JP2014526029A - Annular cylindrical combustor with graded and tangential fuel-air nozzles for use in gas turbine engines - Google Patents
Annular cylindrical combustor with graded and tangential fuel-air nozzles for use in gas turbine engines Download PDFInfo
- Publication number
- JP2014526029A JP2014526029A JP2014527126A JP2014527126A JP2014526029A JP 2014526029 A JP2014526029 A JP 2014526029A JP 2014527126 A JP2014527126 A JP 2014527126A JP 2014527126 A JP2014527126 A JP 2014527126A JP 2014526029 A JP2014526029 A JP 2014526029A
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- air
- combustor
- annular cylindrical
- combustion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 claims abstract description 44
- 238000002485 combustion reaction Methods 0.000 claims abstract description 30
- 238000002156 mixing Methods 0.000 claims abstract description 6
- 238000010248 power generation Methods 0.000 claims abstract description 5
- 239000007789 gas Substances 0.000 claims description 22
- 239000000203 mixture Substances 0.000 claims description 12
- 238000001816 cooling Methods 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 8
- 239000000376 reactant Substances 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims 2
- 239000000956 alloy Substances 0.000 claims 1
- 229910045601 alloy Inorganic materials 0.000 claims 1
- 229910002092 carbon dioxide Inorganic materials 0.000 claims 1
- 239000001569 carbon dioxide Substances 0.000 claims 1
- 229910010293 ceramic material Inorganic materials 0.000 claims 1
- 239000000112 cooling gas Substances 0.000 claims 1
- 238000009760 electrical discharge machining Methods 0.000 claims 1
- 239000003344 environmental pollutant Substances 0.000 abstract description 3
- 231100000719 pollutant Toxicity 0.000 abstract description 3
- 230000009467 reduction Effects 0.000 abstract description 2
- 230000001629 suppression Effects 0.000 abstract 1
- 238000011144 upstream manufacturing Methods 0.000 description 6
- 238000010790 dilution Methods 0.000 description 5
- 239000012895 dilution Substances 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000000567 combustion gas Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 230000001141 propulsive effect Effects 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
- F23R3/34—Feeding into different combustion zones
- F23R3/346—Feeding into different combustion zones for staged combustion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/42—Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
- F23R3/44—Combustion chambers comprising a single tubular flame tube within a tubular casing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/42—Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
- F23R3/58—Cyclone or vortex type combustion chambers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/42—Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
- F23R3/50—Combustion chambers comprising an annular flame tube within an annular casing
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
推進力の生成または発電のための軸の回転を行うためにガス・タービン・エンジンで使用される燃焼装置は、燃料および空気の入口通路およびノズルのシステムを備えた環状筒型の燃焼器を備え、燃料および空気の最適な燃焼環境をもたらす。燃料、空気、および/または、燃料空気は、様々な前後方向位置に配置され、かつ、円周方向に分配され、円筒ライナの接線方向または略接線方向に流れを向けさせる。燃焼装置は、燃料と空気との最適な混合をもたらし、汚染物質の排出を減らせる燃焼環境を作り出し、高価な汚染物質抑制装置に対する必要性を小さくし、点火および火炎の安定性を高め、パイロットの問題を小さくし、振動の低減を改善する。Combustion devices used in gas turbine engines to generate shafts for propulsion generation or power generation include an annular cylindrical combustor with a fuel and air inlet passage and nozzle system. Providing an optimal combustion environment for fuel and air. Fuel, air, and / or fuel air are arranged at various longitudinal positions and distributed circumferentially to direct flow in a tangential or substantially tangential direction of the cylindrical liner. Combustion devices provide optimal mixing of fuel and air, create a combustion environment that can reduce pollutant emissions, reduce the need for expensive pollutant suppression devices, increase ignition and flame stability, and pilot To reduce the problem and improve the vibration reduction.
Description
本発明は、ガス・タービン・エンジンにおいて、燃料空気混合気の燃焼を包含して生成するのを補助する装置に関する。このような装置には、限定はされないが、軍事用および民間用の航空機、発電、および、他のガス・タービンに関連する用途で使用される燃料空気ノズル、燃焼器ライナ、ケーシング、および流れ遷移部品が含まれる。 The present invention relates to an apparatus for assisting in the production of a combustion of a fuel-air mixture in a gas turbine engine. Such devices include, but are not limited to, fuel air nozzles, combustor liners, casings, and flow transitions used in military and civil aircraft, power generation, and other gas turbine related applications. Parts are included.
