563に備えられる偏向電磁石545及び偏向電磁石546は水平面に対し45度傾いて設置されている。その結果、偏向部561と偏向部563の間の直線部572、573は45度の傾斜を持った直線部となる。   When a plurality of irradiation ports having different heights are provided, the transport device needs to swing the ion beam path upward at least once. In the carbon beam therapy apparatus 100 of the present embodiment, the synchrotron 400, the first horizontal irradiation port 511, and the second horizontal irradiation port 512 are arranged on the same level (floor). The first vertical irradiation port 521, the first oblique irradiation port 531, the second vertical irradiation port 522, and the second oblique irradiation port 532 are disposed above the synchrotron 400. In this embodiment, the deflection of the ion beam is realized by installing the deflecting unit 561 at an angle. The deflecting unit 561 is a common deflecting unit connected to the first vertical irradiation port 521, the first oblique irradiation port 531, the second vertical irradiation port 522, and the second oblique irradiation port 532. The deflection electromagnet 541 and the deflection electromagnet 542 provided in the deflection unit 561, and the deflection electromagnet 545 and the deflection electromagnet 546 provided in the deflection unit 563 are inclined by 45 degrees with respect to the horizontal plane. As a result, the straight portions 572 and 573 between the deflecting portion 561 and the deflecting portion 563 are straight portions having an inclination of 45 degrees.

本実施例における輸送装置500に用いられる偏向電磁石541〜557はC字型の鋼板をイオンビームのビーム進行方向に積み重ねたC型積層鋼板電磁石である。すべての偏向電磁石はコイルに電流を励磁することでギャップ内に磁場を発生させ、ギャップを通過するイオンビームの軌道を偏向する。偏向角が45度となるようにイオンビームのエネルギーに応じて励磁電流量が調整される。本実施例では、偏向角45度の偏向電磁石を2台で1組として用い、合計で偏向角90度の偏向部を構成する。本実施例では、9箇所の偏向部561〜569を備える。すべての偏向部は2台の偏向電磁石と、偏向電磁石の間に設置された四極電磁石1台(四極電磁石711〜719)を備える。各直線部571〜585にも四極電磁石(図示せず)が複数台設置されている。傾斜した直線部572、573には四極電磁石が各3台、直線部571、574〜576、580〜582には四極電磁石が各4台、直線部577〜579、583〜585には四極電磁石が各3台配置されている。四極電磁石にはイオンビームをある方向に収束、それと垂直な方向に発散させる作用があり、適切な励磁量に設定することでイオンビームを真空ダクトの内形で規定される設計ビーム通過領域に収めるとともに、適切なビームサイズで照射点の患部にイオンビームを照射することができる。   The deflection electromagnets 541 to 557 used in the transport apparatus 500 in this embodiment are C-type laminated steel plate electromagnets in which C-shaped steel plates are stacked in the beam traveling direction of the ion beam. All the deflecting magnets generate a magnetic field in the gap by exciting a current in the coil and deflect the trajectory of the ion beam passing through the gap. The amount of excitation current is adjusted according to the energy of the ion beam so that the deflection angle is 45 degrees. In the present embodiment, two deflection electromagnets having a deflection angle of 45 degrees are used as one set, and a deflection unit having a deflection angle of 90 degrees is configured in total. In this embodiment, nine deflection units 561 to 569 are provided. All the deflecting units include two deflecting electromagnets and one quadrupole electromagnet (quadrupole electromagnets 711 to 719) installed between the deflecting electromagnets. A plurality of quadrupole electromagnets (not shown) are also installed in each of the straight portions 571 to 585. Three quadrupole electromagnets are provided in each of the inclined straight portions 572 and 573, four quadrupole electromagnets are provided in each of the straight portions 571, 574 to 576 and 580 to 582, and four quadrupole electromagnets are provided in the straight portions 577 to 579 and 583 to 585. Three each are arranged. The quadrupole electromagnet has the effect of converging the ion beam in a certain direction and diverging in the direction perpendicular to it, and by setting the appropriate amount of excitation, the ion beam is placed in the design beam passage area defined by the inner shape of the vacuum duct. At the same time, it is possible to irradiate the affected area at the irradiation point with an appropriate beam size.

