JP2014533084A - 太陽光発電プラントの動作を制御するマスター/スレーブアーキテクチャ - Google Patents

太陽光発電プラントの動作を制御するマスター/スレーブアーキテクチャ Download PDF

Info

Publication number
JP2014533084A
JP2014533084A JP2014538993A JP2014538993A JP2014533084A JP 2014533084 A JP2014533084 A JP 2014533084A JP 2014538993 A JP2014538993 A JP 2014538993A JP 2014538993 A JP2014538993 A JP 2014538993A JP 2014533084 A JP2014533084 A JP 2014533084A
Authority
JP
Japan
Prior art keywords
plant
photovoltaic
power
slave
plant controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014538993A
Other languages
English (en)
Other versions
JP6205658B2 (ja
Inventor
ジョンソン、ラーズ
ビー. ピーター、ウィリアム
ビー. ピーター、ウィリアム
ジョンソン、ロバート
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SunPower Corp
Original Assignee
SunPower Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SunPower Corp filed Critical SunPower Corp
Publication of JP2014533084A publication Critical patent/JP2014533084A/ja
Application granted granted Critical
Publication of JP6205658B2 publication Critical patent/JP6205658B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • H02J3/1835Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
    • H02J3/1842Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/20Active power filtering [APF]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

マスター/スレーブ制御アーキテクチャを備えた太陽光発電プラント。太陽光発電プラントはスレーブプラントコントローラを含み、各スレーブプラントコントローラが、太陽電池により生成された直流を、相互接続点(POI)における商用電力グリッドへの送達に適した交流に変換する、太陽光発電インバータの動作を制御する。マスタープラントコントローラは、スレーブプラントコントローラの動作を制御し協調させる。マスタープラントコントローラは、各スレーブプラントコントローラに提供される、グローバルインバータ有効電力又は無効電力設定値を生成する。各スレーブプラントコントローラにおいて、グローバル設定値が処理されて、そのスレーブプラントコントローラによって制御される対応する太陽光発電インバータに提供される、個々のインバータ有効電力又は無効電力設定値が生成される。太陽光発電インバータは、受信した個々のインバータ設定値に基づいて出力を生成して、所望の有効電力、電圧、又は力率を達成する。
【選択図】図2