ガス・タービン・エンジンには、非常に高温、高圧、および高速で流れる燃焼ガスから仕事を引き出す機械装置が含まれる。引き出された仕事は、発電のために発電機を駆動したり、航空機に必要な推進を提供したりするのに使用することができる。一般的なガス・タービン・エンジンは、大気が高圧に圧縮される多段式の圧縮機を備えている。次いで、圧縮された空気は、燃焼器において規定の燃料空気比に混合され、温度が上昇させられる。そして、高温かつ高圧の燃焼ガスは、仕事を引き出すタービンを通じて膨張され、用途に応じて、必要な推進力を提供したり、発電機を駆動したりする。タービンは、一列のブレードおよび一列のベーンからそれぞれが成る1つの段を少なくとも一段備えている。ブレードは、回転するハブ軸に円周方向に配列されており、各ブレードは、高温ガス流の経路に渡る高さを有している。回転しないベーンの各段は、円周方向に配置されており、ベーンもまた高温ガス流の経路を横切って延びている。包含される発明には、燃料および空気を上記の装置に導入するガス・タービン・エンジンの燃焼器および部品が含まれる。 Gas turbine engines include mechanical devices that draw work from combustion gases that flow at very high temperatures, high pressures, and high speeds. The extracted work can be used to drive the generator for power generation or provide the necessary propulsion for the aircraft. A typical gas turbine engine includes a multistage compressor in which the atmosphere is compressed to a high pressure. The compressed air is then mixed in the combustor to a defined fuel / air ratio and the temperature is raised. The high-temperature and high-pressure combustion gas is expanded through a turbine that extracts work, and provides necessary propulsive force or drives a generator depending on the application. The turbine includes at least one stage, each consisting of a row of blades and a row of vanes. The blades are circumferentially arranged on the rotating hub axle, and each blade has a height across the hot gas flow path. The non-rotating vane stages are arranged circumferentially, and the vanes also extend across the hot gas flow path. Included inventions include gas turbine engine combustors and components that introduce fuel and air into the apparatus described above.
ガス・タービン・エンジンの燃焼器部は、筒/管型、環型、および、その2つを組み合わせて形成される環状筒型の燃焼器といった、いくつかの異なるタイプのものであり得る。この構成部品では、圧縮された燃料空気混合気は、燃料空気スワラまたは燃料空気ノズルを通過し、混合気の燃焼反応が起こって高温ガス流を作り出し、その流れは密度が下がって下流へと加速する。筒型の燃焼器は、各ノズルの火炎を分離して含む、円周方向に離間された個別の円筒を典型的には有している。各円筒からの流れは、導管を通じて方向付けられ、第1段のベーンに入る前に、環状の遷移部品で合流される。環型の燃焼器のタイプでは、燃料空気ノズルは、一般的に、円周方向に配分されており、混合気を単体の環状室に導入し、そこで燃焼が行われる。流れは、遷移部品を必要とすることなく、環の下流端から第1段タービンへと単に流出する。最後のタイプの環状筒型の燃焼器の大きな違いは、燃焼器が、各円筒に供給される空気の入った環状のケーシングによって包囲される個別の円筒を有していることである。各タイプとも用途に応じて利点および難点がある。 The combustor section of a gas turbine engine may be of several different types, such as a tube / tube type, a ring type, and an annular tube type combustor formed by combining the two. In this component, the compressed fuel-air mixture passes through a fuel-air swirler or fuel-air nozzle, where the combustion reaction of the mixture occurs to create a hot gas stream that is reduced in density and accelerated downstream. To do. Cylindrical combustors typically have individual circumferentially spaced cylinders that separately contain the flames of each nozzle. The flow from each cylinder is directed through a conduit and merged with an annular transition piece before entering the first stage vane. In the annular combustor type, the fuel air nozzles are generally distributed in the circumferential direction, and the air-fuel mixture is introduced into a single annular chamber where combustion takes place. The flow simply exits from the downstream end of the ring to the first stage turbine without the need for transition components. The major difference between the last type of annular cylinder combustor is that the combustor has individual cylinders surrounded by an annular casing containing air supplied to each cylinder. Each type has advantages and disadvantages depending on the application.
