JP2014531424A - Vegf−特異的捕捉剤、組成物、並びに使用及び製造方法 - Google Patents

Vegf−特異的捕捉剤、組成物、並びに使用及び製造方法 Download PDF

Info

Publication number
JP2014531424A
JP2014531424A JP2014528650A JP2014528650A JP2014531424A JP 2014531424 A JP2014531424 A JP 2014531424A JP 2014528650 A JP2014528650 A JP 2014528650A JP 2014528650 A JP2014528650 A JP 2014528650A JP 2014531424 A JP2014531424 A JP 2014531424A
Authority
JP
Japan
Prior art keywords
ligand
vegf
capture agent
group
proline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2014528650A
Other languages
English (en)
Inventor
ピットラム,シュアッシュ,マーク
アニュー,ヒーサー,ダウン
ライ,ツン,イン
ロード,ローズマリー,ダイアン
キアーニー,ポール,エドワード
ロウ,スコット
ファン,ケネス,チャールズ
Original Assignee
インディ モレキュラー,インコーポレイテッド
インディ モレキュラー,インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by インディ モレキュラー,インコーポレイテッド, インディ モレキュラー,インコーポレイテッド filed Critical インディ モレキュラー,インコーポレイテッド
Publication of JP2014531424A publication Critical patent/JP2014531424A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/50Cyclic peptides containing at least one abnormal peptide link
    • C07K7/54Cyclic peptides containing at least one abnormal peptide link with at least one abnormal peptide link in the ring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/74Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving hormones or other non-cytokine intercellular protein regulatory factors such as growth factors, including receptors to hormones and growth factors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/475Assays involving growth factors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/475Assays involving growth factors
    • G01N2333/515Angiogenesic factors; Angiogenin
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/10Musculoskeletal or connective tissue disorders
    • G01N2800/101Diffuse connective tissue disease, e.g. Sjögren, Wegener's granulomatosis
    • G01N2800/102Arthritis; Rheumatoid arthritis, i.e. inflammation of peripheral joints
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/16Ophthalmology

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Biochemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cell Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Endocrinology (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Rheumatology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Pain & Pain Management (AREA)