輸送装置500内のビーム経路上には分岐点591〜595がある。分岐点591に偏向電磁石541が設置され、分岐点592に偏向電磁石543が設置され、分岐点593に偏向電磁石546が設置され、分岐点594に偏向電磁石548が設置され、分岐点595に偏向電磁石550が設置される。これらの偏向電磁石541、543、546、548、550はイオンビームを偏向するとともに、イオンビームを輸送するコースの切り替えの役割を果たす。すなわち、分岐点に来たイオンビームは偏向電磁石が励磁中(ON)ならば偏向され、励磁中でない(OFF)ならば直進する。例えば、治療室610の第1の水平ポート511にて照射するときは、偏向電磁石541は励磁せず(OFFし)、偏向電磁石546を励磁する(ONする)。このように、偏向電磁石の励磁のON/OFFによってイオンビームが輸送される照射ポートを選択できる。   There are branch points 591 to 595 on the beam path in the transport device 500. A deflection electromagnet 541 is installed at the branch point 591, a deflection electromagnet 543 is installed at the branch point 592, a deflection electromagnet 546 is installed at the branch point 593, a deflection electromagnet 548 is installed at the branch point 594, and a deflection electromagnet is installed at the branch point 595. 550 is installed. These deflection electromagnets 541, 543, 546, 548, and 550 play a role of deflecting the ion beam and switching the course of transporting the ion beam. That is, the ion beam that has reached the branch point is deflected if the deflection electromagnet is being excited (ON), and goes straight if it is not being excited (OFF). For example, when irradiation is performed at the first horizontal port 511 of the treatment room 610, the deflection electromagnet 541 is not excited (turned off), and the deflection electromagnet 546 is excited (turned on). Thus, the irradiation port through which the ion beam is transported can be selected by turning on / off the excitation of the deflection electromagnet.

次に図2に、本実施例で用いる偏向部の構成を示す。前述の通り、偏向部は二台の45度偏向電磁石(5401、5402)を備え、偏向電磁石5401と偏向電磁石5402の間に四極電磁石7101を備える。四極電磁石7101は、輸送中のイオンビームと照射するイオンビームの分散関数を調整する役割がある。分散関数とはイオンビームを構成する粒子個々の運動量ずれと設計軌道からの位置ずれの相関を示すパラメータである。分散関数が0でない値を持つと運動量の広がりに起因してビームサイズがより広がる。分散関数はイオンビームが偏向電磁石を通過することによって発生する。荷電粒子が磁場によって偏向される角度はその運動量に依存するため、運動量の大きな荷電粒子は偏向される角度が小さくなり、運動量の小さい荷電粒子は偏向される角度が大きくなる。このようにして偏向電磁石における各荷電粒子の偏向角に運動量依存性が生じ、イオンビームが輸送装置内を輸送されるに従って、位置のずれとなる。偏向部で生じる分散関数を調整するために、本実施例では2台の偏向電磁石(5401、5402)の間に四極電磁石7101を用いる。この四極電磁石7101は偏向面に平行かつビーム進行方向に垂直な方向(X方向)にイオンビームを収束させ、偏向面に垂直な方向(Y方向)にイオンビームを発散させる作用を持つ。このような偏向部の構成であると、四極電磁石の位置において上流の偏向電磁石5401で生じたX方向の分散関数を収束させる。すると、例えばある四極電磁石の励磁量においては上流の偏向電磁石で生じた分散関数は下流の偏向電磁石を通過後に0とすることができる。このような分散関数の生じない偏向部をアクロマティック偏向部と定義する。偏向部にアクロマティック偏向部を用いることで後続する直線部の分散関数が0となり、ビームサイズを抑えながらイオンビームを照射点まで輸送することが可能となる。図2に、アクロマティック偏向部での設計軌道8001と運動量の大きい荷電粒子が描く軌道8003と、運動量の小さい荷電粒子が描く軌道8002を示した。アクロマティック偏向部の特徴として、四極電磁石の励磁量が他の直線部に用いられる四極電磁石より大きくなる傾向がある。図2の軌道形状が示すように、四極電磁石7101をレンズに見立てた場合、その焦点距離は偏向電磁石の軌道長程度になる。すると、四極電磁石7101によって発散の作用を受けるY方向には大きい発散力を受け、下流のY方向ビームサイズが大きくなってしまう。そのため、アクロマティック偏向部の下流の直線部では電磁石のサイズが大きくなりやすい。従来は偏向電磁石の直後にY方向に収束作用を持つ四極電磁石を挿入するなどの対策が必要であった。その分、装置の消費電力が増すこととなる。さらに本実施例のように、輸送経路中に傾斜した直線部や、鉛直方向の直線部がある場合、設置機器が増加する分メンテナンス性の確保や据え付けにかかる時間の増加となりえる。   Next, FIG. 2 shows the configuration of the deflection unit used in this embodiment. As described above, the deflecting unit includes two 45-degree deflecting electromagnets (5401 and 5402), and the quadrupole electromagnet 7101 is provided between the deflecting electromagnet 5401 and the deflecting electromagnet 5402. The quadrupole electromagnet 7101 has a role of adjusting the dispersion function of the ion beam being transported and the ion beam to be irradiated. The dispersion function is a parameter indicating the correlation between the momentum deviation of individual particles constituting the ion beam and the position deviation from the design trajectory. If the dispersion function has a non-zero value, the beam size is further expanded due to the spread of momentum. The dispersion function is generated by the ion beam passing through the deflecting electromagnet. Since the angle at which the charged particles are deflected by the magnetic field depends on the momentum thereof, the charged particles having a large momentum have a small deflection angle, and the charged particles having a small momentum have a large deflection angle. In this way, momentum dependence occurs in the deflection angle of each charged particle in the deflection electromagnet, and the position shifts as the ion beam is transported through the transport device. In this embodiment, a quadrupole electromagnet 7101 is used between two deflection electromagnets (5401, 5402) in order to adjust the dispersion function generated in the deflection unit. The quadrupole electromagnet 7101 has an effect of converging the ion beam in a direction (X direction) parallel to the deflection surface and perpendicular to the beam traveling direction, and diverging the ion beam in a direction perpendicular to the deflection surface (Y direction). With such a configuration of the deflecting unit, the dispersion function in the X direction generated by the upstream deflecting electromagnet 5401 is converged at the position of the quadrupole electromagnet. Then, for example, in the excitation amount of a certain quadrupole electromagnet, the dispersion function generated in the upstream deflection electromagnet can be set to 0 after passing through the downstream deflection electromagnet. Such a deflection unit in which no dispersion function occurs is defined as an achromatic deflection unit. By using an achromatic deflecting unit as the deflecting unit, the dispersion function of the subsequent straight line unit becomes 0, and the ion beam can be transported to the irradiation point while suppressing the beam size. FIG. 2 shows a design trajectory 8001 in the achromatic deflection unit, a trajectory 8003 drawn by charged particles having a large momentum, and a trajectory 8002 drawn by charged particles having a small momentum. As a feature of the achromatic deflection unit, the amount of excitation of the quadrupole electromagnet tends to be larger than that of the quadrupole electromagnet used for the other linear portions. As shown in the trajectory shape of FIG. 2, when the quadrupole electromagnet 7101 is regarded as a lens, the focal length is about the trajectory length of the deflection electromagnet. Then, a large divergence force is received in the Y direction that receives the divergence action by the quadrupole electromagnet 7101, and the downstream Y-direction beam size becomes large. Therefore, the size of the electromagnet tends to increase in the straight line portion downstream of the achromatic deflection portion. Conventionally, it has been necessary to take measures such as inserting a quadrupole electromagnet having a convergence effect in the Y direction immediately after the deflection electromagnet. Accordingly, the power consumption of the apparatus increases. Further, as in the present embodiment, when there is a straight line portion inclined in the transport route or a straight line portion in the vertical direction, maintenance can be ensured and the time required for installation can be increased due to an increase in installed equipment.