ガス・タービン用の燃焼器では、いくつかの理由のために、燃料空気ノズルが混合気に旋回を与えることが典型的である。理由の1つは、混合を促進させて燃焼を増進させることであり、別の理由は、旋回を加えることで火炎を安定させて火炎が噴き出すのを防止することであり、それにより、燃料空気混合気の燃料をより薄くして排出物を減らすことができる。燃料空気ノズルは、それぞれに旋回羽根を備えた1つから複数の環状の入口など、異なる構成を取ることができる。 In combustors for gas turbines, it is typical for a fuel air nozzle to provide a swirl to the mixture for several reasons. One reason is to promote mixing and enhance combustion, and another reason is to add swirl to stabilize the flame and prevent it from being blown out, so that the fuel air The fuel mixture can be made thinner to reduce emissions. The fuel air nozzle can take different configurations, such as one to multiple annular inlets each with swirl vanes.
他のガス・タービンの構成部品と同様に、燃焼器の材料が溶解するのを防止するための冷却方法の実施が必要とされる。燃焼器を冷却するための典型的な方法は、燃焼器ライナを追加的なオフセットライナで包囲することで実施されるしみ出し冷却である。圧縮機吐出空気は、それら2つのライナの間を通過し、希釈孔および冷却通路を通って高温ガス流通路に入る。この技術は、構成部品から熱を除去するとともに、ライナと燃焼ガスとの間に冷たい空気の薄い境界層膜を形成し、熱のライナへの移動を防ぐ。希釈孔は、ライナにおける軸方向の位置に依存して2つの目的を果たす。すなわち、燃料空気ノズルにより近い希釈孔は、ガスの混合を助けて燃焼を増進させるとともに、未燃焼の空気を燃焼のために供給する。そして、タービンにより近い孔は、高温ガス流を冷却することになり、燃焼器出口の温度プロフィールを操作するように設計することができる。 As with other gas turbine components, it is necessary to implement a cooling method to prevent combustor material from melting. A typical method for cooling the combustor is bleed cooling performed by surrounding the combustor liner with an additional offset liner. The compressor discharge air passes between the two liners and enters the hot gas flow passage through the dilution holes and the cooling passage. This technique removes heat from the component and forms a thin boundary layer film of cold air between the liner and the combustion gas to prevent heat transfer to the liner. The dilution holes serve two purposes depending on the axial position in the liner. That is, the dilution holes closer to the fuel air nozzle aid in gas mixing to enhance combustion and supply unburned air for combustion. The holes closer to the turbine will then cool the hot gas stream and can be designed to manipulate the temperature profile at the combustor outlet.
いくつかの方法および技術がガス・タービン・エンジン用の燃焼器の設計に取り入れられて、燃焼および低排出を改善できることは理解できる。ガス・タービンは、他の電力発電方法よりも汚染物質の生成が少なくなる傾向がある一方で、この分野における改善の余地はまだある。いくつかの国には排出物を規制する政府規則があり、技術はこれらの要件に対応するように向上していく必要がある。 It can be appreciated that several methods and techniques can be incorporated into the design of a combustor for a gas turbine engine to improve combustion and low emissions. While gas turbines tend to produce less pollutants than other power generation methods, there is still room for improvement in this area. Some countries have government regulations that regulate emissions, and technology needs to be improved to meet these requirements.