Abstract

本願は、VEGFに特異的に結合する2重リガンド及び3重リガンドタンパク質−触媒捕捉(PCC)剤、並びに検出、診断及び治療薬としてのこれら捕捉剤の使用を提供する。

Description

本願は、VEGFに特異的に結合する2重リガンド及び3重リガンドタンパク質−触媒捕捉(PCC)剤、並びに検出、診断及び治療薬としてのこれら捕捉剤の使用に関する。
関連出願
本願は、米国特許仮出願第61/529,872号(2011年8月31日出願)、米国特許仮出願第61/556,713号(2011年11月7日出願)、米国特許仮出願第61/585,590号(2012年1月11日出願)及び米国特許仮出願第61/675,298号(2012年7月24日出願)に対して優先権を主張する。
背景
早期での病気の検出は、生物学的サンプルにおけるキータンパク質バイオマーカーの多岐にわたる測定を必要とする。複雑な生物学的混合物からバイオマーカーを見分ける高親和性、高選択性組成物を利用できるかどうかは、疾患もしくは健康の変化を示し得るタンパク質の正確な検出にとって決定的な要素である。
血管内皮細胞増殖因子A(VEGF)は、血管新生及び脈管形成の強力な内皮細胞特異的伝達物質である。VEGFは、癌、増殖性網膜症、加齢黄斑変性(AMD)のウェット型疾病病理学及び関節リウマチに病理学的に関与しており、それ自体が重要な診断及び治療標的を意味している。VEGFシグナリングは血管新生を調整し、VEGFレベルは腫瘍タイプの一種において上昇する。VEGFそれ自体が癌の造影、検出及び治療のための興味をそそる候補を示す。
概要
ある実施形態においてここに規定されるのは、VEGFに特異的に結合する安定な合成VEGF捕捉剤である。
ある実施形態において、ここに規定されるVEGF捕捉剤は、設計アンカーリガンド及び設計2次リガンド(両方とも選択的にVEGFを結合する)を有する。ある実施形態において、捕捉剤はさらに設計3次リガンドを有する。
ある実施形態において、ここに規定されるVEGF捕捉剤は2重リガンド(biligand)である。これらの実施形態のあるものにおいて、2重リガンドは、SEQ ID NO:1のアミノ酸配列からなるアンカーリガンド及びSEQ ID NO:2、3もしくは4のアミノ酸配列からなる2次リガンドを有する。ある実施形態において、アンカーリガンドは、SEQ ID NO:1に明らかなアミノ酸配列と80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98もしくは100%一致するアミノ酸配列を有する。他の実施形態において、アンカーリガンドはSEQ ID NO:1のアミノ酸配列のフラグメントを有する。ある実施形態において、このフラグメントは5、6、7、8、9、10、11、12、13、14、15、16、17もしくは18個のアミノ酸を含む。他の実施形態において、このフラグメントは5乃至18、10乃至18、5乃至15、7乃至15、9乃至15もしくは3乃至16個のアミノ酸を含む。ある実施形態において、2次リガンドは式: X2−X3−X4−X5−X6を有する。ある実施形態において、X2は、プラスに帯電したD−アミノ酸、芳香族D−アミノ酸及び中性D−アミノ酸から選択される。他の実施形態において、X2はD−アルギニン、D−トリプトファン、D−ロイシン、D−バリン、グリシン、D−プロリン、D−イソロイシン及びD−アラニンから選択される。他の実施形態において、X3は中性D−アミノ酸、芳香族D−アミノ酸もしくはプラスに帯電したアミノ酸から選択される。ある実施形態において、X3はD−プロリン、D−フェニルアラニン、グリシン、D−アルギニン、D−リジン、D−ヒスチジン、D−トリプトファン及びD−チロシンから選択される。他の実施形態において、X4は中性D−アミノ酸、プラスに帯電したD−アミノ酸、芳香族D−アミノ酸及び極性D−アミノ酸から選択される。ある実施形態において、X4はD−イソロイシン、D−ロイシン、D−プロリン、D−アラニン、D−アルギニン、D−フェニルアラニン、D−トレオニン及びD−ヒスチジンから選択される。他の実施形態において、X5は中性D−アミノ酸、プラスに帯電したD−アミノ酸及びマイナスに帯電したD−アミノ酸から選択される。ある実施形態において、X5はD−イソロイシン、グリシン、D−バリン、D−ロイシン、D−アラニン、D−プロリン、D−リジン、D−グルタメート、D−ヒスチジン及びD−アルギニンから選択される。他の実施形態において、X6はプラスに帯電したD−アミノ酸、芳香族D−アミノ酸、中性D−アミノ酸及び極性D−アミノ酸から選択される。ある実施形態において、X6はD−アルギニン、D−リジン、D−トリプトファン、D−チロシン、D−プロリン、D−バリン、グリシン、D−イソロイシン、D−アラニン及びD−グルタミンから選択される。
ある実施形態において、X2はプラスに帯電したD−アミノ酸及び芳香族D−アミノ酸から選択される。他の実施形態において、X2はD−アルギニン及びD−トリプトファンから選択される。他の実施形態において、X3は中性D−アミノ酸及び芳香族D−アミノ酸から選択される。ある実施形態において、X3はD−プロリン、D−フェニルアラニン及びグリシンから選択される。他の実施形態において、X4は中性D−アミノ酸である。ある実施形態において、X4はD−イソロイシン、D−ロイシン、D−プロリン及びD−アラニンから選択される。他の実施形態において、X5は中性D−アミノ酸である。ある実施形態において、X5はD−イソロイシン、グリシン及びD−バリンから選択される。他の実施形態において、X6はプラスに帯電したD−アミノ酸である。ある実施形態において、X6はD−アルギニン及びD−リジンから選択される。
ある実施形態において、X2は中性D−アミノ酸である。他の実施形態において、X2はD−ロイシン、D−バリン、グリシン及びD−プロリンから選択される。他の実施形態において、X3はプラスに帯電したアミノ酸である。ある実施形態において、X3はD−アルギニン、D−リジン及びD−ヒスチジンから選択される。他の実施形態において、X4は中性D−アミノ酸、プラスに帯電したD−アミノ酸及び芳香族 D−アミノ酸から選択される。ある実施形態において、X4はD−プロリン、D−アルギニン及びD−フェニルアラニンから選択される。他の実施形態において、X5は中性D−アミノ酸及びプラスに帯電したD−アミノ酸から選択される。ある実施形態において、X5はD−ロイシン、D−イソロイシン、D−アラニン、D−プロリン及びD−リジンから選択される。他の実施形態において、X6はプラスに帯電したD−アミノ酸、芳香族D−アミノ酸及び中性D−アミノ酸から選択される。ある実施形態において、X6はD−アルギニン、D−トリプトファン、D−チロシン、D−プロリン及びD−バリンから選択される。
ある実施形態において、X2は中性D−アミノ酸である。他の実施形態において、X2D−ロイシン、グリシン、D−プロリン、D−イソロイシン及びD−アラニンから選択される。他の実施形態において、X3は芳香族D−アミノ酸である。ある実施形態において、X3はD−トリプトファン、D−フェニルアラニン及びD−チロシンから選択される。他の実施形態において、X4はプラスに帯電したD−アミノ酸、芳香族D−アミノ酸及び極性D−アミノ酸から選択される。ある実施形態において、X4はD−アルギニン、D−フェニルアラニン、D−トレオニン及びD−ヒスチジンから選択される。他の実施形態において、X5は中性D−アミノ酸、プラスに帯電したD−アミノ酸及びマイナスに帯電したD−アミノ酸から選択される。ある実施形態において、X5はグリシン、D−アラニン、D−プロリン、D−グルタメート、D−ヒスチジン及びD−アルギニンから選択される。他の実施形態において、X6はプラスに帯電したD−アミノ酸、芳香族D−アミノ酸、中性D−アミノ酸及び極性D−アミノ酸から選択される。ある実施形態において、X6はD−アルギニン、D−トリプトファン、グリシン、D−イソロイシン、D−アラニン及びD−グルタミンから選択される。
他の実施形態において、2次リガンドはSEQ ID NO:2、3、4、9、10、11、12、13、14、15、16、17、18、19、20及び21から選択されるアミノ酸配列を有する。他の実施形態において、2次リガンドはアミノ酸配列(該配列中において1個のアミノ酸がSEQ ID NO:2、3、4、9、10、11、12、13、14、15、16、17、18、19、20及び21から選択されるアミノ酸配列と異なる)を有する。他の実施形態において、2次リガンドはアミノ酸配列(ここでは該アミノ酸配列はSEQ ID NO:2、3、4、9、10、11、12、13、14、15、16、17、18、19、20及び21から選択されるアミノ酸配列からなる)を有する。
ある実施形態において、アンカーリガンド及び2次リガンドは、1,4−二置換−1,2,3−トリアゾール(Tz4)結合を介して一緒に結合している。ある実施形態において、2重リガンドは、
Figure 2014531424
Figure 2014531424
及び
Figure 2014531424
から選択される構造を有する。
ある実施形態において、ここに規定されるVEGF捕捉剤は3重リガンド(triligands)である。これらの実施形態のあるものにおいて、3重リガンドはSEQ ID NO:1のアミノ酸配列からなるアンカーリガンド、SEQ ID NO:3のアミノ酸配列からなる2次リガンド、及びSEQ ID NO:5、6、7もしくは8のアミノ酸配列からなる3次リガンドを有する。他の実施形態において、アンカーリガンドはSEQ ID NO:1に明らかなアミノ酸配列と80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98もしくは100%一致するアミノ酸配列を有する。他の実施形態において、アンカーリガンドはSEQ ID NO:1のアミノ酸配列のフラグメントを有する。ある実施形態において、このフラグメントは5、6、7、8、9、10、11、12、13、14、15、16、17もしくは18個のアミノ酸を含む。他の実施形態において、このフラグメントは5乃至18、10乃至18、5乃至15、7乃至15、9乃至15もしくは3乃至16個のアミノ酸を含む。ある実施形態において、2次リガンドは式: X2−X3−X4−X5−X6を有する。
ある実施形態において、X2はプラスに帯電したD−アミノ酸、芳香族D−アミノ酸及び中性D−アミノ酸から選択される。他の実施形態において、X2は、D−アルギニン、D−トリプトファン、D−ロイシン、D−バリン、グリシン、D−プロリン、D−イソロイシン及びD−アラニンから選択される。他の実施形態において、X3は中性D−アミノ酸、芳香族D−アミノ酸もしくはプラスに帯電したアミノ酸から選択される。ある実施形態において、X3はD−プロリン、D−フェニルアラニン、グリシン、D−アルギニン、D−リジン、D−ヒスチジン、D−トリプトファン及びD−チロシンから選択される。他の実施形態において、X4は中性D−アミノ酸、プラスに帯電したD−アミノ酸、芳香族D−アミノ酸及び極性D−アミノ酸から選択される。ある実施形態において、X4はD−イソロイシンD−ロイシン、D−プロリン、D−アラニン、D−アルギニン、D−フェニルアラニン、D−トレオニン及びD−ヒスチジンから選択される。他の実施形態において、X5は中性D−アミノ酸、プラスに帯電したD−アミノ酸及びマイナスに帯電したD−アミノ酸から選択される。ある実施形態において、X5はD−イソロイシン、グリシン、D−バリン、D−ロイシン、D−アラニン、D−プロリン、D−リジン、D−グルタメート、D−ヒスチジン及びD−アルギニンから選択される。他の実施形態において、X6はプラスに帯電したD−アミノ酸、芳香族D−アミノ酸、中性D−アミノ酸及び極性D−アミノ酸から選択される。ある実施形態において、X6はD−アルギニン、D−リジン、D−トリプトファン、D−チロシン、D−プロリン、D−バリン、グリシン、D−イソロイシン、D−アラニン及びD−グルタミンから選択される。
ある実施形態において、X2はプラスに帯電したD−アミノ酸及び芳香族D−アミノ酸から選択される。他の実施形態において、X2はD−アルギニン及びD−トリプトファンから選択される。他の実施形態において、X3は中性D−アミノ酸及び芳香族D−アミノ酸から選択される。ある実施形態において、X3はD−プロリン、D−フェニルアラニン及びグリシンから選択される。他の実施形態において、X4は中性D−アミノ酸である。ある実施形態において、X4はD−イソロイシン、D−ロイシン、D−プロリン及びD−アラニンから選択される。他の実施形態において、X5は中性D−アミノ酸である。ある実施形態において、X5はD−イソロイシン、グリシン及びD−バリンから選択される。他の実施形態において、X6はプラスに帯電したD−アミノ酸である。ある実施形態において、X6はD−アルギニン及びD−リジンから選択される。
ある実施形態において、X2は中性D−アミノ酸である。他の実施形態において、X2はD−ロイシン、D−バリン、グリシン及びD−プロリンから選択される。他の実施形態において、X3はプラスに帯電したアミノ酸である。ある実施形態において、X3はD−アルギニン、D−リジン及びD−ヒスチジンから選択される。他の実施形態において、X4は中性D−アミノ酸、プラスに帯電したD−アミノ酸及び芳香族D−アミノ酸から選択される。ある実施形態において、X4はD−プロリン、D−アルギニン及びD−フェニルアラニンから選択される。他の実施形態において、X5は中性D−アミノ酸及びプラスに帯電したD−アミノ酸から選択される。ある実施形態において、X5はD−ロイシン、D−イソロイシン、D−アラニン、D−プロリン及びD−リジンから選択される。他の実施形態において、X6はプラスに帯電したD−アミノ酸、芳香族D−アミノ酸及び中性D−アミノ酸から選択される。ある実施形態において、X6はD−アルギニン、D−トリプトファン、D−チロシン、D−プロリン及びD−バリンから選択される。
ある実施形態において、X2は中性D−アミノ酸である。他の実施形態において、X2はD−ロイシン、グリシン、D−プロリン、D−イソロイシン及びD−アラニンから選択される。他の実施形態において、X3は芳香族D−アミノ酸である。ある実施形態において、X3はD−トリプトファン、D−フェニルアラニン及びD−チロシンから選択される。他の実施形態において、X4はプラスに帯電したD−アミノ酸、芳香族D−アミノ酸及び極性D−アミノ酸から選択される。ある実施形態において、X4はD−アルギニン、D−フェニルアラニン、D−トレオニン及びD−ヒスチジンから選択される。他の実施形態において、X5は中性D−アミノ酸、プラスに帯電したD−アミノ酸及びマイナスに帯電したD−アミノ酸から選択される。ある実施形態において、X5はグリシン、D−アラニン、D−プロリン、D−グルタメート、D−ヒスチジン及びD−アルギニンから選択される。他の実施形態において、X6はプラスに帯電したD−アミノ酸、芳香族D−アミノ酸、中性D−アミノ酸及び極性D−アミノ酸から選択される。ある実施形態において、X6はD−アルギニン、D−トリプトファン、グリシン、D−イソロイシン、D−アラニン及びD−グルタミンから選択される。
他の実施形態において、2次リガンドはSEQ ID NO:2、3、4、9、10、11、12、13、14、15、16、17、18、19、20及び21から選択されるアミノ酸配列を有する。他の実施形態において、2次リガンドはアミノ酸配列(該配列中において1個のアミノ酸がSEQ ID NO:2、3、4、9、10、11、12、13、14、15、16、17、18、19、20及び21から選択されるアミノ酸配列と異なる)を有する。他の実施形態において、2次リガンドはアミノ酸配列(ここでは該アミノ酸配列はSEQ ID NO:2、3、4、9、10、11、12、13、14、15、16、17、18、19、20及び21から選択されるアミノ酸配列からなる)を有する。
ここに規定される2重リガンド及び3重リガンド捕捉剤についてのある実施形態において、3次リガンドは式: X2−X3−X4−X5−X6を有する。ある実施形態において、X2はプラスに帯電したD−アミノ酸である。他の実施形態において、X2はD−ヒスチジン、D−アルギニン及びD−リジンから選択される。他の実施形態において、X3は極性D−アミノ酸、中性D−アミノ酸及びマイナスに帯電したアミノ酸から選択される。ある実施形態において、X3はD−トレオニン、D−アスパラギン、D−ロイシン、D−プロリン、D−イソロイシン、D−アラニン、及びD−グルタメートから選択される。他の実施形態において、X4はプラスに帯電したD−アミノ酸、芳香族D−アミノ酸及び中性D−アミノ酸から選択される。ある実施形態において、X4はD−ヒスチジン、D−リジン、D−アルギニン、D−トリプトファン、D−フェニルアラニン、D−プロリン、D−ロイシン及びD−チロシンから選択される。他の実施形態において、X5は中性D−アミノ酸、プラスに帯電したD−アミノ酸、芳香族D−アミノ酸及び極性D−アミノ酸から選択される。ある実施形態において、X5はD−バリン、D−プロリン、D−ヒスチジン、D−フェニルアラニン、D−トリプトファン、D−アスパラギン、D−グルタミン、D−セリン及びD−チロシンから選択される。他の実施形態において、X6はプラスに帯電したD−アミノ酸、芳香族D−アミノ酸、極性D−アミノ酸及び中性D−アミノ酸から選択される。ある実施形態において、X6はD−アルギニン、D−チロシン、D−アスパラギン、D−グルタミン、D−ロイシン、D−プロリン、D−リジン及びD−ヒスチジンから選択される。
ある実施形態において、X2は芳香族D−アミノ酸である。他の実施形態において、X2はD−チロシン、D−フェニルアラニン及びD−トリプトファンから選択される。他の実施形態において、X3は中性D−アミノ酸及びプラスに帯電したアミノ酸から選択される。ある実施形態において、X3はD−プロリン、D−アラニン、グリシン、D−ロイシン、D−リジン、D−アルギニン及びD−ヒスチジンから選択される。他の実施形態において、X4はプラスに帯電したD−アミノ酸、芳香族D−アミノ酸、マイナスに帯電したD−アミノ酸、中性D−アミノ酸及び極性D−アミノ酸から選択される。ある実施形態において、X4はD−アルギニン、D−ヒスチジン、D−トリプトファン、D−フェニルアラニン、D−グルタメート、D−プロリン、D−セリン及びD−トレオニンから選択される。他の実施形態において、X5は中性D−アミノ酸、マイナスに帯電したD−アミノ酸、プラスに帯電したD−アミノ酸、芳香族D−アミノ酸及び極性D−アミノ酸から選択される。ある実施形態において、X5はD−プロリン、D−アスパルテート、D−リジン、D−アルギニン、D−チロシン、D−ヒスチジン、D−アラニン、D−バリン、D−ロイシン及びD−アスパラギンから選択される。他の実施形態において、X6はプラスに帯電したD−アミノ酸、極性D−アミノ酸、中性D−アミノ酸、マイナスに帯電したD−アミノ酸及び芳香族D−アミノ酸から選択される。ある実施形態において、X6はD−ヒスチジン、D−リジン、D−アスパラギン、D−トレオニン、D−グルタミン、D−ロイシン、D−アスパルテート、D−セリン、D−チロシン、D−アルギニン、D−トリプトファン、D−グルタメート及びD−バリンから選択される。
ある実施形態において、X2はマイナスに帯電したD−アミノ酸である。他の実施形態において、X2はD−グルタメート及びD−アスパルテートから選択される。他の実施形態において、X3はマイナスに帯電したD−アミノ酸、芳香族D−アミノ酸、プラスに帯電したアミノ酸及び極性D−アミノ酸から選択される。ある実施形態において、X3はD−グルタメート、D−フェニルアラニン、D−トリプトファン、D−ヒスチジン、D−リジン、D−アスパラギン及びD−セリンから選択される。他の実施形態において、X4は中性D−アミノ酸、プラスに帯電したD−アミノ酸、極性D−アミノ酸、マイナスに帯電したD−アミノ酸及び芳香族D−アミノ酸から選択される。ある実施形態において、X4はD−イソロイシン、D−プロリン、D−アラニン、D−アルギニン、D−セリン、D−アスパルテート、D−アスパラギン、D−プロリン、D−フェニルアラニン、D−チロシン及びD−ヒスチジンから選択される。他の実施形態において、X5はプラスに帯電したD−アミノ酸、芳香族D−アミノ酸及び中性D−アミノ酸から選択される。ある実施形態において、X5はD−アルギニン、D−チロシン、グリシン、D−トリプトファン、D−リジン、D−ヒスチジン、D−アラニン、D−アスパラギン及びD−ロイシンから選択される。他の実施形態において、X6はマイナスに帯電したD−アミノ酸、中性D−アミノ酸、芳香族D−アミノ酸及び極性D−アミノ酸から選択される。ある実施形態において、X6はD−アスパルテート、D−プロリン、D−トリプトファン、D−チロシン、D−ロイシン、D−アスパラギン、D−セリン及びD−トレオニンから選択される。
他の実施形態において、3次リガンドはSEQ ID NO: 5、6、7、8、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、5、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63及び64から選択されるアミノ酸配列を有する。他の実施形態において、2次リガンドはアミノ酸配列(該配列中において1個のアミノ酸がSEQ ID NO:5、6、7、8、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、5、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63及び64から選択されるアミノ酸配列と異なる)を有する。他の実施形態において、2次リガンドはアミノ酸配列(ここでは該アミノ酸配列はSEQ ID NO: 5、6、7、8、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、5、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63及び64から選択されるアミノ酸配列からなる)を有する。
ある実施形態において、アンカーリガンド及び2次リガンド及び/又は2次リガンド及び3次リガンドは、Tz4結合を介して一緒に結合している。ある実施形態において、3重リガンドは
Figure 2014531424
Figure 2014531424
Figure 2014531424
及び
Figure 2014531424
から選択される構造を有する。
ある実施形態において、ここに規定されるVEGF捕捉剤は温度、pH、貯蔵期間、貯蔵条件及び反応条件について広範囲にわたって安定であり、ある実施形態において捕捉剤は凍結乾燥パウダーとしての貯蔵において安定している。ある実施形態において、捕捉剤は温度約−80°C乃至約40°Cにおける貯蔵で安定している。ある実施形態において、捕捉剤は室温における貯蔵で安定している。ある実施形態において、捕捉剤はヒト血清において少なくとも24時間安定している。ある実施形態において、捕捉剤は約3乃至約8の範囲のpHにおいて安定している。
ある実施形態において、ここに規定されるVEGF捕捉剤は1個以上の検出可能なラベルを有する。これらの実施形態のあるものにおいて、ラベルは銅−DOTAである。他の実施形態において、ラベルは蛍光ラベルである。他の実施形態において、検出可能なラベルは64Cu DOTA、68Ga DOTA、18F、64Cu、68Ga、89Zr、124I、86Y、94mTc、110mIn、11Cもしくは76Brである。
ある実施形態において、ここに規定されるVEGF捕捉剤1種以上を有するキットが提供される。これらの実施形態のあるものにおいて、キットは使用説明書を包含する。
ある実施形態において、ここに規定される捕捉剤を使用して、生物学的サンプルにおけるVEGFを同定、検出、定量もしくは分離する方法が提供される。ある実施形態において、これらの方法は、VEGF捕捉剤が抗体もしくはその同等物に代わるものとして使用されるイムノアッセイである。ある実施形態において、イムノアッセイはウエスタンブロット、プルダウンアッセイ、ドットブロットもしくはELISAである。
ある実施形態において、ここに規定される捕捉剤を使用して、それを必要としている対象における増大したVEGF発現及び/又は活性に関連した状態を診断もしくは分類する方法が提供される。これらの実施形態のあるものにおいて、この状態は癌、増殖性網膜症、加齢黄斑変性(AMD)のウェット型疾病病理学もしくは関節リウマチから選択される。
ある実施形態において、それを必要としている対象における増大したVEGF発現及び/又は活性に関連した状態を治療する方法が提供される。ある実施形態において、これらの方法は、対象にここに規定されるようなVEGF捕捉剤の治療的に有効な量を投与することを有する。ある実施形態において、治療される状態は癌、増殖性網膜症、ウェット型AMDの疾病病理学もしくは関節リウマチである。ある実施形態において、ここに規定されるVEGF捕捉剤は、免疫療法薬として機能する。
ある実施形態において、ここに規定されるようなVEGF捕捉剤を使用して、in vivoもしくはin vitroVEGF活性を阻害する方法が提供される。
ある実施形態において、ここに規定されるようなVEGF捕捉剤を使用して、VEGFのVEGF受容体(VEGFR)への結合を阻害する方法が提供される。
ある実施形態において、ここに規定されるようなVEGF捕捉剤を使用して、VEGFRシグナリングを阻害する方法が提供される。
ある実施形態において、それを必要としている対象における増大したVEGF発現及び/又は活性に関連した状態を治療する医薬品の調製において使用するため、1個以上のVEGF捕捉剤の使用が提供される。
ある実施形態において、ここに開示されるVEGF捕捉剤を合成する方法が提供される。
図面の簡単な説明
Fig.1はin situクリックケミストリープロトコルである。 Fig.2はin situクリックケミストリープロトコルである。 Fig.3はSEQ ID NO:1 (VEPNCDIHVMWEWECFERL)のアミノ酸配列を有するアンカーリガンドの構造である。下線はジスルフィド拘束残基を表す。 Fig.4はアンカーリガンド構築物ビオチン−PEG−アンカーリガンド−Az4の構造である。 Fig.5。情報処理クラスタリングは2次及び3次リガンドの候補選択をガイドする。タンパク質エピトープの様々な領域が様々なクラスタによりサンプリングされると示唆される。ダークブルー=2重リガンドスクリーンからの5量体2次リガンドヒット(hits) Fig.6は2重リガンド構築物ビオチン−PEG− VEPNCDIHVMWEWECFERL−Tz4−Ifrew−Az4である。 Fig.7。情報処理クラスタリングは2次及び3次リガンドの候補選択をガイドする。タンパク質エピトープの様々な領域が様々なクラスタによりサンプリングされると示唆される。ダークブルー=3重リガンドスクリーンからの5量体3次リガンドヒット Fig.8は、SEQ ID NO:1のアンカーリガンド及びSEQ ID NO:2の2次リガンドを有する2重リガンド1の構造である(rplir)。 Fig.9は、SEQ ID NO:1のアンカーリガンド及びSEQ ID NO:3の2次リガンドを有する2重リガンド2の構造である(lfrew)。 Fig.10は、SEQ ID NO:1のアンカーリガンド及びSEQ ID NO:4の2次リガンドを有する2重リガンド3の構造である(fsrkte)。 Fig.11は、SEQ ID NO:1のアンカーリガンド、SEQ ID NO:3の2次リガンド及びSEQ ID NO:5の3次リガンドを有する3重リガンド1の構造である(frsvn)。 Fig.12は、SEQ ID NO:1のアンカーリガンド、SEQ ID NO:3の2次リガンド及びSEQ ID NO:6の3次リガンドを有する3重リガンド2の構造である(eeird)。 Fig.13は、SEQ ID NO:1のアンカーリガンド、SEQ ID NO:3の2次リガンド及びSEQ ID NO:7の3次リガンドを有する3重リガンド3の構造である(hthwl)。 Fig.14は、SEQ ID NO:1のアンカーリガンド、SEQ ID NO:3の2次リガンド及びSEQ ID NO:8の3次リガンドを有する3重リガンド4の構造である(ewsrw)。 Fig. 15は、ELISAで測定した3重リガンド2(”Trilig2−Ifrew−eeird”)、3重リガンド3(”Trilig3−hthwl−hthwl”)、2重リガンド2(”Bilig2−Ifrew”)、2価及び3重リガンドのアンカーリガンド(”Anchor”)成分、Avastin(登録商標)及びAvastin(登録商標)FabのVEGF165への結合である。 Fig.16は、VEGF165をスパイクしたバッファー(”B”)及びVEGF165をスパイクしたヒト血清(”S”)からの捕捉剤免疫沈降法により測定した、3重リガンド1(”Trilig1−Ifrew−frsvn”)、3重リガンド2(”Trilig2−Ifrew−eeird”)、3重リガンド3(”Trilig3−Ifrew−hthwl”)、3重リガンド4(”Trilig4−Ifrew−ewsrw”)、2重リガンド2(”Bilig2−Ifrew”)、2価及び3重リガンドのアンカーリガンド(”Anchor”)成分及びAvastin(登録商標)のVEGF165への結合である。結果は、銀染色(上のパネル)及びウエスタンブロット(下のパネル)により分析された。 Fig.17: 37℃における抗VEGF PCC 3重リガンドのin vitro安定性のHPLC分析。(A)25%(v/v)ヒトAB男性血清において。(B)pH7.25のTBSにおいて。TBS中25%(v/v)ヒトAB男性血清(HS−20、Omega Scientific、Tarzana、CA)の存在下もしくは不在下でPCC (200 μg)を37℃でインキュベートした。様々な時点でアリコートを取った。12,000rpmの遠心分離によりMicrocon遠心濾過機(Microcon YM−10, MWCO=10kDa, Millipore, Bedford, MA)において血漿タンパク質からPCCを分離した。濾過物をC18カラムにおける分析HPLC により検査した。 Fig.18: 2重リガンド1(”Bilig1(rplir)”)、2重リガンド2(”Bilig2(Ifrew)”)、2重リガンド3(”Bilig3−fsrkte”)、2重リガンドのアンカーリガンド(”Anchor”)及びAvastin(登録商標)によるHUVEC増殖の阻害。 Fig.19: A.マウスへ2重リガンド1をIV投与(1mg/kg)した後の濃度−時間プロファイル。算出T1/2 = 7.2613分(3ポイント、一様な重みづけ)。B. マウスへ2重リガンド1をIP投与(5mg/kg)した後の濃度−時間プロファイル(2ポイント、一様な重みづけ)。 Fig.20: 競合ELISAで測定された、3重リガンド2(”Trilig2−Ifrew−eeird”)、3重リガンド3(”Trilig3−Ifrew−hthwl”)、2重リガンド2(”Bilig2−Ifrew”)、2価及び3重リガンドのアンカーリガンド(”Anchor”)及びAvastin(登録商標)Fabによる、VEGFR2へのVEGF165結合の阻害。 Fig.21: 競合ELISAで測定された、3重リガンド1(”Trilig1−Ifrew−frsvn”)、3重リガンド2(”Trilig2−Ifrew−eeird”)、3重リガンド3(”Trilig3−Ifrew−hthwl”)及び2重リガンド2(”Bilig2−Ifrew”)による、Avastin(登録商標)FabへのVEGF165結合の阻害。 Fig. 22: 2重リガンド2(”Bilig2−Ifrew”)、2重リガンド3(”Bilig3−fsrkte”)、2重リガンドアンカーリガンド(”Anchor”)及び参照化合物オクトレオチド及びワルファリンによる血漿タンパク質結合。 Fig.23: HPLC及びMS/MSにより測定した、ヒト血漿及びマウス肝臓ミクロソームにおける2重リガンド1(”Bilig1−rplir”)、2重リガンド2(”Bilig2−Ifrew”)、2重リガンド3(”Bilig3−fsrkte”)、2重リガンドのアンカーリガンド(”Anchor”)及び参照化合物オクトレオチド、プロパンテリン及びプロパノロールの安定性。 Fig.24: 3重リガンド2の4量体形態を製造する方法。 Fig.25: ストレプトアビジン台上で2官能性(DOTA−及びビオチン−コンジュゲート)3重リガンド2をアセンブルすることにより3重リガンド2のDOTA−標識4量体を製造する方法。 Fig.26: 2官能性(DOTA−及びビオチン−コンジュゲート)3重リガンド2の構造。 Fig.27: 加工したストレプトアビジン台の化学修飾を使用アセンブルすることによる3重リガンド2のDOTA−標識4量体を製造する方法。 Fig.28: ビオチン−コンジュゲート3重リガンド2の構造。 Fig.29: アミド結合形成を介して多量体捕捉剤を製造する方法。 Fig.30: アミド結合形成により製造した3重リガンド2ホモ2量体の構造。 Fig.31: CuAACを介して多量体捕捉剤を製造する方法。 Fig.32: CuAACにより製造した3重リガンド2ホモ2量体の構造。 Fig.33:Structureof3重リガンド2/3重リガンド3heterodimerjoinedviaCuAAC. Fig.34: X−3重リガンド2(式中XはAc、ビオチン−PEG、DOTA−PEG等である)の構造。 Fig.35: PEG化3重リガンド2の合成。 Fig.36: PEG化3重リガンド2の合成。 Fig.37: 多量体3重リガンド2の合成。 Fig.38: 多量体3重リガンド2の合成(ホモ4量体)。 Fig.39: 競合ELISAで測定した、修飾C−末端3重リガンド2による、VEGFR2へのVEGF165結合の阻害。 Fig.40: 競合ELISAで測定した、多量体3重リガンド2による、VEGFR2へのVEGF165結合の阻害。 Fig.41: 多量体3重リガンド2の結合親和性。 Fig.42: VEGFプルダウンアッセイによる3重リガンド修飾の比較。L: 分子量ラダー(MWladder); 1B/S: 3重リガンド2−NH; 2B/S: 3重リガンド2−OH; 3B/S: 3重リガンド2−PEG40KD; 4B/S: 3重リガンド 2−分枝PEG40KD; C: VEGFコントロール(50ng)。 Fig.43: VEGFプルダウンアッセイによる3重リガンド修飾の比較。L: 分子量ラダー; 1B/S: 3重リガンド2−NH;2B/S: PEG2アーム−3重リガンド2(2量体);3B/S: PEG4アーム−3重リガンド2(4量体);C: VEGFコントロール(50ng)。 マウス1009についての生体分布研究結果。Fig.44A: 最大値投映法(MIPs)。画像の固定パーセンタイル値に合わせて、画像にガウスフィルターを(0.200mm FWHM)を適用した。 マウス1009についての生体分布研究結果。Fig.B: トリミングしたMIPs。画像の固定パーセンタイル値に合わせて、画像にガウスフィルターを(0.100mm FWHM)を適用した。 マウス1009についての生体分布研究結果。Fig.44C: トリミングした冠状(coronal)切片。画像にガウスフィルターを(0.100mm FWHM)を適用した。 マウス1009についての生体分布研究結果。Fig.44D: 3D ROI Tool in vivoQuant(登録商標)を使用して、抽出した腫瘍。左の主要は赤、右の腫瘍は緑である。 マウス1009についての生体分布研究結果。Fig.44E: 抽出腫瘍のMIP。240分において、カラースケール最小(黒)は0で、カラースケール最大(白)は3.9x10−5μCiであった。1200分において、カラースケール最小(黒)は0で、カラースケール最大(白)は1.63x10−5μCi(同位体崩壊について補正)であった。 マウス1010についての生体分布研究結果。Fig.45A: 最大値投映法(MIPs)。画像の固定パーセンタイル値に合わせて、画像にガウスフィルターを(0.200mm FWHM)を適用した。 マウス1010についての生体分布研究結果。Fig.45B: トリミングしたMIPs。画像の固定パーセンタイル値に合わせて、画像にガウスフィルターを(0.100mm FWHM)を適用した。 マウス1010についての生体分布研究結果。Fig.45C: トリミングした冠状(coronal)切片。画像にガウスフィルターを(0.100mm FWHM)を適用した。 マウス1010についての生体分布研究結果。Fig.45D: 3D ROI Tool in vivoQuant(登録商標)を使用して、抽出した腫瘍。左の主要は赤、右の腫瘍は緑である。 マウス1010についての生体分布研究結果。Fig.45E. 抽出腫瘍のMIP。240分において、カラースケール最小(黒)は0で、カラースケール最大(白)は3.9x10−5μCiであった。1200分において、カラースケール最小(黒)は0で、カラースケール最大(白)は1.63x10−5μCi(同位体崩壊について補正)であった。 マウス1011についての生体分布研究結果。Fig.46A: 最大値投映法(MIPs)。画像の固定パーセンタイル値に合わせて、画像にガウスフィルターを(0.200mm FWHM)を適用した。 マウス1011についての生体分布研究結果。Fig.46B: トリミングしたMIPs。画像の固定パーセンタイル値に合わせて、画像にガウスフィルターを(0.100mm FWHM)を適用した。 マウス1011についての生体分布研究結果。Fig.46C: トリミングした冠状(coronal)切片。画像にガウスフィルターを(0.100mm FWHM)を適用した。 マウス1011についての生体分布研究結果。Fig.46D: 3D ROI Tool in vivoQuant(登録商標)を使用して、抽出した腫瘍。左の主要は赤、右の腫瘍は緑である。 マウス1011についての生体分布研究結果。Fig.46E. 抽出腫瘍のMIP。240分において、カラースケール最小(黒)は0で、カラースケール最大(白)は3.9x10−5μCiであった。1200分において、カラースケール最小(黒)は0で、カラースケール最大(白)は1.63x10−5μCi(同位体崩壊について補正)であった。 マウス1012についての生体分布研究結果。Fig.47A: 最大値投映法(MIPs)。画像の固定パーセンタイル値に合わせて、画像にガウスフィルターを(0.200mm FWHM)を適用した。 