ここで、従来のアクロマティック偏向部を用いた場合と本実施例で適用したアクロマティック条件よりも四極電磁石の励磁量を小さくした場合の傾斜直線部572,573におけるビームサイズの変化を図3に示す。図3のグラフの開始地点は偏向電磁石541の入り口であり、終了地点は偏向電磁石546の出口である。すなわち全長約23mの傾斜直線部572,573におけるビームサイズを示している。図3の横軸はビーム進行方向の距離、縦軸にビームサイズをとっている。また、図3のBMは偏向電磁石を示し、QMは四極電磁石を示す。イオンビームのビームサイズはX方向とY方向に対して射影される各粒子の位置の標準偏差の2倍として定義している。開始地点におけるイオンビームの位相空間上の分布はTwissパラメータによって記述され、水平方向はα=3.1、β=6.8mであり、鉛直方向はα=0.8、β=4.1mである。この条件のイオンビームが酋長点においても同じ値をとるように四極電磁石の励磁量は調整されている。また開始地点におけるイオンビームのエミッタンスは水平方向に0.75πmm・mrad、鉛直方向は3.8πmm・mradである。また、運動量ずれの標準偏差は0.02%とした。上述のように、図3にBMと示した最初の2台の偏向電磁石の間の四極電磁石(QM)の励磁量が従来のアクロマティック条件よりも本実施例の条件のほうが小さくなっている。そのため、Y方向へのイオンビームの発散が抑えられ、アクロマティック条件では矢印で示したBMの下流で最大37mmまでイオンビームサイズが大きくなるのに対し、本実施例では28mmまでに抑制できる。このため、この傾斜直線部での電磁石の開口部の大きさを従来より抑制でき、消費電力の削減が達成できる。同様に、X方向のビームサイズの最大値も本実施例のほうが小さくできており、やはり傾斜直線部における電磁石の消費電力を従来の例よりも小さくできる。また、本実施例ではアクロマティック条件を満たす偏向部を用いない理由から、傾斜直線部の分散関数が0とならない。その様子を図4に示す。従来は分散関数が0でなくなるのは偏向部内のみに対し、本実施例では傾斜直線部全域にわたって分散関数が生じる。しかし、図3の結果からわかるように運動量のばらつきが小さければ分散関数の影響によってビームサイズが大きくなる効果は無視でき、本実施例のほうが、従来と比較しX方向もY方向もビームサイズが小さくできる。さらに、わずかに傾斜直線部の出口で残る分散関数は下流の直線部と照射点に向かう偏向部までの間で消すことができ、照射性能には全く影響しない。   Here, FIG. 3 shows changes in the beam size in the inclined linear portions 572 and 573 when the conventional achromatic deflection unit is used and when the excitation amount of the quadrupole electromagnet is made smaller than the achromatic condition applied in the present embodiment. Show. The starting point in the graph of FIG. 3 is the entrance of the deflecting electromagnet 541, and the end point is the exit of the deflecting electromagnet 546. That is, the beam size at the inclined straight portions 572 and 573 having a total length of about 23 m is shown. The horizontal axis in FIG. 3 represents the distance in the beam traveling direction, and the vertical axis represents the beam size. Further, BM in FIG. 3 indicates a deflection electromagnet, and QM indicates a quadrupole electromagnet. The beam size of the ion beam is defined as twice the standard deviation of the position of each particle projected in the X and Y directions. The distribution in the phase space of the ion beam at the start point is described by the Twiss parameter, the horizontal direction is α = 3.1, β = 6.8 m, the vertical direction is α = 0.8, β = 4.1 m. is there. The excitation amount of the quadrupole electromagnet is adjusted so that the ion beam under this condition takes the same value even at the long point. The emittance of the ion beam at the start point is 0.75 π mm · mrad in the horizontal direction and 3.8 π mm · mrad in the vertical direction. The standard deviation of the momentum deviation was 0.02%. As described above, the amount of excitation of the quadrupole electromagnet (QM) between the first two deflecting electromagnets indicated by BM in FIG. 3 is smaller under the condition of this embodiment than the conventional achromatic condition. For this reason, the divergence of the ion beam in the Y direction is suppressed, and the ion beam size increases up to 37 mm downstream of the BM indicated by the arrow under the achromatic condition, whereas it can be suppressed up to 28 mm in this embodiment. For this reason, the size of the opening portion of the electromagnet at the inclined linear portion can be suppressed as compared with the conventional case, and the power consumption can be reduced. Similarly, the maximum value of the beam size in the X direction can be made smaller in the present embodiment, and the power consumption of the electromagnet in the inclined linear portion can also be made smaller than in the conventional example. In the present embodiment, the dispersion function of the inclined straight line portion does not become zero because the deflection portion that satisfies the achromatic condition is not used. This is shown in FIG. Conventionally, the dispersion function is not zero, but only in the deflecting portion. In this embodiment, the dispersion function is generated over the entire inclined linear portion. However, as can be seen from the results of FIG. 3, the effect of increasing the beam size due to the influence of the dispersion function can be ignored if the variation in the momentum is small. In this embodiment, the beam size in both the X direction and the Y direction is smaller than in the conventional case. Can be small. Furthermore, the dispersion function that remains slightly at the exit of the inclined straight line portion can be eliminated between the downstream straight line portion and the deflection portion toward the irradiation point, and does not affect the irradiation performance at all.