本発明に関連して、典型的な方法で運転することができる一方で、燃料空気混合気の燃焼で生じる汚染排出物を最小限に抑えることができ、また、直面する他の問題に対処する、新しい改良された燃焼器の設計が提供される。本発明は、前後方向および円周方向における様々な位置で、圧縮機吐出空気および圧縮された燃料を燃焼器へと導く、燃料および空気のノズル、ならびに/または希釈孔を備える典型的な環状筒型の燃焼器から成る。本発明の独自の特徴は、燃料および空気のノズルが、燃焼反応物および生成物の混合を促進させる環境を作り出すような方法で配置されていることである。上流のノズルに主に燃料を噴射させる燃料および空気のノズルと、主に空気を噴射する下流側のノズルの他の組み合わせとを段階分けすることは、燃焼反応物の混合を促進し、NOxの生成を著しく減らす、燃焼領域における特定の酸素濃度を作り出す。この装置では、付着/固定された火炎はなく、むしろ、拡散燃焼が発生する前壁近くの円筒において領域がある。分離された燃料および空気のノズルの新規な構成は、下流で噴射されたり上流で拡散したりする空気が希薄されることになり、そのため、火炎が接する酸素濃度を低減させ、火炎の最高温度を低下させることを意味する。これにより、本発明は排出物を減らすことができることになる。また、燃焼領域の下流への圧縮機吐出空気の導入は、燃焼の間に生成されたいずれのCOも、第1段タービンに入る前に燃やす/消費することができる。実質的に、燃焼器は、ガス・タービンの排出レベルを改善し、それにより、排出制御装置に対する必要性を小さくするとともに、この装置の環境影響を最小とする。この改善に加えて、接線方向に燃える燃料ノズルおよび燃料空気ノズルは、あらゆる初期の火炎の先を各円筒の隣接するバーナ・ノズルへと向かわせることで、燃焼器の点火処理を非常に促進させる。 In connection with the present invention, while being able to operate in a typical manner, the polluting emissions resulting from the combustion of the fuel-air mixture can be minimized and other problems encountered are addressed. A new and improved combustor design is provided. The present invention provides a typical annular cylinder with fuel and air nozzles and / or dilution holes that directs compressor discharge air and compressed fuel to a combustor at various positions in the front-rear and circumferential directions. Composed of a type combustor. A unique feature of the present invention is that the fuel and air nozzles are arranged in such a way as to create an environment that facilitates mixing of the combustion reactants and products. Staged fuel and air nozzles that primarily inject fuel into the upstream nozzles and other combinations of downstream nozzles that primarily inject air facilitates mixing of the combustion reactants and NOx Create a specific oxygen concentration in the combustion zone that significantly reduces production. In this device, there is no attached / fixed flame, rather there is an area in the cylinder near the front wall where diffusion combustion occurs. The new configuration of separated fuel and air nozzles dilutes the air that is injected downstream or diffuses upstream, thus reducing the oxygen concentration with which the flame contacts and increasing the maximum flame temperature. It means to lower. Thereby, this invention can reduce discharge | emission. Also, the introduction of the compressor discharge air downstream of the combustion zone allows any CO generated during combustion to be burned / consumed before entering the first stage turbine. In effect, the combustor improves gas turbine emissions levels, thereby reducing the need for emissions control devices and minimizing the environmental impact of the devices. In addition to this improvement, tangentially burning fuel nozzles and fuel air nozzles greatly accelerate the ignition process of the combustor by directing any initial flame tip to the adjacent burner nozzle of each cylinder. .
図1は、共通の半径で円周方向に離間された円筒1を備えた環状筒型燃焼器の一般的な構成の実例を示し、そのすべての円筒は、円筒形の外側ライナ2と円筒形の内側ライナ3との間で包囲されている。図では、円筒の円周方向のノズル構成も示されている。図2は、円筒をより詳細に示している。円筒ライナ4は、燃料または空気を噴射する燃料/空気ノズル5を備えた円筒容積を形成している。ノズルは、ノズル中心線6と、ノズル中心線6と交差する円筒ライナ4の接線との間で、角度8を形成している。この角度は、ノズルの円周方向を定めている。 FIG. 1 shows an example of the general configuration of an annular cylindrical combustor with cylinders 1 spaced circumferentially at a common radius, all of which are cylindrical outer liner 2 and cylindrical The inner liner 3 is surrounded. The figure also shows a nozzle configuration in the circumferential direction of the cylinder. FIG. 2 shows the cylinder in more detail. The cylindrical liner 4 forms a cylindrical volume with a fuel / air nozzle 5 for injecting fuel or air. The nozzle forms an angle 8 between the nozzle center line 6 and the tangent of the cylindrical liner 4 intersecting the nozzle center line 6. This angle defines the circumferential direction of the nozzle.