Description

本明細書に記載する主題の実施形態は、全体として、太陽光発電プラントに関する。
(関連出願の相互参照)
本出願は、2011年10月27日出願の米国仮特許出願第61/552,345号の利益を主張し、その全体を参照することにより本明細書に組み込む。
太陽光発電プラントは、太陽光発電システムを使用して、太陽放射から電気を生成する。太陽光発電システムは、太陽電池パネルのアレイからなってもよく、それぞれの太陽電池パネルは、相互接続された太陽電池を備える。太陽電池には、P型及びN型拡散領域が含まれる。太陽電池に日射が当たると電子及び正孔が生成され、これらの電子及び正孔が拡散領域に移動することにより、拡散領域間に電位差が生じる。裏面コンタクト型太陽電池においては、拡散領域及びこれらの拡散領域に結合した金属コンタクトフィンガーが、共に太陽電池の裏面にある。このコンタクトフィンガーによって外部電気回路を太陽電池に結合し、太陽電池によって駆動することが可能となる。
太陽光発電インバータは、太陽電池により生成された直流を、相互接続点(POI)において、電力グリッドに結合するのに適した交流に変換する。電圧、無効電力、有効電力、及び力率など、POIにおける太陽光発電プラントの出力は、指定値の範囲内に収まって要件を満たすように制御される。本発明の実施形態は、太陽光発電プラントの動作を制御して、POI又は他の送達ノードにおいて太陽光発電プラント出力を送達するように、太陽光発電プラントの動作を制御するためのマスター/スレーブアーキテクチャに関する。
一実施形態では、太陽光発電プラントは、複数のスレーブプラントコントローラと、複数のスレーブプラントコントローラの動作を制御するマスタープラントコントローラと、を備え、複数のスレーブプラントコントローラの各スレーブプラントコントローラは、当該スレーブプラントコントローラによって制御される複数の太陽光発電インバータそれぞれの設定値を調整し、設定値が、商用電力グリッドに対する太陽光発電プラントの相互接続点(POI)に提供される、太陽光発電インバータに対応する出力を設定し、複数の太陽光発電インバータはそれぞれ、複数の太陽電池により生成された直流を交流に変換する。太陽光発電プラントは、複数のスレーブプラントコントローラの動作を制御するマスタープラントコントローラを更に備え、マスタープラントコントローラは、商用電力グリッドに対するPOIにおける太陽光発電プラントの出力を検出すると共に、複数のスレーブプラントコントローラの動作を制御して、商用電力グリッドに対するPOIにおける太陽光発電プラントの検出される出力に基づいて、対応する太陽光発電インバータの設定値を調整する。
別の実施形態では、太陽光発電プラントの動作を制御する方法は、第1のスレーブプラントコントローラを使用して第1の複数の太陽光発電インバータの動作を制御する段階と、第2のスレーブプラントコントローラを使用して第2の複数の太陽光発電インバータの動作を制御する段階と、相互接続点(POI)で太陽光発電プラントの出力を測定する段階と、マスタープラントコントローラを使用して第1のスレーブプラントコントローラ及び第2のスレーブプラントコントローラの動作を制御する段階と、を備え、第1の複数の太陽光発電インバータの動作を制御する段階において、第1のスレーブプラントコントローラは、第1の複数の太陽光発電インバータの各太陽光発電インバータの設定値を調整して、第1の複数の太陽光発電インバータの各太陽光発電インバータの出力を調整し、第1の複数の太陽光発電インバータの各太陽光発電インバータは、商用電力グリッドに対する太陽光発電プラントのPOIに送達するため、第1の複数の太陽電池により生成された直流を交流に変換する。第2の複数の太陽光発電インバータの動作は、第2のスレーブプラントコントローラを使用して制御され、第2のスレーブプラントコントローラは、第2の複数の太陽光発電インバータの各太陽光発電インバータの設定値を調整して、第2の複数の太陽光発電インバータの各太陽光発電インバータの出力を調整し、第2の複数の太陽光発電インバータの各太陽光発電インバータは、POIに送達するため、第2の複数の太陽電池により生成された直流を交流に変換する。太陽光発電プラントの出力はPOIで測定される。第1のスレーブプラントコントローラ及び第2のスレーブプラントコントローラの動作は、マスタープラントコントローラを使用して制御され、マスタープラントコントローラは、第1のスレーブプラントコントローラ及び第2のスレーブプラントコントローラを制御して、POIにおいて測定された太陽光発電プラントの出力に基づいて、第1及び第2の複数の太陽光発電インバータのうちの太陽光発電インバータの設定値を調整する。
別の実施形態では、太陽光発電プラントの動作を制御する方法は、太陽光発電プラントの第1のプラントコントローラを設置する段階を含み、第1のプラントコントローラは、第1の複数の太陽電池により生成された直流を交流に変換する第1の複数の太陽光発電インバータの動作を制御する。第1のプラントコントローラは、商用電力グリッドに対する相互接続点(POI)において、太陽光発電プラントの出力を生成するように操作される。第1のプラントコントローラが、少なくとも一定期間の間、商用電力グリッドに対するPOIにおける太陽光発電プラントの出力を生成するように動作した後、太陽光発電プラントの第2のプラントコントローラが設置され、第2のプラントコントローラは、第2の複数の太陽電池により生成された直流を交流に変換する、第2の複数の太陽光発電インバータの動作を制御する。マスタープラントコントローラは、第1のプラントコントローラ及び第2のプラントコントローラの動作を制御するのに設置される。第1のプラントコントローラ及び第2のプラントコントローラの動作は、マスタープラントコントローラを使用して制御され、マスタープラントコントローラは、第1のプラントコントローラ及び第2のプラントコントローラを制御して、POIにおける太陽光発電プラントの測定出力に基づいて、第1の複数の太陽光発電インバータ及び第2の複数の太陽光発電インバータのうちの太陽光発電インバータの設定値を調整する。
本発明のこれら及びその他の特徴は、添付の図面及び特許請求の範囲を含む本開示の全体を読むことにより、当業者には容易に理解されよう。
より完全な本主題の理解は、発明を実施するための形態、及び特許請求の範囲を、以下の図面と併せて考察し、参照することによって導き出すことができ、同様の参照番号は、図面全体を通して同様の要素を指す。
本発明の実施形態による太陽光発電プラント100の構成要素を概略的に示す。
本発明の実施形態による図1の太陽光発電プラントの更なる構成要素を概略的に示す。
本発明の実施形態による、漸次的実装を可能にする太陽光発電プラントの制御を概略的に示す。
図4A及び4Bから成り、本発明の実施形態による、自動電圧調節制御における図1の太陽光発電プラントの更なる詳細及び動作を概略的に示す。
図5A及び5Bから成り、本発明の実施形態による、力率制御における図1の太陽光発電プラントの更なる詳細及び動作を概略的に示す。
本開示では、本発明の実施形態を十分に理解するために、器具、部品及び方法の例など、多数の具体的な詳細を提供している。しかしながら、当業者であれば、本発明はこれらの具体的な詳細のうちの1つ以上を欠いても実施できることは理解されよう。他の例では、本発明の態様を不明瞭にすることを避けるため、周知の詳細については図示又は説明をしていない。
図1は、本発明の実施形態による太陽光発電プラント100の構成要素を概略的に示す。図1の例に示される太陽光発電プラント100の構成要素は、複数のコンバイナボックス112と、複数の太陽電池パネル114と、太陽光発電インバータ110と、を含む。太陽光発電プラントは、複数の太陽光発電インバータ110を含んでもよいが、図示を明瞭にするため、図1には1つのみが示される。太陽電池パネル114は、同一のフレーム上に搭載され、電気的に接続された太陽電池を備える。一実施形態では、それぞれの太陽電池パネル114は、複数の直列に接続された裏面コンタクト型太陽電池115を備える。前面コンタクト型太陽電池を含む、他のタイプの太陽電池も用いられてもよい。図示を明瞭にするため、図1においては一部の裏面コンタクト型太陽電池115のみに記号を付している。
太陽光発電ストリングは、図1のように、複数の直列に接続された太陽電池パネル114を備える。一群の太陽電池パネル114が、コンバイナボックス112に電気的に接続され、ここで太陽電池パネル114は直列に接続される。コンバイナボックス112は、太陽光発電ストリング内のすべての太陽電池パネル114が直列に接続されるように電気的に接続されてもよい。太陽光発電ストリングの出力は、太陽電池115により生成された直流(DC)を、例えば、商用電力グリッドへの送達に適した交流(AC)に変換するインバータ110に電気的に接続される。
図2は、本発明の実施形態による太陽光発電プラント100の更なる構成要素を概略的に示す。図2は、図1と関連して記述されるインバータ110を示す。図示を明瞭にするため、太陽電池パネル114は図2には示されない。
太陽光発電プラント100は、相互接続点(POI)221で商用電力グリッド225に結合される。図2の例では、一群の太陽光発電インバータ110の出力は、サブステーションMV/HV(中電圧/高電圧)変圧器220への中電圧(MV)供給器(feeder)212を用いてPOI 221に結合される。太陽光発電プラント100には太陽光発電インバータ110の複数の群があり、太陽光発電インバータ110の各群は、それ自体のMV供給器212に接続され、それ自体のプラントコントローラ210によって制御される。太陽光発電プラント100は、任意に、コンデンサバンクコントローラ、記憶装置などの外部デバイスを含んでもよい。
太陽光発電インバータ110は、一般的に、商用電力グリッド225を伴うPOI 221から離れてインバータパッド(inverter pads)に配置される。AC集電システムのインピーダンスのため、太陽光発電インバータ110の端子で測定される電圧及び他の出力は、POI 221における値と同じではない。複数の太陽光発電インバータ110の動作はまた、POI 221における出力要件を満たすように協調させる必要がある。
プラントコントローラ210は、POI 221又はその付近における太陽光発電プラント出力(例えば、電圧)の制御を容易にする、コンピュータなどの専用又は汎用処理デバイスを備えてもよい。一実施形態では、プラントコントローラ210は、対応する太陽光発電インバータ110の設定値を制御して、POI 221における所望の太陽光発電プラント出力を達成する。より具体的には、プラントコントローラ210は、太陽光発電インバータ110の設定値を調整してもよく、設定値は、特定の出力値を生成するように太陽光発電インバータ110に命令する。
図2の例では、プラントコントローラ210は、プラントコントローラ210が次いで、マスタープラントコントローラ200によって制御され協調させられるという点で、「スレーブプラントコントローラ」である。一実施形態では、マスタープラントコントローラ200は、POI 221で測定された太陽光発電プラント出力に基づいてグローバル設定値を発行する。各スレーブプラントコントローラ210は、グローバル設定値を処理して、その制御下にある各太陽光発電インバータ110に対する個々の設定値を生成する。このように、マスタープラントコントローラ200は、太陽光発電インバータ110を制御して、特定の太陽光発電プラント出力を達成することができる。以下でより明白になるように、このマスター/スレーブ太陽光発電プラント制御アーキテクチャによって、漸次的実装、費用の分担、及び太陽光発電プラントの動作のより有効な制御を含む、多くの利点が可能になる。