さらに、治療室610を図1の矢印Aの方向から見た断面図を図5に示す。本実施例の建屋は二階建てになっており、二階建ての二階部分には第1の鉛直照射ポート521と第1の斜め照射ポート531に続く輸送経路が設置されており、一階部分に第1の水平照射ポート511に続く直線部577と第1の治療室610が設けられている。第1の治療室610には患者611が横たわる可動治療台612があり、照射点630に患部が位置するように治療台の位置が照射ごとに決められる。照射点630の直前のビーム経路上には照射装置640がある。スキャニング照射法を用いる本実施例では照射装置内にイオンビームを走査する走査電磁石651、652や、ビーム位置を測定する位置モニタが置かれる。スキャニング照射法ではなく、散乱体照射法を用いることも可能であり、その場合は照射装置内に走査電磁石の代わりに散乱体やコリメータなどが設置される。本実施例のような輸送経路を取ることで水平照射ポートに続く直線部577の真上の二階部分に広い空間700が取れる。この場所に輸送系の電磁石やシンクロトロンの電磁石など各機器の電源等を配置することで建屋空間の有効利用が可能となり、結果、建屋体積の削減が達成できる。   Furthermore, FIG. 5 shows a cross-sectional view of the treatment room 610 viewed from the direction of arrow A in FIG. The building of the present embodiment has a two-story structure, and a transport path following the first vertical irradiation port 521 and the first oblique irradiation port 531 is installed on the second floor part of the two-story, A straight line portion 577 and a first treatment room 610 are provided following one horizontal irradiation port 511. The first treatment room 610 has a movable treatment table 612 on which a patient 611 lies, and the position of the treatment table is determined for each irradiation so that the affected part is located at the irradiation point 630. An irradiation device 640 is on the beam path immediately before the irradiation point 630. In this embodiment using the scanning irradiation method, scanning electromagnets 651 and 652 for scanning an ion beam and a position monitor for measuring the beam position are placed in the irradiation apparatus. It is also possible to use a scatterer irradiation method instead of the scanning irradiation method. In this case, a scatterer, a collimator, or the like is installed in the irradiation device instead of the scanning electromagnet. By taking the transport route as in the present embodiment, a wide space 700 can be taken in the second floor portion directly above the straight line portion 577 following the horizontal irradiation port. By placing the power source of each device such as a transport electromagnet or a synchrotron electromagnet at this place, the building space can be used effectively, and as a result, the building volume can be reduced.