図2は、燃料または空気9が角度8で円筒1内に噴射される実例の環状筒型燃焼器の構成における、円筒の一般的な作用も示している。本発明では固定されていない火炎10は、円筒を通って円筒ライナに従う経路11で生じて伝播していく。これらの接線方向に向けられたノズルは、各ノズルからの流れが下流の隣接するノズルと相互作用することになる。この重要な特徴は、あるノズルから方向付けられた火炎が隣接する下流側のノズルで燃料を点火できることで、点火を高め、複数のバーナ・ノズルを点火するという問題を緩和する。 FIG. 2 also shows the general operation of the cylinder in the configuration of an example annular tube combustor in which fuel or air 9 is injected into the cylinder 1 at an angle 8. In the present invention, the flame 10 which is not fixed is generated and propagates in a path 11 which follows the cylindrical liner through the cylinder. These tangentially directed nozzles will cause the flow from each nozzle to interact with an adjacent nozzle downstream. This important feature allows a flame directed from one nozzle to ignite fuel at an adjacent downstream nozzle, enhancing ignition and mitigating the problem of igniting multiple burner nozzles.
図3は、下流部分が除かれた実例の円筒の先頭または上流部分を示す。本発明は、円筒の前後方向に沿って離間された複数のノズルの列を備えることになる。ノズル12、13の各列は、少なくとも1つのノズルを備えてもよく、隣接するノズルの列から円周方向の角度だけずらすことができる。具体的には、前壁15に近い列のノズル12は、全部/大部分が燃料であるものを前述の方法で円筒内に噴射し、これらの噴射の下流のノズル13は、圧縮機吐出空気だけ、または、燃料空気混合気を、同様の方法で円筒内に噴射する。また、円筒は、冷却空気が任意の場所で円筒に入るための、円周方向に離間された孔14または通路のいくつかの列を備えてもよい。 FIG. 3 shows the leading or upstream portion of an example cylinder with the downstream portion removed. The present invention comprises a plurality of nozzle rows spaced along the longitudinal direction of the cylinder. Each row of nozzles 12, 13 may comprise at least one nozzle and can be offset from the row of adjacent nozzles by a circumferential angle. Specifically, the nozzles 12 in the row near the front wall 15 inject all or most of the fuel into the cylinder by the above-described method, and the nozzles 13 downstream of these injections are compressor discharge air. Or a fuel-air mixture is injected into the cylinder in a similar manner. The cylinder may also include several rows of circumferentially spaced holes 14 or passages for cooling air to enter the cylinder anywhere.
図4Aおよび図4Bは円筒の最上流面15を示し、その最上流面は、圧縮機吐出空気が円筒内に入ることができる希釈孔と同様の孔16を備え得る。図5および図6は、ノズルの各組み合わせのノズル12、13が、どのようにして円周方向の角度だけずらされ得るかを示している。異なる列のノズルは、大きな酸素濃度とはならない前壁の近くに燃焼反応の領域を作り出す燃料および空気の個別の噴射を可能にし、これは、実質的に、火炎の最高温度を低下させることになる。前壁に向かって上流を移動する煙ガスは、燃焼生成物により希釈され、燃焼反応物をより低い酸素濃度とさせることができる。段階的な燃料および空気のノズルによって作り出されるこの燃焼環境は、排出物の低減を可能にする。 FIGS. 4A and 4B show the most upstream surface 15 of the cylinder, which may be provided with holes 16 similar to dilution holes through which compressor discharge air can enter the cylinder. FIGS. 5 and 6 show how the nozzles 12, 13 of each nozzle combination can be shifted by a circumferential angle. Different rows of nozzles allow separate injections of fuel and air to create areas of the combustion reaction near the front wall that do not result in large oxygen concentrations, which in effect reduces the maximum flame temperature. Become. Smoke gas moving upstream toward the front wall can be diluted by the combustion products, causing the combustion reactants to have a lower oxygen concentration. This combustion environment created by graded fuel and air nozzles allows for emission reduction.
本発明は、好ましい実施形態を参照しつつ上記で説明された。しかしながら、当業者は、本発明の本質および範囲から逸脱することなく、説明された実施形態において変更および修正が行われ得ることを理解するであろう。例示の目的のために本明細書で選択された実施形態への様々な変更および改良は、当業者には容易に思いつくであろう。このような改良および変更が本発明の精神から逸脱しない範囲において、それら改良および変更は、本発明の範囲内に含まれることが意図されている。 The present invention has been described above with reference to preferred embodiments. However, one of ordinary skill in the art appreciates that changes and modifications can be made in the described embodiments without departing from the spirit and scope of the invention. Various changes and modifications to the embodiments selected herein for purposes of illustration will readily occur to those skilled in the art. To the extent that such improvements and modifications do not depart from the spirit of the invention, they are intended to be included within the scope of the invention.