マウス1012についての生体分布研究結果。Fig.47B: トリミングしたMIPs。画像の固定パーセンタイル値に合わせて、画像にガウスフィルターを(0.100mm FWHM)を適用した。 マウス1012についての生体分布研究結果。Fig.47C: トリミングした冠状(coronal)切片。画像にガウスフィルターを(0.100mm FWHM)を適用した。 マウス1012についての生体分布研究結果。Fig.47D: 3D ROI Tool in vivoQuant(登録商標)を使用して、抽出した腫瘍。左の主要は赤、右の腫瘍は緑である。 マウス1012についての生体分布研究結果。Fig.47E. 抽出腫瘍のMIP。240分において、カラースケール最小(黒)は0で、カラースケール最大(白)は3.9x10−5μCiであった。1200分において、カラースケール最小(黒)は0で、カラースケール最大(白)は1.63x10−5μCi(同位体崩壊について補正)であった。 マウス1012についての生体分布結果。Fig.48A: トリミングした冠状切片。左=HT29、右MSTO−211H。固定最大値に合わせて、画像にガウスフィルターを(0.100mm FWHM)を適用した。 マウス1012についての生体分布結果。Fig.48B: トリミングした環状切片。左=HT29、右MSTO−211H。崩壊修正した固定最大値に合わせて、画像にガウスフィルターを(0.100mm FWHM)を適用した。 マウス1004についての生体分布結果。Fig.49A: トリミングした冠状切片。左=HT29、右MSTO−211H。固定最大値に合わせて、画像にガウスフィルターを(0.100mm FWHM)を適用した。 マウス1004についての生体分布結果。Fig.49B: トリミングした環状切片。左=HT29、右MSTO−211H。崩壊修正した固定最大値に合わせて、画像にガウスフィルターを(0.100mm FWHM)を適用した。 Fig.50: HRP−コンジュゲートストレプトアビジン台上でビオチン化3重リガンド2をアセンブルすることにより3重リガンド2からホースラディッシュペルオキシダーゼ(HRP)標識4量体を製造する方法。 Fig.51: マウス1114Rの生体分布結果。左=HT29。結果は同位体崩壊について修正した。 Fig.52: マウス1017の生体分布結果。左=HT29。結果は同位体崩壊について修正した。 Fig.53: マウス1022の生体分布結果。左=HT29。結果は同位体崩壊について修正した。 Fig.54: マウス1013、1015、1016、及び1114R(コントロール)及びVEGF3重リガンド投与後20時間における1021乃至1024(48時間Avastin(登録商標)ブロック)についての生体分布結果。左=HT29。結果は同位体崩壊について修正した。 Fig.55:実施例18における心臓組織サンプルに対する腫瘍について3重リガンド生体分布の結果。 Fig.56: 実施例18における腫瘍組織におけるVEGF3重リガンド取り込みの減少。 Fig.57: マウス1009及び1011(コントロール)及びVEGF3重リガンド投与後20時間における1010及び1012(24時間Avastin(登録商標)ブロック)についての生体分布結果。左=HT29、右=MSTO−211H。 マウス1013についての生体分布研究結果。Fig.58A: 腎臓最大値投映法(MIPs)。画像の固定パーセンタイル値に合わせて、画像にガウスフィルターを(0.200mm FWHM)を適用した。カラースケール最大は同位体崩壊について補正。 マウス1013についての生体分布研究結果。Fig.58B: 腫瘍トリミングしたMIPs。画像にガウスフィルターを(0.200mm FWHM)を適用した。カラースケール最大は同位体崩壊について補正。 マウス1013についての生体分布研究結果。Fig.58C: 腫瘍トリミングした冠状切片。画像にガウスフィルターを(0.200mm FWHM)を適用した。カラースケール最大は同位体崩壊について補正。 マウス1013についての生体分布研究結果。Fig.58D: 3D ROI Tool in vivoQuant(登録商標)を使用して、抽出した腫瘍。画像にガウスフィルターを(0.200mm FWHM)を適用した。カラースケール最大は同位体崩壊について補正。 マウス1013についての生体分布研究結果。Fig.58E. 3D ROI Tool in vivoQuant(登録商標)を使用する、抽出腫瘍のMIP。画像にガウスフィルターを(0.200mm FWHM)を適用した。カラースケール最大は同位体崩壊について補正。 マウス1014についての生体分布研究結果。Fig.59A: 腎臓最大値投映法(MIPs)。画像の固定パーセンタイル値に合わせて、画像にガウスフィルターを(0.200mm FWHM)を適用した。カラースケール最大は同位体崩壊について補正。 マウス1014についての生体分布研究結果。Fig.59B: 腫瘍トリミングしたMIPs。画像にガウスフィルターを(0.200mm FWHM)を適用した。カラースケール最大は同位体崩壊について補正。 マウス1014についての生体分布研究結果。Fig.59C: 腫瘍トリミングした冠状切片。画像にガウスフィルターを(0.200mm FWHM)を適用した。カラースケール最大は同位体崩壊について補正。 マウス1014についての生体分布研究結果。Fig.59D: 3D ROI Tool in vivoQuant(登録商標)を使用して、抽出した腫瘍。画像にガウスフィルターを(0.200mm FWHM)を適用した。カラースケール最大は同位体崩壊について補正。 マウス1014についての生体分布研究結果。Fig.59E. 3D ROI Tool in vivoQuant(登録商標)を使用する、抽出腫瘍のMIP。画像にガウスフィルターを(0.200mm FWHM)を適用した。カラースケール最大は同位体崩壊について補正。 マウス1017についての生体分布研究結果。Fig.60A: 腎臓最大値投映法(MIPs)。画像の固定パーセンタイル値に合わせて、画像にガウスフィルターを(0.200mm FWHM)を適用した。カラースケール最大は同位体崩壊について補正。 マウス1017についての生体分布研究結果。Fig.60B: 腫瘍トリミングしたMIPs。画像にガウスフィルターを(0.200mm FWHM)を適用した。カラースケール最大は同位体崩壊について補正。 マウス1017についての生体分布研究結果。Fig.60C: 腫瘍トリミングした冠状切片。画像にガウスフィルターを(0.200mm FWHM)を適用した。カラースケール最大は同位体崩壊について補正。 マウス1017についての生体分布研究結果。Fig.60D: 3D ROI Tool in vivoQuant(登録商標)を使用して、抽出した腫瘍。画像にガウスフィルターを(0.200mm FWHM)を適用した。カラースケール最大は同位体崩壊について補正。 マウス1017についての生体分布研究結果。Fig.60E. 3D ROI Tool in vivoQuant(登録商標)を使用する、抽出腫瘍のMIP。画像にガウスフィルターを(0.200mm FWHM)を適用した。カラースケール最大は同位体崩壊について補正。 マウス1018についての生体分布研究結果。Fig.61A: 腎臓最大値投映法(MIPs)。画像の固定パーセンタイル値に合わせて、画像にガウスフィルターを(0.200mm FWHM)を適用した。カラースケール最大は同位体崩壊について補正。 マウス1018についての生体分布研究結果。Fig.61B: 腫瘍トリミングしたMIPs。画像にガウスフィルターを(0.200mm FWHM)を適用した。カラースケール最大は同位体崩壊について補正。 マウス1018についての生体分布研究結果。Fig.61C: 腫瘍トリミングした冠状切片。画像にガウスフィルターを(0.200mm FWHM)を適用した。カラースケール最大は同位体崩壊について補正。 マウス1018についての生体分布研究結果。Fig.61D: 3D ROI Tool in vivoQuant(登録商標)を使用して、抽出した腫瘍。画像にガウスフィルターを(0.200mm FWHM)を適用した。カラースケール最大は同位体崩壊について補正。 マウス1018についての生体分布研究結果。Fig.61E. 3D ROI Tool in vivoQuant(登録商標)を使用する、抽出腫瘍のMIP。画像にガウスフィルターを(0.200mm FWHM)を適用した。カラースケール最大は同位体崩壊について補正。 マウス1021についての生体分布研究結果。Fig.62A: 腎臓最大値投映法(MIPs)。画像の固定パーセンタイル値に合わせて、画像にガウスフィルターを(0.200mm FWHM)を適用した。カラースケール最大は同位体崩壊について補正。 マウス1021についての生体分布研究結果。Fig.62B: 腫瘍トリミングしたMIPs。画像にガウスフィルターを(0.200mm FWHM)を適用した。カラースケール最大は同位体崩壊について補正。 マウス1021についての生体分布研究結果。Fig.62C: 腫瘍トリミングした冠状切片。画像にガウスフィルターを(0.200mm FWHM)を適用した。カラースケール最大は同位体崩壊について補正。 マウス1021についての生体分布研究結果。Fig.62D: 3D ROI Tool in vivoQuant(登録商標)を使用して、抽出した腫瘍。画像にガウスフィルターを(0.200mm FWHM)を適用した。カラースケール最大は同位体崩壊について補正。 マウス1021についての生体分布研究結果。Fig.62E. 3D ROI Tool in vivoQuant(登録商標)を使用する、抽出腫瘍のMIP。画像にガウスフィルターを(0.200mm FWHM)を適用した。カラースケール最大は同位体崩壊について補正。 マウス1022についての生体分布研究結果。Fig.63A: 腎臓最大値投映法(MIPs)。画像の固定パーセンタイル値に合わせて、画像にガウスフィルターを(0.200mm FWHM)を適用した。カラースケール最大は同位体崩壊について補正。 マウス1022についての生体分布研究結果。Fig.63B: 腫瘍トリミングしたMIPs。画像にガウスフィルターを(0.200mm FWHM)を適用した。カラースケール最大は同位体崩壊について補正。 マウス1022についての生体分布研究結果。Fig.63C: 腫瘍トリミングした冠状切片。画像にガウスフィルターを(0.200mm FWHM)を適用した。カラースケール最大は同位体崩壊について補正。 マウス1022についての生体分布研究結果。Fig.63D: 3D ROI Tool in vivoQuant(登録商標)を使用して、抽出した腫瘍。画像にガウスフィルターを(0.200mm FWHM)を適用した。カラースケール最大は同位体崩壊について補正。 マウス1022についての生体分布研究結果。Fig.63E. 3D ROI Tool in vivoQuant(登録商標)を使用する、抽出腫瘍のMIP。画像にガウスフィルターを(0.200mm FWHM)を適用した。カラースケール最大は同位体崩壊について補正。 Fig.64: マウス単一静脈内(IV)もしくは腹腔内(IP)投与後の、VEGF−PCCの平均(±SD)血漿濃度(ng/mL)。 Fig.65: 保護1,4−トリアゾールジペプチドを得るため、完全保護アルキン含有アミノ酸と完全保護アジド含有アミノ酸との間で、銅触媒を用いるアジドとアルキンとの環化付加反応(CuAAC)。 (Fig.66A) 包括的ライブラリによる2重リガンドスクリーンから得られたヒット配列。 (Fig.66B) アンカー(赤)及び選択された2次リガンド(青)を説明する2重リガンド構造。これらの配列は、上から下へ読み取るSEQ ID NO:9、2、10、11、12、13、14、15、16、17、18、19、3、20及び21である。 Fig.67: 抗VEGF PCC2重リガンド候補対アンカーの親和性。VEGF165AをNUNC MaxiSorpプレートに固定化し、様々な濃度のビオチン化ペプチドとインキュベートした。全ての値を、飽和において観察された結合に正規化した。 Fig.68: 抗VEGF PCC2重リガンド候補対アンカーによる、バッファー及びヒト血清からの免疫沈降。ビオチン化リガンドを、PBSpH7.4(P)中もしくは25%(v/v)ヒト血清(S)中の0.5μg/mL VEGF165Aとともに16時間4℃でインキュベートし、その後、DynaBeads(登録商標)M−280ストレプトアビジンを3時間4℃で添加した。ビーズを徹底的に洗い、SDS−PAGE Laemmliサンプルバッファーで溶出し、コントロール(50ngVEGF)と比較するウエスタンブロットによりVEGF165Aについて分析した。 Fig.69A: 包括的ライブラリを有する3重リガンドスクリーンから得られたヒット配列。これらの配列は、3つの欄にわたり上から下へ及び左から右へ読み取るSEQ ID NO:22、23、24、25、7、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、5、48、49、50、6、51、52、53、8、54、55、56、57、58、59、60、61、62、63及び64である。 (図69B)アンカー(赤)、2次リガンド(青)及び選択された3次リガンド(緑)を説明する3重リガンド構造。 Fig.70: 抗VEGF PCC3重リガンド候補の親和性。VEGF165AをNUNC MaxiSorpプレートに固定化し、様々な濃度のビオチン化PCCもしくはベバシズマブ(mAbもしくはFab)とインキュベートした。全ての値を、飽和において観察された結合に正規化した。 Fig.71: 抗VEGF PCC3重リガンド候補による、バッファー及びヒト血清からの免疫沈降。ビオチン化リガンドを、PBSpH7.4(P)中もしくは25%(v/v)ヒト血清(S)中の0.5μg/mL VEGF165Aとともに16時間4℃でインキュベートし、その後、DynaBeads(登録商標)M−280ストレプトアビジンを3時間4℃で添加した。ビーズを徹底的に洗い、SDS−PAGE Laemmliサンプルバッファーで溶出し、コントロール(50ngVEGF)と比較するウエスタンブロットによりVEGF165Aについて分析した。 Fig.72: 抗VEGF PCC3重リガンド候補による、VEGFR2へのVEGF結合の阻害。PCCもしくはベバシズマブFabの段階希釈物の存在下、VEGFR2被覆ウェルへのビオチン化VEGF165A結合を測定することにより、受容体ブロック活性をスクリーンした。 Fig.73: 銀染色ゲル視覚化全免疫沈降タンパク質。ビオチン化リガンドを、PBSpH7.4(P)中もしくは25%(v/v)ヒト血清(S)中の0.5μg/mL VEGF165Aとともに16時間4℃でインキュベートし、その後、DynaBeads(登録商標)M−280ストレプトアビジンを3時間4℃で添加した。ビーズを徹底的に洗い、SDS−PAGE Laemmliサンプルバッファーで溶出し、銀染色を有するSDS−PAGE(12%ゲル)により分析した。 Fig.74: 腹腔内注入後のHT−29異種移植片を有するヌードマウスにおける64Cu−DOTA−3重リガンドの組織分布。%ID/gを、注入後4及び20時間で得られたマイクロPET画像から算出した。ヒトVEGF−Aをブロックするため、64Cu−DOTA−3重リガンドの前48時間、非標識化ベバシズマブ(1mg)を静脈内(i.v.)投与した。データは、時点ごと4匹のマウスの平均レベル±SDを示す。 Fig.75: マウス血漿におけるIN−VT−1001の代表的クロマトグラム。動物番号27(IP),120分。 Fig.76: 3重リガンドのC末端と、ホモ4量体の形成で得られる4−アームPEG誘導体(MW40,000;Jenkem#4ARM−NH2−40K)との反応スキーム。
発明の詳細な説明
本発明についての以下の記載は、単に本発明の様々な実施形態を説明することを意図している。検討された具体的修正それ自体は、本発明の範囲における限定の意味にとるべきではない。当業者には明らかなことであるが、本発明の範囲から逸脱しない様々な同等物、変更及び改良がなされてよく、当然のことながらそのような同等実施形態はここに含まれるという。
略語:
AMD: 加齢黄斑変性;
Az4: 6−アジド−L−ノルロイシン;
CuAAC: 銅触媒を用いるアジドとアルキンとの環化付加反応;
DIEA: N−ヒドロキシ−7−アザ−ベンゾトリアゾール(HOAt), もしくはジイソプロピルエチルアミン;
HATU: O−(7−アザベンゾトリアゾール−1−イル)−N,N,N’,N’−テトラメチルウロニウムヘキサフルオロホスファート;
HBTU: O−ベンゾトリアゾール−N,N,N’,N’−テトラメチル−ウロニウム−ヘキサフルオロ−ホスファート;
NMP: 1−メチル−2−ピロリジノン;
OBOC: 1ビーズ−1化合物;
TIS: トリイソプロピルシラン;
TFA: トリフルオロ酢酸;
Tz4: 1,4−二置換1,2,3−トリアゾール;
VEGF: 血管内皮細胞増殖因子;
VEGFR: 血管内皮細胞増殖因子受容体。
定義
ここで使用する用語「捕捉剤」は、1個以上の標的結合部分(moieties)を有するタンパク質触媒捕捉(PPC)剤を意味し、当該捕捉剤はこれら標的結合部分を介して標的タンパク質に特異的に結合する。各標的結合部分は、個別にもしくは他の標的結合部分との組み合わせのいずれかで、標的タンパク質について結合親和性を示す。ある実施形態において、各標的結合部分は、1個以上の非共有結合的相互作用(例えば水素結合、疎水性相互作用及びファンデルワールス相互作用を包含する)を介して標的タンパク質に結合する。捕捉剤は、例えばポリペプチド、ペプチド、ポリヌクレオチド及び他の非重合性分子を包含する1個以上の有機分子を有してよい。
用語「ポリペプチド」、「ペプチド」及び「タンパク質」は、アミノ酸残基のポリマーを有するアミノ酸配列を意味するようにここでは交互に使用される。これらの用語は、アミノ酸ポリマー(ここでの1個以上のアミノ酸残基は対応する天然アミノ酸の人為的化学的模倣物(mimetic)である)、並びに天然アミノ酸ポリマー及び非天然アミノ酸ポリマーに適用される。
用語「アミノ酸」は、天然及び合成アミノ酸、並びに天然アミノ酸と同様に機能するアミノ酸アナログ及びアミノ酸模倣物、及びその異性体を意味する。天然アミノ酸は、遺伝子コードによりコードされているもの、並びに後で修飾したこれらのアミノ酸であり、例えばヒドロキシプロリン、カルボキシグルタメート、O−ホスホセリン及びこれらの異性体である。用語「アミノ酸アナログ」は、天然アミノ酸と同じ基本化学構造を有する化合物を意味し(すなわちここでは炭素は水素、カルボキシル基、アミノ基及びR基に結合される)、例えばホモセリン、ノルロイシン、メチオニンスルホキシド、メチオニンメチルスルホニウムである。このようなアナログは修飾R基(例えばノルロイシン)もしくは修飾ペプチド骨格を有するが、天然アミノ酸と同じ基本化学構造を維持する。用語「アミノ酸模倣物」は、アミノ酸の一般的化学構造と異なる構造を有するが、天然アミノ酸と同様に機能する化学化合物を意味する。アミノ酸は、ここでは普通に知られる3文字記号、もしくはIUPAC−IUB生化学命名委員会が推奨する1文字記号のいずれかにより、ここでは参照されてよい。
ここで使用される用語「非天然アミノ酸」は、20個の天然アミノ酸
(アラニン、アルギニン、グリシン、アスパラギン、アスパラギン酸、システイン、グルタミン、グルタミン酸、セリン、トレオニン、ヒスチジン、リジン、メチオニン、プロリン、バリン、イソロイシン、ロイシン、チロシン、トリプトファン、フェニルアラニン)とはその側鎖官能基において異なるアミノ酸を意味する。非天然アミノ酸は、20個の天然アミノ酸の1種の近似アナログであり得、当該非天然アミノ酸の疎水性が天然アミノ酸の疎水性と同等以上である限り、全く新規な官能性及び化学を導入可能である。非天然アミノ酸はタンパク質における現存するアミノ酸に置き換わること(置換)も、野生型配列への追加となること(挿入)も可能である。非天然アミノ酸の取り込みは、固相ペプチド合成もしくはネイティブ・ケミカル・リゲーションを包含する周知の化学的方法又は生物学的方法により達成可能である。
ここで使用される用語「特異的結合」「選択的結合」、「選択的に結合する」もしくは「特異的に結合する」は、結合剤のランダムではない結合例えば所定の抗原におけるエピトープへの捕捉剤の結合、を意味する。典型的には結合剤は親和性(KD)約10−1M未満、例えば約10−8M未満、10−9Mもしくは10−10Mもしくはさらにそれ以下で結合する。
ここで使用される用語「KD」は、捕捉剤のような結合剤とその抗原との間での特有の相互作用の解離平衡定数を意味する。例えばリガンドとしての抗原、分析物としての捕捉剤を使用するBiacoreの装置の表面プラズモン共鳴(SPR)技術を使用して決定されたように、典型的には本発明の捕捉剤はVEGFに解離平衡定数(KD)約10−1M未満、例えば約10−8M未満、10−9Mもしくは10−10Mもしくはさらにそれ以下で結合し、且つ所定の抗原もしくは密接な関係がある抗原以外の非特異的抗原(例えばBSA、カゼイン)についてのその親和性よりも少なくとも10倍低い、例えば少なくとも100倍低い、例えば少なくとも1,000倍低い、例えば少なくとも10,000倍低い、例えば少なくとも100,000倍低いKDに対応する親和性で所定の抗原に結合する。低親和性のその量は、捕捉剤のKDに依存し、その結果捕捉剤のKDがきわめて低いとき(即ち捕捉剤が高特異的である)、抗原に関する親和性が非特異性抗原に関する親和性よりも低いその量は、少なくとも10,000倍であり得る。
ここで使用される用語「kd」(sec’)は、特有の結合剤−抗原相互作用の解離速度定数を意味する。前記値はkoff値ともいう。
ここで使用される用語「ka」(M−’xsec’)は、特有の結合剤−抗原相互作用の会合速度定数を意味する。
ここで使用される用語「KD」(M)は、特有の結合剤−抗原相互作用の解離平衡定数を意味する。
ここで使用される用語「KA」(M−’)、特有の結合剤−抗原相互作用の会合平衡定数を意味し、kaをkdで割ることにより得られる。
ここで使用される用語「状態」(condition)は、通常は疾患、イベントもしくは健康状態の変化を意味する。健康状態の変化は特有の疾患もしくはイベントに関連し得るのであって、そのような場合該変化は疾患もしくはイベントと同時もしくはそれより先に生じる。健康状態の変化が疾患もしくはイベントより先に生じる場合、該健康状態の変化は疾患もしくはイベントの前兆として利用得る。例えば、健康状態の変化は、疾患もしくはイベントと関連した特定の遺伝子の発現レベルにおける改変であり得る。あるいは、健康状態の変化は特定の疾患もしくはイベントと関連しなくともよい。
ある状態に関してここで使用される用語「treat」、「treating」、もしくは「treatment」は、該状態を予防すること;状態の開始、発生もしくは展開速度を遅らせること;状態を展開するもしくは経験するリスクを減ずること;状態に関連する症状の展開を予防もしくは遅らせること;状態に関連する症状を永続的にもしくは一時的に減ずるもしくは終わらせること;状態の重篤さを和らげること;もしくはこれらのいくつかの組み合わせを意味する。
ここで使用される「治療的に有効な量」は、所望の治療結果を達成するために必要な投与量及び期間における効果的な量を意味する。治療的に有効な量は、様々な因子、例えば疾患の状態、年齢、性及び固体の体重、及び固体における所望の応答を引き出す捕捉剤の能力により変化する。
ここで使用される用語「血管内皮細胞増殖因子」もしくは「VEGF」は、VEGF121、VEGF165、VEGF189及びVEGF206を包含するVEGF−Aのいずれのスプライシング・アイソフォームもしくはその一部、例えばエピトープを意味する。
ここで使用される用語「抗体」は、抗原による刺激の後で活性化B細胞により産生され、生物学的システムにおける免疫応答を促進する抗原に特異的に結合可能である種類のタンパク質を意味する。完全抗体は典型的には、重鎖2本及び軽鎖2本を包含する4個のサブユニットからなる。用語「抗体」は、モノクローナル抗体、ポリクローナル抗体もしくはこれらのフラグメントを包含する(ただしこれらに限定されない)天然及び合成抗体を包含する。典型的な抗体は、IgA、IgD、IgG1、IgG2、IgG3、IgM及びその他を包含する。典型的なフラグメントは、Fab、Fv、Fab’、F(ab’)2及びその他を包含する。モノクローナル抗体は、「エピトープ」と称する別の生体分子の単一で特有の空間的及び極性の組織に特異的に結合し、それにより相補的であると定義される抗体である。いくつかの形態において、モノクローナル抗体は同じ構造をも有し得る。ポリクローナル抗体は様々なモノクローナル抗体の混合物を意味する。いくつかの形態において、ポリクローナル抗体は、モノクローナル抗体少なくとも2個が異なる抗原エピトープに結合しているモノクローナル抗体の混合物であり得る。異なる抗原エピトープは、同じ標的、異なる標的もしくは組み合わせ上に存在してよい。抗体は、当該技術において周知であるテクニック、例えばホスト及び血清の採集の免疫処理(ポリクローナル)により、又は継続的ハイブリドーマ細胞株を調製し、分泌タンパク質を採集することにより(モノクローナル)、調製可能である
捕捉剤もしくはその医薬製剤に関してここで使用される用語「安定」は、ここに記載された方法において有用であるのに十分な期間、その捕捉剤もしくは医薬製剤が構造的及び機能的に完全な状態を維持することを意味する。
捕捉剤に関してここで使用される用語「合成」は、捕捉剤が生物学的手段ではなく化学的に生成されたことを意味する。合成捕捉剤は、構造面を決定する生物情報学分析ツールを使用して特異的に設計される。アンカーリガンドは、固有の特性に基づき潜在的アンカーリガンドのプールから選択される。
特に明示しない限り、ここで定義される配列相同性/類似性の値は、デフォルトパラメータを使用するプログラムパッケージBLAST2.0を使用して得られた値である(Altschul, et al., (1997) Nucleic Acids Res. 25:3389−402)。
普通の当業者ならばわかることであるが、BLASTサーチは、タンパク質はランダム配列としてモジュール化可能であると想定している。しかしながら、多くの実際のタンパク質はランダムではない配列の領域を有しており、当該配列はホモポリマー区域、短期間繰り返しもしくは1位個以上のアミノ酸に富む領域であってよい。タンパク質の他の領域は全くに類似していないにも関わらず、このような低複雑性領域は非関連タンパク質の間に整列化されてよい。このような低複雑性アライメントを減らすため、いくつかの低複雑性フィルタプログラムが利用可能である。例えばSEG(Wooten及びFederhen, (1993) Comput. Chem. 17:149−63)及びXNU(Claverie及びStates, (1993) Comput. Chem. 17:191−201)低複雑性フィルタを単独もしくは組み合わせて利用可能である。
ここで使用される、2個の核酸もしくはペプチド配列という状況における「配列相同性」もしくは「相同性」は、2個の配列(特定比較ウィンドウにおいて最大の対応に関して整列されるとき、当該配列は同一である)における残基を意味することを包含する。配列相同性の百分率がタンパク質に関して使用されるとき、同一でない残基位置がしばしば保守的(conservative)アミノ酸置換によって異なることが認められる。ここではアミノ酸残基は同様の化学特性(例えば電荷もしくは疎水性)を有する他のアミノ酸残基に置き換わり、従って分子の官能特性を変更しない。配列が保守的置換において異なる場合、置換の保守的性質を矯正するため%配列相同性を上向きに調整してよい。このような保守的置換により異なる配列は、「配列類似性」もしくは「類似性」を有するといわれる。この調節をするための手段は、当業者に周知である。典型知己にはこれは、保守的置換を完全なミスマッチとしてではなく部分的なものとしてスコアし、それにより%配列相同性が増加することを伴う。よって例えば、相同性アミノ酸がスコア1で非保守的置換がスコア0であるとき、保守的置換はスコア0乃至1である。保守的置換のスコアリングは、例えばMeyers and Miller, (1988) Computer Applic. Biol. Sci. 4:11−17のアルゴリズムに従い、プログラムPC/GENE(Intelligenetics, Mountain View, Calif., USA)において実行されるように算出される。
ここで使用されるような「配列相同性の百分率」は、比較ウィンドウに最適に整列した配列2個を比較することにより決定される値を意味する。ここで比較ウィンドウにおけるポリヌクレオチド配列の一部は、2個の配列の最適アライメントに関するリファレンス配列(これは追加も削除を有しない)と比較して、追加もしくは削除(即ちギャップ)を有してよい。百分率は、適合した位置の数をもたらすため両配列において相同核酸塩基もしくはアミノ酸残基が発生する位置の数を決定し、適合した位置の数を比較ウィンドウにおける位置の総数で割り、配列相同性の百分率をもたらすためその結果を100倍することにより算出される。
用語ポリヌクレオチド配列の「実質的相同性」は、ポリヌクレオチドが、標準パラメータを使用する記載のアライメントプログラムの一つを使用してリファレンス配列と比較した、50乃至100%配列相同性、好ましくは少なくとも50%配列相同性、好ましくは少なくとも60%配列相同性、好ましくは少なくとも70%、より好ましくは少なくとも80%、より好ましくは少なくとも90%及び最も好ましくは少なくとも95%を有する配列を有することを意味する。熟練者にはわかることであるが、2個のヌクレオチド配列によってコードされたタンパク質の対応する相同性を決定するために、コドンの縮退、アミノ酸類似性、読み取り枠位置決めその他を考慮することにより、これらの値は適切に調節可能である。これらの目的に関してアミノ酸配列の実質的相同性は、通常55乃至100%,好ましくは少なくとも55%,好ましくは少なくとも60%,より好ましくは少なくとも70%,80%,90%及び最も好ましくは少なくとも95%の相同性を意味する。
VEGFの開発:
in situクリックケミストリー(Manetsch 2004; Mocharla 2004; Whiting 2006)は、小分子酵素阻害剤が2個の部分に分離し、該2個のそれぞれは次いで小さなライブラリに発展するテクニック(一方のライブラリはアセチレン官能基を含み、他方はアジド基を含む)である。次いで酵素それ自体は、トリアゾール結合を形成するためアセチレンとアジド基との間の1,3−双極性環付加反応を選択的に促進することにより(「クリック」反応)、これらライブラリ成分から「最良適合(best fit)」阻害剤を構築する。酵素は、正しい配向でタンパク質に結合するこれらライブラリ成分間でだけクリック反応を促進する。得られる阻害剤は、2個のライブラリの基礎を形成した最初の阻害剤に比例して、はるかに優れた親和性特徴を示し得る(Jencks 1981; Murray 2002)。
連続的in situクリックケミストリーは、多重リガンド(multiligand)捕捉剤を発見可能にするためのin situクリックケミストリーコンセプトを拡張する。このプロセスは、モデルタンパク質炭酸脱水素酵素II(CAII)に対する3重リガンド捕捉剤を生成するためにかつて使用されていた(Agnew 2009)。連続的in situクリックケミストリーはいくつかの利点を有する。第1に、タンパク質標的についての構造的情報は、きわめて大きな化学空間をサンプル化し、捕捉剤のリガンド成分を同定する能力に置き換わる。例えば、最初のリガンドは、大規模(>10エレメント)1ビーズ−1化合物(OBOC)(Lam 1991)ペプチドライブラリ(ここでペプチドは天然、非天然及び/又は人工アミノ酸からなってよい)に対するタンパク質スクリーニングにより同定されてよい。得られるアンカーリガンドは次いで、2重リガンドを同定するため大規模OBOCライブラリを再び使用するin situクリックスクリーンにおいて利用される。第2の利点は、3重リガンドを同定するためのアンカーとして2重リガンドが使用されるなどのため、プロセスが繰り返し可能であることである。比較的簡単な且つ大部分は自動化された化学反応を使用して、最終的捕捉剤はスケールアップ可能であり、またその構造に固有な一部としてビオチン基のようなラベルで開発可能である。このアプローチは、分岐、環状及び直鎖捕捉剤構造の探索を可能に知る。タンパク質指向多重リガンドアセンブリのための多くの方策が記載されてきたところ(Shuker 1996; Erlanson 2000)、大多数はスクリーニング戦略をガイドするため標的における詳細な構造的情報を必要とし、大多数は(例えばオリジナルのin situクリックアプローチ)低多様性小分子ライブラリのために最適化される。
ここに開示されているように、繰り返しin situクリックケミストリーアプローチは、VEGFを特異的に結合する2重リガンド及び3重リガンド捕捉剤を合成するために利用された。2重リガンド捕捉剤は、向上したVEGF結合親和性及びそのアンカーリガンドに対する特異性示し、またVEGFR2に結合するVEGFにより仲介されるHUVEC増殖を阻害する能力をも示した。3重リガンド捕捉剤は、VEGF結合親和性及び特性において、2重リガンドのそれを超える向上を示し、またVEGFR2に結合するVEGFを阻害する能力をも示した。3重リガンドの3個はAvastin(登録商標)との結合エピトープを共有することが分かった。全ての捕捉剤は、血清において高度の安定性を示した。捕捉剤の多量体も開発された。これら多量体捕捉剤のあるものは向上した親和性、特異性及び/又は効能を示す。
ここに開示された結果に基づき、本願発明は2重リガンド及び3重リガンドVEGF捕捉剤及びこれらの多量体、並びにVEGFを同定、検出、定量及び分離するため及び増大したVEGF発現及び/又は活性に関連した様々な状態を診断、分類及び治療するため、これらの捕捉剤を使用する方法を提供する。
VEGF捕捉剤:
ある実施形態においてここに規定されるのは、2個の標的結合部分を有する合成2重リガンドVEGF捕捉剤である。第1の標的結合部分はアンカーリガンドと呼ばれ、第2のものは2次リガンドと呼ばれる。
ある実施形態においてここに規定されるのは、3個の標的結合部分を有する合成3重リガンドVEGF捕捉剤である。第1の標的結合部分はアンカーリガンドと呼ばれ、第2のものは2次リガンドと呼ばれ、第3のものは3次リガンドと呼ばれる。
ある実施形態においてここに規定されるのは、ここに開示された2重リガンド及び/又は3重リガンドVEGF捕捉剤の多量体である。ある実施形態においてこれら多量体捕捉剤は、ここに開示された2重リガンド及び/又は3重リガンドの二量体、三量体もしくは四量体を有する。ある実施形態において、多量体捕捉剤はホモ多量体(これは多量体の2重リガンド及び/又は3重リガンド成分全てが同一であることを意味する)である。他の実施形態において、多量体捕捉剤はヘテロ多量体(これは2種以上の異なる2重リガンド及び/又は3重リガンドを有することを意味する)である。
ある実施形態において、標的結合部分は1個以上のポリペプチドもしくはペプチドを有する。これらの実施形態のあるものにおいて、標的結合部分は、置換及び未置換アルキル、置換及び未置換アジド、置換及び未置換アルキニル、置換及び未置換ビオチニル、置換及び未置換アジドアルキル、置換及び未置換ポリエチレングリコール及び置換及び未置換1,2,3−トリアゾールからなるグループから選択される官能基で置換されたD−アミノ酸、L−アミノ酸、及び/又はアミノ酸を有する1個以上のペプチドを有する。
ある実施形態において、ここに規定される2重リガンド及び3重リガンド捕捉剤におけるアンカーリガンド及び2次リガンドは、共有結合を介して互いに結合している。同様にある実施形態において、ここに規定される3重リガンド捕捉剤における2次リガンド及び3次リガンドは、共有結合を介して互いに結合している。上記実施形態のあるものにおいて、共有結合はアミド結合もしくは下に示す1,4−二置換−1,2,3−トリアゾール結合である。
Figure 2014531424
1,4−二置換−1,2,3−トリアゾール結合を介して1個以上の標的結合部分が互いに結合しているこれらの実施形態において、1,4−二置換−1,2,3−トリアゾール結合は銅触媒を用いるアジドとアルキンとの環化付加反応(CuAAC)により形成されてよい。
ある実施形態において、アンカー及び2次リガンド及び/又は3次リガンドは、以下の構造を有するTz4結合を介して互いに結合している。
Figure 2014531424
アンカー、2次リガンド及び3次リガンド1個以上がアミド結合を介して互いに結合しているこれらの実施形態において、アミド結合はカップリング剤(例えばO−(7−アゾベンゾトリアゾール−1−イル)−N,N,N’,N’−テトラメチルウロニウムヘキサフルオロホスファート(HATU)、N−ヒドロキシ−7−アザ−ベンゾトリアゾール(HOAt)、もしくはDMF中のジイソプロピルエチルアミン(DIEA))の存在下カルボン酸基及びアミノ基をカップリングすることにより形成されてよい。
ここに規定される2重リガンド及び3重リガンド捕捉剤のある実施形態において、アンカーリガンドはSEQ ID NO:1に明らかなアミノ酸配列のフラグメントを有する。他の実施形態において、アンカーリガンドはSEQ ID NO:1に明らかなアミノ酸配列と80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98もしくは100%一致するアミノ酸配列を有する。他の実施形態において、アンカーリガンドはSEQ ID NO:1のアミノ酸配列のフラグメントを有する。ある実施形態において、このフラグメントは5、6、7、8、9、10、11、12、13、14、15、16、17もしくは18個のアミノ酸を含む。他の実施形態において、このフラグメントは5乃至18、10乃至18、5乃至15、7乃至15、9乃至15もしくは3乃至16個のアミノ酸を含む。
ここに規定される2重リガンド及び3重リガンド捕捉剤のある実施形態において、アンカーリガンドはFig.3もしくはFig.4に明らかな構造を有する。