なお、傾斜直線部572、573の勾配、すなわち偏向部561の傾斜角度は本実施例では45度としたが、その他の角度でもよい。例えば、傾斜角度が22.5度とした場合の治療室の断面図を図6に示す。この場合の特徴は、傾斜角度が45度の時と比較し、水平照射ポートの上階により広い空間701が確保できる点と斜め照射ポートの上流により長い直線部が取れる点である。長い直線部が照射ポートの上流に取れることで四極電磁石など輸送系機器の配置が容易となる他、照射点630の直前の四極電磁石の収束力、すなわち励磁量が小さくできるなどの利点がある。一方建屋の横方向の長さは大きくなる。また、逆に傾斜角度を45度より大きくすると斜め照射ポートの上流の直線部の長さや、水平照射ポートの上階の空間が小さくなる一方、建屋の敷地面積の減少が図れる。これらの点を留意し、傾斜角度は設置場所の土地の形状に合わせて傾斜角は選択すればよい。   In addition, although the inclination of the inclined straight portions 572 and 573, that is, the inclination angle of the deflecting portion 561 is 45 degrees in this embodiment, other angles may be used. For example, FIG. 6 shows a cross-sectional view of the treatment room when the inclination angle is 22.5 degrees. The feature in this case is that a wider space 701 can be secured on the upper floor of the horizontal irradiation port and a longer straight part can be taken upstream of the oblique irradiation port as compared to when the inclination angle is 45 degrees. Since a long straight portion can be taken upstream of the irradiation port, it is easy to arrange a transportation system device such as a quadrupole electromagnet, and there are advantages such that the convergence force of the quadrupole electromagnet immediately before the irradiation point 630, that is, the amount of excitation can be reduced. On the other hand, the horizontal length of the building becomes large. Conversely, if the inclination angle is larger than 45 degrees, the length of the straight line upstream of the oblique irradiation port and the space on the upper floor of the horizontal irradiation port are reduced, while the site area of the building can be reduced. With these points in mind, the tilt angle can be selected according to the shape of the land at the installation site.

さらに、本実施例の炭素線治療装置100が備える6台の照射ポートのうち、一部の照射ポートとそれに付随する輸送装置を省くこともできる。例えば、第2の治療室602の斜め照射ポート532、その上流直線部584、偏向部568、水平直線部581を省き、第2の治療室602が鉛直照射ポート512と第の2水平照射ポート522の二方向からのみ照射できるようにすることも可能である。その場合、省かれた機器分のコスト削減が可能となる。   Furthermore, among the six irradiation ports provided in the carbon beam therapy apparatus 100 of the present embodiment, some irradiation ports and the accompanying transport apparatus can be omitted. For example, the oblique irradiation port 532 of the second treatment room 602, the upstream straight line portion 584, the deflection part 568, and the horizontal straight line part 581 are omitted, and the second treatment room 602 includes the vertical irradiation port 512 and the second horizontal irradiation port 522. It is also possible to allow irradiation from only two directions. In that case, it is possible to reduce the cost of the omitted equipment.

(第2の実施形態)
以下、図面を参照しつつ本発明の第2の実施形態を説明する。本実施例の粒子線治療装置(炭素線治療装置)1100は、第一の実施例と同様に、2室の治療室を備える。ここでは第1の実施例の炭素線治療装置100との相違点を中心に述べる。
(Second Embodiment)
Hereinafter, a second embodiment of the present invention will be described with reference to the drawings. The particle beam therapy apparatus (carbon beam therapy apparatus) 1100 of this example includes two therapy rooms, as in the first example. Here, the difference from the carbon beam therapy apparatus 100 of the first embodiment will be mainly described.

図7に、本実施例の炭素線治療装置1100の概略図を示す。本実施例の炭素線治療装置1100は、輸送装置の形状と治療室の配置が、第1の実施例の炭素線治療装置100と異なる。本実施例の炭素線治療装置1100は、第1の実施例の炭素線治療装置100と同様に、傾斜直線部1572、1573と水平直線部1571、1574〜1576、1580〜1582を備える。偏向部1561〜1569は第一の実施例同様に、イオンビームを偏向し、偏向されたイオンビームが治療室1610、1620内にある照射点に照射される。本実施例の炭素線治療装置1100は、第1の実施例の炭素線治療装置100と異なり、偏向部1564、1565、1567、1568は54.74度の偏向角を有する偏向電磁石を一台のみで構成される。当該偏向電磁石の偏向角を2の平方根の逆正接関数、すなわち54.74度とすることで、4台の偏向電磁石1546、1548、1552、1554の偏向角を共通とすることができる。本実施例の特徴は水平照射ポート1511、1512に向かう直線部1577、1583と水平な直線部との成す角を90度以下とすることにより、偏向電磁石のコストダウンと消費電力の削減が図れる。   In FIG. 7, the schematic of the carbon beam therapy apparatus 1100 of a present Example is shown. The carbon beam therapy apparatus 1100 of the present embodiment is different from the carbon beam therapy apparatus 100 of the first embodiment in the shape of the transport device and the arrangement of the treatment rooms. Similar to the carbon beam therapy apparatus 100 of the first embodiment, the carbon beam therapy apparatus 1100 of the present embodiment includes inclined linear portions 1572 and 1573 and horizontal linear portions 1571, 1574 to 1576, and 1580 to 1582. Similarly to the first embodiment, the deflecting units 1561 to 1569 deflect the ion beam, and the deflected ion beam is irradiated to the irradiation points in the treatment rooms 1610 and 1620. The carbon beam therapy apparatus 1100 of the present embodiment is different from the carbon beam therapy apparatus 100 of the first embodiment in that the deflection units 1564, 1565, 1567, and 1568 have only one deflection electromagnet having a deflection angle of 54.74 degrees. Consists of. The deflection angle of the four deflection electromagnets 1546, 1548, 1552, and 1554 can be made common by setting the deflection angle of the deflection electromagnet to an arctangent function of the square root of 2, that is, 54.74 degrees. The feature of this embodiment is that the angle between the straight portions 1577 and 1583 directed to the horizontal irradiation ports 1511 and 1512 and the horizontal straight portion is 90 degrees or less, thereby reducing the cost of the deflecting electromagnet and reducing the power consumption.