当業者が本発明を理解して実施できるように明確かつ簡潔な言葉で本発明を十分に説明したが、本発明は以下のように請求される。 Having fully described the invention in clear and concise language so that those skilled in the art may understand and practice the invention, the invention is claimed as follows.
Claims (19)
2つの円筒形のライナの間に包囲された円筒形状の、円周方向に離間された複数の筒状ライナであって、それぞれが複数の接線方向の突出部を備える複数の筒状ライナと、
前記円筒の中心線に垂直な共通の平面に共存し、すべてが高温合金またはセラミック材料製であるライナを備えた、円周方向に離間された燃料空気ノズルと、
を備えることを特徴とする環状筒型燃焼器。 In an annular tube combustor for gas turbines used in power generation applications on the ground, vehicle or aircraft engine applications on the ground or sea,
A plurality of cylindrical liners circumferentially spaced, surrounded by two cylindrical liners, each having a plurality of tangential protrusions;
Circumferentially spaced fuel air nozzles with liners that coexist in a common plane perpendicular to the centerline of the cylinder and are all made of high temperature alloy or ceramic material;
An annular cylindrical combustor comprising:
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2011/048612 WO2013028167A2 (en) | 2011-08-22 | 2011-08-22 | Can-annular combustor with staged and tangential fuel-air nozzles for use on gas turbine engines |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014526029A true JP2014526029A (en) | 2014-10-02 |
JP6086391B2 JP6086391B2 (en) | 2017-03-01 |
Family
ID=47747020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014527126A Active JP6086391B2 (en) | 2011-08-22 | 2011-08-22 | Annular cylindrical combustor with graded and tangential fuel-air nozzles for use in gas turbine engines |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP2748444B1 (en) |
JP (1) | JP6086391B2 (en) |
KR (1) | KR101774093B1 (en) |
CN (1) | CN103998745B (en) |
PL (1) | PL2748444T3 (en) |
RU (1) | RU2611217C2 (en) |
WO (1) | WO2013028167A2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10139111B2 (en) * | 2014-03-28 | 2018-11-27 | Siemens Energy, Inc. | Dual outlet nozzle for a secondary fuel stage of a combustor of a gas turbine engine |
FR3032781B1 (en) * | 2015-02-17 | 2018-07-06 | Safran Helicopter Engines | CONSTANT VOLUME COMBUSTION SYSTEM FOR AIRCRAFT ENGINE TURBOMACHINE |
CN106439914A (en) * | 2016-11-21 | 2017-02-22 | 深圳智慧能源技术有限公司 | Combustion chamber of combustion gas turbine |
WO2018090383A1 (en) * | 2016-11-21 | 2018-05-24 | 深圳智慧能源技术有限公司 | Combustion chamber of gas turbine engine, and nozzle thereof |
WO2018090384A1 (en) * | 2016-11-21 | 2018-05-24 | 深圳智慧能源技术有限公司 | Combustion chamber of gas turbine engine |
US11156164B2 (en) | 2019-05-21 | 2021-10-26 | General Electric Company | System and method for high frequency accoustic dampers with caps |
US11174792B2 (en) | 2019-05-21 | 2021-11-16 | General Electric Company | System and method for high frequency acoustic dampers with baffles |
KR102265626B1 (en) * | 2020-09-25 | 2021-06-16 | 박재현 | Sand spray test apparatus |
CN114135901A (en) * | 2021-11-08 | 2022-03-04 | 中国航发四川燃气涡轮研究院 | Ablation-proof flame tube large-hole jet sleeve |
CN114427689B (en) * | 2022-01-20 | 2024-07-12 | 中国空气动力研究与发展中心空天技术研究所 | Disc-shaped rotary detonation combustion chamber capable of realizing supersonic flow field observation |
CN114857617B (en) * | 2022-05-20 | 2023-07-14 | 南昌航空大学 | Support plate flame stabilizer of band saw tooth type groove vortex generator |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02502847A (en) * | 1987-12-28 | 1990-09-06 | サンドストランド・コーポレーション | Combustor for turbines with tangential fuel injection and bender jets |
JPH0375414A (en) * | 1989-08-15 | 1991-03-29 | Nissan Motor Co Ltd | Gas turbine combustor |
US5113647A (en) * | 1989-12-22 | 1992-05-19 | Sundstrand Corporation | Gas turbine annular combustor |
US5609031A (en) * | 1994-12-08 | 1997-03-11 | Rolls-Royce Plc | Combustor assembly |
JP2001241663A (en) * | 2000-02-24 | 2001-09-07 | Capstone Turbine Corp | Multi-stage multi-plane combustion system for gas turbine engine |