メーター223は、従来の電気メーター、又はデータ通信能力を備えた他のセンサ素子を含んでもよい。メーター223は、RMS送信機、電力量計(revenue meter)、保護継電器、及び他の測定/センサ装置を含んでもよい。図2の例では、メーター223は、POI 221における太陽光発電プラント100の出力を測定する。これによって、メーター223が、太陽光発電インバータ110の端子における読取り値よりも正確な、太陽光発電プラント出力の読取り値を有することが可能になる。POI 221においてメーター223によって測定される太陽光発電プラント出力の例としては、電圧、力率、無効電力、及び有効電力が挙げられる。図2の例では、実線は電力の流れを表し、破線はデータ流れを表す。データ流れは、変電所制御監視(SCADA)の制御によるものであってもよい。
図2の例では、太陽光発電プラント100におけるデータ流れはコンピュータネットワークを介して行われる。一実施形態では、太陽光発電インバータ110、スレーブプラントコントローラ210、マスタープラントコントローラ200、及び外部デバイスは、Modbus TCP/IP通信プロトコルにしたがって通信する。その実施形態では、イーサネット(登録商標)スイッチが、太陽光発電プラント100の構成要素間のデータ通信リンクを提供する。監視及び制御はまた、DNP3若しくはIEC 61850などの別のプロトコルによって、又は信号用の個々の配線を提供するなどによる、アナログ信号伝達によって行われてもよい。
マスタープラントコントローラ200は、スレーブプラントコントローラ210の動作を制御する専用又は汎用コンピュータであってもよい。マスタープラントコントローラ200は、太陽光発電プラント100全体を操作し、POI 221におけるプラントレベルの要件を満たすように、スレーブプラントコントローラ210を協調させる。マスタープラントコントローラ200からの入力に基づいて、スレーブプラントコントローラ210は、個々の太陽光発電インバータ110に制御信号を送って、例えば、自動電圧調節、力率制御、及び/又は有効電力制御にしたがって、POI 221における太陽光発電プラント出力を調整する。
一実施形態では、マスタープラントコントローラ200は、太陽光発電プラント100の出力をメーター223から読み取ると共に、スレーブプラントコントローラ210の動作を制御して、商用電力グリッド225に対するPOI 221における太陽光発電プラントの検出される出力に基づいて、対応する太陽光発電インバータ110の設定値を調整する。
自動電圧調節(AVR)の特定の相互接続要件を満たすための太陽光発電プラント100の一例の動作として、RMS送信機、電力量計、保護継電器など、POI 221におけるグリッド条件を測定するセンサ/測定デバイスを備える、一群のセンサ素子がプロジェクトサブステーション制御室(project substation control house)に存在する。マスタープラントコントローラ200は、相互接続要件ごとに求められるような様々な制御アルゴリズムに対して測定値を使用する。この自動電圧調節の例では、マスタープラントコントローラ200は、インバータ、キャップバンク(cap banks)、又は他の無効電力源を含む、太陽光発電プラント100の無効電力の要件を決定する。アルゴリズム的論理に基づいて、マスタープラントコントローラ200は、SCADAシステムを通じてスレーブプラントコントローラ210と通信する。スレーブプラントコントローラ210は、マスタープラントコントローラ200から設定値(例えば、グローバルインバータ設定値及び状態マシンの要求及び限界)を得て、局所的なプロジェクト要件、アーキテクチャ、及び構成に基づいて必要に応じてアルゴリズム的論理を更に実行する。太陽光発電インバータ110の状態、測定値、及び通信状態が収集され、スレーブプラントコントローラ210のアルゴリズムで使用される。この論理に基づいて、スレーブプラントコントローラ210は、関連する太陽光発電インバータ110に対して、無効電力の送出/吸収信号(export/absorb signals)を発行する。同様に、縦続のマスター/スレーブ配列、並びに太陽光発電プラント100の動作に関する他の戦略的な協調によって、積極的な費用削減も協調させることができる。
概して言えば、大規模(例えば、20MW以上)の太陽光発電計画を開発し構築する際に、規模の有意な経済的利益がある。しかしながら、単一のプラントコントローラが通信することができる、太陽光発電インバータなどのデバイスの数に対する技術的限界がある。したがって、スケールメリットを得られる大型の計画の場合、単一のプラントコントローラは最適な解決策ではない。それに加えて、より小規模(例えば、20MV未満)の太陽光発電計画は、一般的に、立上げ費用を抑えられることから、より大規模の計画よりも市場性が高い。本発明の実施形態により、これらの課題を克服する段階的又は漸次的な実行が可能になる。
図3は、本発明の実施形態による、漸次的実装を可能にする太陽光発電プラントの制御を概略的に示す。図3の例では、太陽光発電プラント100は漸次的に実装される。
第1の段階(矢印301)では、太陽光発電プラント100は、それ自体のプラントコントローラ210、太陽光発電インバータ110、及び関連する太陽電池パネル114(例えば、図1を参照)を有する、単一の発電所340−1を用いて実装されてもよい。発電所340−2及び340−3並びにマスタープラントコントローラ200は、第1の段階では設置されない。結果的に、第1の段階では、発電所340−1は、関連するセンサ素子、外部デバイス、及び継電・保護機器と共に、POI 221において商用グリッド225に対して単独で太陽光発電プラント出力を提供するように操作される。理解されるように、この第1の段階で太陽光発電プラント100を構築する計画は比較的小規模であって、より多くの事業体が計画の費用を賄うことが可能である。
第1の段階が完了した後、例えば、太陽光発電プラント100を一年以上動作させた後、別の発電所を太陽光発電プラント100に追加する、実装の第2の段階(矢印302)に着手してもよい。例えば、太陽光発電プラント100を発電所340−1のみで一定期間の間動作させた後、第2の段階は、発電所340−2を太陽光発電プラント100に追加してもよい。第2の段階は、第1の段階と同じく、小規模な計画であってもよく、したがって容易に資金を準備できる。第2の段階では、発電所340−1及び340−2のプラントコントローラ210の動作を協調させる、マスタープラントコントローラ200が追加される。即ち、発電所340−1及び340−2のプラントコントローラ210は、マスタープラントコントローラ200に対するスレーブとして構成されて、商用電力グリッド225に対して同じPOI 221で太陽光発電プラント出力を提供する。漸次的実装を継続させて、同じPOI 221に対して太陽光発電プラント出力を提供する、より多数の発電所を組み込んでもよい。一例として、太陽光発電プラント100を第2の段階の構成で一定期間の間動作させた後、第3の段階(矢印303)で太陽光発電プラント340−3が太陽光発電プラント100に追加されてもよく、太陽光発電プラント340−3のプラントコントローラ210は、マスタープラントコントローラ200に対するスレーブとして構成される。太陽光発電プラント340−nまでの連続的な太陽光発電プラントセグメントを太陽光発電プラント100に続けて追加することによって、漸次的実装を継続してもよい。
太陽光発電プラント100の漸次的実装をより一層経済的に実施可能なものにするため、発電所340のそれぞれ(即ち、340−1、340−2、340−3、...、340−n)を別個の事業体が所有していてもよい。例えば、発電所340−1は第1の電力会社が所有していてもよく、発電所340−2は、第1の電力会社とは別の無関係な第2の電力会社が所有していてもよく、以下も同様である。したがって、マスターコントローラ200を使用して、多くの異なるスレーブプラントコントローラ210の動作を協調させることで、別々の所有者による、より小規模な太陽光発電計画の資源から開始し、且つ/又はそれらを共同出資することによって、大規模な太陽光発電計画のスケールメリットがより簡単に活用できる。
図4は、本発明の実施形態による、自動電圧調節制御における太陽光発電プラント100の更なる詳細及び動作を概略的に示す。
図4の例では、マスタープラントコントローラ200は、構成要素402、403、404−1、410〜413、及び442〜444を含む。マスタープラントコントローラ200は、複数のスレーブプラントコントローラ210の動作を制御し協調させる。各スレーブプラントコントローラ210は、構成要素404−2、405〜409、及び440〜441を含む。太陽光発電インバータ110は、スレーブプラントコントローラ210の周囲の内部にあるものとして図4に示されており、各スレーブプラントコントローラ210が、スレーブプラントコントローラ210からは離れて配置された一群の太陽光発電インバータ110の動作を制御することを示している。マスタープラントコントローラ200及びスレーブプラントコントローラ210の構成要素は、ハードウェア(例えば、電気回路)、ソフトウェア(例えば、プロセッサによって実行される命令及びアルゴリズム)、又はハードウェアとソフトウェアの組み合わせの形で実現されてもよい。構成要素は、特定の太陽光発電プラントの要求を満たすように追加又は除去されてもよい。
図4の例では、グローバルインバータ無効電力設定値は、機能ブロック402、403、及び404−1において、マスタープラントコントローラ200によって処理される。機能ブロック404−1からのグローバルインバータ無効電力設定値は、マスタープラントコントローラ200によって、個々のスレーブプラントコントローラ210に送られる(矢印490)。使用可能なスレーブプラントコントローラ210はそれぞれ、機能ブロック404−2、405、406、及び407において、グローバルインバータ無効電力設定値を処理する。スレーブプラントコントローラ210は、機能ブロック407において、太陽光発電インバータ110それぞれにつき一つずつ、個々の無効電力設定値を生成する。機能ブロック407から、個々のインバータ無効電力設定値信号が、それぞれ対応する太陽光発電インバータ110に送られる。太陽光発電インバータ110は、受信した個々のインバータ無効電力設定値に基づいて、無効電力を送出及び/又は吸収する。
次に、自動電圧調節動作の例について、図4を参照して説明する。マスタープラントコントローラ200は、POI 221における電圧を設定するための設定値電圧として用いられる基準電圧VREFを受信する。加算器401は、基準電圧VREFにより示されるPOI 221における所望の電圧と、メーター223により測定されるPOI 221における電圧(VMETER)との差に基づいて、誤差信号VERRを生成する。図4の例では、メーター223によって測定されたPOI 221における電圧は、電圧フィルタ444によってフィルタ処理される。
一実施形態では、基準電圧VREF及びメーター電圧読取り値VMETERは、マスタープラントコントローラ200でデジタル信号として処理される。これらの電圧は、アナログデジタル変換器(ADC)を使用してデジタルに変換され、次に、データ通信ネットワークを通じてマスタープラントコントローラ200に供給されてもよい。特定の例として、基準電圧VREF及びメーター電圧読取り値VMETERは、ModbusTCPレジスタを用いてマスタープラントコントローラ200に提供されてもよい。マスタープラントコントローラ200が受信したコマンド及び入力(基準電圧VREF及びメーター電圧読取り値VMETERを含む)に対して、境界検査が行われることが好ましいことがある。
基準電圧VREF、メーター電圧の読取り値VMETER、及び太陽光発電プラントの他の電圧/電流は、太陽光発電プラント100の他のものに適切に変換にした状態の他のタイプの信号により示されてもよい。例えば、電圧信号は、電流信号により示されてもよく、また逆でもよい。別の例として、太陽光発電プラントの電圧及び電流は、RMS(実効値)で示されてもよい。
無負荷不感帯機能(unloading deadband function)402は、用途により有効とされても、されなくてもよい。無負荷不感帯機能402によって、グローバルインバータ無効電力設定値を調整することなく、誤差電圧VERRを範囲内で変動させることが可能になる。より具体的には、無負荷不感帯機能402は、グリッド電圧(即ち、POI 221における電圧)が境界(一般的に、公称値の±1%)内にあるとき、補償器403への入力が上下に変動するのを可能にし、太陽光発電インバータ110が力率1を送出するような設定に太陽光発電インバータ110を保持する。換言すれば、グリッド電圧が、例えば、±1%以内の場合、補償器403への入力は、実際にはちょうどグリッド電圧である。このことによって更に、グリッド電圧が不感帯限界内にある場合、太陽光発電インバータ110が力率1になる。
一実施形態では、補償器403は、比例−積分(PI)制御スキームを使用して、誤差電圧VERRからグローバルインバータ無効電力設定値信号を生成する。使用できる他の制御スキームとしては、比例、積分、微分、比例−積分、積分−微分、比例−微分、及び比例−積分−微分が挙げられる。PI補償器403は、絶対的であることができる。つまり、インバータ無効電力設定値が、誤差信号VERR及びPI補償器403の比例ゲイン(Kp)及び積分ゲイン(Ki)に基づいて上下バイアスをかけられる。補償器403は、インクリメンタルであってもよい。補償器403は、積分飽和現象(integral windup)保護及び飽和限界を有してもよい。補償器403は、グリッド外乱が発生したときにトリガされる状態マシン論理によって有効又は無効にされてもよい。
図4の例では、無効電力制限機能は、マスタープラントコントローラ200の第1の無効電力制限機能404−1と、各スレーブプラントコントローラ210の第2の無効電力制限機能404−2とに分割される。無効電力限界選択機能404(即ち、404−1、404−2)は、補償器403のグローバルインバータ無効電力設定値出力を減少又は増加させる。
マスタープラントコントローラ200では、無効電力制限機能404−1は、力率リミッタサブループ431及び無効電力リミッタサブループ432からの入力に基づいて、グローバルインバータ無効電力設定値を減少又は増加させる。無効電力限界選択機能404−1は、POI 221における太陽光発電プラント出力が力率限界(PF限界)及び無効電力限界(Q限界)を超えないようにして、グローバルインバータ無効電力設定値を調整する。
力率リミッタサブループ431は、POI 221においてメーター223によって測定された力率が、太陽光発電プラント100の力率限界(PF限界)に近い、その値である、又はその値を超える場合に、グローバルインバータ無効電力設定値を制限する。メーター223からの力率の読取り値が、力率フィルタ442によりフィルタ処理され、加算器413によって力率限界と比較される。メーター223からの力率読取り値と力率限界との差が補償器410に入力され、その出力が、無効電力限界選択機能404−1に提供される。プラントAC集電システムを通って流れる有効電力に伴ってインピーダンスが変化するため、POI 221における力率は太陽光発電インバータ110の端子における力率と必ずしも同じではないので、力率リミッタサブループ431はそれ自体の補償器410を有する。補償器410は、PI又は他の制御スキームを採用してもよい。
無効電力リミッタサブループ432は、POI 221においてメーター223によって測定された無効電力が、対応高発電所100の無効電力限界(Q限界)に近い、その値である、又はその値を超える場合に、グローバルインバータ無効電力設定値を制限する。メーター223からの無効電力の読取り値が、無効電力フィルタ443によりフィルタ処理され、加算器412によって無効電力限界と比較される。メーター223からの無効電圧読取り値と無効電圧限界との差が補償器411に入力され、その出力が、無効電力限界選択機能404−1に提供される。プラントAC集電システムを通って流れる有効電力に伴ってインピーダンスが変化するため、POI 221における無効力率(reactive power factor)は太陽光発電インバータ110の端子における無効電力と必ずしも同じではないので、無効電力サブループ432はそれ自体の補償器411を有する。補償器411は、PI又は他の制御スキームを採用してもよい。
各スレーブプラントコントローラ210では、無効電力制限機能404−2は、インバータ電圧リミッタサブループ430からの入力に基づいて、グローバルインバータ無効電力設定値を減少又は増加させる。無効電力限界選択機能404−2は、POI 221における太陽光発電プラント出力がインバータ基準電圧限界(INV VREF限界)を超えないようにして、グローバルインバータ無効電力設定値を調整する。
インバータ電圧リミッタサブループ430は、太陽光発電インバータ110の端子における電圧出力に基づいて、グローバルインバータ無効電力設定値を制限する。一実施形態では、特定のスレーブプラントコントローラ210によって制御される一群に含まれる全ての太陽光発電インバータ110の端子電圧は、互いに平均化されて、その群の全ての太陽光発電インバータ110の端子電圧を表す単一のインバータ端子電圧が生成される。別の実施形態では、特定のスレーブプラントコントローラ210によって制御される群に含まれる全ての太陽光発電インバータ110の中で最大のインバータ端子電圧が、その群の全ての太陽光発電インバータ110の端子電圧を表すのに使用される。インバータ端子電圧(群に含まれる太陽光発電インバータ110の端子電圧の平均値、最高値、又はその他を表す値)は、電圧フィルタ441によってフィルタ処理され、加算器409によってインバータ基準電圧限界と比較される。加算器409の出力は補償器408に入力され、その出力が、無効電力限界選択機能404−2に提供される。力率及び無効電力サブループとは異なり、インバータ電圧リミッタサブループ430は、太陽光発電インバータ110から(即ち、メーター223からではなく)直接その測定値を得る。補償器408は、PI又は他の制御スキームを採用してもよい。
各スレーブプラントコントローラ210において、無効電力変化率制限機能405は、グローバルインバータ無効電力設定値の変化率を制限する。これによって、個々のインバータ無効電力設定値に影響を及ぼす、グローバルインバータ無効電力設定値に対する迅速且つ急激な変化から保護される。
各スレーブプラントコントローラ210において、インバータ使用可能機能406は、ハートビート信号440を周期的に受信して、太陽光発電インバータの供給支障を検出する。図4には、図示を明瞭にするため、1つの太陽光発電インバータ110からの1つのハートビート信号440のみが示されている。実際には、別個のハートビート信号440が各太陽光発電インバータ110から受信されてもよい。使用可能な太陽光発電インバータ110それぞれについて、インバータ使用可能機能406は、対応する個々のインバータ無効電力設定値を、個々の無効電力変化率制限機能407に出力する。
各スレーブプラントコントローラ210において、個々の無効電力変化率制限機能407は、対応する太陽光発電インバータ110に提供される、個々のインバータ無効電力設定値それぞれに適用される。その名称が示すように、機能407は、個々のインバータ無効電力設定値の変化率を制限する。一実施形態では、個々のインバータ無効電力設定値(Inv Q SP)は、ModbusTCPレジスタを用いて対応する太陽光発電インバータ110に提供される。個々のインバータ無効電力設定値は、レジスタから読み取られ、アナログ電圧信号に変換され、それが次に、太陽光発電インバータ110が配置されているインバータパッドにおいて、太陽光発電インバータ110の端子に対して提示される。太陽光発電インバータ110は、受信した個々のインバータ無効設定値(reactive setpoint)にしたがって、その無効電力出力を調整することによって応答する。
一実施形態では、個々の無効電力変化率制限機能407は、また、インバータの供給支障に応じて個々のインバータ無効電力設定値を上下させる。例えば、太陽光発電インバータ110がオフラインの場合(即ち、ハードビートが欠落している場合)、機能407は、その太陽光発電インバータ110の個々のインバータ無効電力設定値を力率1又はゼロ無効電力に設定してもよい。その太陽光発電インバータ110がオンラインに戻ると、機能407は、その太陽光発電インバータ110のインバータ無効電力設定値を、自動電圧調節制御によって指示されるようなグローバル無効電力設定値に戻してもよい。
図5は、本発明の実施形態による、力率制御(PFC)における太陽光発電プラント100の更なる詳細及び動作を概略的に示す。概して言えば、力率制御は自動電圧調節に類似しているが、但し、電圧の代わりに、太陽光発電プラント100の出力である力率が、太陽光発電プラント100の動作を制御する際の主要な制御変数として使用される。
図5の例では、マスタープラントコントローラ200は、構成要素402、403、及び501〜506を含む。マスタープラントコントローラ200は、複数のスレーブプラントコントローラ210の動作を制御し協調させる。各スレーブプラントコントローラ210は、構成要素406及び407を含む。太陽光発電インバータ110は、スレーブプラントコントローラ210の周囲の内部にあるものとして図5に示されており、各スレーブプラントコントローラ210が、スレーブプラントコントローラ210からは離れて配置された一群の太陽光発電インバータ110の動作を制御することを示している。構成要素は、特定の太陽光発電プラントの要求を満たすように追加又は除去されてもよい。
図5の例では、グローバルインバータ無効電力設定値信号は、機能ブロック402、403、501、及び502において、マスタープラントコントローラ200によって処理される。機能ブロック502からのグローバルインバータ無効電力設定値は、マスタープラントコントローラ200によって、個々のスレーブプラントコントローラ210に送られる(矢印520)。特定のスレーブプラントコントローラ210が、機能ブロック406においてグローバルインバータ無効電力設定値を受信し、そこで、太陽光発電インバータ110それぞれにつき一つずつ、個々の無効電力設定値が生成される。機能ブロック406から、個々のインバータ無効電力設定値信号が、それぞれ対応する太陽光発電インバータ110に送られる。太陽光発電インバータ110は、受信した個々のインバータ無効電圧設定値に基づいて、無効電力を送出及び/又は吸収する。
次に、力率制御動作の例について、図5を参照して説明する。マスタープラントコントローラ200は、POI 221における所望の力率を表す基準力率PFREFを受信する。加算器401は、基準力率PFREFにより示されるPOI 221における所望の力率と、メーター223により測定されるPOI 221における力率(PFMETER)との差に基づいて、誤差信号PFERRを生成する。この例では、力率PFMETERはPOI 221における力率を表す。POI 221における力率の読取り値は、加算器401に提示される前に、力率フィルタ503によってフィルタ処理されてもよい。
無負荷不感帯機能402は、用途により有効とされても、されなくてもよい。上述のように、無負荷不感帯機能402によって、グローバルインバータ無効電力設定値を調整することなく、誤差力率PFERRを範囲内で変動させることが可能になる。補償器403は、PI又は他の制御スキームを使用して、誤差力率PFERRからグローバルインバータ無効電力設定値又はグローバル力率設定値信号を生成する。補償器403は、メーター223が、欠落している通信ハートビート信号505によって示されるように機能を停止すると、又はデータチェック504によって示されるように誤った読取り値を与えると、無効にされてもよい(506を参照)。
図5の例では、無効電力限界選択機能501は、補償器403のグローバルインバータ無効電力設定値出力を減少又は増加させる。一実施形態では、無効電力限界選択機能501は、POI 221における太陽光発電プラント出力が太陽光発電プラント100の力率限界を超えないようにして、グローバルインバータ無効電力設定値を調整する。無効電力変化率制限機能502は、グローバルインバータ無効電力設定値の変化率を制限する。これによって、個々のインバータ無効電力設定値に影響を及ぼす、グローバルインバータ無効電力設定値に対する迅速且つ急激な変化から保護される。
各スレーブプラントコントローラ210において、インバータ使用可能機能406は、ハートビート信号440を周期的に受信して、太陽光発電インバータの供給支障を検出する。図5には、図示を明瞭にするため、1つの太陽光発電インバータ110からの1つのハートビート信号440のみが示されている。実際には、別個のハートビート信号440が各太陽光発電インバータ110から受信されてもよい。使用可能な太陽光発電インバータ110それぞれについて、インバータ使用可能機能406は、対応する個々のインバータ無効電力設定値を個々の無効電力変化率制限機能407に出力し、そこで個々のインバータ無効電力設定値の変化率が制限される。
各スレーブプラントコントローラ210において、個々の無効電力変化率制限機能407は、対応する太陽光発電インバータ110に提供される、個々のインバータ無効電力設定値それぞれに適用される。一実施形態では、個々のインバータ無効電力設定値(Inv Q SP)は、ModbusTCPレジスタを用いて対応する太陽光発電インバータ110に提供される。個々のインバータ無効電力設定値は、レジスタから読み取られ、アナログ電圧信号に変換され、それが次に、太陽光発電インバータ110が配置されているインバータパッドにおいて、太陽光発電インバータ110の端子に対して提示される。太陽光発電インバータ110は、受信した個々のインバータ無効設定値(reactive setpoint)にしたがって、その無効電力出力を調整して、POI 221における所望の力率を達成することによって応答する。あるいは、無効電力設定値をインバータに提供する代わりに、スレーブプラントコントローラ210は、力率設定値コマンドをインバータ110に対して発行してもよい。
上述のことから理解されるように、本発明の実施形態はまた、上述の制御スキームに類似した方法で、有効電力制御に用いられてもよい。概して言えば、有効電力制御は自動電圧調節又は力率制御に類似しているが、但し、太陽光発電プラント100の有効電力出力が、太陽光発電プラント100の動作を制御する際の主要な制御変数として使用される。より具体的には、一実施形態では、POI 221における太陽光発電プラント出力は有効電力を含み、スレーブプラントコントローラ210は、有効電力制御にしたがって、対応するインバータ110のインバータ有効電力設定値を調整する。その実施形態では、マスタープラントコントローラ200は、POI 221における有効電力読取り値をメーター223から受信し、有効電力読取り値を所望の有効電力と比較し、POI 221における有効電力読取り値と所望の有効電力との差を処理して、グローバルインバータ有効電力設定値を生成し、その値をスレーブプラントコントローラ210に送り、そこで対応するインバータ110に対する個々のインバータ有効電力設定値が生成される。本発明の実施形態はまた、本発明の利益を損なうことなく、他の太陽光発電プラント制御スキームに用いられてもよい。
太陽光発電プラントの動作を制御するためのマスター/スレーブアーキテクチャについて開示してきた。本発明の具体的な実施形態を提供したが、これらの実施形態は説明を目的としたものであり、限定的なものでないことは理解されよう。多くの追加的実施形態が、本開示を読む当業者にとっては明らかとなろう。
太陽光発電プラントの動作を制御するためのマスター/スレーブアーキテクチャについて開示してきた。本発明の具体的な実施形態を提供したが、これらの実施形態は説明を目的としたものであり、限定的なものでないことは理解されよう。多くの追加的実施形態が、本開示を読む当業者にとっては明らかとなろう。
(項目1)
太陽光発電プラントであって、
複数のスレーブプラントコントローラと、
上記複数のスレーブプラントコントローラの動作を制御するマスタープラントコントローラと、を備え、
上記複数のスレーブプラントコントローラの各スレーブプラントコントローラが、当該スレーブプラントコントローラによって制御される複数の太陽光発電インバータそれぞれの設定値を調整し、
上記設定値が、商用電力グリッドに対する上記太陽光発電プラントの相互接続点(POI)に提供される、上記複数の太陽光発電インバータのうち対応する太陽光発電インバータの出力を設定し、
上記複数の太陽光発電インバータがそれぞれ、複数の太陽電池により生成された直流を交流に変換し、
上記マスタープラントコントローラは、上記商用電力グリッドに対する上記POIにおける上記太陽光発電プラントの出力を検出すると共に、上記複数のスレーブプラントコントローラの動作を制御して、上記商用電力グリッドに対する上記POIにおける上記太陽光発電プラントの検出される上記出力に基づいて、対応する太陽光発電インバータの設定値を調整する、太陽光発電プラント。
(項目2)
上記POIにおける上記太陽光発電プラントの検出される上記出力は、無効電力を含み、
上記複数のスレーブプラントコントローラの各スレーブプラントコントローラによって調整される上記設定値は、インバータ無効電力設定値を含む、項目1に記載の太陽光発電プラント。
(項目3)
上記POIにおける上記太陽光発電プラントの検出される上記出力は、力率を含み、
上記複数のスレーブプラントコントローラの各スレーブプラントコントローラによって調整される上記設定値が、インバータ力率設定値を含む、項目1に記載の太陽光発電プラント。
(項目4)
上記POIにおける上記太陽光発電プラントの検出される上記出力は、有効電力を含み、
上記複数のスレーブプラントコントローラの各スレーブプラントコントローラによって調整される上記設定値は、インバータ有効電力設定値を含む、項目1に記載の太陽光発電プラント。
(項目5)
上記POIにおける上記太陽光発電プラントの検出される上記出力は、測定された出力電圧を含む、項目1に記載の太陽光発電プラント。
(項目6)
上記マスタープラントコントローラは、上記POIにおけるメーターを読み取って、上記POIにおける上記太陽光発電プラントの上記出力を検出する、項目1に記載の太陽光発電プラント。
(項目7)
上記マスタープラントコントローラは、上記太陽光発電プラントの検出される上記出力を受信し処理する補償器を有する、項目1に記載の太陽光発電プラント。
(項目8)
上記補償器は、比例−積分(PI)補償器を含む、項目7に記載の太陽光発電プラント。
(項目9)
上記複数の太陽電池は、裏面コンタクト型太陽電池を含む、項目1に記載の太陽光発電プラント。
(項目10)
太陽光発電プラントの動作を制御する方法であって、
第1のスレーブプラントコントローラを使用して、第1の複数の太陽光発電インバータの動作を制御する段階と、
第2のスレーブプラントコントローラを使用して、第2の複数の太陽光発電インバータの動作を制御する段階と、
相互接続点(POI)で上記太陽光発電プラントの出力を測定する段階と、
マスタープラントコントローラを使用して、上記第1のスレーブプラントコントローラ及び上記第2のスレーブプラントコントローラの動作を制御する段階と、を備え、
上記第1の複数の太陽光発電インバータの動作を制御する段階において、上記第1のスレーブプラントコントローラは、上記第1の複数の太陽光発電インバータの各太陽光発電インバータの設定値を調整して、上記第1の複数の太陽光発電インバータの各太陽光発電インバータの出力を調整し、上記第1の複数の太陽光発電インバータの各太陽光発電インバータは、第1の複数の太陽電池により生成された直流を、商用電力グリッドに対する上記太陽光発電プラントの上記POIに送達するために交流に変換し、
上記第2の複数の太陽光発電インバータの動作を制御する段階において、上記第2のスレーブプラントコントローラは、上記第2の複数の太陽光発電インバータの各太陽光発電インバータの設定値を調整して、上記第2の複数の太陽光発電インバータの各太陽光発電インバータの出力を調整し、上記第2の複数の太陽光発電インバータの各太陽光発電インバータは、第2の複数の太陽電池により生成された直流を、上記POIに送達するために交流に変換し、
上記第1のスレーブプラントコントローラ及び上記第2のスレーブプラントコントローラの動作を制御する段階において、上記マスタープラントコントローラが、上記第1のスレーブプラントコントローラ及び第2のスレーブプラントコントローラを制御して、上記POIにおいて測定される上記太陽光発電プラントの上記出力に基づいて、上記第1の複数の太陽光発電インバータ及び上記第2の複数の太陽光発電インバータのうちの太陽光発電インバータの設定値を調整する、方法。
(項目11)
上記POIにおいて測定される上記太陽光発電プラントの上記出力は、電圧出力を含む、項目10に記載の方法。
(項目12)
上記太陽光発電プラントは、自動電圧調節にしたがって操作される、項目11に記載の方法。
(項目13)
上記POIにおいて測定される上記太陽光発電プラントの上記出力は、力率を含む、項目10に記載の方法。
(項目14)
上記太陽光発電プラントは、力率制御にしたがって操作される、項目13に記載の方法。
(項目15)
上記POIにおいて測定される上記太陽光発電プラントの上記出力は、有効電力を含む、項目10に記載の方法。
(項目16)
上記第1のスレーブプラントコントローラが、データ通信ネットワークを通じて上記第1の複数の太陽光発電インバータと通信する、項目10に記載の方法。
(項目17)
太陽光発電プラントの動作を制御する方法であって、
太陽光発電プラントの第1のプラントコントローラを設置する段階と、
商用電力グリッドに対する相互接続点(POI)において、上記太陽光発電プラントの出力を生成するように、上記第1のプラントコントローラを操作する段階と、
上記第1のプラントコントローラが、少なくとも一定期間の間、上記商用電力グリッドに対する上記POIにおける上記太陽光発電プラントの上記出力を生成するように動作した後、上記太陽光発電プラントの第2のプラントコントローラを設置する段階と、
上記第1のプラントコントローラ及び上記第2のプラントコントローラの動作を制御するマスタープラントコントローラを設置する段階と、
上記マスタープラントコントローラを使用して上記第1のプラントコントローラ及び上記第2のプラントコントローラの動作を制御する段階と、を備え、
上記第1のプラントコントローラは、第1の複数の太陽電池により生成された直流を交流に変換する第1の複数の太陽光発電インバータの動作を制御し、
上記第2のプラントコントローラは、第2の複数の太陽電池により生成された直流を交流に変換する第2の複数の太陽光発電インバータの動作を制御し、
上記マスタープラントコントローラを使用して上記第1のプラントコントローラ及び上記第2のプラントコントローラの動作を制御する段階において、上記マスタープラントコントローラは、上記第1のプラントコントローラ及び上記第2のプラントコントローラを制御して、上記POIにおける上記太陽光発電プラントの測定出力に基づいて、上記第1の複数の太陽光発電インバータ及び上記第2の複数の太陽光発電インバータのうちの複数の太陽光発電インバータの設定値を調整する、方法。
(項目18)
上記POIにおける上記太陽光発電プラントの上記測定出力は、電圧を含む、項目17に記載の方法。
(項目19)
上記太陽光発電プラントは、自動電圧調節にしたがって操作される、項目17に記載の方法。
(項目20)
上記POIにおける上記太陽光発電プラントの上記測定出力は、力率を含む、項目17に記載の方法。
(項目21)
上記太陽光発電プラントは、力率制御にしたがって操作される、項目17に記載の方法。
(項目22)
上記POIにおける上記太陽光発電プラントの上記測定出力は、有効電力を含む、項目17に記載の方法。
(項目23)
上記太陽光発電プラントは、自動有効電力制御にしたがって操作される、項目17に記載の方法。
(項目24)
上記第1のプラントコントローラは、データ通信ネットワークを通じて上記第1の複数の太陽光発電インバータと通信する、項目17に記載の方法。
(項目25)
複数のスレーブプラントコントローラはそれぞれ、別個の事業体によって操作される別個の太陽光発電プラントとして操作される、項目17に記載の方法。

Claims (25)

  1. 太陽光発電プラントであって、
    複数のスレーブプラントコントローラと、
    前記複数のスレーブプラントコントローラの動作を制御するマスタープラントコントローラと、を備え、
    前記複数のスレーブプラントコントローラの各スレーブプラントコントローラが、当該スレーブプラントコントローラによって制御される複数の太陽光発電インバータそれぞれの設定値を調整し、
    前記設定値が、商用電力グリッドに対する前記太陽光発電プラントの相互接続点(POI)に提供される、前記複数の太陽光発電インバータのうち対応する太陽光発電インバータの出力を設定し、
    前記複数の太陽光発電インバータがそれぞれ、複数の太陽電池により生成された直流を交流に変換し、
    前記マスタープラントコントローラは、前記商用電力グリッドに対する前記POIにおける前記太陽光発電プラントの出力を検出すると共に、前記複数のスレーブプラントコントローラの動作を制御して、前記商用電力グリッドに対する前記POIにおける前記太陽光発電プラントの検出される前記出力に基づいて、対応する太陽光発電インバータの設定値を調整する、太陽光発電プラント。
  2. 前記POIにおける前記太陽光発電プラントの検出される前記出力は、無効電力を含み、
    前記複数のスレーブプラントコントローラの各スレーブプラントコントローラによって調整される前記設定値は、インバータ無効電力設定値を含む、請求項1に記載の太陽光発電プラント。
  3. 前記POIにおける前記太陽光発電プラントの検出される前記出力は、力率を含み、
    前記複数のスレーブプラントコントローラの各スレーブプラントコントローラによって調整される前記設定値が、インバータ力率設定値を含む、請求項1に記載の太陽光発電プラント。
  4. 前記POIにおける前記太陽光発電プラントの検出される前記出力は、有効電力を含み、
    前記複数のスレーブプラントコントローラの各スレーブプラントコントローラによって調整される前記設定値は、インバータ有効電力設定値を含む、請求項1に記載の太陽光発電プラント。
  5. 前記POIにおける前記太陽光発電プラントの検出される前記出力は、測定された出力電圧を含む、請求項1に記載の太陽光発電プラント。
  6. 前記マスタープラントコントローラは、前記POIにおけるメーターを読み取って、前記POIにおける前記太陽光発電プラントの前記出力を検出する、請求項1に記載の太陽光発電プラント。
  7. 前記マスタープラントコントローラは、前記太陽光発電プラントの検出される前記出力を受信し処理する補償器を有する、請求項1に記載の太陽光発電プラント。
  8. 前記補償器は、比例−積分(PI)補償器を含む、請求項7に記載の太陽光発電プラント。
  9. 前記複数の太陽電池は、裏面コンタクト型太陽電池を含む、請求項1に記載の太陽光発電プラント。
  10. 太陽光発電プラントの動作を制御する方法であって、
    第1のスレーブプラントコントローラを使用して、第1の複数の太陽光発電インバータの動作を制御する段階と、
    第2のスレーブプラントコントローラを使用して、第2の複数の太陽光発電インバータの動作を制御する段階と、
    相互接続点(POI)で前記太陽光発電プラントの出力を測定する段階と、
    マスタープラントコントローラを使用して、前記第1のスレーブプラントコントローラ及び前記第2のスレーブプラントコントローラの動作を制御する段階と、を備え、
    前記第1の複数の太陽光発電インバータの動作を制御する段階において、前記第1のスレーブプラントコントローラは、前記第1の複数の太陽光発電インバータの各太陽光発電インバータの設定値を調整して、前記第1の複数の太陽光発電インバータの各太陽光発電インバータの出力を調整し、前記第1の複数の太陽光発電インバータの各太陽光発電インバータは、第1の複数の太陽電池により生成された直流を、商用電力グリッドに対する前記太陽光発電プラントの前記POIに送達するために交流に変換し、
    前記第2の複数の太陽光発電インバータの動作を制御する段階において、前記第2のスレーブプラントコントローラは、前記第2の複数の太陽光発電インバータの各太陽光発電インバータの設定値を調整して、前記第2の複数の太陽光発電インバータの各太陽光発電インバータの出力を調整し、前記第2の複数の太陽光発電インバータの各太陽光発電インバータは、第2の複数の太陽電池により生成された直流を、前記POIに送達するために交流に変換し、
    前記第1のスレーブプラントコントローラ及び前記第2のスレーブプラントコントローラの動作を制御する段階において、前記マスタープラントコントローラが、前記第1のスレーブプラントコントローラ及び第2のスレーブプラントコントローラを制御して、前記POIにおいて測定される前記太陽光発電プラントの前記出力に基づいて、前記第1の複数の太陽光発電インバータ及び前記第2の複数の太陽光発電インバータのうちの太陽光発電インバータの設定値を調整する、方法。
  11. 前記POIにおいて測定される前記太陽光発電プラントの前記出力は、電圧出力を含む、請求項10に記載の方法。
  12. 前記太陽光発電プラントは、自動電圧調節にしたがって操作される、請求項11に記載の方法。
  13. 前記POIにおいて測定される前記太陽光発電プラントの前記出力は、力率を含む、請求項10に記載の方法。
  14. 前記太陽光発電プラントは、力率制御にしたがって操作される、請求項13に記載の方法。
  15. 前記POIにおいて測定される前記太陽光発電プラントの前記出力は、有効電力を含む、請求項10に記載の方法。
  16. 前記第1のスレーブプラントコントローラが、データ通信ネットワークを通じて前記第1の複数の太陽光発電インバータと通信する、請求項10に記載の方法。
  17. 太陽光発電プラントの動作を制御する方法であって、
    太陽光発電プラントの第1のプラントコントローラを設置する段階と、
    商用電力グリッドに対する相互接続点(POI)において、前記太陽光発電プラントの出力を生成するように、前記第1のプラントコントローラを操作する段階と、
    前記第1のプラントコントローラが、少なくとも一定期間の間、前記商用電力グリッドに対する前記POIにおける前記太陽光発電プラントの前記出力を生成するように動作した後、前記太陽光発電プラントの第2のプラントコントローラを設置する段階と、
    前記第1のプラントコントローラ及び前記第2のプラントコントローラの動作を制御するマスタープラントコントローラを設置する段階と、
    前記マスタープラントコントローラを使用して前記第1のプラントコントローラ及び前記第2のプラントコントローラの動作を制御する段階と、を備え、
    前記第1のプラントコントローラは、第1の複数の太陽電池により生成された直流を交流に変換する第1の複数の太陽光発電インバータの動作を制御し、
    前記第2のプラントコントローラは、第2の複数の太陽電池により生成された直流を交流に変換する第2の複数の太陽光発電インバータの動作を制御し、
    前記マスタープラントコントローラを使用して前記第1のプラントコントローラ及び前記第2のプラントコントローラの動作を制御する段階において、前記マスタープラントコントローラは、前記第1のプラントコントローラ及び前記第2のプラントコントローラを制御して、前記POIにおける前記太陽光発電プラントの測定出力に基づいて、前記第1の複数の太陽光発電インバータ及び前記第2の複数の太陽光発電インバータのうちの複数の太陽光発電インバータの設定値を調整する、方法。
  18. 前記POIにおける前記太陽光発電プラントの前記測定出力は、電圧を含む、請求項17に記載の方法。
  19. 前記太陽光発電プラントは、自動電圧調節にしたがって操作される、請求項17に記載の方法。
  20. 前記POIにおける前記太陽光発電プラントの前記測定出力は、力率を含む、請求項17に記載の方法。
  21. 前記太陽光発電プラントは、力率制御にしたがって操作される、請求項17に記載の方法。
  22. 前記POIにおける前記太陽光発電プラントの前記測定出力は、有効電力を含む、請求項17に記載の方法。
  23. 前記太陽光発電プラントは、自動有効電力制御にしたがって操作される、請求項17に記載の方法。
  24. 前記第1のプラントコントローラは、データ通信ネットワークを通じて前記第1の複数の太陽光発電インバータと通信する、請求項17に記載の方法。
  25. 複数のスレーブプラントコントローラはそれぞれ、別個の事業体によって操作される別個の太陽光発電プラントとして操作される、請求項17に記載の方法。
JP2014538993A 2011-10-27 2012-10-25 太陽光発電プラントおよびその制御方法 Active JP6205658B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201161552345P 2011-10-27 2011-10-27
US61/552,345 2011-10-27
US13/658,562 2012-10-23
US13/658,562 US9680301B2 (en) 2011-10-27 2012-10-23 Master-slave architecture for controlling operation of photovoltaic power plants
PCT/US2012/061851 WO2013063224A1 (en) 2011-10-27 2012-10-25 Master-slave architecture for controlling operation of photovoltaic power plants

Publications (2)

Publication Number Publication Date
JP2014533084A true JP2014533084A (ja) 2014-12-08
JP6205658B2 JP6205658B2 (ja) 2017-10-04

Family

ID=48168475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014538993A Active JP6205658B2 (ja) 2011-10-27 2012-10-25 太陽光発電プラントおよびその制御方法

Country Status (8)

Country Link
US (1) US9680301B2 (ja)
EP (1) EP2771752B1 (ja)
JP (1) JP6205658B2 (ja)
CN (2) CN103975284A (ja)
AU (1) AU2012328766B2 (ja)
CL (1) CL2014001053A1 (ja)
MX (1) MX2014005004A (ja)
WO (1) WO2013063224A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017131024A (ja) * 2016-01-19 2017-07-27 三菱電機株式会社 発電システム

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9507367B2 (en) * 2012-04-09 2016-11-29 Clemson University Method and system for dynamic stochastic optimal electric power flow control
DE102012211267A1 (de) * 2012-06-29 2014-05-22 Siemens Aktiengesellschaft Verfahren und Vorrichtung zum Regeln einer Spannung in einem Verteilnetz
KR101480533B1 (ko) * 2013-06-28 2015-01-08 한국전력공사 분산전원 전력계통 연계 운전장치 및 방법
JP6126499B2 (ja) * 2013-08-30 2017-05-10 株式会社東芝 電力変換装置、協調制御方法およびプログラム
JP6122746B2 (ja) * 2013-09-20 2017-04-26 株式会社東芝 電力変換装置、装置検出方法ならびにプログラム
JP6321393B2 (ja) * 2014-02-14 2018-05-09 山洋電気株式会社 マスタスレーブ相互間中継装置およびその中継方法
US9917447B2 (en) 2014-03-13 2018-03-13 Enphase Energy, Inc. Systems and methods for synchronizing an appliance load to a local power generating capability
EP3213383B1 (en) * 2014-10-27 2019-12-04 Vestas Wind Systems A/S Wind-turbine converter control for modular string converters
US10992255B2 (en) * 2014-10-28 2021-04-27 Sunpower Corporation Photovoltaic module or array shutdown
CN104468586B (zh) * 2014-12-11 2015-10-28 上海纽恩新能源科技有限公司 基于modbus协议的光伏电站远程智能监控通讯方法
JP6660061B2 (ja) 2014-12-16 2020-03-04 エービービー シュヴァイツ アクチェンゲゼルシャフト エネルギーパネル装置の電力消費
EP3251191B1 (en) 2015-01-28 2020-09-16 MARICI Holdings The Netherlands B.V. Energy panel arrangement shutdown
ES2832823T3 (es) 2015-02-22 2021-06-11 Marici Holdings The Netherlands Bv Detección de polaridad inversa de cadenas fotovoltaicas
EP3125393B8 (en) * 2015-07-31 2020-08-19 MARICI Holdings The Netherlands B.V. A method for automatically associating a module to a corresponding inverter, and related module and power generation system
US10263430B2 (en) 2015-08-14 2019-04-16 Solarcity Corporation Multi-phase inverter power control systems in an energy generation system
DE102015115957B4 (de) * 2015-09-22 2018-10-11 Sma Solar Technology Ag Verfahren zur Minimierung einer Netzrückwirkung eines PV-Parks, Wechselrichter und PV-Park
US10431987B2 (en) 2015-09-24 2019-10-01 Sunpower Corporation Methods and systems for maintaining photovoltaic power plant reactive power capability
CN105406513B (zh) * 2015-12-28 2019-01-04 新疆希望电子有限公司 光伏并网逆变器并联运行中均流控制指令电流生成方法
USD822890S1 (en) 2016-09-07 2018-07-10 Felxtronics Ap, Llc Lighting apparatus
US11309714B2 (en) 2016-11-02 2022-04-19 Tesla, Inc. Micro-batteries for energy generation systems
US10775030B2 (en) 2017-05-05 2020-09-15 Flex Ltd. Light fixture device including rotatable light modules
USD877964S1 (en) 2017-08-09 2020-03-10 Flex Ltd. Lighting module
USD872319S1 (en) 2017-08-09 2020-01-07 Flex Ltd. Lighting module LED light board
USD846793S1 (en) 2017-08-09 2019-04-23 Flex Ltd. Lighting module locking mechanism
USD833061S1 (en) 2017-08-09 2018-11-06 Flex Ltd. Lighting module locking endcap
USD832494S1 (en) 2017-08-09 2018-10-30 Flex Ltd. Lighting module heatsink
USD862777S1 (en) 2017-08-09 2019-10-08 Flex Ltd. Lighting module wide distribution lens
USD832495S1 (en) 2017-08-18 2018-10-30 Flex Ltd. Lighting module locking mechanism
USD862778S1 (en) 2017-08-22 2019-10-08 Flex Ltd Lighting module lens
USD888323S1 (en) 2017-09-07 2020-06-23 Flex Ltd Lighting module wire guard
CN107947229B (zh) * 2017-11-28 2020-07-07 阳光电源股份有限公司 一种交流级联光伏发电系统的控制方法及装置
US11025089B2 (en) * 2018-11-13 2021-06-01 Siemens Aktiengesellschaft Distributed energy resource management system
EP3900144A1 (en) * 2018-12-20 2021-10-27 Vestas Wind Systems A/S Control of a renewable energy power plant to resume normal operation following a fault
US11626737B2 (en) * 2020-07-16 2023-04-11 Also Energy, Inc. Photovoltaic power plant energy harvest optimization—capacity factor, delta-P loss and ramp rate compensation
US11342748B2 (en) * 2020-09-09 2022-05-24 General Electric Technology Gmbh Dynamic voltage and reactive power controller for non-synchronous power generation plants
AU2022308363A1 (en) * 2021-07-08 2024-01-18 Nextracker Llc Common dc bus and common ac bus power electronics systems and methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004260913A (ja) * 2003-02-25 2004-09-16 Matsushita Electric Works Ltd 太陽光発電システム
US20100181830A1 (en) * 2009-01-21 2010-07-22 Enphase Energy, Inc. Method and apparatus for characterizing a circuit coupled to an AC line
WO2010096682A2 (en) * 2009-02-19 2010-08-26 Xslent Energy Technologies, Llc Power transfer management for local power sources of a grid-tied load
US20110232714A1 (en) * 2010-03-23 2011-09-29 Vijay Bhavaraju Power conversion system and method providing maximum efficiency of power conversion for a photovoltaic system, and photovoltaic system employing a photovoltaic array and an energy storage device

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2766407B2 (ja) 1991-08-20 1998-06-18 株式会社東芝 太陽光発電用インバータの制御装置
US5614801A (en) 1995-07-10 1997-03-25 Allen-Bradley Company, Inc. Apparatus for effectively handling a saturation condition in a digital compensator
DE19648696A1 (de) 1996-11-25 1998-05-28 Asea Brown Boveri Verfahren und Vorrichtung zur Ausregelung des DC-Offsets eines Umrichters
US6285572B1 (en) * 1999-04-20 2001-09-04 Sanyo Electric Co., Ltd. Method of operating a power supply system having parallel-connected inverters, and power converting system
AU2001278923A1 (en) 2000-07-13 2002-01-30 Nxegen System and method for monitoring and controlling energy usage
US6979987B2 (en) 2002-11-14 2005-12-27 Fyre Storm, Inc. Method of regulating an output voltage of a power converter by sensing the output voltage during a first time interval and calculating a next current value in an inductor sufficient to bring the output voltage to a target voltage within a second time interval immediately following the first time interval and varying a duty cycle of a switch during the second time interval
US7183667B2 (en) 2003-12-19 2007-02-27 Square D Company Method and apparatus for power inverter synchronization
DE102004025924A1 (de) * 2004-05-27 2005-12-22 Siemens Ag Solarwechselrichter und Photovoltaikanlage mit mehreren Solarwechselrichtern
US20090038668A1 (en) 2007-08-08 2009-02-12 Joshua Reed Plaisted Topologies, systems and methods for control of solar energy supply systems
CN1649233A (zh) * 2005-02-05 2005-08-03 嘉善县长顺电子厂 无线控制集群化太阳能照明系统
JP2006320149A (ja) 2005-05-13 2006-11-24 Nippon Oil Corp 分散型電源システム
US8405367B2 (en) 2006-01-13 2013-03-26 Enecsys Limited Power conditioning units
CN200994112Y (zh) * 2006-12-18 2007-12-19 新疆新能源股份有限公司 三相光伏并网逆变器
US7772716B2 (en) 2007-03-27 2010-08-10 Newdoll Enterprises Llc Distributed maximum power point tracking system, structure and process
US7660135B2 (en) 2007-05-23 2010-02-09 Hamilton Sundstrand Corporation Universal AC high power inveter with galvanic isolation for linear and non-linear loads
US20090020151A1 (en) 2007-07-16 2009-01-22 Pvi Solutions, Inc. Method and apparatus for converting a direct current to alternating current utilizing a plurality of inverters
US7986539B2 (en) 2007-09-26 2011-07-26 Enphase Energy, Inc. Method and apparatus for maximum power point tracking in power conversion based on dual feedback loops and power ripples
US7884492B2 (en) 2007-11-13 2011-02-08 General Electric Company Methods and systems for wind turbine generators
US9263895B2 (en) 2007-12-21 2016-02-16 Sunpower Corporation Distributed energy conversion systems
US7925552B2 (en) 2008-03-13 2011-04-12 Solarcity Corporation Renewable energy system monitor
WO2009134756A1 (en) 2008-04-29 2009-11-05 Cirrus Logic, Inc. Cascaded switching power converter for coupling a photovoltaic energy source to power mains
WO2009140548A2 (en) 2008-05-14 2009-11-19 National Semiconductor Corporation System and method for an array of intelligent inverters
EP2345133B1 (en) 2008-10-16 2017-12-06 Enphase Energy, Inc. Method and apparatus for determining an operating voltage for preventing photovoltaic cell reverse breakdown during power conversion
CN102217084A (zh) 2008-11-12 2011-10-12 迈德·尼古垃翰 高效能太阳能面板和系统
CN101777603B (zh) * 2009-01-08 2012-03-07 北京北方微电子基地设备工艺研究中心有限责任公司 背接触太阳能电池的制造方法
EP2430742A1 (en) * 2009-05-11 2012-03-21 The Regents of the University of Colorado, A Body Corporate Integrated photovoltaic module
US8629436B2 (en) 2009-08-14 2014-01-14 Gigasi Solar, Inc. Backside only contact thin-film solar cells and devices, systems and methods of fabricating same, and products produced by processes thereof
US7923862B2 (en) 2009-10-06 2011-04-12 General Electric Company Reactive power regulation and voltage support for renewable energy plants
CN101697422B (zh) * 2009-10-23 2011-11-16 湖南大学 微网多微源逆变器环流及电压波动主从控制方法
US7989983B2 (en) 2009-11-24 2011-08-02 American Superconductor Corporation Power conversion systems
JP5357803B2 (ja) * 2010-02-16 2013-12-04 株式会社日立産機システム 太陽光発電システム
US9225261B2 (en) * 2010-06-09 2015-12-29 Tigo Energy, Inc. Method for use of static inverters in variable energy generation environments
CN102386258A (zh) 2010-09-02 2012-03-21 国琏电子(上海)有限公司 接线盒及太阳能系统
US20120091817A1 (en) * 2010-10-18 2012-04-19 Advanced Energy Industries, Inc. System, method, and apparatus for ac grid connection of series-connected inverters
CN102111088A (zh) * 2010-11-24 2011-06-29 广东工业大学 一种光伏发电控制系统
US8614525B2 (en) * 2010-12-21 2013-12-24 General Electric Company Methods and systems for operating a power generation system
US8922062B2 (en) 2011-03-14 2014-12-30 Sunpower Corporation Automatic voltage regulation for photovoltaic systems
US8452461B2 (en) * 2011-05-10 2013-05-28 First Solar, Inc Control system for photovoltaic power plant
CN102208817A (zh) * 2011-05-13 2011-10-05 中国电子科技集团公司第三十六研究所 一种基于无功扰动的光伏系统并网孤岛检测方法
US9059604B2 (en) 2011-06-27 2015-06-16 Sunpower Corporation Methods and apparatus for controlling operation of photovoltaic power plants
US8774974B2 (en) * 2011-07-15 2014-07-08 First Solar, Inc. Real-time photovoltaic power plant control system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004260913A (ja) * 2003-02-25 2004-09-16 Matsushita Electric Works Ltd 太陽光発電システム
US20100181830A1 (en) * 2009-01-21 2010-07-22 Enphase Energy, Inc. Method and apparatus for characterizing a circuit coupled to an AC line
WO2010096682A2 (en) * 2009-02-19 2010-08-26 Xslent Energy Technologies, Llc Power transfer management for local power sources of a grid-tied load
US20110232714A1 (en) * 2010-03-23 2011-09-29 Vijay Bhavaraju Power conversion system and method providing maximum efficiency of power conversion for a photovoltaic system, and photovoltaic system employing a photovoltaic array and an energy storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017131024A (ja) * 2016-01-19 2017-07-27 三菱電機株式会社 発電システム

Also Published As

Publication number Publication date
WO2013063224A1 (en) 2013-05-02
AU2012328766A1 (en) 2014-05-15
CL2014001053A1 (es) 2014-11-28
MX2014005004A (es) 2015-01-19
US9680301B2 (en) 2017-06-13
CN103975284A (zh) 2014-08-06
JP6205658B2 (ja) 2017-10-04
CN108306277A (zh) 2018-07-20
AU2012328766B2 (en) 2015-03-26
CN108306277B (zh) 2022-07-19
EP2771752A1 (en) 2014-09-03
EP2771752B1 (en) 2018-12-05
EP2771752A4 (en) 2015-04-08
US20130106196A1 (en) 2013-05-02

Similar Documents

Publication Publication Date Title
JP6205658B2 (ja) 太陽光発電プラントおよびその制御方法
JP6342535B2 (ja) 太陽光発電システムのための自動電圧調整
JP6256777B2 (ja) 太陽光発電装置の動作を制御するための方法及びシステム
KR101874645B1 (ko) 발전 시스템을 동작시키기 위한 방법 및 시스템
JP6163494B2 (ja) 電力変換器、および電力変換器を制御する方法
CN104950202A (zh) 一种基于无功-频率正反馈的孤岛检测方法及系统
JP5961932B2 (ja) 電力平準化装置
JP5612417B2 (ja) 多数台連系した太陽光発電システムの出力抑制回避方法及びその装置
CN103988138B (zh) 用于光伏系统的自动电压调节
RAHMMAN et al. Wind Farm Integrated Power Quality Based Dual Mode Control of AC-HVDC Transmission System

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170816

R150 Certificate of patent or registration of utility model

Ref document number: 6205658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250