さらに、本実施例の治療室の断面図は図6と同様となり、斜め照射ポートに向かう直線部1578、1584の長さと垂直照射ポート1521、1522に向かう直線部1579、1585の長さを等しくすることができる。従って、四極電磁石を適切に配置することで四極電磁石の励磁量を抑えつつビームサイズの調整が可能となる。一方、偏向部1564、1565、1567、1568を1台の偏向電磁石照射点に最終の偏向電磁石とすることで、照射点において分散関数を消すためには上流の水平直線部や斜め直線部に設置された四極電磁石の励磁量の調整が必要となる。本実施例においても、傾斜直線部1572、1573での分散関数は消されておらず、最終的に照射点に向かう直線部において、分散関数を消している。本実施例では、傾斜直線部の出入り口の偏向部1561、1562、1563において偏向部1564、1565、1567、1568の偏向角は共通としつつ、斜め照射ポート上流の直線部と垂直照射ポート上流の直線部の長さを同一とする場合の偏向部1564、1565、1567、1568の角度は前述の通り54.74度となる。この角度を別の値にすることで各ポート上流の直線部の長さを調整できる。また第1の実施例に記した炭素線治療装置100と同様に、傾斜直線部1572、1573の傾斜角は小さくするほど水平照射ポートの上階に空間が得られる一方、建屋の幅が大きくなる。以上のことを踏まえ実際の炭素線治療装置では偏向角と傾斜角を選択すればよい。   Furthermore, the sectional view of the treatment room of this embodiment is the same as that in FIG. 6, and the lengths of the straight portions 1578 and 1584 toward the oblique irradiation ports are equal to the lengths of the straight portions 1579 and 1585 toward the vertical irradiation ports 1521 and 1522. be able to. Therefore, by appropriately arranging the quadrupole electromagnet, the beam size can be adjusted while suppressing the excitation amount of the quadrupole electromagnet. On the other hand, by setting the deflection units 1564, 1565, 1567, and 1568 as the final deflection electromagnet at one deflection electromagnet irradiation point, it is installed in the upstream horizontal straight line portion or oblique straight line portion in order to eliminate the dispersion function at the irradiation point. It is necessary to adjust the excitation amount of the quadrupole electromagnet. Also in the present embodiment, the dispersion function at the inclined linear portions 1572 and 1573 is not erased, and the dispersion function is erased at the linear portion finally toward the irradiation point. In this embodiment, the deflection portions 1564, 1565, 1567, and 1568 have the same deflection angle in the deflection portions 1561, 1562, and 1563 at the entrance and exit of the inclined straight portion, and the straight portion upstream of the oblique irradiation port and the straight line upstream of the vertical irradiation port. When the lengths of the portions are the same, the angles of the deflecting portions 1564, 1565, 1567, and 1568 are 54.74 degrees as described above. By setting this angle to another value, the length of the straight line portion upstream of each port can be adjusted. Further, as with the carbon beam therapy apparatus 100 described in the first embodiment, as the inclination angle of the inclined linear portions 1572 and 1573 is reduced, a space is obtained on the upper floor of the horizontal irradiation port, while the width of the building is increased. . Based on the above, in an actual carbon beam therapy apparatus, a deflection angle and an inclination angle may be selected.

さらに、第一の実施例と同様に、本実施例の炭素線治療装置1100が備える6台の照射ポートのうち、一部のポートとそれに付随する輸送装置を省くこともできる。例えば、治療室1602の斜め照射ポートの上流直線部1584、偏向部1554、水平直線部1581を省き、垂直照射ポート1522と水平照射ポート1512の二方向からのみ照射できるようにすることも可能である。その場合、省かれた機器分のコスト削減が可能となる。   Furthermore, like the first embodiment, some of the six irradiation ports included in the carbon beam therapy apparatus 1100 of this embodiment can be omitted and a transport device associated therewith. For example, it is possible to omit the upstream straight portion 1584, the deflecting portion 1554, and the horizontal straight portion 1581 of the oblique irradiation port of the treatment room 1602 so that irradiation can be performed only from two directions of the vertical irradiation port 1522 and the horizontal irradiation port 1512. . In that case, it is possible to reduce the cost of the omitted equipment.

なお、実施例1及び2では粒子線治療装置として炭素線治療装置を例に説明したが、陽子線治療装置であってもよい。   In addition, although Example 1 and 2 demonstrated the carbon beam therapy apparatus as an example as a particle beam therapy apparatus, a proton beam therapy apparatus may be sufficient.

100、1000 炭素線治療装置
200 イオン源
300 線形加速器
400 シンクロトロン
500 輸送装置
511〜512、1511〜1512 水平照射ポート
521〜522、1521〜1522 垂直照射ポート
531〜532、1531〜1532 斜め照射ポート
541〜558、1546、1548、1552、1554、5401〜5402 偏向電磁石
561〜569、1561〜1569 偏向部
571〜585、1571〜1585 直線部
610、620、1610、1620 治療室
611 患者
612 可動治療台
630 照射点
640 照射装置
651、652 走査電磁石
700、701 空間
711〜719、1711〜1715、7101 四極電磁石
8001〜8003 粒子軌道
100, 1000 Carbon beam therapy apparatus 200 Ion source 300 Linear accelerator 400 Synchrotron 500 Transport apparatus 511-512, 1511-1512 Horizontal irradiation ports 521-522, 1521-1522 Vertical irradiation ports 531-532, 1531-1532 Oblique irradiation ports 541 ~ 558, 1546, 1548, 1552, 1554, 5401-5402 Bending electromagnets 561-569, 1561-1569 Deflection parts 571-585, 1571-1585 Straight line parts 610, 620, 1610, 1620 Treatment room 611 Patient 612 Movable treatment table 630 Irradiation point 640 Irradiation device 651, 652 Scanning electromagnet 700, 701 Space 711-719, 1711-1715, 7101 Quadrupole electromagnet 8001-8003 Particle trajectory

Claims (6)

荷電粒子ビームを加速する加速器と、
前記荷電粒子ビームを照射点に設置された照射対象に複数の方向から照射する照射装置と、
前記加速器から取り出された前記荷電粒子ビームの輸送経路を定め、前記照射装置まで輸送するビーム輸送装置を備える粒子線治療装置であって、
前記ビーム輸送装置は、前記荷電粒子ビームを偏向する偏向部、及び前記荷電粒子ビームを直進させる直線部を有し、
前記偏向部は1台または複数の偏向電磁石を有し、少なくとも一つの前記偏向部はビーム輸送経路の分岐点に設置され、
前記直線部はそれぞれ少なくとも2台の四極電磁石を備え、
複数の前記偏向部は水平面に対して、90度未満の傾斜をつけ設置されており、前記二つの傾斜した偏向部間は傾斜した直線部によって接続されていることを特徴とする粒子線治療装置。
An accelerator to accelerate the charged particle beam;
An irradiation apparatus for irradiating an irradiation target installed at an irradiation point with the charged particle beam from a plurality of directions;
A particle beam therapy apparatus comprising a beam transport device that determines a transport path of the charged particle beam taken out from the accelerator and transports the charged particle beam to the irradiation device,
The beam transport device includes a deflection unit that deflects the charged particle beam, and a linear unit that linearly moves the charged particle beam,
The deflection unit includes one or more deflection electromagnets, and at least one of the deflection units is installed at a branch point of a beam transport path,
Each of the straight portions includes at least two quadrupole electromagnets,
The plurality of deflection units are installed with an inclination of less than 90 degrees with respect to a horizontal plane, and the two inclined deflection units are connected by an inclined linear part. .
請求項1に記載の粒子線治療装置において、
前記偏向部が複数の偏向電磁石を有する場合、当該偏向電磁石と偏向電磁石の間に四極電磁石を備えることを特徴とする粒子線治療装置。
The particle beam therapy system according to claim 1, wherein
In the case where the deflection unit has a plurality of deflection electromagnets, a quadrupole electromagnet is provided between the deflection electromagnets and the deflection electromagnets.
請求項2に記載の粒子線治療装置において、
前記偏向電磁石と偏向電磁石の間に配置される四極電磁石を用いて、通過する前記荷電粒子ビームの分散関数を調整することを特徴とする粒子線治療装置。
The particle beam therapy system according to claim 2, wherein
A particle beam therapy system, wherein a dispersion function of the charged particle beam passing therethrough is adjusted using a quadrupole electromagnet disposed between the deflection electromagnets.
請求項3に記載の粒子線治療装置において、
前記傾斜した直線部を通過する前記荷電粒子ビームの分散関数を生じさせるように前記四極電磁石を励磁することを特徴とする粒子線治療装置。
In the particle beam therapy system according to claim 3,
A particle beam therapy system characterized in that the quadrupole electromagnet is excited so as to generate a dispersion function of the charged particle beam passing through the inclined straight portion.
請求項1乃至請求項4のいずれか1項に記載の粒子線治療装置において、
前記照射点を複数備え、それぞれの照射点ごとに複数の方向から前記荷電粒子ビームを照射する照射装置を備えることを特徴とする粒子線治療装置。
In the particle beam therapy system according to any one of claims 1 to 4,
A particle beam therapy system comprising: a plurality of the irradiation points; and an irradiation device that irradiates the charged particle beam from a plurality of directions for each irradiation point.
請求項1乃至請求項4のいずれか1項に記載の粒子線治療装置において、
前記傾斜した直線部と前記傾斜した偏向部の傾斜角は22.5度以上67.5度以下であることを特徴とする粒子線治療装置。
In the particle beam therapy system according to any one of claims 1 to 4,
A particle beam therapy system, wherein an inclination angle between the inclined linear part and the inclined deflecting part is 22.5 degrees or more and 67.5 degrees or less.
JP2013124287A 2013-06-13 2013-06-13 Particle beam therapy system Active JP6253268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013124287A JP6253268B2 (en) 2013-06-13 2013-06-13 Particle beam therapy system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013124287A JP6253268B2 (en) 2013-06-13 2013-06-13 Particle beam therapy system

Publications (2)

Publication Number Publication Date
JP2015000090A true JP2015000090A (en) 2015-01-05
JP6253268B2 JP6253268B2 (en) 2017-12-27

Family

ID=52295009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013124287A Active JP6253268B2 (en) 2013-06-13 2013-06-13 Particle beam therapy system

Country Status (1)

Country Link
JP (1) JP6253268B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019105641A (en) * 2018-12-25 2019-06-27 株式会社東芝 Charged particle beam irradiator
CN117295223A (en) * 2023-11-27 2023-12-26 青岛四方思锐智能技术有限公司 Sectional type radio frequency acceleration system and ion implanter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001166098A (en) * 1999-12-13 2001-06-22 Mitsubishi Electric Corp Charged particle irradiation device
JP2002113118A (en) * 2000-10-10 2002-04-16 Hitachi Ltd Charged particle beam emitting device
JP2009539474A (en) * 2006-06-05 2009-11-19 ヴァリアン メディカル システムズ インコーポレイテッド Multiple beam system
JP2013509277A (en) * 2009-11-02 2013-03-14 プロキュア トリートメント センターズ インコーポレーテッド Small isocentric gantry

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001166098A (en) * 1999-12-13 2001-06-22 Mitsubishi Electric Corp Charged particle irradiation device
JP2002113118A (en) * 2000-10-10 2002-04-16 Hitachi Ltd Charged particle beam emitting device
JP2009539474A (en) * 2006-06-05 2009-11-19 ヴァリアン メディカル システムズ インコーポレイテッド Multiple beam system
JP2013509277A (en) * 2009-11-02 2013-03-14 プロキュア トリートメント センターズ インコーポレーテッド Small isocentric gantry

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019105641A (en) * 2018-12-25 2019-06-27 株式会社東芝 Charged particle beam irradiator
CN117295223A (en) * 2023-11-27 2023-12-26 青岛四方思锐智能技术有限公司 Sectional type radio frequency acceleration system and ion implanter
CN117295223B (en) * 2023-11-27 2024-04-05 青岛四方思锐智能技术有限公司 Sectional type radio frequency acceleration system and ion implanter

Also Published As

Publication number Publication date
JP6253268B2 (en) 2017-12-27

Similar Documents

Publication Publication Date Title
US10090132B2 (en) Charged particle beam irradiation apparatus
JP6105671B2 (en) Gantry with a beam analyzer for use in particle beam therapy
JP4691576B2 (en) Particle beam therapy system
US7816657B2 (en) Particle therapy system
JP5914130B2 (en) Synchrotron and particle beam therapy system
US10076675B2 (en) Beam delivery system for proton therapy for laser-accelerated protons
US10300302B2 (en) Particle beam transport system, and segment thereof
JP2009217938A (en) Accelerator system and particle beam medical treatment system
WO2013030996A1 (en) Charged particle beam irradiation system and operating method of charged particle beam irradiation system
JP2011250910A (en) Particle beam therapeutic apparatus
US20170007848A1 (en) Particle beam treatment system with solenoid magnets
US9694209B2 (en) Particle beam therapy system
JP2018533437A (en) A particle therapy gantry with an energy degrader and an achromatic final bend system
JP6033462B2 (en) Synchrotron injector system and method of operating synchrotron injector system
JP2012002772A (en) Depth-directional dose distribution measuring device, particle therapy apparatus, and particle beam irradiation device
EP3946583A1 (en) Compact rotational gantry for proton radiation systems
JP6253268B2 (en) Particle beam therapy system
JP2012022776A (en) Synchrotron and particle beam medical treatment device
JP4959434B2 (en) Particle beam irradiation system
JP6461734B2 (en) Charged particle beam irradiation equipment
JP2013096949A (en) Scanning type electromagnet and charged particle beam irradiation device
US10850132B2 (en) Particle therapy system
WO2015015579A1 (en) Charged particle beam irradiation device
JP2018094147A (en) Charged-particle beam therapy apparatus
JP4063783B2 (en) Ion beam separation system and ion beam acceleration system equipped with the ion beam separation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161208

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170110

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171128

R150 Certificate of patent or registration of utility model

Ref document number: 6253268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150