JP2003106526A (en) * | 2001-09-27 | 2003-04-09 | Osaka Gas Co Ltd | Gas turbine combustion device and gas turbine therewith |
JP2003329242A (en) * | 2002-05-14 | 2003-11-19 | United Technol Corp <Utc> | Bulkhead panel |
JP2004093076A (en) * | 2002-09-04 | 2004-03-25 | Ishikawajima Harima Heavy Ind Co Ltd | Diffusion combustion type low nox combuster |
JP2004162959A (en) * | 2002-11-11 | 2004-06-10 | Ishikawajima Harima Heavy Ind Co Ltd | Annular type spiral diffusion flame combustor |
US20070119183A1 (en) * | 2005-11-28 | 2007-05-31 | General Electric Company | Gas turbine engine combustor |
JP2007139411A (en) * | 2005-11-15 | 2007-06-07 | General Electric Co <Ge> | Low emission combustor and method for operating it |
JP2007315395A (en) * | 2006-05-27 | 2007-12-06 | Rolls Royce Plc | Method of removing deposit |
WO2008047825A1 (en) * | 2006-10-20 | 2008-04-24 | Ihi Corporation | Gas turbine combustor |
JP2010025538A (en) * | 2008-07-17 | 2010-02-04 | General Electric Co <Ge> | Coanda injection device for low environmental pollution combustor multi-staged axial-directionally |
JP2010243009A (en) * | 2009-04-02 | 2010-10-28 | Ihi Corp | Burner for gas turbine |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4098075A (en) * | 1976-06-01 | 1978-07-04 | United Technologies Corporation | Radial inflow combustor |
IN150349B (en) * | 1978-12-12 | 1982-09-18 | Council Scient Ind Res | |
US4938020A (en) * | 1987-06-22 | 1990-07-03 | Sundstrand Corporation | Low cost annular combustor |
US7052231B2 (en) * | 2003-04-28 | 2006-05-30 | General Electric Company | Methods and apparatus for injecting fluids in gas turbine engines |
US8863528B2 (en) | 2006-07-27 | 2014-10-21 | United Technologies Corporation | Ceramic combustor can for a gas turbine engine |
US8015814B2 (en) * | 2006-10-24 | 2011-09-13 | Caterpillar Inc. | Turbine engine having folded annular jet combustor |
US20100242484A1 (en) * | 2009-03-31 | 2010-09-30 | Baha Mahmoud Suleiman | Apparatus and method for cooling gas turbine engine combustors |
US8904799B2 (en) * | 2009-05-25 | 2014-12-09 | Majed Toqan | Tangential combustor with vaneless turbine for use on gas turbine engines |
US8388307B2 (en) * | 2009-07-21 | 2013-03-05 | Honeywell International Inc. | Turbine nozzle assembly including radially-compliant spring member for gas turbine engine |
-
2011
- 2011-08-22 KR KR1020147007518A patent/KR101774093B1/en active IP Right Grant
- 2011-08-22 EP EP11871243.9A patent/EP2748444B1/en active Active
- 2011-08-22 PL PL11871243T patent/PL2748444T3/en unknown
- 2011-08-22 CN CN201180073013.6A patent/CN103998745B/en active Active
- 2011-08-22 WO PCT/US2011/048612 patent/WO2013028167A2/en active Search and Examination
- 2011-08-22 JP JP2014527126A patent/JP6086391B2/en active Active
- 2011-08-22 RU RU2014110628A patent/RU2611217C2/en active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02502847A (en) * | 1987-12-28 | 1990-09-06 | サンドストランド・コーポレーション | Combustor for turbines with tangential fuel injection and bender jets |
JPH0375414A (en) * | 1989-08-15 | 1991-03-29 | Nissan Motor Co Ltd | Gas turbine combustor |
US5113647A (en) * | 1989-12-22 | 1992-05-19 | Sundstrand Corporation | Gas turbine annular combustor |
US5609031A (en) * | 1994-12-08 | 1997-03-11 | Rolls-Royce Plc | Combustor assembly |
JP2001241663A (en) * | 2000-02-24 | 2001-09-07 | Capstone Turbine Corp | Multi-stage multi-plane combustion system for gas turbine engine |
JP2003106526A (en) * | 2001-09-27 | 2003-04-09 | Osaka Gas Co Ltd | Gas turbine combustion device and gas turbine therewith |
JP2003329242A (en) * | 2002-05-14 | 2003-11-19 | United Technol Corp <Utc> | Bulkhead panel |
JP2004093076A (en) * | 2002-09-04 | 2004-03-25 | Ishikawajima Harima Heavy Ind Co Ltd | Diffusion combustion type low nox combuster |