ここに規定される2重リガンド及び3重リガンド捕捉剤のある実施形態において、2次リガンドは式: X2−X3−X4−X5−X6を有する。ある実施形態において、X2はプラスに帯電したD−アミノ酸、芳香族D−アミノ酸及び中性D−アミノ酸から選択される。他の実施形態において、X2はD−アルギニン、D−トリプトファン、D−ロイシン、D−バリン、グリシン、D−プロリン、D−イソロイシン及びD−アラニンから選択される。他の実施形態において、X3は中性D−アミノ酸、芳香族D−アミノ酸もしくはプラスに帯電したアミノ酸から選択される。ある実施形態において、X3はD−プロリン、D−フェニルアラニン、グリシン、D−アルギニン、D−リジン、D−ヒスチジン、D−トリプトファン及びD−チロシンから選択される。他の実施形態において、X4は中性D−アミノ酸、プラスに帯電したD−アミノ酸、芳香族D−アミノ酸及び極性D−アミノ酸から選択される。ある実施形態において、X4はD−イソロイシン、D−ロイシン、D−プロリン、D−アラニン、D−アルギニン、D−フェニルアラニン、D−トレオニン及びD−ヒスチジンから選択される。他の実施形態において、X5は中性D−アミノ酸、プラスに帯電したD−アミノ酸及びマイナスに帯電したD−アミノ酸から選択される。ある実施形態において、X5はD−イソロイシン、グリシン、D−バリン、D−ロイシン、D−アラニン、D−プロリン、D−リジン、D−グルタメート、D−ヒスチジン及びD−アルギニンから選択される。他の実施形態において、X6はプラスに帯電したD−アミノ酸、芳香族D−アミノ酸、中性D−アミノ酸及び極性D−アミノ酸から選択される。ある実施形態において、X6はD−アルギニン、D−リジン、D−トリプトファン、D−チロシン、D−プロリン、D−バリン、グリシン、D−イソロイシン、D−アラニン及びD−グルタミンから選択される。
ある実施形態において、X2はプラスに帯電したD−アミノ酸及び 芳香族D−アミノ酸から選択される。他の実施形態において、X2はD−アルギニン及びD−トリプトファンから選択される。他の実施形態において、X3は中性D−アミノ酸及び芳香族D−アミノ酸から選択される。ある実施形態において、X3はD−プロリン、D−フェニルアラニン及びグリシンから選択される。他の実施形態において、X4は中性D−アミノ酸である。ある実施形態において、X4はD−イソロイシン、D−ロイシン、D−プロリン及びD−アラニンから選択される。他の実施形態において、X5は中性D−アミノ酸である。ある実施形態において、X5はD−イソロイシン、グリシン及びD−バリンから選択される。他の実施形態において、X6はプラスに帯電したD−アミノ酸である。ある実施形態において、X6はD−アルギニン及びD−リジンから選択される。
ある実施形態において、X2は中性D−アミノ酸である。他の実施形態において、X2はD−ロイシン、D−バリン、グリシン及びD−プロリンから選択される。他の実施形態において、X3はプラスに帯電したアミノ酸である。ある実施形態において、X3はD−アルギニン、D−リジン及びD−ヒスチジンから選択される。他の実施形態において、X4は中性D−アミノ酸、プラスに帯電したD−アミノ酸及び芳香族D−アミノ酸から選択される。ある実施形態において、X4はD−プロリン、D−アルギニン及びD−フェニルアラニンから選択される。他の実施形態において、X5は中性D−アミノ酸及びプラスに帯電したD−アミノ酸から選択される。ある実施形態において、X5はD−ロイシン、D−イソロイシン、D−アラニン、D−プロリン及びD−リジンから選択される。他の実施形態において、X6はプラスに帯電したD−アミノ酸、芳香族D−アミノ酸及び中性D−アミノ酸から選択される。ある実施形態において、X6はD−アルギニン、D−トリプトファン、D−チロシン、D−プロリン及びD−バリンから選択される。
ある実施形態において、X2は中性D−アミノ酸である。他の実施形態において、X2はD−ロイシン、グリシン、D−プロリン、D−イソロイシン及びD−アラニンから選択される。他の実施形態において、X3は芳香族D−アミノ酸である。ある実施形態において、X3はD−トリプトファン、D−フェニルアラニン及びD−チロシンから選択される。他の実施形態において、X4はプラスに帯電したD−アミノ酸、芳香族D−アミノ酸及び極性D−アミノ酸から選択される。ある実施形態において、X4はD−アルギニン、D−フェニルアラニン、D−トレオニン及びD−ヒスチジンから選択される。他の実施形態において、X5は中性D−アミノ酸、プラスに帯電したD−アミノ酸及びマイナスに帯電したD−アミノ酸から選択される。ある実施形態において、X5はグリシン、D−アラニン、D−プロリン、D−グルタメート、D−ヒスチジン及びD−アルギニンから選択される。他の実施形態において、X6はプラスに帯電したD−アミノ酸、芳香族D−アミノ酸、中性D−アミノ酸及び極性D−アミノ酸から選択される。ある実施形態において、X6はD−アルギニン、D−トリプトファン、グリシン、D−イソロイシン、D−アラニン及びD−グルタミンから選択される。
他の実施形態において、2次リガンドはSEQ ID NO:2、3、4、9、10、11、12、13、14、15、16、17、18、19、20及び21から選択されるアミノ酸配列を有する。他の実施形態において、2次リガンドはアミノ酸配列(該配列中において1個のアミノ酸がSEQ ID NO:2、3、4、9、10、11、12、13、14、15、16、17、18、19、20及び21から選択されるアミノ酸配列と異なる)を有する。他の実施形態において、2次リガンドはアミノ酸配列(ここでは該アミノ酸配列はSEQ ID NO:2、3、4、9、10、11、12、13、14、15、16、17、18、19、20及び21から選択されるアミノ酸配列からなる)を有する。
ここに規定される2重リガンド及び3重リガンド捕捉剤についてのある実施形態において、2次リガンドはSEQ ID NO:2,3もしくは4に明らかなアミノ酸配列を有する。
ここに規定される2重リガンド及び3重リガンド捕捉剤についてある実施形態において、3次リガンドは式: X2−X3−X4−X5−X6を有する。ある実施形態において、X2はプラスに帯電したD−アミノ酸である。他の実施形態において、X2はD−ヒスチジン、D−アルギニン及びD−リジンから選択される。他の実施形態において、X3は極性D−アミノ酸、中性D−アミノ酸及びマイナスに帯電したアミノ酸から選択される。ある実施形態において、X3はD−トレオニン、D−アスパラギン、D−ロイシン、D−プロリン、D−イソロイシン、D−アラニン、及びD−グルタメートから選択される。他の実施形態において、X4はプラスに帯電したD−アミノ酸、芳香族D−アミノ酸及び中性D−アミノ酸から選択される。ある実施形態において、X4はD−ヒスチジン、D−リジン、D−アルギニン、D−トリプトファン、D−フェニルアラニン、D−プロリン、D−ロイシン及びD−チロシンから選択される。他の実施形態において、X5は中性D−アミノ酸、プラスに帯電したD−アミノ酸、芳香族D−アミノ酸及び極性D−アミノ酸から選択される。ある実施形態において、X5はD−バリン、D−プロリン、D−ヒスチジン、D−フェニルアラニン、D−トリプトファン、D−アスパラギン、D−グルタミン、D−セリン及びD−チロシンから選択される。他の実施形態において、X6はプラスに帯電したD−アミノ酸、芳香族D−アミノ酸、極性D−アミノ酸及び中性D−アミノ酸から選択される。ある実施形態において、X6はD−アルギニン、D−チロシン、D−アスパラギン、D−グルタミン、D−ロイシン、D−プロリン、D−リジン及びD−ヒスチジンから選択される。
ある実施形態において、X2は芳香族D−アミノ酸である。他の実施形態において、X2はD−チロシン、D−フェニルアラニン及びD−トリプトファンから選択される。他の実施形態において、X3は中性D−アミノ酸及びプラスに帯電したアミノ酸から選択される。ある実施形態において、X3はD−プロリン、D−アラニン、グリシン、D−ロイシン、D−リジン、D−アルギニン及びD−ヒスチジンから選択される。他の実施形態において、X4はプラスに帯電したD−アミノ酸、芳香族D−アミノ酸、マイナスに帯電したD−アミノ酸、中性D−アミノ酸及び極性D−アミノ酸から選択される。ある実施形態において、X4はD−アルギニン、D−ヒスチジン、D−トリプトファン、D−フェニルアラニン、D−グルタメート、D−プロリン、D−セリン及びD−トレオニンから選択される。他の実施形態において、X5は中性D−アミノ酸、マイナスに帯電したD−アミノ酸、プラスに帯電したD−アミノ酸、芳香族D−アミノ酸及び極性D−アミノ酸から選択される。ある実施形態において、X5はD−プロリン、D−アスパルテート、D−リジン、D−アルギニン、D−チロシン、D−ヒスチジン、D−アラニン、D−バリン、D−ロイシン及びD−アスパラギンから選択される。他の実施形態において、X6はプラスに帯電したD−アミノ酸、極性D−アミノ酸、中性D−アミノ酸、マイナスに帯電したD−アミノ酸及び芳香族D−アミノ酸から選択される。ある実施形態において、X6はD−ヒスチジン、D−リジン、D−アスパラギン、D−トレオニン、D−グルタミン、D−ロイシン、D−アスパルテート、D−セリン、D−チロシン、D−アルギニン、D−トリプトファン、D−グルタメート及びD−バリンから選択される。
ある実施形態において、X2はマイナスに帯電したD−アミノ酸である。他の実施形態において、X2はD−グルタメート及びD−アスパルテートから選択される。他の実施形態において、X3はマイナスに帯電したD−アミノ酸、芳香族D−アミノ酸、プラスに帯電したアミノ酸及び極性D−アミノ酸から選択される。ある実施形態において、X3はD−グルタメート、D−フェニルアラニン、D−トリプトファン、D−ヒスチジン、D−リジン、D−アスパラギン及びD−セリンから選択される。他の実施形態において、X4は中性D−アミノ酸、プラスに帯電したD−アミノ酸、極性D−アミノ酸、マイナスに帯電したD−アミノ酸及び芳香族D−アミノ酸から選択される。ある実施形態において、X4はD−イソロイシン、D−プロリン、D−アラニン、D−アルギニン、D−セリン、D−アスパルテート、D−アスパラギン、D−プロリン、D−フェニルアラニン、D−チロシン及びD−ヒスチジンから選択される。他の実施形態において、X5はプラスに帯電したD−アミノ酸、芳香族D−アミノ酸及び中性D−アミノ酸から選択される。ある実施形態において、X5はD−アルギニン、D−チロシン、グリシン、D−トリプトファン、D−リジン、D−ヒスチジン、D−アラニン、D−アスパラギン及びD−ロイシンから選択される。他の実施形態において、X6はマイナスに帯電したD−アミノ酸、中性D−アミノ酸、芳香族D−アミノ酸及び極性D−アミノ酸から選択される。ある実施形態において、X6はD−アスパルテート、D−プロリン、D−トリプトファン、D−チロシン、D−ロイシン、D−アスパラギン、D−セリン及びD−トレオニンから選択される。
他の実施形態において、3次リガンドはSEQ ID NO: 5、6、7、8、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、5、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63及び64から選択されるアミノ酸配列を有する。他の実施形態において、2次リガンドはアミノ酸配列(該配列中において1個のアミノ酸がSEQ ID NO:5、6、7、8、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、5、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63及び64から選択されるアミノ酸配列と異なる)を有する。他の実施形態において、2次リガンドはアミノ酸配列(ここでは該アミノ酸配列はSEQ ID NO: 5、6、7、8、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、5、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63及び64から選択されるアミノ酸配列からなる)を有する。
上記実施形態の全てについて、グリシンの非キラル性にも関わらず、グリシンは中性D−アミノ酸属の一種とみなされる。
ここに規定される3重リガンド捕捉剤のある実施形態において、3次リガンドはSEQ ID NO:5、6もしくは7に明らかなアミノ酸配列を有する。
ある実施形態において、ここに規定される2重リガンドはFig.6、8、9もしくは10に明らかな構造を有する。
ある実施形態において、ここに規定される3重リガンドはFig.11、12、13もしくは14に明らかな構造を有する。
ある実施形態において、ここに規定される捕捉剤は、反応条件及び/又は貯蔵期間の広範囲にわたり安定である。ここで使用される「安定」な捕捉剤は、標的にタンパク質に特異的に結合する能力を維持し、少なくともタンパク質分解に対して部分的に抵抗力がある。
ある実施形態において、ここに規定される捕捉剤は、6か月以上の保存可能期間を有する。これは6か月以上の間の貯蔵で安定していることを意味する。これらの実施形態のあるものにおいて、捕捉剤は、1年以上、2年以上、もしくは3年以上の保存可能期間を有する。これらの実施形態のあるものにおいて、捕捉剤は凍結乾燥パウダーとして貯蔵される。ある実施形態において、ここに規定される捕捉剤は同じ標的タンパク質への生物学的結合よりも長い保存可能期間を有する。
ある実施形態において、ここに規定される捕捉剤は、温度約−80°C乃至約120°Cにおいて安定している。これらの実施形態のあるものにおいて、捕捉剤は−80℃乃至−40℃;−40℃乃至−20℃;−20℃乃至℃;0℃乃至20℃;20℃乃至40℃;40℃乃至60℃;60℃乃至80℃;及び/又は80℃乃至120℃の温度範囲内で安定している。ある実施形態において、ここに規定される捕捉剤は同じ標的タンパク質への生物学的結合よりもより広い温度範囲にわたり安定であり、及び/又は同じ標的タンパク質への生物学的結合よりもより長い期間特定の温度で安定なままである。
ある実施形態において、ここに規定される捕捉剤のpHは、約3.0乃至約12.0の範囲である。これらの実施形態のあるものにおいて、捕捉剤のpHは、約5.0乃至約9.0の範囲である。捕捉剤のpHは、当該技術において知られた方法を使用して生理学的に適合した範囲に調整されてよい。例えばある実施形態において、捕捉剤のpHは約6.5乃至約8.5の範囲に調整されてよい。
ある実施形態において、ここに規定される捕捉剤は血清において12時間以上安定している。これらの実施形態のあるものにおいて、血清中の捕捉剤は18時間以上、24時間以上、36時間以上、48時間以上もしくは96時間以上安定している。ある実施形態において、ここに規定される捕捉剤は血清において、同じ標的タンパク質への生物学的結合よりもより長い期間安定している。
ある実施形態において、ここに規定される捕捉剤は、例えばビオチン、銅−1,4,7,10−テトラアザシクロドデカン−1,4,7,10−テトラ酢酸(銅−DOTA)、デフェロキサミンB(DFO)、68Gaを有する放射性標識のためのリガンド、もしくは他の放射性標識プロダクト(ガンマ放射体、プロトン放射体、陽電子放射体、三重水素もしくは他の方法により検出可能なカバーされたタグ(例えばガドリニウム)を包含してよい)を包含する1個以上の検出ラベルを有してよい。
ある実施形態において、ここに規定される捕捉剤は1個以上の検出可能なラベルを有する。これらの実施形態のあるものにおいて、ラベルは銅−DOTAである。他の実施形態において、検出可能なラベルは64CuDOTA、68GaDOTA、18F、64Cu、68Ga、89Zr、124I、86Y、94mTc、110mIn、11C及び76Brから選択される。 他の実施形態において、検出可能なラベルは123I、131I、67Ga、111In及び99mTcから選択される。他の実施形態において、ラベルは蛍光ラベルである。
ある実施形態において、ここに規定される捕捉剤は、望ましい化学的もしくは生物学的活性を得るために修飾されてよい。望ましい化学的もしくは生物学的活性の例は、向上した可溶性、安定性、生物学的利用能、検出可能性もしくは反応性を包含する(ただし限定されない)。捕捉剤に導入してよい特異的修飾の例は、ジスルフィド結合の形成による捕捉剤を環化すること;他の官能基もしくは分子で捕捉剤を修飾することを包含する(ただし限定されない)。同様に、捕捉剤はタンパク質における非標準もしくは非生物的エピトープに結合するように合成されてよく、それによりタンパク質の多様性が増す。ある実施形態において、カップリング反応の前に標的結合部分の合成ブロックを修飾することにより、捕捉剤を修飾してよい。
ある実施形態においてここに規定されるのは、ここに規定される捕捉剤1個以上を有する医薬製剤である。ある実施形態において、これら医薬製剤は1個以上の医薬的に許容可能な担体、賦形剤もしくは希釈剤を有する。これら担体、賦形剤もしくは希釈剤は、使用目的及び/又は製剤の投与ルートに基づき選択されてよい。
ある実施形態においてここに規定されるのは、ここに開示される捕捉剤1個以上を有するキットである。ある実施形態において、これらのキットはVEGFを同定、検出、定量及び/又は分離するのに使用してよく、これらの実施形態のあるものにおいて、当該キットを増大したVEGF発現及び/又は活性に関連した状態の診断及び/又は病期分類において使用してよい。
ある実施形態において、ここに規定されるキットは
(a)その上に吸着剤を有する基質(ここで吸着剤はVEGFを結合するのに適する)、及び
(b)洗浄液もしくは洗浄液を作製する説明書(ここで吸着剤と洗浄液の組み合わせはVEGFの検出を可能にする)
を有する。他の実施形態において、ここに規定されるキットを増大したVEGF発現及び/又は活性に関連した状態の治療で使用してよい。
ある実施形態において、ここに規定されるキットはさらに適当な操作パラメータのための説明書をラベルもしくは折り込みの形態で有してよい。例えばキットは、血漿サンプルもしくは他の組織サンプルがプローブにおいて接触したした後どうのようにプローブを洗浄するのか、消費者/キット使用者に情報を提供する標準的な説明書を有してよい。
ある実施形態において、ここに規定されるキットは
(a)VEGFを特異的に結合する1個以上のVEGF捕捉剤;及び
(b)検出試薬
を有する。このようなキットはここに記載した材料から調製可能である。
ここに規定されるキットは、任意に標準もしくはコントロール情報、及び/又はコントロール量の材料を有し、その結果、サンプル中で検出されたVEGFの検査料が特定の条件の診断と一致しているかどうかを決定するため、検査サンプルはコントロール情報もしくは標準及び/又はコントロール量と比較可能である。
VEGF捕捉剤を使用する方法:
ある実施形態においてここに規定されるのは、生物学的サンプルにおけるVEGFを同定、検出、定量及び/又は分離するために、ここに開示されるVEGF捕捉剤を使用する方法である。ここに開示されるVEGF捕捉剤は、生化学アッセイにおけるモノクローナル抗体の完全代替品として利用可能である。従ってある実施形態においてここに規定される方法は、抗体もしくはその同等物にと取って代わる捕捉剤を有するイムノアッセイを利用する。ある実施形態において、イムノアッセイはウエスタンブロット、プルダウンアッセイ、ドットブロットもしくはELISAでよい。
ここに規定される方法において使用するための生物学的サンプルは、器官、組織、体液及び細胞からなるグループから選択される。生物学的サンプルが体液である場合、当該体液は血液、血清、血漿、尿、痰、唾液、便、髄液、脳脊髄液、リンパ液、皮膚分泌物、気道分泌物、腸分泌物、尿生殖器管分泌物、涙及び乳汁から選択され得る。
ある実施形態においてここに規定されるのは、in vivoVEGFを同定、検出、定量及び/又は局在化する方法である。これらの実施形態のあるものにおいて、捕捉剤は造影剤として使用されてよい。これらの実施形態において、捕捉剤は上で検討したような検出ラベル1個以上を有してよい。
ある実施形態においてここに規定されるのは、VEGF活性を阻害するためのここに開示されるVEGF捕捉剤を使用する方法である。これらの実施形態のあるものにおいて、VEGFのVEGFRへの結合をブロックし、それによりVEGFR 活性を阻害することにより、捕捉剤はVEGF活性を阻害する。従って、さらにここに規定されるものは、VEGFのVEGFRへの結合を阻害するため及び/又はVEGFR活性を阻害するため、ここに来開示されるVEGF捕捉剤を使用する方法である。
ある実施形態においてここに規定されるのは、例えば様々な癌を包含する増大したVEGF発現及び/又は活性に関連した状態を診断及び/又は分類(例えば病期分類)するために、ここに開示されるVEGF捕捉剤を使用する方法である。ある実施形態において、これらの方法は
(a)対象から生物学的サンプルを得ること;
(b)VEGF捕捉剤によりサンプル中のVEGFの有無を測定すること;
(c)VEGFレベルをVEGFに関する所定のコントロール範囲と比較すること;及び
(d)生物学的サンプル中のVEGFレベルと所定のコントロールとの違いに基づき、増大したVEGF発現に関連した状態を診断すること
を有する。
ここに規定される診断及び/又は分類方法のある実施形態において、VEGF捕捉剤を対象の健康状態の変化を診断するのに使用してよい。ここで健康状態の変化とは疾患もしくはイベントの前兆である。これらの実施形態のあるものにおいて、方法を、疾患もしくはイベントの症状をまだ何も示さない対象における疾患もしくはイベントの発生を予見するのに利用してよい。ある実施形態において、健康状態の変化はVEGFレベルの増加であり得る。
ある実施形態においてここに規定されるのは、捕捉剤1個以上もしくはここに開示される医薬製剤の治療的に有効な量を投与することにより、それを必要としている対象における増大したVEGF発現及び/又は活性に関連した状態を治療する方法である。これらの実施形態のあるものにおいて、捕捉剤は、例えば化学療法薬を包含する1個以上の追加の治療薬と結合されてよい。好ましい実施形態において、捕捉剤は医薬組成物として投与される。ある実施形態において、治療される状態は癌、増殖性網膜症、加齢黄斑変性(AMD)のウェット型疾病病理学もしくは関節リウマチからなるグループから選択される疾患である。
捕捉剤もしくは医薬製剤は、いずれか適当な経路を介して治療を必要としている患者に投与されてよい。投与経路は例えば非経口投与(例えば例えばドリップパッチによる皮下、筋肉内、静脈内投与を包含する)を包含する。さらに適当な投与経路は、経口、経腸、経鼻、局所(頬及び舌下を包含する)、注入、膣内、皮内、腹腔内、硬膜下腔内及び硬膜外投与又は例えばネブライザもしくは吸入器による、もしくは経口もしくは経鼻吸入を介する、もしくは移植による投与を包含する(ただしこれらに限定されない)。
捕捉剤もしくは医薬製剤は、ミクロスフェア、リポソーム、他の微粒子送達システム、又は血液を含むある組織に置いた徐放性製剤を介して投与されてもよい。徐放性キャリアの適当な例は、共通の物品の形態における半透過性ポリマーマトリックス、例えば坐剤もしくはマイクロカプセルを包含する。上で述べたテクニック及びプロトコル、及び本発明にしたがって使用し得る他のテクニック及びプロトコルの例は、Remington’s Pharmaceutical Sciences, 18th edition, Gennaro, A. R., Lippincott Williams & Wilkins; 20th edition (Dec. 15, 2000) ISBN0−912734−04−3及びPharmaceutical Dosage Forms and Drug Delivery Systems; Ansel, N. C. et al. 7th Edition ISBN0−683305−72−7に見出される(これらの開示全体は参照により本願に取り入れられる)。
ある実施形態においてここに規定されるものは、増大したVEGF発現及び/又は活性に関連した状態を治療する医薬の製造におけるここに規定される捕捉剤の使用である。
捕捉剤の製造方法:
ある実施形態において、ここに規定されるような捕捉剤を合成する方法が提供される。ある実施形態において、これらの方法は
a)標的結合部分の合成ブロックを調製すること(当該合成ブロックは標的結合部分、及び他の合成ブロックと望ましい結合を形成可能な反応性基少なくとも1個を有するのであって、ここで
i)当該結合は、アミド結合、1,4−二置換−1,2,3−トリアゾール結合及び1,5−二置換−1,2,3−トリアゾール結合から選択される;
ii)標的結合部分の他の活性官能基全ては、望まない反応を避けるために保護されている);及び
b)捕捉剤を提供するため標的結合部分の合成ブロックをカップリングすること
を有する。
以下の実施例は、特許請求した発明をよりよく説明するためにあるのであって、発明の範囲を制限するものとして解釈されるべきではない。具体的材料が述べられているという点について、単に説明目的であり、発明を限定することを意図していない。当業者ならば、創造的能力を発揮することなく、且つ発明の範囲から逸脱することなく同等の手段もしくは反応物質を開発し得る。
実施例
実施例1:VEGF捕捉剤の合成:
3個の抗VEGF2重リガンド捕捉剤及び4個の抗VEGF3重リガンド捕捉剤をin situクリックケミストリーアプローチを使用して同定した。
試薬: Fmoc−D−X−OH (Fmoc、フルオレン−9−イルメトキシカルボニル)(X=Ala, Arg(Pbf) (Pbf, ペンタメチルジヒドロベンゾフラン−5−スルホニル), Asn(Trt) (Trt, トリチル), Asp(OtBu) (tBu, tert−ブチル), Glu(OtBu), Gln(Trt), Gly, His(Trt), Ile, Leu, Lys(Boc) (Boc, tert−ブチルオキシカルボニル), Met, Phe, Pro, Ser(tBu), Thr(tBu), Trp(Boc), Tyr(tBu)及びVal) (Anaspec; San Jose, GA)。アミノ酸カップリング反応を、O−ベンゾトリアゾール−N,N,N’,N’−テトラメチル−ウロニウム−ヘキサフルオロ−ホスファート(HBTU; AAPPTec)及びDIEAにより1−メチル−2−ピロリジノン(NMP, 99%)中で行った。Nα−Fmoc保護基の除去のため、NMP中20%ピペリジン溶液を使用した。ペプチドライブラリーの最終的脱保護のため、トリフルオロ酢酸(TFA、98%min.滴定)及びトリイソプロピルシラン(TIS)を使用した。全ての溶剤及び試薬は
Sigma−Aldrich(St. Louis, MO)から購入した。
ペプチドライブラリの構築: Titan 357自動シンセサイザ(AAPPTec)を使用し、標準スプリット・ミックス法によりポリエチレングリコール−グラフト化ポリスチレンビーズにおいて(TentaGel S−NH,90pm,0.29mmol/g,2.86x10ビーズ/g)ペンタペプチドのランダム化OBOCライブラリを合成した。典型的なライブラリ構築において、非天然D−立体異性体を、ペプチド配列の各位置で使用した。カップリングステップのため、Fmocケミストリー(Fields 1990)による標準固相ペプチド合成方法を使用した。回収容器(CV)において2時間MNP中で樹脂を膨潤させた。Fmoc−メチオニン(4当量)のカップリングを3.8当量HATU(ChemPep)及び12当量DIEAを添加することにより開始した。カップリング反応を30分間行った。カップリング反応の後、ビーズを完全に洗い(4xNMP)、NMP中の20%ピペリジンで処理した(5分間、その後脱保護溶液の新鮮なアリコートで15分間洗浄)。樹脂を完全に洗い(4x NMP,4xDCM)、反応容器(RV)における次のカップリングサイクルのために複数の等量アリコートに分割した。カップリング及びFmoc脱保護が完了したら、樹脂を回収容器において合わせた。ペプチドの望ましい長さが得られるまで手順を繰り返した。アミノ酸側鎖保護基を次いで、2時間TFA(94%),水(3%)及びTIS(3%)中でインキュベーションすることにより除去した。ライブラリ樹脂を次いでジクロロメタン(DCM; 5x),メタノール(MeOH; 5x),水(5x),MeOH(5x),DCM(5x)及びジエチルエーテル(5x)で完全に洗った。得られた樹脂を真空乾燥し、4℃で保存した。
2重リガンド選択: in situクリックケミストリーテクニックを使用して選択を行った。ここでは標的タンパク質は、アジドをアルキン候補リガンドに結合する触媒としてふるまう(Fig.1及び2;Agnew 2009)。選別のため、N−末端でD−プロパルギルグリシンと結合したOBOCライブラリの一部200mgを8mL容量Alltech容器に移し、PBSバッファー中(pH7.4)の0.05%NaN,0.1%Tween20及び0.1%BSAからなるブロッキング溶液で25℃における360°ローテータにおいて2時間プレインキュベートした。別個に、ブロッキング溶液で希釈した10nMヒトVEGF165A(#ab56620; Abcam, MA)の3mL体積を、アンカーリガンド構築物ビオチン−PEG−VEPNCDIHVMWEWECFERL−Az4, (式中PEG=3xエチレングリコールリンカー, Az4=6−アジド−L−ノルロイシン, VEPNCDIHVMWEWECFERL= SEQ ID NO:1のアミノ酸配列(Fig.3),及び下線部=ジスルフィド拘束残基 (Fig.4)(Fairbrother 1998)とともに25℃、360°ローテータで2時間プレインキュベートした。
アンカーリガンドをタンパク質の3000倍モル過剰で供給した。OBOCライブラリのからブロッキング溶液を排出した後、10nM VEGF165A及びアンカーリガンドのプレインキュベートした溶液をライブラリ樹脂に添加し、25℃、360°ローテータで4時間インキュベートした。スクリーンをブロッキング溶液3x5mLで洗浄し、1:10,000 AP結合ストレプトアビジン3mL(#V5591;Promega)を25℃ で45分間インキュベートした。AP結合ストレプトアビジンは、ビオチンラベルを含むこれらビーズを、従ってVEGFテンプレート化in situクリック2重リガンド複合化(conjugation)を識別した。非特異的に結合したタンパク質を除くため、スクリーンを5x3mLブロッキング溶液,5x3mL洗浄1バッファー(25mM Tris−CI,10mM MgCl,700mM NaCI, pH7.5)及び5x3mL洗浄2バッファー(25mM Tris−CI, pH7.5)で洗い、真空で排水した。アルカリホスファターゼ(100mM Tris−HCI, pH9.0, 150mM NaCI, 1mM MgCl)中で新しく調製したBCIP:NBT (#S3771;Promega)をスクリーンを開発するのに使用した。もっとも強く色づいた紫色ビーズ(”hits”)をマニュアルで選択した。結合タンパク質を除去するため選択されたビーズを7.5Mグアニジン塩酸塩(pH2.0)で処理し、MNPで脱色した。スクリーンを巣角化するために使用した試薬への非特異的結合を示したビーズを除くため、抗スクリーンを別々に行った。この精製の後、真正のヒットの配列化をMALDI−TOF/TOF及び半自動化アルゴリズム(Lee 2010)で行った。包括的ライブラリに対するVEGFスクリーニングから得られた2重リガンドヒット配列をFig.66に示す。
VEGFに対する候補2重リガンドを分析し、商標名Integrated Diagnostics生物情報学クラスタリングプログラムを使用し、同様の電荷及び同様の保存モチーフによりグループ化した。生理化学的特徴に基づき候補ペプチドを一緒にグループ化した(Fig.5)。生理化学的特性の領域の両極端において非ランダムに選択されたリガンドが生じるので、2重リガンド候補選択を合理的にガイドするため、この生物情報学クラスタリング方法を使用した。この多次元表示により(すなわち異なるクラスタは、タンパク質エピトープの異なる領域をサンプル化し得る)ヒットの様々なクラスをも同定した。
1,4−置換−1,2,3−トリアゾールを含有する2重リガンド候補を次いで個々に合成し、VEGF結合親和性及びアンカーリガンドに対する特異性において最大の向上を有する2重リガンドを決定するため、生物学的アッセイを行った。
選択された2重リガンドは、SEQ ID NO:1のアンカーリガンド及びSEQ ID NO:2(rplir; ”Biligand1”),3(lfrew;”Biligand2”)もしくは4(fsrkte;”Biligand3”)のアミノ酸配列を有する2次リガンドを有した。2重リガンド1,2及び3の構造はそれぞれFig.8,9及び10に明らかである。
3重リガンド選択: N−末端でD−プロパルギルグリシンと結合したOBOCライブラリの一部200mgを8mL容量Alltech容器に移し、PBSバッファー中(pH7.4)の0.05%NaN,0.1%Tween20及び0.1%BSAからなるブロッキング溶液で25℃における360°ローテータにおいて2時間プレインキュベートした。別個に、ブロッキング溶液で希釈した1nM VEGF165Aの3mL体積を、2重リガンド構築物ビオチン−PEG−VEPNCDIHVMWEWECFERL−Tz4−Ifrew−Az4(式中PEG=3xエチレングリコールリンカー(Fig.6))とともに25℃、360°ローテータで2時間プレインキュベートした。
2重リガンドをタンパク質の5000倍モル過剰で供給した。OBOCライブラリのからブロッキング溶液を排出した後、1nM VEGF165A及び2重リガンドのプレインキュベートした溶液をライブラリ樹脂に添加し、25℃、360°ローテータで4時間インキュベートした。AP結合ストレプトアビジンを実行する、生成物選別及び抗スクリーンを上記のように実施した。真正のヒットの配列化をMALDI−TOF/TOF及び半自動化アルゴリズム(Lee 2010)で行った。包括的ライブラリに対するVEGFスクリーニングから得られた3重リガンドヒット配列をFig.69に示す。
3重リガンド候補選択をガイドするのに使用した商標名Integrated Diagnostics生物情報学クラスタリングアルゴリズムを使用して、ヒット配列を分析した。生理化学的特徴に基づき候補ペプチドを一緒にグループ化した(Fig.7)。
1,4−置換−1,2,3−トリアゾールを含有する3重リガンド候補を次いで個々に合成し、VEGF結合親和性及び2重リガンドに対する特異性において最大の向上を有する3重リガンドを決定するため、生物学的アッセイを行った。VEGFR2及び多種へ結合するVEGFにおける3重リガンドの阻害効果を特徴化するため、競合アッセイも行った。
選択された3重リガンド捕捉剤は、SEQ ID NO:5(frsvn;”Triligand1”),6(eeird;”Triligand2”),7(hthwl;”Triligand3”)もしくは8(ewsrw;”Triligand4”)のアミノ酸配列を有する3次リガンドに結合した2重リガンド2を有する。3重リガンド1乃至4の構造はそれぞれFig.11乃至14に明らかである。
単一ビーズ由来”Hit”ペプチドのCNBr開裂: 単一ビーズを、純水(10μL)を収容するマイクロ遠心チューブに移した。CNBr(10μL,0.2N HCI中の0.50M溶液)添加後、反応容器をアルゴンでパージし、次いで1分間マイクロ波の下に置いた(Lee 2008)。得られる溶液を、遠心真空下、45℃、2時間濃縮した。
単一ビーズ由来開裂”Hit”ペプチドのMALDI−MS及びMS/MS分析: α−シアノ−4−ヒドロキシケイ皮酸CHCA(0.5μL,0.1%TFA(v/v)含有アセトニトリル/水(70:30)中5mg/mLマトリックス溶液)を各チューブに添加した。混合溶液を取り、384ウェルMALDIプレートにスポットし、これを15分間放置して自然乾燥した。次いでサンプルを、リフレクトロンモードで操作されるBruker ultrafleXtreme(登録商標)TOF/TOF装置(Bruker Daltonics; Bremen, Germany)を使用して、マトリックス支援レーザ脱離イオン化法(MALDI)飛行時間(TOF)質量分析法(MS)により分析した。LIFT(登録商標)モードにおける各サンプルについてMS/MSスペクトルを得た。
実施例2: VEGF捕捉剤の大規模生成:
生物学的アッセイのため、VEGF捕捉剤の大規模生成を必要とした。慣用の及びマイクロ波アシストFmocベース固相ペプチド合成(SPPS)の組み合わせを使用して、各3重リガンドを調製した。具体的には、AAPPTEC Titan 357ペプチドシンセサイザを使用して、各3重リガンドの様々な3次リガンドが、rinkアミド樹脂上に平行に合成された。各アミノ酸カップリング反応は、4当量Fmoc−アミノ酸、4当量HBTU及び10当量DIEAを合体した。Fmoc基の脱保護は20%ピペリジン/NMPを必要とした。
抗VEGF2重リガンド(X−VEPNCDIHVMWEWECFERL−Tz4−Ifrew−Tz4(式中XはPEG化されたレポータータグ(例えばビオチン−PEG,DOTA−PEG,等)である))を調製するため、rinkアミド結合3次リガンドを、CEM Liberty 1マイクロウェーブペプチド合成装置に移した。各アミノ酸、PEGリンカー、レポーターカップリング反応は、4当量Fmoc−アミノ酸、4当量HBTU及び10当量DIEAを包含した。2個のTz4リンカーのカップリング条件を、4当量Fmoc−アミノ酸,4当量HATU及び10当量DIEAを使用して変更した。Fmoc基の脱保護は20%ピペリジン/NMPを必要とした。PEG化されたレポータータグが必要とされないならば、樹脂結合3重リガンドはAcO/DIEAを使用してN−末端でキャップされた。捕捉剤を、C18カラム及び直線勾配を使用する逆相HPLC(溶媒A: HO+0.1%TFA,溶媒B: ACN+0.1%TFA)により精製した。
実施例3:結合親和性分析:
直接固相マクロプレート酵素結合免疫吸着アッセイ(ELISA)を、捕捉剤のVEGF165(#ab56620; Abcam, MA)へのin vitro結合を測定するために使用した。抗VEGFモノクローナル抗体Bevacizumab(Avastin(登録商標))の完全IgG及びFabフラグメント(パパイン分解により製造)についても、結合を測定した。ELISAは、捕捉剤濃度のある範囲にわたる結合を検出するのに高度に感受性かつ確実であった。捕捉剤の解離平衡定数(KD)は、最大半量蛍光発光に対応する濃度として推定されてよい。並行してアッセイする多様な(multiple)捕捉剤は、in vitro結合の相対的及び絶対的比較を可能にする。
NUNC MAXISORP(登録商標)マイクロタイタープレートを、pH7.4のPBS中のVEGF165(#ab56620; Abcam, MA)2μg/mLで2時間25℃でコートした。各ウェルをPBS(3x)で洗浄後、プレートを0.1%(v/v)Triton X−100含有TBS(25mM Tris, 150mM NaCI, pH7.25)中の5%脱脂粉乳で満たし、25℃で2時間ブロックした。プレートを0.1%(v/v)Triton X−100含有TBS中の1%脱脂粉乳で洗い(3x)、次いで0.1%(v/v)Triton X−100含有TBS中の1%脱脂粉乳中で連続希釈されたビオチン化された捕捉剤を25℃で3時間インキュベートした。全てのマイクロウェルをTBS/0.1%(v/v) Triton X−100で洗浄後(5x)、TBS/0.1%(v/v)Triton X−100中の0.1μg/mLストレプトアビジンPoly−HRPコンジュゲート(Pierce, IL)を25℃で3時間インキュベートした。プレートを吸引し、TBS/0.1%(v/v)Triton X−100で(5x)、次いでTBSで(5x)洗浄し、次いでQuantaRed(登録商標)増強化学発光HRP基質を添加することにより現像した。535nmの励起波長を使用し、捕捉剤濃度の関数として595nmの蛍光発光をBeckman Coulter DTX880光度計(Brea, CA)により記録した。4パラメータ回帰曲線フィッティングプログラム(Origin 8.5, Northampton, MA)を使用して、滴定曲線をあてはめた。
これらの捕捉剤の3重リガンド2及び3、2重リガンド2及びアンカーリガンドの親和性をFig.15に示す。2重リガンド1及び3重リガンド1及び4の親和性はそれざれさらにFig.67及び70に示す。検出剤として、2重リガンド2は、アンカーリガンド単独と比較して、VEGFについてのその親和性において5倍の向上を示した一方、最良の3重リガンドは追加の親和性増加を示した(2乃至3倍, KD≒15nM)。これらの結果は、捕捉剤選択プロセスは本質的に親和性を発展させることを示唆している。Avastin(登録商標)及びAvastin(登録商標)Fabの親和性をKD≒0.2nM及びKD≒4.5nMとしてそれぞれ測定した。Avastin(登録商標)Fabの減少したアビディティ(avidity)はこの実験における親和性損失として明らかである、と思われる。Avastin(登録商標)2価性はFabフラグメントに親和性及びアビディティを与えるのと同様に、2量体3重リガンド捕捉剤は追加の親和性増加をもたらす。
実施例4:結合特異性分析:
バッファーもしくは複雑なメディア(例えばヒト血清)からVEGF165を精製する捕捉剤の能力を測定することにより、VEGFに関する捕捉剤特異性を評価するのにプルダウンアッセイを使用した。捕捉剤をストレプトアビジン官能化磁気ビーズに固定し、得られる樹脂を、VEGF165をスパイクした血清もしくはバッファーで洗った(panned)。
VEGF165のプルダウン検出を、抗体ではなく捕捉剤を包含した変更した免疫沈降法テクニックを使用して行った。まず、ビオチン化捕捉剤(400nM;0.1%DMSO,v/v)を、2mLTBS中VEGF165 1μg/mLとともに4℃で一晩インキュベートした。別々に、ビオチン化捕捉剤(400nM;0.1%DMSO,v/v)を、25%(v/v)ヒトAB男性血清(#HS−20, Omega Scientific, Tarzana, CA)2mL中のVEGF165 1μg/mLとともに同じ条件でインキュベートした(4℃、一晩)。各サンプルには賦形剤のみの対照(0.1%DMSO,v/v)が加わった。
4℃で4時間の回転下、BSA−ブロックしたDynabeads(登録商標)M−280ストレプトアビジン(Invitrogen, #112−05D)によりタンパク質が捕捉された(プルダウン条件ごとに50%スラリー100μL)。DynaMag(登録商標)−Spinマグネット(Invitrogen,#123−20D)の適用により、ビーズを血清もしくはバッファーマトリックスタンパク質から分離し、捕捉タンパクは還元Laemmliバッファー30μLにおいてビーズから溶出された。溶出サンプルを、1xTGS(25mM Tris,192mM Glycine,0.1%SDS(w/v),pH8.3)中で200V、30分間、12%SDS−PAGE分離に付した。引き続きサンプルを電気泳動により100Vで45分間、25mM Tris,192mMグリシン,pH8.3,20%(v/v)メタノール含有におけるニトロセルロースメンブレン(Bio−Rad Laboratories, Hercules, CA)に移した。移動後、ニトロセルロースメンブレンはTBS中5%脱脂粉乳中4℃で2時間ブロックした。次いでメンブレンをTBSで(3x)洗い、TBS中0.5%脱脂粉乳中マウス抗ヒトVEGF165抗体[6B7](#ab69479; Abcam, MA)1μg/mLを4℃で一晩インキュベートした。0.02%Tween20(v/v)含有TBSで洗浄後(5x)、TBS中0.5%脱脂粉乳中マウスIgG(H+L)(#ab6789; Abcam, MA)に対するHRP−結合ヤギポリクローナル2次抗体0.2μg/mLをメンブレンに添加した(4℃、1時間インキュベーション)。0.02%Tween20(v/v)含有TBSで洗浄後(5x)、次いでTBS洗浄(5x)、メンブレンをSuperSignal West Pico化学蛍光増強剤及び基質溶液(Pierce, IL)で現像し、直ちにHyBlot CL ARフィルムに露出した。ウエスタン結果との比較において捕捉剤の特異性を評価するため、総タンパク質量に関して複製12%ゲルを銀染色(Bio−Rad Laboratories, Hercules, CA)により別々に視覚化した。
プルダウンアッセイの結果はFig.16,68,71及び73に明らかである。
VEGF抗体でウエスタンブロットによる溶出の精査は捕捉効率における増加を確認した。アンカーから2重リガンドへ、3重リガンドへ翻訳することにより捕捉剤の結合親和性/特異性マトリックスが増加するからである。SDS−PAGEによる総免疫沈降タンパク質の分析は、全ての捕捉剤について容認できる乃至低非選択的結合を示したが、VEGFについての捕捉効率とよく関連している。ヒト血清からのVEGF検出は、アンカーリガンドが2重リガンド次いで3重リガンド捕捉剤へ展開した後でのみ、観察された。3重リガンド2は、最高到達捕捉剤特異性を示すバッファー及び血清(レーン B vs. S)中のVEGF同等量を捕捉し、Avastin(登録商標)結果と十分に匹敵する。
これらの結果は、捕捉剤選択プロセスは親和性を発展させるだけでなく、本質的に特異性を発展させることを示唆している。結果は、同等親和性の3重リガンドは必ずしも特異性においても同等ではない(3重リガンド2及び3対比)こと、従って親和せ及び特異性の両者は独立に発達可能な捕捉剤の臨界的性能パラメータであることをも示唆している。
実施例5: 血清安定性:
タンパク質分解安定性は、in vivo用途でペプチドを使用するため、及び血清タンパク質診断のための重要なファクターである。たいていの天然ペプチドは酵素的分解を防止するため変性されないといけない。D−アミノ酸、非天然アミノ酸及び環化を包含するいくつかのアプローチが、捕捉剤安定性を向上させるために使用されてきた。
安定性は、800μL全体積における25%(v/v)human AB男性血清(HS−20, Omega Scientific, Tarzana, CA)含有TBS中200μg捕捉剤を混合することにより検討された。ペプチドを37℃でインキュベートし、0分、30分、次いで4時間までの1時間毎にアリコート100μLを取った。Beckman Coulter冷却マイクロ遠心分離機(Brea,CA)を20分使用する12,000rpmの遠心分離によりMicrocon遠心濾過機(Microcon YM−10,MWCO=10kDa,Millipore,Bedford,MA)で、血漿タンパク質からペプチドを分離した。濾過物を、分析HPLC (C18カラム,60分にわたる0→100%Bの直線勾配,ここでA=HO+0.1%TFA及びB=ACN+0.1%TFA)により、次いでBruker UltrafleXtreme MALDI質量分析により検査した。
平衡して2つのコントロールアッセイが行われ、上と同じ条件:
1)TBS中2重リガンド、及び
2)25%(v/v)ヒトAB男性血清含有TBS、
に付された。
37℃24時間ヒト血清もしくはバッファーとのインキュベーション後も捕捉剤は依然として完全であった(Fig.17)。捕捉剤は、生理学的温度及びバッファーにおける24時間以上のヒト血清におけるタンパク質分解に対して安定であることが示唆される。結果は、環化は(天然)L−アミノ酸含有配列セグメントについてタンパク質分解性消化に抵抗を向上させるための効率的且つ単純なアプローチであること、及びD−アミノ酸及び非天然アミノ酸は本来安定な要素であることを示している。このアプローチは、何ら配列修正なしに、in vivo研究のペプチド設計にとって有用であり得る。
実施例6: HUVEC増殖の阻害:
ヒト臍帯静脈内皮細胞(HUVECs)は、VEGFR2にオートクライン的方法で結合するVEGFを恒常的に分泌する。Avastin(登録商標)は直接VEGFに結合し、VEGF−VEGFR2複合体の形成をブロックし、それによりブロック受容体シグナル伝達による増殖を減じる。2重リガンド捕捉剤は、HUVEC増殖を阻害するその能力について評価される。
HUVECを、5%CO中M199培地(pH7.4)中、37°Cで18時間培養した。検査化合物及び/又は賦形剤を、ヘパリン(10μg/mL)及び0.5%FBSの存在下、細胞(1.1x10/mL)とともに37℃で48時間インキュベートした。捕捉剤を10,1,0.1,0.01及び0.001μMにおいて及び二通りに選別した。Avastin(登録商標)を100,10,1,0.1及び0.01nMにおいて及び二通りに選別した。VEGF165(アゴニスト,EC50=0.079nM)及びSU5416(アンタゴニスト,IC50=48nM)を標準対照としてアッセイした。引き続き、追加50分のインキュベーション期間に、試薬カルセイン(Calcein)AM染料(20μg/ml)を添加した。蛍光強度を、SpectroFluor Plusプレートリーダーにおいて読み取った。
%阻害対化合物濃度を説明する応答曲線はFig.18に明らかである。1nM VEGF165コントロール応答に比較して、細胞増殖の検査化合物誘発刺激50%以上は、顕著なアゴニスト活性を示す一方で、0.2nMVEGF165誘発細胞増殖50%以上の検査化合物誘発抑制は顕著なアンタゴニスト活性を示す。結果をFig.18に示す。一覧にしたIC50値は、Avastin(登録商標)媒介拮抗作用(IC50=0.687nM)を陽性対照として確認する。
捕捉剤の可溶性VEGFへの結合は、細胞表面におけるVEGFR2への連結を防止し、受容体によるブロックシグナル伝達による増殖を減ずる。
実施例7: 薬物動態:
マウスへの静脈内投与(IV)及び腹腔内投与(IP)投与に続いて、2重リガンド2の予備的薬物動態評価を行った。
HPLC−MS最適化:
検査化合物溶液を表1及び2に明記したように用意し、一定速度のシリンジポンプによりTSQ Quantumソースに注入した。古スキャンMS分析を行い、全イオンカレントクロマトグラム及び対応するマススペクトルを検査化合物につい陽イオン化モード及び陰イオン化モードの両方で発生させた。MS/MSのための前駆イオンを、それぞれのイオン存在量の関数として、陽性もしくは陰性質量スペクトルのいずれかから選択した。加えて、定量分析での使用のため適切な選択されたフラグメンテーション反応を決定するため、プロダクトイオンMS/MS分析を行った。成分の複雑な混合物内に存在する場合の検査化合物を定量化する能力を最大化するように、最終反応モニタリングパラメータを選択した。各検査化合物について使用すべき特定SRM遷移の同定に続き、TSQ Quantum Compound Optimizationワークスペースにおける自動化プロトコルを使用して、検出パラメータを最適化した。最後に、適当なLCカラムにおいて分析物を注入及び分離すること及び必要に応じて勾配条件を調節することにより、LC−MS分析に使用すべきクロマトグラフ条件を確認した。
Figure 2014531424
Figure 2014531424
結晶中線形性:
血漿のアリコートを特定濃度における検査化合物でスパイクした。スパイクしたサンプルを、アセトニトリル沈殿を使用して処理し、HPLC−MSもしくはHPLC−MS/MSにより分析した。ピーク領域対濃度の校正曲線を構築した。定量下限(LLQ)に沿って、アッセイの報告線形範囲を決定した。
定量生体分析(血漿):
血漿サンプルを、アセトニトリル沈殿を使用して処理し、HPLC−MS/MSにより分析した。血漿校正曲線を生成された。薬物なし血漿のアリコートを、特定濃度における検査化合物でスパイクした。スパイクした血漿サンプルを、未知の血漿サンプルと一緒に同じ手順を使用して処理した。処理した血漿サンプルを−20℃でHPLC−MS/MS分析まで貯蔵した。HPLC−MS/MS分析において時間ピーク領域を記録し、未知の血漿サンプルにおける検査化合物の濃度を、各校正曲線を使用して決定した。定量下限(LLQ)に沿って、アッセイの報告線形範囲を決定した。
調合:
リン酸緩衝塩類溶液,pH7.4(PBS)における検査化合物の溶解度を目視検査によりまず評価する。化合物が標的濃度において可溶性であるならば、PBSを賦形剤として使用する。化合物がPBSに十分に可溶性でないならば、IV投与に適合する他の賦形剤を評価してよい。このような賦形剤は、DMSO,Solutol(登録商標)HS15及びCremophorELその他を包含する。IP投与については、検査化合物がPBSに十分に可溶性でないならば、DMSO/Solutol(登録商標)HS15/PBS(5/5/90,v/v/v)もしくはDMSO/1%メチルセルロース(5/95,v/v)を賦形剤として使用してよい。カスタム調合を収容可能である。
マウスからの血漿サンプル回収(並列サンプリング):
表3乃至5に明記したようにin vivo薬物動態特徴化を行った。動物を全身吸入麻酔(3%イソフルラン)で鎮静化し、心臓穿刺により血液を回収した。各マウスを採血(one blood draw)に付した。血液アリコート(300乃至400μL)をヘパリンリチウムでコートしたチューブに集め、穏やかに混合し、次いで氷上に保ち、回収1時間以内で4℃で15分2,500xgで遠心分離した。血漿を次いで得て、さらなる処理まで−20℃で凍結させて保った。
Figure 2014531424
Figure 2014531424
Figure 2014531424
化合物対時間のプロットを構築した。IP及びIV投与後、化合物の主要薬物動態パラメータ(AUClast,AUCINF,Tv2,CI,VZ,Vss,Tmax及びCmax)が、WinNonlinを使用する血漿のノンコンパートメント分析(NCA)から得られた。もし該当するならば、生体利用率を算出した。ノンコンパートメント分析は、薬物もしくは代謝物いずれかについて具体的コンパートメントモデルの前提データを必要としない。NCAは、血漿濃度−時間曲線における領域の測定ついて台形公式の適用を可能とする(Gabrielsson, J. and Weiner, D. Pharmacokinetic and Pharmacodynamic Data Analysis: Concepts and Applications. Swedish Pharmaceutical Press. 1997)。
各投与経路についての半減期のグラフをFig.19に示す。算出PKパラメータを表6及び7に要約する。ペプチドについて予期されたように、IV投与により化合物は迅速にクリアされる(T1/2=7分).興味深いことに、IV半減期とIP半減期(T1/2=154分)との間には顕著な違いがある。IP投与についての半減期に対して2個のフェーズがあるようだ。これらの結果は、IPが優れた投与経路であることを示唆する。
Figure 2014531424
Figure 2014531424
実施例8: VEGFR2へのVEGF結合の阻害:
VEGFR2(KDR)へのヒトVEGF165結合を阻害する捕捉剤の能力を測定するため、ELISAプレートを、50mM炭酸塩バッファー,pH 9.6、中のヒトIgG Fc(#309−006−008;JacksonImmunoResearch,WestGrove,PA)に対して10μg/mLウサギF(ab’)2で25℃で2時間コートし、0.1%(v/v)TritonX−100含有TBS(25mM Tris,150mM NaCI,pH7.25)中の5%脱脂粉乳で、一晩4℃でブロックした。0.1%(v/v)TritonX−100含有TBS中の組み換えヒトVEGFR2(KDR),Fcキメラ(#357−KD,10μg/mL;R&D Systems,Minneapolis,MN)をプレートで1時間25℃でインキュベートした。捕捉剤もしくはAvastin(登録商標)Fabの3倍段階希釈物を0.1%(v/v)TritonX−100含有TBS中1%脱脂粉乳中の10nM ビオチン化VEGF165(#21435EZ−LinkSulfo−NHS−LC−ビオチン化キット,Pierce,ILを使用してビオチン化した)とともに、1時間25℃でインキュベートした。チューブからの溶液を次いでELISAプレートに写し、5分間インキュベートした。0.1%(v/v)TritonX−100含有TBS中で調製された0.2μg/mLホースラディッシュ ペルオキシダーゼ−標識ストレプトアビジン(#ab7403;Abcam,MA)を使用して、結合ビオチン化VEGF165を検出し、次いでQuantaRed(登録商標)増強化学蛍光HRP基質を添加することにより現像した。535nmの励起波長を使用し、捕捉剤濃度の関数として595nmの蛍光発光をBeckman Coulter DTX880光度計(Brea,CA)により記録した。4パラメータ回帰曲線フィッティングプログラム(Origin 8.5, Northampton, MA)を使用して、滴定曲線をあてはめた。滴定曲線の中点吸光度に対応するペプチドの濃度を算出し、IC50値として使用した。
これら捕捉剤の3重リガンド2及び3、2重リガンド2及びアンカーリガンドのin vitroブロッキングポテンシャルをFig.20に示す。3重リガンド1及び4in vitroブロッキングポテンシャルをさらにFig.72に示す。アンカーも2重リガンド2も、検査した濃度において(<50μM)結合する受容体をブロックしなかった。従って3重リガンド捕捉剤の3次リガンド成分はブロッキング活性に顕著に貢献しているように見える一方で、アンカー及び2次リガンド成分は親和性及び特異性における増強をもたらす。この適用(3重リガンド2乃至4)において確認された3重リガンド捕捉剤の3つのクラスは、それぞれ受容体結合部位と顕著に重複する結合部位を有することが分かった。3重リガンド2(IC50=2μM)について最大のin vitroブロッキング効果が観察され、これはAvastin(登録商標)Fabについて測定されたIC50の100倍以内である。VEGFの部分的封鎖でさえ、in vivo腫瘍血管新生をブロックするのに十分であり得る(Liang 2006)。
実施例9: Avastin(登録商標)FabへのVEGF結合の阻害:
Avastin(登録商標)Fabの存在下、VEGFにおける受容体相互作用表面への捕捉剤結合を定量するのに、固相競合アッセイを使用した。3重リガンド捕捉剤及びAvastin(登録商標)Fabは同様の結合親和性を共有するので、濃度依存競合は、これらが結合エピトープを共有することを確認する。
NUNC MAXISORP(登録商標)マイクロタイタープレートを、50mM炭酸塩バッファー,pH9.6,中10μg/mL Avastin(登録商標)Fabで、25℃で2時間コートし、0.1%(v/v)TritonX−100含有TBS(25mMTris,150mM NaCI,pH7.25)中5%脱脂粉乳とともに一晩4℃でブロックした。捕捉剤の2倍段階希釈物を、0.1%(v/v)TritonX−100含有TBS中1%脱脂粉乳中10nMビオチン化VEGF165とともにFab固定化プレート上で1時間インキュベートした。結合したビオチン化VEGF165を、0.1%(v/v)TritonX−100含有TBS中で調製した0.2μg/mLホースラディッシュ・ペルオキシダーゼ標識化ストレプトアビジン(#ab7403;Abcam,MA)を使用して検出し、QuantaRed(登録商標)増強化学発光HRP基質を添加することにより現像した。535nmの励起波長を使用し、捕捉剤濃度の関数として595nmの蛍光発光をBeckman Coulter DTX880光度計(Brea,CA)により記録した。4パラメータ回帰曲線フィッティングプログラム(Origin8.5,Northampton,MA)を使用して、滴定曲線をあてはめた。滴定曲線の中点吸光度に対応するペプチドの濃度を算出し、IC50値として使用した。
Avastin(登録商標)Fabと捕捉剤とのin vitro 競合をFig.21に示す。VEGFブロッキングは、3重リガンド2(IC50=0.4μM)及び3重リガンド1及び3(IC50=2μM)で観察された。VEGFにおける3重リガンド結合エピトープはAvastin(登録商標)Fabについてのエピトープと重複することが示唆される。2重リガンド2は濃度依存競合をも示したが、3重リガンド捕捉剤ほど顕著ではなかった。3次リガンド成分はエピトープのより大きい適応範囲となる特異的結合特性を与えるらしいことが示唆される。
実施例10: 血漿タンパク質結合:
平衡透析テクニックを、非結合検査化合物のフラクションをタンパク質に結合したフラクションから分離するのに使用した。
テフロン(登録商標)から構築した透析ブロックで96ウェルフォーマットにおいてアッセイを行った。タンパク質マトリックスを、最終DMSO濃度1%(v/v)を有する10μM(n=2)において検査化合物でスパイクした。透析物コンパートメントに150μLリン酸塩バッファー(pH7.5)をロードし、サンプル側に同量のスパイクしたタンパク質マトリックス同僚をロードした。透析プレートを次いでシールし、37℃で一晩(18±2時間)インキュベートした。インキュベート後、サンプルを各コンパートメントから取出し、リン酸塩バッファーで希釈し、アセトニトリルの添加及び遠心分離が続いた。次いで上澄をHPLC−MS/MS分析に使用した。アッセイサンプルと同じやりかたでスパイクしたタンパク質マトリックスからコントロールサンプル(n=2)を調製した(透析なし)。このコントロールサンプルを回収率測定についての基準として利用する。サンプルを、選択された反応モニタリングを使用するHPLC−MS/MSにより分析した。HPLC条件は、C18カラム(2x20mm)を有するバイナリLCポンプ、及び勾配溶出からなった。タンパク質への%結合及び回収は以下のように算出した。
Figure 2014531424
式中Areapeは平衡でのタンパク質マトリックスにおける分析物のピーク面積であり、Areabeは平衡でのアッセイバッファー中分析物のピーク面積であり、Vpeは平衡でのタンパク質マトリックスの体積であり、VPはタンパク質マトリックスの初期体積であり、Areacsはコントロールサンプル中の分析物のピーク面積である。回収率測定は、算出タンパク質結合値の信頼性の指標として役立った。
最も成功した薬物は血漿結合成分を有する。低血漿タンパク質結合は高特異性を説明するが、一方で高程度の血漿タンパク結合は、ある化合物がより長い循環時間及びより乏しい特異性を犠牲にして標的への潜在的に増加したアクセス示すことを予測する。血漿タンパク質結合結果の分析は、2重リガンド2(Bilig2−Ifrew)が低血漿タンパク質結合を示す(Fig.22)一方で、2重リガンド3(Bilig3−fsrkte)はより高レベルの血漿タンパク質結合を呈したことを示す。捕捉剤による血漿タンパク質結合は、オクトレオチド(ペプチド治療薬)及びワルファリン(小分子薬物)に対して十分に匹敵する。捕捉剤についての血漿タンパク質結合の傾向は、プルダウンアッセイ及びウエスタンブロット結果における傾向(実施例4)を反映している。%タンパク質回収率は全ての捕捉剤について高く、アッセイの最中にサンプルの劣化がないことを示唆している。
実施例11: ヒト血漿及びマウス肝臓ミクロソームにおける安定性:
HPLC−MS/MS分析により様々な時点でヒト血漿における捕捉剤安定性を定量した。
ヒト血漿を37℃水浴で5分間予熱した後、最終DMSO濃度0.5%(v/v)を有する5μM検査化合物を添加した。37℃水浴で0,15,30,45及び60分間インキュベーションを行った。各時点で、インキュベーション混合物のアリコートをアセトニトリルに移した。次いでサンプルを混合し、遠心分離した。上澄をHPLC−MS/MS分析に使用した。サンプルを、選択された反応モニタリングを使用するHPLC−MS/MSにより分析した。HPLCシステムは、オートサンプラを有するバイナリLCポンプ、C−18カラム及び勾配からなった。検査化合物に対応するピーク面積を記録した。化合物残余(%)を、時間ゼロに対して各時点におけるピーク面積を比較することにより算出した。
検査化合物をリン酸塩バッファー(pH7.4)中にプールしたマウス肝臓ミクロソーム(雄CD−1,0.3mg/mL)とともに5分間37℃振盪水浴でプレインキュベートした。検査化合物の濃度は、0.01%DMSO,0.25%アセトニトリル及び0.25%メタノールに対して1μMであった。反応を、NADPH生成システム(1.3mM NADP,3.3mM G6P及び0.4U/mL G6PDHアーゼ)を添加することにより開始し、0,15,30,45及び60分間インキュベートした。インキュベーション混合物を当量のアセトニトリル/メタノール(1/1,v/v)に移すことにより、反応を停止した。次いでサンプルを混合し、遠心分離した。上澄をHPLC−MS/MS分析に使用した。サンプルを、選択された反応モニタリングを使用するHPLC−MS/MSにより分析した。HPLCシステムは、オートサンプラを有するバイナリLCポンプ、C−18カラム及び勾配からなった。検査化合物に対応するピーク面積を記録した。化合物残余(%)を、時間ゼロに対して各時点におけるピーク面積を比較することにより算出した。化合物残余(%)の対数曲線の初期線形範囲対時間の傾きから、一次速度論を仮定し、半減期を算出した。さらに、半減期から固有クリアランスを算出した。
検査した捕捉剤は全て、37℃60分のアッセイ期間にわたりヒト血漿及びマウス肝臓ミクロソームにおいて安定であった(Fig.23)。捕捉剤安定性はペプチド(例えばオクトレオチド)のそれと同様であり、いくつかの小分子(例えばプロパンテリン,プロパノロール)のそれを上回る。これは、捕捉剤を劣化を予知することなくin vivo投与してよいことの兆候である。
実施例12: 3重リガンド捕捉剤の4量体バリアント:
ストレプトアビジン台上で非共有結合的アセンブリにより3重リガンド2の4量体バリアントを調製した。ストレプトアビジンは、きわめて高い親和性(KD〜1x10−15M)及び特異性でビオチンに結合する、Streptomyces avidiniiにより生成される4量体タンパク質であり、3重リガンド捕捉時あの官能的ポテンシャルを増進するのに理想的な台を代表する。単一ストレプトアビジン4量体を、4個の異なるビオチン分子に、あるいは下に明らかなように4個のビオチン化捕捉剤に結合してよい。
3重リガンド4量体を調製するため、DMSO中4.19mM3重リガンド2保存溶液4.1μL(4.5当量)及びリン酸緩衝塩類(PBS;pH7.4)中19μMストレプトアビジン4量体200μL(1当量;Promega,#Z7041)を、ローテータにおいて4℃60分間インキュベートした(Fig.24)。空位のビオチン結合部位含有コンジュゲート(即ちSa4量体につき3重リガンド4個未満を有するコンジュゲート)を除去するため、Pierce Biotin Agarose(#20218)を引き続き添加し、この混合物をローテータ上4℃で60分インキュベートした。この処理の後、Dynabeads(登録商標)M−280ストレプトアビジン(10mg/mLスラリー,650−900pmol/mgビオチン結合能力;Invitrogen,#112−06D)2mLを添加及びローテータ上4℃で30分間インキュベートして、全ての過剰なビオチン化分子を除去した。精製3重リガンド4量体を得るため、最終的に、磁場を適用することにより(DynaMag(登録商標)−Spin;Invitrogen,#123−20D)Sa−Dynabeadをペレット化した。
共有結合したプローブもしくは官能基(例えばDOTA,フルオロフォア酵素タグ,追加のビオチン分子)を含む、上述の3重リガンド4量体のバリアントを生成してよい。DOTA−標識3重リガンド2 4量体を製造する典型的な方法をFig.25及びに27に示す。HRP−標識3重リガンド2 4量体を製造する典型的な方法をFig.50に示す。これらの方法は、興味の対象となるいずれの官能基と組み合わせたいずれのビオチンコンジュゲート捕捉剤に一般的に適用可能である。Fig.50に明らかな方法は、単一分子内に共有結合C−末端ビオチン及びN−末端DOTA標識の両方を有する2官能性3重リガンド2を利用する(Fig.26)。非標識化3重リガンドについて上述のようにストレプトアビジン台上で非共有結合的アセンブリにより、標識化3重リガンド2 4量体を調製した。
Fig.27に明らかな方法は、C−末端システイン残基を発現するストレプトアビジンの設計したバリアントを利用する(Kwong 2009)。このC−末端システイン残基を、チオール反応性カップリグにより3重リガンド 4量体に、様々な標識基(例えばDOTA,ビオチンもしくはフルオロフォア)を取り付けるのに使用してよい(例えばUS特許出願公開No.2011/0039717を参照)。Fig.27において,C−−末端システインを、DOTA−標識ストレプトアビジン4量体を生成するのに使用する。この実施例においてストレプトアビジン4量体を、マレイミド−モノ−アミド−DOTA(B−272;Macrocyclics,TX)と反応させる。過剰なDOTAラベルを除去する透析の後、ビオチン標識化3重リガンド2(Fig.28)を上述のように4量体に結合する。
Fig.50に明らかな方法は、ホースラディッシュペルオキシダーゼに結合した3重リガンド2 4量体という結果になる。
単離3重リガンド 4量体は、SDS−PAGE(7.5%ゲル)により特徴化される。完全4量体を保持するため、非還元条件下及び煮沸なしでサンプルは調製される。VEGFに対する親和性及び特異性について、4量体3重リガンド捕捉剤は評価され、及びさらにin vitro(例えばVEGFRからVEGFの置換及び/又は拮抗作用は細胞成長を減ずる結果となる)及びin vivo(例えば血管新生の減少)生物学的活性についても評価される。
実施例13: 捕捉剤の他の多量体バリアント:
ここに開示される2重リガンド及び3重リガンドの多量体バリアント(例えば2量体,3量体及び4量体)は様々な方法で合成される。
2重リガンド2についてFig.29に示す方法を使用して、ホモ多量体2重リガンド捕捉剤を合成してよい。側鎖保護X−VEPNCDIHVMWEWECFERL−Tz4−Ifrew(式中XはPEG化されたレポータータグ(例えばビオチン−PEG,DOTA−PEG,等)もしくはN−末端キャッピング基(例えばアセチル)である)から多量体バリアントが合成される。多数の(2,3もしくは4)反応性部位からなる商業的に入手可能なPEG化されたリンカーにより、合成は開始し、アミドカップリング手順に続く。
2重リガンド2についてFig.31に示される方法を使用して、ホモ多量体2重リガンド捕捉剤も合成されてよい。側鎖保護X−VEPNCDIHVMWEWECFERL−Tz4−Ifrew−Az4(式中XはPEG化されたレポータータグ(例えばビオチン−PEG,DOTA−PEG,等)もしくはN−末端キャッピング基(例えばアセチル)である)から多量体バリアントが合成される。多数の反応性部位からなる商業的に入手可能なPEG化されたリンカーにより、合成は開始する。各部位はまずアルキン部分により付加され、次いでCuAACを介して捕捉剤にコンジュゲートする。
ホモ多量体3重リガンド捕捉剤も生成される。例えば、3重リガンド2の多量体バリアントをX−VEPNCDIHVMWEWECFERL−Tz4−Ifrew−Tz4−eeird(式中XはPEG化されたレポータータグ(例えばビオチン−PEG,DOTA−PEG,等)もしくはN−末端キャッピング基(例えばアセチル)である)から合成してよい。この方法により生成される典型的3重リガンド2ホモ2量体の構造はFig.30に明らかである。同様に、3重リガンド2の多量体バリアントをX−VEPNCDIHVMWEWECFERL−Tz4−Ifrew−Tz4−eeird−Az4(式中XはPEG化されたレポータータグ(即ちビオチン−PEG,DOTA−PEG,等)もしくはN−末端キャッピング基(即ちアセチル)である)から合成してよく、次いで上記のように評価される。この方法により生成される典型的3重リガンド2ホモ2量体の構造はFig.32に明らかである。
2重リガンド及び3重リガンド捕捉剤のヘテロ多量体バリアントを様々な方法により合成してもよい。例えば、Fig.33に明らかな3重リガンド2及び3のヘテロ2量体を、上述のように共有結合を介して調製される。合成されたヘテロ2量体(ここで2量体の各ペプチドは配列において異なり、それぞれは単一タンパク質における別個の重複しないエピトープと相互作用する)は結合親和性及び/又は2個のペプチドを結合する適当な長さのリンカーによる受容体ブロッキングにおける向上を最大化し得る。
VEGFに対する向上した親和性及び特異性について、多量体2重リガンド及び3重リガンドは評価される。多量体捕捉剤はさらにin vitro(例えばVEGFRからVEGFの置換及び/又は拮抗作用は細胞成長を減ずる結果となる)及びin vivo(例えば血管新生の減少)両方の生物学的活性についても評価される。多量体捕捉剤は、捕捉剤及び/又は他のペプチドの様々な非共有結合混合物と比較して評価される。
実施例14: PEG化3重リガンド2の合成:
X−3重リガンド2のPEG化バリアント(Fig.34)(ここでXはビオチン−PEG3リンカーもしくはN−末端キャッピング基(例えばアセチル)である)を調製した。アミドカップリング手順を使用し、3重リガンド2を商業的に入手可能な直鎖もしくは分岐のPEG化モジュールに共有結合した。
CTC樹脂上の側鎖保護N−アセチル3重リガンドの調製。マイクロ波アシストFmocベース固相ペプチド合成(SPPS)を使用して、2−クロロトリチルクロリド(CTC)樹脂上でX−3重リガンド2を調製した。製造供給元のプロトコルに従い、第1のアミノ酸は樹脂に取り付けた。残りの3重リガンドを製造するため、樹脂をCEM Liberty1マイクロウェーブペプチド合成装置に移した。各アミノ酸カップリング反応は、4当量Fmoc−アミノ酸、4当量HBTU(O−ベンゾトリアゾール−N,N,N’,N’−テトラメチル−ウロニウム−ヘキサフルオロ−ホスファート)及び10当量N,N−ジイソプロピルエチルアミン(DIEA)を包含した。Fmoc基の脱保護は20%ピペリジン/NMPを、次いでNMPによる洗浄を必要とした。4当量Fmoc−アミノ酸、4当量HATU(O−(7−アザベンゾトリアゾール−1−イル)−N,N,N’,N’−テトラメチルウロニウムヘキサフルオロホスファート)及び10当量N,N−ジイソプロピルエチルアミン(DIEA)を包含するため、2個のTz4リンカーのカップリング条件を変更した。Fmoc基の脱保護は20%ピペリジン/NMPを、次いでNMPによる洗浄を必要とした。
オプション(A): 最終N−末端キャッピング(0.125mmolスケール)のため、樹脂をDIEA(1.1mL),NMP(1.0mL)及び無水酢酸(0.6mL)の溶液にさらした。室温で30分間振盪後、樹脂を濾過し、NMP(3x),DCM(3x)及びMeOH(3x)で洗った。樹脂を真空下で〜10分間乾燥した。
オプション(B): N−末端ビオチン化3重リガンドの製造のため、CEM Liberty1マイクロウェーブペプチド合成装置を使用して、PEG3リンカー及びビオチン基を3重リガンド含有樹脂に結合した。カップリング条件は、4当量PEG3リンカー含有Fmoc−アミノ酸、4当量HBTU及び10当量DIEAであった。Fmoc基の脱保護は20%ピペリジン/NMPを、次いでNMPによる洗浄を必要とした。ビオチンのためのカップリング条件は、DMSO/NMP(1:1)に溶解したビオチン4当量、HBTU4当量及びDIEA10当量であった。樹脂を濾過し、NMP(3x),DCM(3x)及びMeOH(3x)で洗い、真空下で〜10分間乾燥した。
CTC樹脂(0.25mmolスケール)からの側鎖保護3重リガンドの開裂。DCM/TFE(8:2)3−4mLを乾燥側鎖保護3重リガンド樹脂に添加した。室温で1時間撹拌後、樹脂を木綿もしくはグラスウールを通して〜30mL冷エーテル含有遠心分離チューブ濾過した。白色沈殿を形成した。沈殿を形成しなくなるまで樹脂を8:2DCM/TFEで洗った(〜3−4mL)。合計体積50mLまで、追加のエーテルを添加し、次いで粗生成物を遠心分離した(4500rpm,5分,4℃)。遠心分離の後、上澄を除去し、粗製固体を凍結乾燥した。
C−末端直鎖PEG40 PEG化を有するAc−3重リガンドの製造。側鎖保護Ac−3重リガンド(125mg,17.2μmol)を、Arでパージしたバイアルに添加し、無水DMF(0.5mL)に溶解した。次いで0.5M HATU/HOAt(34μL,17μmol)の溶液及びDIEA(2.9μL,16.6μmol)を添加し、15分間室温で撹拌した。この間、PEG40アミン(100mg,2.5μmol;Jenkem#M−NH2−40K)を別個に無水DCM(0.5mL)に溶解した。Ac−3重リガンド含有反応混合物を室温でPEG40アミン溶液に添加し、次いで一晩(12−16時間)撹拌した。この反応混合物を30mL冷エーテルを有する遠心分離チューブに滴下し、白色沈殿物を形成させた。チューブを冷エーテルで〜45mLまで満たした後、サンプルを遠心分離した3x(4500rpm,5分,4℃)。遠心分離の後、上澄を除去し、粗製固体を凍結乾燥した。
C−末端分岐PEG40 PEG化を有するAc−3重リガンドの製造。側鎖保護Ac−3重リガンド(125mg,17.2μmol)を、Arでパージしたバイアルに添加し、無水DMF(0.5mL)に溶解した。次いで0.5M HATU/HOAt(34μL,17μmol)の溶液及びDIEA(2.9μL,16.6μmol)を添加し、15分間室温で撹拌した。この間、Y字型PEG40アミン(100mg,2.5μmol;Jenkem#Y−NH2−40K)を別個に無水DCM(0.5mL)に溶解した。Ac−3重リガンド含有反応混合物を室温でY字型PEG40アミン溶液に添加し、次いで一晩(12−16時間)撹拌した。この反応混合物を、30mL冷エーテルを有する遠心分離チューブに滴下し、白色沈殿物を形成させた。チューブを冷エーテルで〜45mLまで満たした後、サンプルを遠心分離した3x(4500rpm,5分,4℃)。遠心分離の後、上澄を除去し、粗製固体を凍結乾燥した。
ビオチン化PEG化3重リガンドを同様の方法により製造したが、側鎖保護3重リガンドの出発物質はN−末端ビオチンリンカーを有していた。
脱保護及びジスルフィド環化。粗製PEG化3重リガンド(上記由来)をTFA/HO/トリイソプロピルシラン[TIS]/2,2’−(エチレンジオキシ)−ジエタンジオール[DODT](92.5/2.5/2.5/2.5) 2.5−3.5mLに溶解し、次いで室温で4時間撹拌した。冷エーテル(〜45mL)を次いで各チューブに添加した。チューブを激しく浸透し、次いで遠心分離した(4500rpm,5分,4℃)。上澄除去後、粗製固体を別の冷エーテル45mLに際懸濁し、2回以上遠心分離した。最終の上澄を除去し、粗製固体を凍結乾燥した。
ジスルフィド環化のため、粗製固体をDMSO250μLに溶解した。固体がほとんど溶解した後、HO(2.5mL)を添加し、炭酸アンモニウム(5%)溶液を滴下することによりpH6−7に達するまで、pHを調節した。この混合物を室温で≧4時間撹拌した。この溶液をさらにメタノールで希釈し、次いでHPLCにより直接精製した。
PEG化合成反応はFig.35及び36に要約される。PEG化3重リガンドは、VEGFについての親和性及び特異性について、並びにin vitro及びin vivo生物学的活性について評価される。
実施例15: 多アームPEG化台における3重リガンド多量体化:
X−3重リガンド2の2量体及び4量体バリアント(Fig.34)(ここでXはビオチン−PEG3リンカーもしくはN−末端キャッピング基(例えばアセチル)である)を調製した。アミドカップリング手順を使用し、3重リガンド2を商業的に入手可能な、複数(2個もしくは4個)藩の性部位からなる多アームPEG化リンカーに共有結合した。
CTC樹脂上の側鎖保護N−アセチル3重リガンドの調製。マイクロ波アシストFmocベース固相ペプチド合成(SPPS)を使用して、2−クロロトリチルクロリド(CTC)樹脂上でX−3重リガンド2を調製した。製造供給元のプロトコルに従い、第1のアミノ酸は樹脂に取り付けた。残りの3重リガンドを製造するため、樹脂をCEM Liberty1マイクロウェーブペプチド合成装置に移した。各アミノ酸カップリング反応は、4当量Fmoc−アミノ酸、4当量HBTU(O−ベンゾトリアゾール−N,N,N’,N’−テトラメチル−ウロニウム−ヘキサフルオロ−ホスファート)及び10当量N,N−ジイソプロピルエチルアミン(DIEA)を包含した。Fmoc基の脱保護は20%ピペリジン/NMPを、次いでNMPによる洗浄を必要とした。4当量Fmoc−アミノ酸、4当量HATU(O−(7−アザベンゾトリアゾール−1−イル)−N,N,N’,N’−テトラメチルウロニウムヘキサフルオロホスファート)及び10当量N,N−ジイソプロピルエチルアミン(DIEA)を包含するため、2個のTz4リンカーのカップリング条件を変更した。Fmoc基の脱保護は20%ピペリジン/NMPを、次いでNMPによる洗浄を必要とした。
オプション(A): 最終N−末端キャッピング(0.125mmolスケール)のため、樹脂をDIEA(1.1mL),NMP(1.0mL)及び無水酢酸(0.6mL)の溶液にさらした。室温で30分間振盪後、樹脂を濾過し、NMP(3x),DCM(3x)及びMeOH(3x)で洗った。樹脂を真空下で〜10分間乾燥した。
オプション(B): N−末端ビオチン化3重リガンドの製造のため、CEM Liberty1マイクロウェーブペプチド合成装置を使用して、PEG3リンカー及びビオチン基を3重リガンド含有樹脂に結合した。カップリング条件は、4当量PEG3リンカー含有Fmoc−アミノ酸、4当量HBTU及び10当量DIEAであった。Fmoc基の脱保護は20%ピペリジン/NMPを、次いでNMPによる洗浄を必要とした。ビオチンのためのカップリング条件は、DMSO/NMP(1:1)に溶解したビオチン4当量、HBTU4当量及びDIEA10当量であった。樹脂を濾過し、NMP(3x),DCM(3x)及びMeOH(3x)で洗い、真空下で〜10分間乾燥した。
CTC樹脂(0.25mmolスケール)からの側鎖保護3重リガンドの開裂。DCM/TFE(8:2)3−4mLを乾燥側鎖保護3重リガンド樹脂に添加した。室温で1時間撹拌後、樹脂を木綿もしくはグラスウールを通して〜30mL冷エーテル含有遠心分離チューブ濾過した。白色沈殿を形成した。沈殿を形成しなくなるまで樹脂を8:2DCM/TFEで洗った(〜3−4mL)。合計体積50mLまで、追加のエーテルを添加し、次いで粗生成物を遠心分離した(4500rpm,5分,4℃)。遠心分離の後、上澄を除去し、粗製固体を凍結乾燥した。
Ac−4量体の製造。側鎖保護Ac−3重リガンド(760mg,0.105mmol)Arでパージしたバイアルに添加し、無水DMF(2.0mL)に溶解した。HATU(38mg,0.100mmol),HOAt(13.6mg,0.100μmol)及びDIEA(17μL,97.6μmol)を次いで添加し、15分間室温で撹拌した。この間、4ARM PEG40アミン(200mg,5.0μmol;Jenkem#4ARM−NH2−40K)を別個に無水DCM(1.5mL)に溶解した。Ac−3重リガンド含有反応混合物を室温で4ARM PEG40アミン溶液に添加し、次いで一晩(12−16時間)撹拌した。この反応混合物を30mL冷エーテルを有する遠心分離チューブ2本に滴下し、白色沈殿物を形成させた。各チューブを冷エーテルで〜45mLまで満たした後、サンプルを遠心分離した3x(4500rpm,5分,4℃)。遠心分離の後、上澄を除去し、粗製固体を凍結乾燥した。
Ac−2量体の製造。側鎖保護Ac−3重リガンド(208mg,28.7μmol)をArでパージしたバイアルに添加し、無水DMF(2.0mL)に溶解した。次いでHATU(18.7mg,49.2μmol),HOAt(7.15mg,52.5μmol)及びDIEA(8.5μL,48.8μmol)を添加し、15分間室温で撹拌した。この間、2ARM PEG7.5アミン(37.5mg,5.0μmol;Jenkem#NH2−PEG7500−NH2)を別個に無水DCM(1.5mL)に溶解した。Ac−3重リガンド含有反応混合物を室温で2ARM PEG7.5アミン溶液に添加し、次いで一晩(12−16時間)撹拌した。この反応混合物を、30mL冷エーテルを有する遠心分離チューブ2本に滴下し、白色沈殿物を形成させた。各チューブを冷エーテルで〜45mLまで満たした後、サンプルを遠心分離した3x(4500rpm,5分,4℃)。遠心分離の後、上澄を除去し、粗製固体を凍結乾燥した。
ビオチン化3重リガンド2量体及び4量体を同様の方法により製造したが、側鎖保護3重リガンドの出発物質はN−末端ビオチンリンカーを有していた。
脱保護及びジスルフィド環化。粗製PEG化PCC2量体もしくは4量体(上記由来)をTFA/HO/トリイソプロピルシラン[TIS]/2,2’−(エチレンジオキシ)−ジエタンジオール[DODT](92.5/2.5/2.5/2.5) 2.5−3.5mLに溶解し、次いで室温で4時間撹拌した。冷エーテル(〜45mL)を次いで各チューブに添加した。チューブを激しく浸透し、次いで遠心分離した(4500rpm,5分,4℃)。上澄除去後、粗製固体を別の冷エーテル45mLに際懸濁し、2回以上遠心分離した。最終の上澄を除去し、粗製固体を凍結乾燥した。
ジスルフィド環化のため、粗製固体をDMSO250μLに溶解した。固体がほとんど溶解した後、HO(2.5mL)を添加し、炭酸アンモニウム(5%)溶液を滴下することによりpH6−7に達するまで、pHを調節した。この混合物を室温で≧4時間撹拌した。この溶液をさらにメタノールで希釈し(必要により2.5mL以上)、次いでHPLCにより直接精製した。
多量体化合成反応はFig.37及び38に要約される。PEG化3重リガンドは、VEGFについての親和性及び特異性について、並びにin vitro及びin vivo生物学的活性について評価される。
実施例16: 3重リガンド多量体化及び修飾:
VEGF捕捉剤のC−末端は医薬品化学最適化のためのポテンシャル部位を提供する。カルボン酸末端(−COOH)は生理学的pHでマイナスに帯電している一方で、カルボキサミド末端(−CONH)は帯電中性である。捕捉剤の標的とされるタンパク質エピトープの性質に依存して、C−末端は他よりも向上した特性を有し得る。
固定化rhVEGFR2を使用する実施例8に明らかなように、in vitro競合結合アッセイを行った。多量体ストレプトアビジンコンジュゲート3重リガンド2のそれに接近するブロッキングにより、3重リガンド2−COOHはカルボキサミド末端を有するオリジナル3重リガンド2の〜4xの向上をブロッキングにおいて見せた(Fig.39)。3重リガンド2−COOH及び3重リガンド2−CONHの多量体ストレプトアビジンコンジュゲートは同様にブロックすることが分かった(Fig.39)。これらの結果は、抗VEGF3重リガンドにおけるC−末端カルボキサミドからC−末端カルボン酸への変化はin vitroブロッキングのために重要であること、ただし最適化はモノマーのためだけに重要であることを示唆する。別の競合結合実験において、PEG2アーム−3重リガンド2(2量体)はモノマー3重リガンド2に対して増強された結合を見せた一方で、PEG4アーム−3重リガンド2(4量体)によるブロッキングはさらなる向上を示唆しており、多量体ストレプトアビジン−コンジュゲート3重リガンド2のブロッキングに接近する(Fig.40)。概して、これらの結果は、多量体化はブロッキングに対して支配的な影響であり得ること、親和性及びサイズ貢献の両方に起因し得ることを示唆している。
結合親和性ELISAアッセイを、実施例3に明らかなとおり行った。多量体ストレプトアビジン−コンジュゲート3重リガンド2及びPEG4アーム−3重リガンド2(4量体)は、rhVEGF165に関して同様の結合親和性を共有することが分かった(Fig.41)。さらに、PEG2アーム−3重リガンド2(2量体)の親和性(KD=〜7.5nM)は、4量体のそれ(KD=〜1nM)よりも低かったが、モノマーのそれ(KD=〜15nM)よりも高かった(Fig.41)。これらの結果は、多量化及びサイズは結合親和性について重大なファクターでのようであることを示唆する。
プルダウンアッセイ及びウエスタンブロットを、結合特異性を評価するため、実施例4に記載されたように行った。能化磁気ビーズを使用し、VEGFをスパイクしたバッファー(B)もしくは25%v/vヒト血清(S)からVEGFを免疫沈降させた。C−末端PEG化は、特異性に対してプラスの影響を有する(即ち血清蛋白質のより少ない捕捉)が、親和性に対してはマイナスの影響を有する(即ちVEGFのより少ない捕捉)ことが分かった(Fig.42)。酸に対するC−末端アミドに関して、違いは見られなかった。PEG2アーム−3重リガンド2(2量体)の特異性は、モノマーとおおよそ同じであることが分かった(Fig.43)。
実施例17: 3重リガンド生体分布:
樹脂からのペプチドをリリース及びHPLCによる精製の前に、DOTA−トリス(t−Buエステル)(B−260;Macrocyclics,Dallas,TX)との固相反応により、VEGF3重リガンドをN−末端DOTAコンジュゲートとして調製した。0.1MNaHPOバッファー中Avastin(登録商標)とDOTA−NHS−エステル(Macrocyclics,Dallas,TX)との反応により、DOTAコンジュゲートAvastin(登録商標)を生成した。Avastin(登録商標)のコンジュゲート後、非コンジュゲート小分子を除去するため0.1M pH6.5クエン酸アンモニウムを使用して、反応混合物を、YM−30Centricon(登録商標)遠心濾過機(Millipore,Billerica,MA)により繰り返し遠心分離した。精製DOTAコンジュゲートを、UV分光光度計(Eppendorf,Westbury,NY)の280nmにおける吸光度を測定することにより求めた。放射性標識のため、DOTA−コンジュゲート3重リガンド及びAvastin(登録商標)をpH6.5 0.1Mクエン酸アンモニウム中64Cuとともに、43℃で1時間インキュベートした。標識化64Cu−DOTA−検査剤を、サイズ排除カラム(Bio−Spin6,BIO−RAD Laboratories)により精製した。放射化学的純度を、HPLCの面積を積分することにより求めた。この分析をサイズ排除カラムで行い、150kDaタンパク質ピークと関連する放射能の百分率で特徴化した。
免疫不全NU/Jマウス30匹をJackson Laboratoriesから得た(25匹 腫瘍保持,5匹 非腫瘍保持)。全てのマウスの重さを量り、一般的客観的観察を受けさせた。腫瘍保持マウスために、皮下ヒトHT29結腸腺癌首相細胞(VEGF−陽性)を左後ろ脇腹に移植し、ヒトMSTO−211H中皮腫腫瘍細胞(VEGF−陰性)を右後ろ脇腹に移植した。HT29細胞を、MSTO−211H細胞の移植2週間後に移植した。VEGF−陽性及びVEGF−陰性腫瘍細胞の同時移植は、限局性VEGF発現を有する非対称腫瘍になった。
研究のためマウスのうち14匹を選んだ。これら14匹のマウスをグループ1乃至6に分けた。グループ1及び2は非腫瘍保持(マウス合計3匹)であったが、グループ3乃至6は腫瘍保持(マウス合計11匹)であった。グループ1乃至4及び6には、64Cu−DOTA放射性標識化VEGF3重リガンドを腹腔内投与(IP)(グループ1,3,4及び6)もしくは静脈内投与(IV)(グループ2)した。陽性コントロールマウス(グループ5)は、検査剤として64Cu−DOTA放射性標識Avastin(登録商標)を受けた。グループ6マウスには、64Cu−DOTA放射性標識VEGF3重リガンド投与の24時間前に、ブロッカーとしてAvastin(登録商標)もしくは賦形剤コントロールをIV投与した。検査剤を、HT29移植1週間後のグループ1、2週間後のグループ4及び5、及び3週間後のグループ6に投与した。研究プロトコルは表8に要約される。
Figure 2014531424
投与後、マウスを個別に吊るされたステンレススチール金網ケージに収容した。マウスは任意に照射ブロックPicoLab Diet Rodent Diet 20 #5K75(PMI Nutrition International,Inc.)を給餌された。2重リガンド/3重リガンド投与前及びその後週ごとに体重を量った。投与前及びその後週ごとに3回、腫瘍サイズ(長さ及び幅)をキャリパーで測定した。腫瘍体積を以下の式により算出した。: 体積 = 長さ x 幅/2 (式中、長さは常に長い方の寸法であった。)マウス当たり1個以上の腫瘍があった場合、全ての腫瘍の位置及び寸法を大容量マップに記録した。ダイナミック及び/又はスタティックスキャンを使用するMicroPET/CT造影により、生体分布を評価した。各動物において最初のPETスキャンの前にCTスキャンを行った。グループ1乃至4及び6を投与0乃至2時間後にダイナミックPETスキャンし、投与4時間及び20時間後にスタティックスキャンした。グループ5を投与20時間後に単一スタティックスキャンした。4時間におけるスタティックスキャンを15分間行った一方で、20時間におけるスタティックスキャンを30分間行った。スキャン終了時(検査剤投与の約21時間後)、グループ1乃至4及び6のマウスを組織生体分布分析のために屠殺した。以下の組織を回収した: 腫瘍(グループgroups3,4及び6のみ),肝臓,脾臓,腎臓,血液,筋肉,心臓,膀胱,胆嚢,脳,大腿及び肺。組織の重さを量り、ガンマカウンタもしくはキュリーメータを使用して放射能についてカウントした。注入放射能投与の1000分の1と同等の残りの検査品目製剤のサンプル2個をもガンマカウンタを使用してカウントし、参照標準として使用した。放射は器官/組織重さにより正規化した。
動物1102R(グループ1)及び1004(グループ3)についての生体分布結果はFig.48及び49にそれぞれ明らかである。
注入4時間及び20時間後における組織分布データは、時間の関数として腫瘍に64Cu−DOTA−3重リガンドが蓄積することを示唆する(Fig.74)。
動物1009−1012(グループ6)についての生体分布結果はFig.44乃至47にそれぞれ明らかである。非ブロックマウス(1009及び1011)及びAvastin(登録商標)ブロックマウス(1010及び1012)の並列比較はFig.57に明らかである。これらの結果は、Avastin(登録商標)での予備処理はHT29腫瘍におけるVEGF3重リガンドシグナルの強度を減ずることを示す。このことは、Avastin(登録商標)及びVEGF3重リガンドが共有のエピトープを結合することを示唆する実施例9の結果をさらにサポートする。
実施例18:3重リガンド生体分布:
PCC技術を使用して合成されたペプチドによるVEGF受容体:リガンド相互作用のin vitro結合親和性及びブロックは、ここに開示されるVEGF2重リガンド及び3重リガンドにより同様の分子相互作用がin vivo調節されてもよいことを示唆した。実施例17に示したように、Avastin(登録商標)による予備処理は、HT29マウスモデルにおいてVEGF3重リガンドシグナルをin vivo減少させた。この効果をさらに評価するため、マウスモデルにおけるHT29異種移植片により発現した表現型VEGFに対して追跡生体分布実験を行った。
放射性標識VEGF3重リガンド及びHT−29マウスを実施例17に上述のように用意した。腫瘍が十分な体積に達した後、コントロールマウス4匹(マウス1013,1015,1016及び1114R)に賦形剤コントロールをIV投与した一方で、検査マウスにモル過剰でAvastin(登録商標)をIV投与した。24時間後(検査マウス1014,1017及び1018)もしくは48時間後(検査マウス1021,1022,1023及び1024),マウスに放射性標識VEGF3重リガンド(〜65μg,3.4μCi/μg)をIP投与した。生体分布を、3重リガンド投与0,4及び20時間後におけるスタティックスキャンを使用するMicroPET/CT造影により評価した。
動物1013(コントロール),1014(24時間ブロック),1017(24時間ブロック),1018(24時間ブロック),1021(48時間ブロック),及び1022(48時間ブロック)に関する生体分布結果Fig.58乃至63にそれぞれ明らかである。動物1114R(コントロール),1017及び1022に関するさらなる生体分布結果はFig.51乃至53にそれぞれ明らかである。20時間におけるコントロールマウス及び48時間ブロックマウスの並列比較はFig.54に明らかである。これらの結果は、Avastin(登録商標)ブロックがVEGF3重リガンドによる腫瘍結合を弱めることを示しており、Avastin(登録商標)及びVEGF3重リガンドは共有のエピトープを結合することが示唆される。
スキャン終了時、実施例17に上述のようにマウスを組織生体分布分析のために屠殺した。Fig.55は、心臓組織サンプルに対する腫瘍についての結果を要約する。マン・ホイットニーのノンパラメトリックなp−値0.933について、腫瘍組織におけるVEGF3重リガンド取り込みの減少は、24時間Avastin(登録商標)ブロックで29%であり、48時間Avastin(登録商標)で27%であった。全組織タイプにわたる結果はFig.56に明らかである。これらの結果は、膀胱、血液、脳、大腿、胆嚢、心臓、腎臓、肝臓、肺、筋肉及び脾臓において64Cuが検出可能であったが、Avastin(登録商標)の予備投与のみ腫瘍組織において64Cuシグナル減衰となったことを表す。
HT29腫瘍は、in vivo発現したhVEGFにVEGF3重リガンドが特異的に結合することを示唆する。
Avastin(登録商標)減衰のない他の11個の組織における64Cuシグナルの検出は、VEGF3重リガンドの非特異的局在化を示唆する。しかしながらこれらのデータは、マウス異種移植片モデルにおけるVEGF−過剰発現ヒト腫瘍の同様の研究において金属キレート化Avastin(登録商標)にういて報告されたデータと類似している(Nagengast2011;Paudyal2011)。データは、他のVEGFイソ型に結合するタンパク質を標的とするVEGF−エピトープの非特異的結合、もしくは腎臓シグナルにより説明されたような器官特異的なクリアランスのいずれかについてのポテンシャルを示唆する。これらの結果は、ここに開示されるVEGF3重リガンドを臨床利用(例えばin vivo分子腫瘍エピトープ表現型化、例えば「分子イメージング」)において使用してよいことを示唆する。このことは患者及び治療意志決定のための腫瘍層別化において有益である。
実施例19: マウスにおける単一静脈内(IV)もしくは腹腔内(IP)投与後、血漿濃度及びVEGF−PCCの薬物動態:
材料及び方法
検査品目
検査品目: VEGF−PCC(IN−VT−1001 3重リガンド)(PCCモノマー)Ac−VEPNCDIHVMWEWECFERL−Tz4−lfrew−Tz4−eeird。Cys残基を含む下線部は、ジスルフィド結合,Ac=N−末端アセチル化及びTz4=1,4−二置換−1,2,3−トリアゾールにより環化される。
貯蔵条件: 約−20℃
サンプル及び貯蔵
2012年3月20日及び4月10日に治験依頼者からサンプルを受け取り、分析の前後約−70℃で保存した。
LC−MS/MS分析
サンプル分析
分析のためのLC−MS/MSシステムは、Agilent1200高速液体クロマトグラフィー(HPLC)及び5500Qtrap質量分析計(Applied Biosystems by Life Technologies,Carlsbad,CA)から構成された。固相抽出法の後、内部標準としてアンジオテンシンIを有する非検証LC MS/MSアッセイを使用して、マウス血漿におけるVEGF−PCCの濃度を求めた。個々のVEGF−PCC校正及びQC標準を、実験を受けていないマウス血漿に添加することによりそれぞれの中間体ストック溶液から調製した。校正曲線の標的が働く範囲は血漿中50乃至5,000ng/mLであり、QC標準の標的濃度はVEGF−PCCについて血漿中150乃至3,750ng/mLであった。
バッチ1
マウス血漿中VEGF−PCCについての校正曲線は、相関係数0.9936を有する50乃至5,000ng/mLであった。
マウス血漿中濃度150乃至3,750ng/mLにおける複製QCサンプルを分析グループに含めた。さらにマウス血漿中濃度20,000ng/mLにおける複製希釈(10倍)QCサンプルをも分析グループに含めた。
マウス血漿中VEGF−PCCについての定量のアッセイ下限(LLOQ)は、バッチ1について50ng/mLであった。
バッチ2
マウス血漿中VEGF−PCCについての校正曲線は、相関係数0.9915を有する100乃至5,000ng/mLであった。
マウス血漿中濃度150乃至3,750ng/mLにおける複製QCサンプルを分析グループに含めた。さらにマウス血漿中濃度20,000ng/mLにおける複製希釈(10倍)QCサンプルをも分析グループに含めた。
マウス血漿中VEGF−PCCについての定量のアッセイ下限(LLOQ)は、バッチ2について100ng/mLであった。
校正及びQC結果を評価し、試験責任者のレビューに基づいて方法性能は許容可能と結論された。校正標準及びQCサンプルのデータはAppendix 1に示す。
検査品目の濃度
マウス血漿中VEGF−PCCの濃度は表A及びBに示し、及びFig.64に図表によって示す。典型的クロマトグラムはFig.75に示す。
Figure 2014531424
Figure 2014531424
バッチ1
抽出及び分析の前に、3,10及び30分における静脈内サンプル及び10,30及び60分における腹腔内サンプルを、未処理マウス血漿で10倍に希釈した。他のサンプル全てを未希釈で抽出及び分析した。
120分における腹腔内サンプル1個は、VEGF−PCC(5,000ng/mL)について定量上限(ULOQ)の上であった。
バッチ2
ULOQより上であったそのサンプル1個を10倍希釈して、バッチ2において再分析した。ここではサンプルはもう校正曲線範囲内であった。
薬物動態
静脈内
マウスは1mg/kgにおけるVEGF−PCCのIV投与を受けた。個々の動物についての血漿濃度の要約は表Aに示す。血漿薬物動態パラメータを表9で一覧にした。
Figure 2014531424
平均血漿濃度対時間曲線をFig.64に示す。
1mg/kgにおけるIV投与後、VEGF−PCCについて平均全身性血漿クリアランス(CL)及び分布の定常状態容積(Vss)はそれぞれ2.57mL/min/kg及び0.0967L/kgであった。平均半減期(t1/2)は0.598時間であった。
VEGF−PCについて逆算したC0は約19,400ng/mLであった(平均IV投与量1mg/kg及び平均体重33gと仮定、及び平均血液体積約1.7mLと仮定(Davies and Morris,1993))。
腹腔内
マウスは5mg/kgにおけるVEGF−PCCのIP投与を受けた。個々の動物についての血漿濃度の要約は表Bに示す。血漿薬物動態パラメータを表9で一覧にした。平均血漿濃度対時間曲線をFig.64に示す。
5mg/kgにおけるVEGF−PCCの平均血漿露出(AUCinf)は32,200ng・hr/mLであった。平均Cmax及び対応するTmaxはそれぞれ19,800ng/mL及び0.50時間であった。マウスへの5mg/kgIP投与におけるVEGF−PCCの相対的生体利用率は約99%であった。
結論
この研究の目的は、直列式質量分析(LCMS/MS)方法を有する液体クロマトグラフィーを使用して、それぞれ1もしくは5mg/kgにおけるVEGF−PCCの単一IVもしくはIP投与後のマウスにおけるVEGF−PCCの血漿濃度及び薬物動態を求めることであった。
非検証LC MS/MSアッセイを使用してサンプルを分析した。固相抽出法の後、VEGF−PCCの血漿濃度を、非検証LC MS/MSアッセイを使用して求めた。校正曲線の有効範囲はVEGF−PCCについて血漿中50乃至5,000ng/mLであった。
マウスは1mg/kgにおけるVEGF−PCCのIV投与を受けた。平均全身性血漿クリアランス(CL)及び分布の定常状態容積(Vss)はそれぞれ2.57mL/min/kg及び0.0967L/kgであった。平均半減期(t1/2)は0.598時間であった。VEGF−PCについて逆算した平均C0は約19,100ng/mLであった。VEGF−PCについて理論C0は約19,400ng/mLであった(平均IV投与量1mg/kg及び平均体重33gと仮定、及び平均血液体積約1.7mLと仮定(Davies and Morris,1993))。
マウスは5mg/kgにおけるVEGF−PCCのIP投与を受けた。5mg/kgにおけるVEGF−PCCの平均血漿露出(AUCinf)は32,200ng・hr/mLであった。平均Cmax及び対応するTmaxはそれぞれ19,800ng/mL及び0.50時間であった。マウスへの5mg/kgIP投与におけるVEGF−PCCの相対的生体利用率は約99%であった。
実施例 20: 反復In Situクリックケミストリーは、In Vivo分子イメージングのためのVEGF−標的捕捉剤を生成する:
VEGFに対するタンパク質−触媒捕捉剤(PCC)の開発を、受容体結合ドメイン1において相互作用することが以前証明された、ファージディスプレイ誘導ペプチドにより開始した。ペプチドのC−末端をペンダントアジドで修飾し、アンカーリガンドX−VEPNCDIHVMWEWECFERL−Az4を得た(式中Az4=L−アジドリジン,X=ビオチン−PEG3リンカーもしくはN−末端キャッピング基(すなわちアセチル)及び下線部=環化)。PEG3はN−Fmoc−N″−スクシニル−4,7,10−トリオキサ−1,13−トリデカンジアミン(Sigma−Aldrich,671517−5G)として付属した。N−末端キャッピングは無水酢酸によるものであった。分子内ジスルフィド環化を、4乃至16時間0.05M 酢酸アンモニウム及び(5%(w/v)水性炭酸アンモニウムで調製した)pH7−8における10%(v/v)DMSOで行った。
標的ガイドされたin situクリックケミストリーにより発見された2重リガンド及び3重リガンドを固相合成によりバルクで調製し(ここでTz4=1,4−二置換1,2,3−トリアゾールリンカー,Fig.65)、RP−HPLCにより精製及びVEGFにin vitroもしくはin vivo結合することについてアッセイする前に、質量分析計で分析した。
X−VEPNCDIHVMWEWECFERL−Az4.ForX=acetyl,MALDI−MS(m/z):C117H165N31O33S3(M+)について計算2628.1;実測2628.7.X=biotin−PEG3,MALDI−MS(m/z)について:C139H203N35O39S4(M+)について計算3114.4;実測3114.5.
X−VEPNCDIHVMWEWECFERL−Tz4−rplir.ForX=アセチル,MALDI−MS(m/z):C151H226N44O39S3(M+)について計算3375.6;実測3375.8.X=biotin−PEG3,MALDI−MS(m/z)について:C173H264N48O45S4(M+)について計算3861.9;実測3861.4.
X−VEPNCDIHVMWEWECFERL−Tz4−lfrew.ForX=アセチル,MALDI−MS(m/z):C159H222N42O41S3(M+)について計算3471.6;実測(M+H)3473.3.X=biotin−PEG3,MALDI−MS(m/z)について:C181H260N46O47S4(M+)について計算3957.8;実測3957.1.
ビオチン−PEG3−VEPNCDIHVMWEWECFERL−Tz4−lfrew−Az4.MALDI−MS(m/z):C187H270N50O48S4(M+)について計算4112.9;実測(M+H)4115.0.
X−VEPNCDIHVMWEWECFERL−Tz4−lfrew−Tz4−eeird.X=アセチル,MALDI−MS(m/z)について:C196H281N55O55S3(M+)について計算4382.0;実測(M+H)4383.3.X=ビオチン−PEG3,MALDI−MS(m/z)について:C218H319N59O61S4について計算(M+)4867.3;found4870.6.
X−VEPNCDIHVMWEWECFERL−Tz4−lfrew−Tz4−frsvn.X=アセチルについて,MALDI−MS(m/z):C197H280N56O51S3について計算(M+)4343.0;実測(M+Na)4368.0.X=ビオチン−PEG3について,MALDI−MS(m/z): C219H318N60O57S4について計算(M+)4828.3;実測4830.6.
X−VEPNCDIHVMWEWECFERL−Tz4−lfrew−Tz4−hthwl.For X=アセチル,MALDI−MS(m/z):calcd.forC203H281N57O50S3(M+)4413.0;found(M+H)4415.2.
X−VEPNCDIHVMWEWECFERL−Tz4−lfrew−Tz4−ewsrw.For X=アセチル,MALDI−MS(m/z):C206H283N57O52S3について計算(M+)4483.0;実測(M+H)4484.6.X=ビオチン−PEG3について,MALDI−MS(m/z):C228H321N61O58S4について計算(M+)4969.3;実測(M+K)5008.0.
DOTA−PEG3−VEPNCDIHVMWEWECFERL−Tz4−lfrew−Tz4−eeird. DOTA(1,4,7,10−テトラアザシクロデカン−1,4,7,10−テトラ酢酸)のN−末端コンジュゲートをDOTA−tris(t−Buエステル)(B−260;Macrocyclics,Dallas,TX)で固相反応に付し、次いで樹脂からペプチドを解放し、RP−HPLCにより精製した。MALDI−MS(m/z):C224H331N61O66S3について計算(M+)5027.4;実測(M+H)5030.7.
増加したサイズ及び/又は結合価由来の追加の潜在的有効性を調査するために、多量体PCCバリアントを設計及び合成した。3重リガンドのC−末端と4−アームPEG誘導体(MW40,000;Jenkem#4ARM−NH2−40K)との反応、ホモ4量体の形成となった(Fig.76)。VEGFへのin vitro結合についてアッセイする前に、そのホモ4量体をRP−HPLCで精製し、SDS−PAGEで特徴化した。
X−VEPNCDIHVMWEWECFERL−Tz4−lfrew−Tz4−eeirdホモ4量体。X=アセチルの場合分子量57,500Da、X=ビオチン−PEG3の場合分子量59,500Daが、7.5%SDS−PAGEにより期待された。還元Laemmliバッファーにおいて調製されたサンプルを、複製ゲルについて1xTGS(25mM Tris,192mMグリシン,0.1%SDS(w/v),pH8.3)中200Vで30分間、電気泳動分離にかけた。ペプチド含有バンドを視覚化するため、一方のゲルをBio−Safe Coomassie(Bio−Rad,#161−0786)で1時間染色した。PEG含有バンドを視覚化するため、他方のゲルを5%(w/v)水性塩化バリウム及び次いで0.05M水性ヨウ素で染色した。両方の染色によりホモ4量体を検出し、予期した分子量において確認した。
ビオチン化ホモ4量体について、引き続き7.5%ゲル3分の1を、100V、30分間の電気泳動により20%(v/v)メタノール(Bio−RadLaboratories,Hercules,CA)含有25mM Tris,192mMグリシン,pH8.3,におけるニトロセルロースメンブレンに移した。移動後、ニトロセルロースメンブレンをTBS中5%脱脂粉乳で2時間ブロックし、ビオチン標識確認のためストレプトアビジン−HRP(Abcam,ab7403)で調べた。
上で述べたように、以上のことは単に本発明の様々な実施態様を説明することを意図している。上で論じた具体的変形それ自体は、発明の範囲を限定するものとして解釈されるべきはない。様々な同等物、変更および修正が発明の範囲から逸脱しない限り、なされてよいことが、当業者には明らかである。当然のことながらこのような同等実施態様はここに含まれる。ここに引用された全ての参考文献は、参照することにより、あたかもここに全文記載してあるがごとく、ここに取り入れられる。
参考文献
1. Agnew Angew Chem Int Ed Engl 48:4944 (2009)
2. Bell Cancer Lett 289:81 (2010)
3. Erlanson Proc Natl Acad Sci USA 97:9367 (2000)
4. Fairbrother Biochem 37:17754 (1998)
5. Fields Int J Pept Prot Res 35:161 (1990)
6. Hosten Drug Metab Dispos 36:1729 (2008)
7. Jencks Proc Natl Acad Sci USA 78:4046 (1981)
8. Kwong J Am Chem Soc 131:9695 (2009)
9. Lam Nature 354:82 (1991)
10. Lee J Comb Chem 10:807 (2008)
11. Lee Anal Chem 82:672 (2010)
12. Liang J Biol Chem 281:951 (2006)
13. Manetsch J Am Chem Soc 126:12809 (2004)
14. Mocharla Angew Chem Int Ed Engl 44:116 (2004)
15. Murray J Comput Aided Mol Des 16:741 (2002)
16. Nagengast Eur J Cancer 47:1595 (2011)
17. Pakkala J Pept Sci 13:348 (2007)
18. Paudyal Cancer Sci 102:117 (2011)
19. Shi Bioconjug Chem 20:750 (2009)
20. Shuker Science 274:1531 (1996)
21. Stollman Int J Cancer 122:2310 (2008)
22. Watt Anal Chem 72:979 (2000)
23. Whiting Angew Chem Int Ed Engl 45:1435 (2006)
24. Fairbrother, W. J.; Christinger, H. W.; Cochran, A. G.; Fuh, G.; Keenan, C. J.; Quan, C.; Shriver, S. K.; Tom, J. Y. K.; Wells, J. A.; Cunningham, B. C. Biochemistry 1998, 37, 17754−17764.
25. (a) Zimmerman, S. B.; Murphy, L. D. Anal. Biochem. 1996, 234, 190−193. (b) Kurfuerst, M. M. Anal. Biochem. 1992, 200, 244−248.
26. Dhara, D.; Chatterji, P. R. J. Phys. Chem. B 1999, 103, 8458−8461.

Claims (29)

  1. VEGFを特異的に結合する安定な合成捕捉剤であって、
    当該捕捉剤は設計アンカーリガンド、設計2次リガンド、及び任意に設計3次リガンドを有し;
    アンカーリガンド及び2次リガンドは選択的にVEGFを結合する、
    合成捕捉剤。
  2. 当該捕捉剤は2重リガンドであり;
    アンカーリガンドは、SEQ ID NO:1のアミノ酸と95%一致するアミノ酸配列を有し、及び
    2次リガンドは式:
    X2−X3−X4−X5−X6
    (式中X2はD−アルギニン、D−トリプトファン、D−ロイシン、D−バリン、グリシン、D−プロリン、D−イソロイシン及びD−アラニンからなるグループから選択される;
    式中X3はD−プロリン、D−フェニルアラニン、グリシン、D−アルギニン、D−リジン、D−ヒスチジン、D−トリプトファン及びD−チロシンからなるグループから選択される;
    式中X4はD−イソロイシン、D−ロイシン、D−プロリン、D−アラニン、D−アルギニン、D−フェニルアラニン、D−トレオニン及びD−ヒスチジンからなるグループから選択される;
    式中X5はD−イソロイシン、グリシン、D−バリン、D−ロイシン、D−アラニン、D−プロリン、D−リジン、D−グルタメート、D−ヒスチジン及びD−アルギニンからなるグループから選択される;
    式中X6はD−アルギニン、D−リジン、D−トリプトファン、D−チロシン、D−プロリン、D−バリン、グリシン、D−イソロイシン、D−アラニン及びD−グルタミンからなるグループから選択される)
    を有する、
    請求項1に記載の合成捕捉剤。
  3. アンカーリガンド及び2次リガンドは、1,4−置換−1,2,3−トリアゾール残基(Tz4)を介して一緒に結合している、
    請求項2に記載の2重リガンド捕捉剤。
  4. 当該捕捉剤は、
    Figure 2014531424
    Figure 2014531424
    及び
    Figure 2014531424
    からなるグループから選択される構造を有する、請求項2に記載の2重リガンド捕捉剤。
  5. 当該捕捉剤は3重リガンドであり;
    アンカーリガンドは、SEQ ID NO:1のアミノ酸と95%一致するアミノ酸配列を有し、及び
    2次リガンドは式:
    X2−X3−X4−X5−X6
    (式中X2はD−アルギニン、D−トリプトファン、D−ロイシン、D−バリン、グリシン、D−プロリン、D−イソロイシン及びD−アラニンからなるグループから選択される;
    式中X3はD−プロリン、D−フェニルアラニン、グリシン、D−アルギニン、D−リジン、D−ヒスチジン、D−トリプトファン及びD−チロシンからなるグループから選択される;
    式中X4はD−イソロイシン、D−ロイシン、D−プロリン、D−アラニン、D−アルギニン、D−フェニルアラニン、D−トレオニン及びD−ヒスチジンからなるグループから選択される;
    式中X5はD−イソロイシン、グリシン、D−バリン、D−ロイシン、D−アラニン、D−プロリン、D−リジン、D−グルタメート、D−ヒスチジン及びD−アルギニンからなるグループから選択される;
    式中X6はD−アルギニン、D−リジン、D−トリプトファン、D−チロシン、D−プロリン、D−バリン、グリシン、D−イソロイシン、D−アラニン及びD−グルタミンからなるグループから選択される)を有し:及び
    3次リガンドは式:
    X2−X3−X4−X5−X6
    (式中X2はD−ヒスチジン、D−アルギニン及びD−リジンからなるグループから選択される;X3はD−トレオニン、D−アスパラギン、D−ロイシン、D−プロリン、D−イソロイシン、D−アラニン、及びD−グルタメートからなるグループから選択される;X4はD−ヒスチジン、D−リジン、D−アルギニン、D−トリプトファン、D−フェニルアラニン、D−プロリン、D−ロイシン及びD−チロシンからなるグループから選択される;X5はD−バリン、D−プロリン、D−ヒスチジン、D−フェニルアラニン、D−トリプトファン、D−アスパラギン、D−グルタミン、D−セリン及びD−チロシンからなるグループから選択される;及びX6はD−アルギニン、D−チロシン、D−アスパラギン、D−グルタミン、D−ロイシン、D−プロリン、D−リジン及びD−ヒスチジンからなるグループから選択される;
    X2はD−チロシン、D−フェニルアラニン及びD−トリプトファンからなるグループから選択される;X3はD−プロリン、D−アラニン、グリシン、D−ロイシン、D−リジン、D−アルギニン及びD−ヒスチジンからなるグループから選択される;X4はD−アルギニン、D−ヒスチジン、D−トリプトファン、D−フェニルアラニン、D−グルタメート、D−プロリン、D−セリン及びD−トレオニンからなるグループから選択される;X5はD−プロリン、D−アスパルテート、D−リジン、D−アルギニン、D−チロシン、D−ヒスチジン、D−アラニン、D−バリン、D−ロイシン及びD−アスパラギンからなるグループから選択される;及びX6はD−ヒスチジン、D−リジン、D−アスパラギン、D−トレオニン、D−グルタミン、D−ロイシン、D−アスパルテート、D−セリン、D−チロシン、D−アルギニン、D−トリプトファン、D−グルタメート及びD−バリンからなるグループから選択される;又は
    X2はD−グルタメート及びD−アスパルテートからなるグループから選択される;X3はD−グルタメート、D−フェニルアラニン、D−トリプトファン、D−ヒスチジン、D−リジン、D−アスパラギン及びD−セリンからなるグループから選択される;X4はD−イソロイシン、D−プロリン、D−アラニン、D−アルギニン、D−セリン、D−アスパルテート、D−アスパラギン、D−プロリン、D−フェニルアラニン、D−チロシン及びD−ヒスチジンからなるグループから選択される;X5はD−アルギニン、D−チロシン、グリシン、D−トリプトファン、D−リジン、D−ヒスチジン、D−アラニン、D−アスパラギン及びD−ロイシンからなるグループから選択される;及びX6はD−アスパルテート、D−プロリン、D−トリプトファン、D−チロシン、D−ロイシン、D−アスパラギン、D−セリン及びD−トレオニンからなるグループから選択される)
    を有する、請求項1に記載の合成捕捉剤。
  6. アンカーリガンド及び2次リガンドは、1,4−置換−1,2,3−トリアゾール残基(Tz4)を介して一緒に結合している、請求項5に記載の3重リガンド捕捉剤。
  7. 2次リガンド及び3次リガンドは、1,4−置換−1,2,3−トリアゾール残基(Tz4)を介して一緒に結合している、請求項5に記載の3重リガンド捕捉剤。
  8. 当該捕捉剤は、
    Figure 2014531424
    Figure 2014531424
    Figure 2014531424
    及び
    Figure 2014531424
    からなるグループから選択される構造を有する、請求項5に記載の3重リガンド捕捉剤。
  9. VEGFに対する前記捕捉剤の結合はVEGF活性を阻害する、請求項1に記載の合成捕捉剤。
  10. 前記捕捉剤はVEGFのVEGF受容体(VEGFR)への結合を阻害する、請求項1に記載の合成捕捉剤。
  11. 当該捕捉剤は温度約−80°C乃至約40°Cにおいて安定している、請求項1に記載の合成捕捉剤。
  12. 当該捕捉剤は室温において安定している、請求項1に記載の合成捕捉剤。
  13. 当該捕捉剤は血清もしくは血漿において少なくとも24時間安定している、請求項1に記載の合成捕捉剤。
  14. 当該捕捉剤は約3乃至約12の範囲のpHにおいて安定している、請求項1に記載の合成捕捉剤。
  15. 当該捕捉剤はビオチン及び銅−DOTAからなるグループから選択されるラベルで標識化される、請求項1に記載の合成捕捉剤。
  16. 生物学的サンプルにおけるVEGFを検出する検出剤としての請求項1に記載の捕捉剤の使用。
  17. イムノアッセイを使用する生物学的サンプルにおけるVEGFを検出する方法であって、
    イムノアッセイは請求項1に記載の捕捉剤を利用し;
    前記捕捉剤はイムノアッセイにおける抗体もしくはその同等物に取って代わる、
    方法。
  18. イムノアッセイはウエスタンブロット、プルダウンアッセイ、ドットブロット及びELISAからなるグループから選択される、請求項17に記載の方法。
  19. それを必要としている対象における増大したVEGF発現及び/又は活性に関連した状態を治療する方法であって、請求項1に記載の捕捉剤の治療的に有効な量を投与することを有する、方法。
  20. 前記状態は癌、増殖性網膜症、加齢黄斑変性(AMD)のウェット型疾病病理学もしくは関節リウマチからなるグループから選択される、請求項19に記載の方法。
  21. 対象におけるVEGF活性を阻害する方法であって、請求項1に記載の捕捉剤を対象に投与することを有する、方法。
  22. 捕捉剤は64Cu DOTA、68Ga DOTA、18F、64Cu、68Ga、89Zr、124I、86Y、94mTc、110mIn、11Cもしくは76Brからなる検出可能部分で標識化される、請求項1に記載の捕捉剤。
  23. ヒトもしくはマウス対象におけるVEGF発現癌を診断する方法であって、以下のステップ:
    a)検出可能な部分に結合した請求項1に記載のVEGF捕捉剤を対象に投与すること;及び
    b)対象におけるVEGF捕捉剤に結合した部分を検出すること(ここで部分の検出は対象におけるVEGF発現癌を診断する)、
    を有する、方法。
  24. 捕捉剤は64Cu DOTA、68Ga DOTA、18F、64Cu、68Ga、89Zr、124I、86Y、94mTc、110mIn、11Cもしくは76Br.26からなる検出可能部分で標識化される、請求項23に記載の方法。
  25. VEGF捕捉剤に結合した部分はPETもしくはSPECTを使用して検出される、請求項24に記載の方法。
  26. 対象のVEGF発現癌においてもしくは近傍において請求項1もしくは請求項5に記載のVEGF捕捉剤に結合した、小分子ポジトロン断層法リガンドを患者に投与することを有する、VEGF指向療法を受ける対象の治療をモニタする方法。
  27. サンプルにおけるVEGFを検出する方法であって、
    a)検出可能な部分に結合した請求項1に記載のVEGF捕捉剤にサンプルを曝露すること;及び
    b)対象におけるVEGF捕捉剤に結合した部分を検出すること(ここで部分の検出は対象におけるVEGF発現癌を診断する)、
    を有する方法。
  28. 捕捉剤は64Cu DOTA、68Ga DOTA、18F、64Cu、68Ga、89Zr、124I、86Y、94mTc、110mIn、11Cもしくは76Brからなる検出可能部分で標識化される、請求項27に記載の方法。
  29. VEGF捕捉剤に結合した部分はPETもしくはSPECTを使用して検出される、請求項27に記載の方法。
JP2014528650A 2011-08-31 2012-08-31 Vegf−特異的捕捉剤、組成物、並びに使用及び製造方法 Withdrawn JP2014531424A (ja)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US201161529872P 2011-08-31 2011-08-31
US61/529,872 2011-08-31
US201161556713P 2011-11-07 2011-11-07
US61/556,713 2011-11-07
US201261585590P 2012-01-11 2012-01-11
US61/585,590 2012-01-11
US201261675298P 2012-07-24 2012-07-24
US61/675,298 2012-07-24
PCT/US2012/053388 WO2013033561A1 (en) 2011-08-31 2012-08-31 Vegf-specific capture agents, compositions and methods of using and making

Publications (1)

Publication Number Publication Date
JP2014531424A true JP2014531424A (ja) 2014-11-27

Family

ID=47756910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014528650A Withdrawn JP2014531424A (ja) 2011-08-31 2012-08-31 Vegf−特異的捕捉剤、組成物、並びに使用及び製造方法

Country Status (6)

Country Link
US (2) US8710180B2 (ja)
EP (1) EP2751135A4 (ja)
JP (1) JP2014531424A (ja)
AU (1) AU2012301713A1 (ja)
CA (1) CA2846030A1 (ja)
WO (1) WO2013033561A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019098385A1 (ja) * 2017-11-20 2019-05-23 コニカミノルタ株式会社 薬剤評価方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015038904A1 (en) 2013-09-12 2015-03-19 California Institute Of Technology Anti-gp41 antibody-specific capture agents, compositions, and methods of using and making
WO2015171543A1 (en) * 2014-05-05 2015-11-12 California Institute Of Technology Mutant akt-specific capture agents, compositions, and methods of using and making
EP3270951B1 (en) 2015-03-16 2020-09-09 California Institute of Technology Botulinum neurotoxin-specific capture agents, compositions, and methods of using and making
CN108290927B (zh) 2015-07-15 2022-06-24 加州理工学院 Il-17f-特异性捕获剂、组合物以及使用和制造的方法
EP3440101B1 (en) 2016-04-04 2021-10-06 Indi Molecular, Inc. Cd8-specific capture agents, compositions, and methods of using and making
WO2018064597A1 (en) 2016-09-29 2018-04-05 Indi Molecular, Inc. Compositions for detection, inhibition and imaging of indoleamine 2,3-dioxygenase 1 (ido1) and methods of making and using same
US11719705B2 (en) 2017-06-15 2023-08-08 Indi Molecular, Inc. IL-17F and IL-17A-specific capture agents, compositions, and methods of using and making
WO2020069433A1 (en) 2018-09-28 2020-04-02 Imaginab, Inc. Cd8 imaging constructs and methods of use thereof
US11919972B2 (en) 2018-11-02 2024-03-05 Regeneron Pharmaceuticals, Inc. Peptide libraries with non-canonical amino acids
US11638764B2 (en) 2018-11-08 2023-05-02 Indi Molecular, Inc. Theranostic capture agents, compositions, and methods of using and making
WO2020160230A1 (en) * 2019-01-31 2020-08-06 Artris Therapeutics Inc. Chemical reporter probes, kits, and methods of using the same
WO2020186091A1 (en) * 2019-03-12 2020-09-17 Indi Molecular, Inc. Cross-linked epitopes and methods of use thereof
WO2020236969A1 (en) 2019-05-20 2020-11-26 Indi Molecular, Inc. Compositions and methods relating to detection, inhibition, and imaging of indoleamine 2,3-dioxygenase 1 (ido1)
US11414460B2 (en) 2019-07-19 2022-08-16 Institute For Systems Biology KRAS-specific capture agents, compositions, and methods of making and using
WO2022098743A1 (en) 2020-11-03 2022-05-12 Indi Molecular, Inc. Compositions, imaging, and therapeutic methods targeting folate receptor 1 (folr1)
WO2022098745A1 (en) 2020-11-03 2022-05-12 Indi Molecular, Inc. Compositions, delivery systems, and methods useful in tumor therapy
CN117805397A (zh) * 2024-02-29 2024-04-02 军科正源(北京)药物研究有限责任公司 检测游离vegf的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6660843B1 (en) * 1998-10-23 2003-12-09 Amgen Inc. Modified peptides as therapeutic agents
US20080207502A1 (en) * 2004-10-14 2008-08-28 Sopherion Therapeutics, Inc. Anti-Angiogenic Peptides and Methods of Use Thereof
US20090035317A1 (en) 2007-01-12 2009-02-05 Daugherty Patrick S Peptides binding to vascular endothelial growth factor
US10259860B2 (en) * 2007-02-27 2019-04-16 Aprogen Inc. Fusion proteins binding to VEGF and angiopoietin
US8293714B2 (en) * 2008-05-05 2012-10-23 Covx Technology Ireland, Ltd. Anti-angiogenic compounds
EP2310855B1 (en) * 2008-06-18 2015-01-28 California Institute of Technology Multi-ligand capture agents and related compositions, methods and systems
EP2324048A2 (en) * 2008-07-30 2011-05-25 Cosmix Therapeutics Llc Peptide therapeutics that bind vegf and methods of use thereof
JP2010154842A (ja) 2008-12-03 2010-07-15 Koji Kawakami Egfrを標的にした新規抗がんキメラペプチド
CA2826251A1 (en) * 2011-02-03 2012-08-09 Integrated Diagnostics, Inc. Psa capture agents, compositions, methods and preparation thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019098385A1 (ja) * 2017-11-20 2019-05-23 コニカミノルタ株式会社 薬剤評価方法
JPWO2019098385A1 (ja) * 2017-11-20 2020-12-24 コニカミノルタ株式会社 薬剤評価方法

Also Published As

Publication number Publication date
WO2013033561A1 (en) 2013-03-07
US8710180B2 (en) 2014-04-29
CA2846030A1 (en) 2013-03-07
US9221889B2 (en) 2015-12-29
US20130156692A1 (en) 2013-06-20
AU2012301713A1 (en) 2014-03-06
US20140256630A1 (en) 2014-09-11
EP2751135A1 (en) 2014-07-09
EP2751135A4 (en) 2015-06-03

Similar Documents

Publication Publication Date Title
JP2014531424A (ja) Vegf−特異的捕捉剤、組成物、並びに使用及び製造方法
CN107148425B (zh) 对mt1-mmp特异性的双环肽配体
JP2014506883A (ja) Psa捕捉剤、組成物、方法及びその製造
EP3519425B1 (en) Compositions for detection, inhibition and imaging of indoleamine 2,3-dioxygenase 1 (ido1) and methods of making and using same
US20080146508A1 (en) Soluble cyclic analogues of beta amyloid peptide
WO2015171543A1 (en) Mutant akt-specific capture agents, compositions, and methods of using and making
US20220098260A1 (en) BH4 Stabilized Peptides And Uses Thereof
CA2906740A1 (en) Stabilized sos1 peptides
CN112585157A (zh) 用于结合整联蛋白αvβ3的肽配体
US9890197B2 (en) RHAMM binding peptides
US20200408746A1 (en) Stabilized Peptides for Biomarker Detection
CN115916234A (zh) 靶向ras蛋白的分子
CN114829388A (zh) 抗her2多肽衍生物作为新的诊断分子探针
US20240101604A1 (en) Selective mena binding peptides
WO2014014819A2 (en) Methods of treating glucose metabolism disorders
WO2018017922A2 (en) Selective bfl-1 peptides
AU2020408070A1 (en) Structurally-stabilized glucagon-like peptide 1 peptides and uses thereof
WO2013151627A1 (en) Methods of treating glucose metabolism disorders
WO2014014816A2 (en) Methods of treating glucose metabolism disorders

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150729

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20151116