JP2004162959A (en) * | 2002-11-11 | 2004-06-10 | Ishikawajima Harima Heavy Ind Co Ltd | Annular type spiral diffusion flame combustor |
JP2007139411A (en) * | 2005-11-15 | 2007-06-07 | General Electric Co <Ge> | Low emission combustor and method for operating it |
US20070119183A1 (en) * | 2005-11-28 | 2007-05-31 | General Electric Company | Gas turbine engine combustor |
JP2007315395A (en) * | 2006-05-27 | 2007-12-06 | Rolls Royce Plc | Method of removing deposit |
WO2008047825A1 (en) * | 2006-10-20 | 2008-04-24 | Ihi Corporation | Gas turbine combustor |
JP2010025538A (en) * | 2008-07-17 | 2010-02-04 | General Electric Co <Ge> | Coanda injection device for low environmental pollution combustor multi-staged axial-directionally |
JP2010243009A (en) * | 2009-04-02 | 2010-10-28 | Ihi Corp | Burner for gas turbine |
Also Published As
Publication number | Publication date |
---|---|
EP2748444A2 (en) | 2014-07-02 |
RU2611217C2 (en) | 2017-02-21 |
EP2748444B1 (en) | 2019-02-13 |
KR20140082658A (en) | 2014-07-02 |
EP2748444A4 (en) | 2015-05-27 |
PL2748444T3 (en) | 2019-11-29 |
WO2013028167A2 (en) | 2013-02-28 |
JP6086391B2 (en) | 2017-03-01 |
WO2013028167A3 (en) | 2014-03-20 |
RU2014110628A (en) | 2015-09-27 |
CN103998745B (en) | 2017-02-15 |
KR101774093B1 (en) | 2017-09-12 |
CN103998745A (en) | 2014-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6086391B2 (en) | Annular cylindrical combustor with graded and tangential fuel-air nozzles for use in gas turbine engines | |
CN106796031B (en) | Torch type igniter | |
US8312724B2 (en) | Mixer assembly for a gas turbine engine having a pilot mixer with a corner flame stabilizing recirculation zone | |
JP6110854B2 (en) | Tangential annular combustor with premixed fuel air for use in gas turbine engines | |
JP6086371B2 (en) | Combustion reactant mixing method in annular cylindrical combustor for gas turbine engine | |
US10072846B2 (en) | Trapped vortex cavity staging in a combustor | |
US20110209482A1 (en) | Tangential combustor with vaneless turbine for use on gas turbine engines | |
US9052114B1 (en) | Tangential annular combustor with premixed fuel and air for use on gas turbine engines | |
JP4997018B2 (en) | Pilot mixer for a gas turbine engine combustor mixer assembly having a primary fuel injector and a plurality of secondary fuel injection ports | |
JP2015121399A (en) | Method for operating combustor for gas turbine and combustor for gas turbine | |
US9091446B1 (en) | Tangential and flameless annular combustor for use on gas turbine engines | |
US9181812B1 (en) | Can-annular combustor with premixed tangential fuel-air nozzles for use on gas turbine engines | |
US20180372318A1 (en) | Combustor | |
US8739511B1 (en) | Can-annular combustor with staged and tangential fuel-air nozzles for use on gas turbine engines | |
JP5934795B2 (en) | Annular and flameless annular combustor for use in gas turbine engines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140804 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150629 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150706 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20151001 |
|
RD12 | Notification of acceptance of power of sub attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7432 Effective date: 20151001 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20151002 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151026 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20151104 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20151203 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160105 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160414 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20160714 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170105 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170124 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6086391 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |