JP2014520961A - Steel plate for hot press forming, formed member using the same, and method for producing them - Google Patents

Steel plate for hot press forming, formed member using the same, and method for producing them Download PDF

Info

Publication number
JP2014520961A
JP2014520961A JP2014520100A JP2014520100A JP2014520961A JP 2014520961 A JP2014520961 A JP 2014520961A JP 2014520100 A JP2014520100 A JP 2014520100A JP 2014520100 A JP2014520100 A JP 2014520100A JP 2014520961 A JP2014520961 A JP 2014520961A
Authority
JP
Japan
Prior art keywords
less
excluding
hot press
steel sheet
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014520100A
Other languages
Japanese (ja)
Inventor
キョ−ヨン イ、
ジン−クン オー、
ジョン−サン キム、
テ−キョ ハン、
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Co Ltd
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2014520961A publication Critical patent/JP2014520961A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/02Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
    • B21B1/026Rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/26Special arrangements with regard to simultaneous or subsequent treatment of the material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • Y10T428/12757Fe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]

Abstract

重量%で、C:0.3〜1.0%、Mn:0.01〜4.0%、Si:1.0〜2.0%、Al:0.01〜2.0%、S:0.015%以下、N:0.01%以下、及び残部を含み、残部はFe及びその他不可避な不純物からなる熱間プレス成形用鋼板が提供される。また、上記組成を有する鋼スラブを1100〜1300℃に加熱する段階と、Ar変態点〜950℃で仕上げ熱間圧延する段階と、M〜720℃で巻取する段階とを含むことを特徴とする熱間プレス成形用鋼板の製造方法が提供される。また、上記組成を有し、ベイナイトと残留オーステナイトからなる二相の微細組織を有することを特徴とする熱間プレス成形部材が提供される。さらに、上記組成を有する鋼板をAc点以上の温度で加熱する段階と、上記加熱した鋼板を熱間プレス成形する段階と、20℃/sec以上の冷却速度でM〜550℃の温度まで冷却する段階と、加熱炉でM〜550℃で熱処理する段階とを含むことを特徴とする熱間プレス成形部材の製造方法が提供される。C: 0.3-1.0%, Mn: 0.01-4.0%, Si: 1.0-2.0%, Al: 0.01-2.0%, S: There is provided a steel sheet for hot press forming including 0.015% or less, N: 0.01% or less, and the balance, the balance being Fe and other inevitable impurities. In addition, the method includes a step of heating the steel slab having the above composition to 1100 to 1300 ° C., a step of finish hot rolling at an Ar 3 transformation point to 950 ° C., and a step of winding at M S to 720 ° C. A method for producing a hot-pressed steel sheet is provided. In addition, a hot press-molded member having the above composition and having a two-phase microstructure composed of bainite and retained austenite is provided. Furthermore, the step of heating the steel plate having the above composition at a temperature of Ac 3 point or higher, the step of hot press forming the heated steel plate, and the temperature of M S to 550 ° C. at a cooling rate of 20 ° C./sec or more. comprising the steps of cooling method of hot press forming member, characterized in that it comprises a step of heat treatment at M S to 550 ° C. in a heating furnace is provided.

Description

本発明は熱間プレス成形用鋼板、それを用いた成形部材及びそれらの製造方法に関し、より詳細には、自動車の衝撃部材だけでなく、衝突部材にまで好適に使用可能な、熱間プレス成形後の最終製品の強度及び延性に優れた熱間プレス成形用鋼板、それを用いた成形部材及びそれらの製造方法に関する。   The present invention relates to a steel plate for hot press forming, a forming member using the same, and a method for producing the same, and more specifically, hot press forming that can be suitably used for not only an impact member of an automobile but also a collision member. The present invention relates to a steel plate for hot press forming excellent in the strength and ductility of the final product later, a formed member using the same, and a method for producing them.

最近、自動車の乗客を保護するための安全法規や環境保護のための燃費規制が強化されるにつれ、軽量化に対する社会的な要求が急増している。自動車部品を軽量化するには、剛性と衝突安全性を同時に確保するために高強度鋼板を採用しなければならない。   Recently, as safety laws and regulations for protecting automobile passengers and fuel efficiency regulations for environmental protection have been strengthened, societal demands for weight reduction have increased rapidly. In order to reduce the weight of automobile parts, high-strength steel sheets must be adopted to ensure rigidity and collision safety at the same time.

しかし、自動車鋼板の高強度化は、降伏強度の上昇及び伸び率の減少を必然的に伴うため、成形性が著しく低下するという問題点がある。その上、過度なスプリングバック(spring back)により成形後の部品の寸法変化が発生するなど、形状凍結性も悪くなる。   However, increasing the strength of automobile steel sheets inevitably involves an increase in yield strength and a decrease in elongation, and thus there is a problem that formability is significantly reduced. In addition, the shape freezing property is also deteriorated, for example, the dimensional change of the part after molding occurs due to excessive spring back.

該問題点を解決すべく、フェライト(ferrite)基地にマルテンサイト(martensite)組織を含ませた、抵降伏比特性を有するDP(dual phase)鋼、またはフェライト基地にベイナイト(bainite)及び残留オーステナイト(austenite)相を含ませた、強度−伸び率のバランスに極めて優れたTRIP鋼(Transformation induced plasticity steel)などのような、先端高強度鋼板(AHSS、Advanced high strength steel)が開発され常用化されている。   In order to solve this problem, DP (dual phase) steel having a yield ratio characteristic in which a martensite structure is included in a ferrite base, or bainite and residual austenite (ferrite) in a ferrite base Advanced high strength steel (AHSS, Advanced high strength steel) such as TRIP steel (Transformation induced plasticity steel) that includes an austenite phase and has an excellent balance between strength and elongation has been developed and used. Yes.

しかし、これら鋼板の引張強度は500〜1000MPa水準で、現在求められている自動車の軽量化に符合する剛性及び衝突安定性を満たすには適切ではないという問題があった。   However, the tensile strength of these steel plates is in the range of 500 to 1000 MPa, and there is a problem that they are not suitable for satisfying the rigidity and the collision stability that meet the currently required weight reduction of automobiles.

従って、このような問題点を解決し、1GPa級以上の超高強度自動車部品を提供する方法として、熱間プレス成形(Hot press forming)という成形法が常用化された。該成形方法は、鋼板をブランキング(blanking)した後、Ac点以上のオーステナイト領域まで加熱し、続けて抽出してプレス成形してからダイクエンチ(die quenching)を行うことで、最終的にマルテンサイトあるいはマルテンサイトとベイナイト(bainite)が混在した微細組織を形成させて1GPa以上の超高強度部材を得ることができる上、高温で成形するため、部品の寸法精度も極めて優れる。 Therefore, as a method for solving such problems and providing an ultra-high strength automobile part of 1 GPa class or higher, a molding method called hot press forming has become common. The blanking process is performed by blanking the steel sheet, heating it to an austenite region of Ac 3 points or higher, continuously extracting and press forming, and then performing die quenching to finally obtain martensite. An ultra-high strength member of 1 GPa or more can be obtained by forming a microstructure in which sites or martensite and bainite are mixed, and since the molding is performed at a high temperature, the dimensional accuracy of the parts is extremely excellent.

しかし、このような従来の熱間プレス成形方法では、自動車部品の軽量化に好適な剛性及び衝突安定性は提供できるが、伸び率が10%未満であるため、最終製品の延性が極めて低いという問題があった。即ち、従来の熱間プレス成形法で製造された部品は、自動車の衝撃部材には適用できるが、衝突時に直接的にエネルギーを吸収するため、乗客を保護するための衝突部材には適さないという問題があった。   However, such a conventional hot press molding method can provide rigidity and crash stability suitable for reducing the weight of automobile parts, but because the elongation is less than 10%, the ductility of the final product is extremely low. There was a problem. That is, the parts manufactured by the conventional hot press molding method can be applied to an impact member of an automobile, but absorb energy directly at the time of a collision, so that it is not suitable for a collision member for protecting passengers. There was a problem.

従って、熱間プレス成形部材を自動車の衝突部材にまで好適に適用させるために、熱間プレス成形後の延性に優れた成形部材及びそのための熱間プレス成形用鋼板に対する研究が極めて必要である。   Therefore, in order to suitably apply the hot press-formed member to a collision member of an automobile, research on a formed member having excellent ductility after hot press forming and a steel sheet for hot press forming therefor is extremely necessary.

本発明は、一側面として、優れた強度及び延性を同時に有する熱間プレス成形部材を製造することができる熱間プレス成形用鋼板、それを用いた成形部材及びそれらの製造方法を提供する。   As one aspect, the present invention provides a hot press-formed steel sheet capable of producing a hot press-formed member having excellent strength and ductility at the same time, a formed member using the same, and a method for producing the same.

本発明は重量%で、C:0.3〜1.0%、Mn:0.01〜4.0%、Si:1.0〜2.0%、Al:0.01〜2.0%、S:0.015%以下、N:0.01%以下、及び残部を含み、残部はFe及びその他不可避な不純物からなることを特徴とする熱間プレス成形用鋼板を提供する。   In the present invention, by weight, C: 0.3 to 1.0%, Mn: 0.01 to 4.0%, Si: 1.0 to 2.0%, Al: 0.01 to 2.0% , S: 0.015% or less, N: 0.01% or less, and the balance, wherein the balance is made of Fe and other inevitable impurities.

また、本発明は重量%で、C:0.3〜1.0%、Mn:0.01〜4.0%、Si:1.0〜2.0%、Al:0.01〜2.0%、S:0.015%以下、N:0.01%以下、及び残部を含み、残部はFe及びその他不可避な不純物からなる鋼スラブを1100〜1300℃に加熱する段階と、Ar変態点〜950℃で仕上げ熱間圧延する段階と、M〜720℃で巻取する段階と、を含むことを特徴とする熱間プレス成形用鋼板の製造方法を提供する。 Moreover, this invention is weight%, C: 0.3-1.0%, Mn: 0.01-4.0%, Si: 1.0-2.0%, Al: 0.01-2. 0%, S: not more than 0.015%, N: not more than 0.01%, and the balance, the step of heating the steel slab made of Fe and other inevitable impurities to 1100-1300 ° C., Ar 3 transformation Provided is a method for producing a hot press-formed steel sheet, comprising a step of hot rolling at a point to 950 ° C and a step of winding at M S to 720 ° C.

また、本発明は重量%で、C:0.3〜1.0%、Mn:0.01〜4.0%、Si:1.0〜2.0%、Al:0.01〜2.0%、S:0.015%以下、N:0.01%以下、及び残部を含み、残部はFe及びその他不可避な不純物からなり、ベイナイトと残留オーステナイトからなる二相(dual phase)の微細組織を有することを特徴とする熱間プレス成形部材を提供する。   Moreover, this invention is weight%, C: 0.3-1.0%, Mn: 0.01-4.0%, Si: 1.0-2.0%, Al: 0.01-2. 0%, S: 0.015% or less, N: 0.01% or less, and the balance, which consists of Fe and other inevitable impurities, and has a dual phase microstructure consisting of bainite and residual austenite A hot press-molded member is provided.

また、本発明は重量%で、C:0.3〜1.0%、Mn:0.01〜4.0%、Si:1.0〜2.0%、Al:0.01〜2.0%、S:0.015%以下、N:0.01%以下、及び残部を含み、残部はFe及びその他不可避な不純物からなる鋼板をAc点以上の温度で加熱する段階と、上記加熱した鋼板を熱間プレス成形する段階と、20℃/sec以上の冷却速度でM〜550℃の温度まで冷却する段階と、加熱炉でM〜550℃で熱処理する段階と、を含むことを特徴とする熱間プレス成形部材の製造方法を提供する。 Moreover, this invention is weight%, C: 0.3-1.0%, Mn: 0.01-4.0%, Si: 1.0-2.0%, Al: 0.01-2. 0%, S: 0.015% or less, N: 0.01% or less, and the balance, wherein the balance is a step of heating a steel plate made of Fe and other inevitable impurities at a temperature of Ac 3 or higher, and the above heating A step of hot-pressing the formed steel plate, a step of cooling to a temperature of M S to 550 ° C. at a cooling rate of 20 ° C./sec or more, and a step of heat-treating in a heating furnace at M S to 550 ° C. The manufacturing method of the hot press-molding member characterized by these is provided.

本発明は、強度及び延性に優れた熱間プレス成形用鋼板を提供することができ、それを用いて、微細組織がベイナイトと残留オーステナイトの二相(dual phase)からなり、TS(MPa)*El(%)値が25,000MPa%以上の成形部材を提供することができる。よって、強度だけでなく延性に優れるため、自動車の衝突部材としても好適に使用することができる。   The present invention can provide a steel sheet for hot press forming excellent in strength and ductility, and using this, the microstructure is composed of a dual phase of bainite and retained austenite, and TS (MPa) * A molded member having an El (%) value of 25,000 MPa% or more can be provided. Therefore, since it has excellent ductility as well as strength, it can be suitably used as a collision member for automobiles.

本発明の熱間プレス成形部材の製造過程の概念を時間に対する温度のグラフで示したものである。The concept of the manufacturing process of the hot press molding member of this invention is shown with the graph of the temperature with respect to time. 熱間プレス成形部材の製造方法において、成形後の冷却速度による微細組織を示したもので、(a)は冷却速度が30℃/secの場合で、(b)は冷却速度が5℃/secの場合で、(c)は(b)を拡大した写真である。In the method for producing a hot press-formed member, the microstructure is shown by the cooling rate after molding. (C) is an enlarged photograph of (b).

本発明は、自動車の衝突部材に使用できる、強度及び延性に優れた成形部材を製造するためのもので、成形部材だけでなく、該成形部材の製造に適するように延性に優れた鋼板を提供することにも特徴がある。従って、本発明は、延性に優れた熱間プレス用鋼板及びその製造方法、そして熱間プレス成形部材及びその製造方法の4つのカテゴリーからなる。   The present invention is for producing a molded member having excellent strength and ductility that can be used for a collision member of an automobile, and provides not only a molded member but also a steel plate having excellent ductility so as to be suitable for the production of the molded member. There is also a feature in doing. Therefore, this invention consists of four categories, the steel plate for hot presses excellent in ductility, its manufacturing method, and a hot press molding member, and its manufacturing method.

(熱間プレス成形用鋼板)
以下に、本発明の熱間プレス成形用鋼板について詳しく説明する。
(Hot press forming steel plate)
Below, the hot press-forming steel sheet of the present invention will be described in detail.

上記熱間プレス成形用鋼板は、熱間プレス成形後の最終部材の良好な強度及び延性が確保できるように強度及び延性に優れた鋼板であり、重量%で、C:0.3〜1.0%、Mn:0.01〜4.0%、Si:1.0〜2.0%、Al:0.01〜2.0%、S:0.015%以下、N:0.01%以下、及び残部を含み、残部はFe及びその他不可避な不純物からなることを特徴とする。   The steel sheet for hot press forming is a steel sheet excellent in strength and ductility so that good strength and ductility of the final member after hot press forming can be ensured, and by weight%, C: 0.3-1. 0%, Mn: 0.01 to 4.0%, Si: 1.0 to 2.0%, Al: 0.01 to 2.0%, S: 0.015% or less, N: 0.01% In the following, including the remainder, the remainder consists of Fe and other inevitable impurities.

先ず、炭素(C)は、鋼板の強度を確保するために添加される成分であり、本発明では、Siなどにより残留オーステナイトに拡散して残留オーステナイトを安定化させることで、マルテンサイトへの変態を防止する役割もする。上記Cは0.3〜1.0重量%含まれることが好ましく、0.3%未満では、成形後に残留オーステナイト量が減少して部品の強度及び延性を同時に確保することが困難であり、1.0%を超えると、ベイナイトの変態が格段と遅くなり、パーライトの生成が促進し、却って鋼の物性が低下する問題が生じる。   First, carbon (C) is a component added to ensure the strength of the steel sheet. In the present invention, carbon (C) is transformed into martensite by diffusing into residual austenite with Si or the like and stabilizing the residual austenite. It also plays a role in preventing. C is preferably contained in an amount of 0.3 to 1.0% by weight, and if it is less than 0.3%, the amount of retained austenite decreases after molding, and it is difficult to simultaneously ensure the strength and ductility of the part. If it exceeds 0.0%, the transformation of bainite is remarkably slow, the generation of pearlite is promoted, and on the contrary, the properties of steel are lowered.

マンガン(Mn)は、Feと、鋼の製造工程中に不可避に添加されるSとが結合したFeSによる赤熱脆性を防止するために添加される成分であり、0.01〜4.0%添加されることが好ましい。上記添加量が0.01%未満では、FeSによる赤熱脆性が発生し、上記添加量が4.0%を超えると、ベイナイトの変態速度を遅くして、熱間プレス成形の際、熱処理過程に長時間がかかるため、生産性を阻害するだけでなく、製鋼原価が上昇する。   Manganese (Mn) is a component added to prevent red heat embrittlement by FeS in which Fe and S inevitably added during the manufacturing process of steel are combined, and is added in an amount of 0.01 to 4.0%. It is preferred that When the addition amount is less than 0.01%, red hot brittleness occurs due to FeS, and when the addition amount exceeds 4.0%, the transformation rate of bainite is slowed down during the hot press forming process. Since it takes a long time, it not only hinders productivity but also increases steelmaking costs.

ケイ素(Si)は、本発明による最終製品の延性を確保するための必須成分であり、フェライトの変態を促進し、残留オーステナイトにCを拡散させて残留オーステナイト内の炭素増加による安定化を求めることで、マルテンサイトへの変態を防止する役割をする。上記Siの添加量は1.0〜2.0重量%であることが好ましく、1.0%未満では、上記残留オーステナイトの安定化効果が十分でなく、2.0%を超えると、鋼板の圧延過程でクラックが発生するなど圧延性が低下する問題があるため、上限を2.0%に制限した。   Silicon (Si) is an essential component to ensure the ductility of the final product according to the present invention, promotes the transformation of ferrite, and seeks stabilization by increasing carbon in the retained austenite by diffusing C in the retained austenite. It plays a role in preventing transformation to martensite. The amount of Si added is preferably 1.0 to 2.0% by weight. If the amount is less than 1.0%, the effect of stabilizing the retained austenite is not sufficient. The upper limit was limited to 2.0% because there was a problem that the rollability deteriorated, such as the generation of cracks in the rolling process.

アルミニウム(Al)は、鋼中に存在する酸素を除去して凝固時に非金属介在物が形成されることを防止し、上記SiのようにCの残留オーステナイトへの拡散を促進して残留オーステナイトを安定化させる役割をする。上記Alの添加量は0.01〜2.0%であることが好ましく、0.01%未満では、鋼中の酸素除去に限界があるため、非金属介在物が形成されることを防止することが困難で、2.0%を超えると、製鋼原価が上昇するという問題が生じる。   Aluminum (Al) removes oxygen present in the steel to prevent the formation of non-metallic inclusions during solidification, and promotes diffusion of C into the retained austenite as in the case of Si, thereby reducing the retained austenite. It plays a role of stabilization. The amount of Al added is preferably 0.01 to 2.0%, and if it is less than 0.01%, there is a limit to the removal of oxygen in the steel, thereby preventing the formation of nonmetallic inclusions. However, if it exceeds 2.0%, there is a problem that the cost of steelmaking increases.

硫黄(S)は、鋼の製造工程で不可避に含まれる成分であり、Feと結合してFeSを形成して赤熱脆性の問題を誘発するため、Sの量を可能な限り低く管理することが好ましい。従って、上記硫黄の含量は、0.015%以下に限定することが好ましい。   Sulfur (S) is a component that is unavoidably included in the steel manufacturing process, and combines with Fe to form FeS and induce red hot brittleness problems. Therefore, the amount of S can be managed as low as possible. preferable. Therefore, the sulfur content is preferably limited to 0.015% or less.

窒素(N)は、鋼の製造工程で不可避に含まれる成分であり、可能な限り低く管理することが好ましい。従って、上記窒素の含量は、0.01%以下に限定することが好ましい。   Nitrogen (N) is a component inevitably included in the steel manufacturing process, and is preferably managed as low as possible. Therefore, the nitrogen content is preferably limited to 0.01% or less.

また、上記熱間プレス成形用鋼板は、上記組成だけでなく、Mo:0.5%以下(0は除く)、Cr:1.5%以下(0は除く)、Ni:0.5%以下(0は除く)、Nb:0.005〜0.1%及びV:0.005〜0.1%からなる群より選ばれる1種または2種以上をさらに含むことが好ましい。   The hot-press forming steel sheet has not only the above composition but also Mo: 0.5% or less (excluding 0), Cr: 1.5% or less (excluding 0), Ni: 0.5% or less It is preferable to further include one or more selected from the group consisting of (excluding 0), Nb: 0.005 to 0.1%, and V: 0.005 to 0.1%.

モリブデン(Mo)は、パーライトの生成を抑制するために添加される成分であり、高価であるため、製造原価を考慮すると、0.5重量%以下添加されることが好ましい。   Molybdenum (Mo) is a component added to suppress the formation of pearlite and is expensive. Therefore, in consideration of manufacturing costs, it is preferable to add 0.5% by weight or less.

クロム(Cr)は、フェライトの生成を抑制し、ベイナイトの変態を拡大するために添加される成分であり、1.5重量%を超えて添加されると、Cr炭化物が形成されて固溶C量を減少させる問題があるため、1.5重量%以下添加されることが好ましい。   Chromium (Cr) is a component added to suppress the formation of ferrite and expand the transformation of bainite, and when added in excess of 1.5% by weight, Cr carbide is formed and solid solution C Since there is a problem of reducing the amount, it is preferable to add 1.5% by weight or less.

ニッケル(Ni)は、オーステナイトの分率を増加させ、焼入れ性を向上させるために添加される成分であり、高価であるため、製造原価を考慮すると、0.5重量%以下添加されることが好ましい。   Nickel (Ni) is a component added to increase the fraction of austenite and improve hardenability, and is expensive. Therefore, in consideration of manufacturing costs, it may be added in an amount of 0.5% by weight or less. preferable.

ニオビオム(Nb)は、鋼板の強度を増加させ、結晶粒の微細化及び靭性向上のために添加される成分であり、再加熱過程で結晶粒の成長を抑制して冷却時にオーステナイトがフェライトに変態することを遅延させる役割をする。上記Nbは0.005〜0.1重量%添加されることが好ましく、上記添加量が0.005%未満では、結晶粒の微細化効果を期待することが困難で、0.1%を超えて添加されると、炭窒化物が過度に析出されて鋼板に遅延破壊が発生したり、加工性が低下する問題が生じる恐れがある。   Niobium (Nb) is a component added to increase the strength of the steel sheet, improve the grain refinement and toughness, suppress the crystal grain growth during the reheating process, and transform austenite to ferrite during cooling. It plays a role of delaying. The Nb is preferably added in an amount of 0.005 to 0.1% by weight. If the amount added is less than 0.005%, it is difficult to expect a crystal grain refining effect. If added in such a manner, carbonitrides may be excessively precipitated, causing delayed fracture in the steel sheet, or causing a problem that workability is deteriorated.

バナジウム(V)は、鋼板の強度を上昇させ、結晶粒の微細化及び焼入れ性向上のために添加される成分であり、0.005〜0.1重量%添加されることが好ましい。上記添加量が0.005%未満では、上記効果を達成することができず、上記添加量が0.1%を超えると、炭窒化物が過度に析出されて鋼板に遅延破壊が発生したり、加工性が低下する問題が生じる恐れがある。   Vanadium (V) is a component that is added to increase the strength of the steel sheet, refine crystal grains, and improve hardenability, and is preferably added in an amount of 0.005 to 0.1% by weight. If the addition amount is less than 0.005%, the above effect cannot be achieved. If the addition amount exceeds 0.1%, carbonitrides are excessively precipitated and delayed fracture occurs in the steel sheet. There is a risk that the processability may be lowered.

また、上記熱間プレス成形用鋼板は、B:0.005%以下(0は除く)及びTi:0.06%以下(0は除く)をさらに含むことが好ましい。   Moreover, it is preferable that the steel plate for hot press forming further includes B: 0.005% or less (excluding 0) and Ti: 0.06% or less (excluding 0).

先ず、ホウ素(B)はフェライトの生成を抑制するために添加される成分であり、その添加量が0.005重量%を超えると、Fe、Cと結合して化合物を生成させ、フェライトの生成を却って促進するという問題があるため、0.005重量%以下添加されることが好ましい。   First, boron (B) is a component added to suppress the formation of ferrite. When the added amount exceeds 0.005% by weight, a compound is formed by combining with Fe and C to form ferrite. Therefore, it is preferable to add 0.005% by weight or less.

チタン(Ti)は、上記Bの効果を極大化するために添加される成分であり、鋼内に不純物として存在するNと結合してTiN化合物を生成させることで、BがNと結合してフェライト生成抑制機能が発揮できない状況を防止する役割をする。このような効果はTiを0.06重量%以下添加することで達成することができる。   Titanium (Ti) is a component added in order to maximize the effect of B. By combining with N present as an impurity in the steel to form a TiN compound, B is combined with N. It plays a role in preventing the situation where the ferrite generation suppression function cannot be exhibited. Such an effect can be achieved by adding 0.06% by weight or less of Ti.

一方、上記鋼板は熱延鋼板または冷延鋼板であってもよく、特に、耐食性向上及び表面の酸化物形成を抑制するために冷延鋼板の表面にめっき層が形成されためっき鋼板を使用してもよい。   On the other hand, the steel sheet may be a hot-rolled steel sheet or a cold-rolled steel sheet. In particular, a plated steel sheet having a plated layer formed on the surface of the cold-rolled steel sheet is used in order to improve corrosion resistance and suppress the formation of surface oxides. May be.

このように、本発明の熱間プレス成形用鋼板は、上記組成により優れた強度及び延性を同時に有するため、下記の熱間プレス成形部材の製造時に用いられて、強度及び延性に優れた成形部材を得るのに重要な役割をする。   Thus, since the hot press-forming steel sheet of the present invention has excellent strength and ductility at the same time due to the above composition, it is used in the production of the following hot press-formed members, and is a molded member having excellent strength and ductility. To play an important role.

(熱間プレス成形用鋼板の製造方法)
以下では、本発明の熱間プレス成形用鋼板の製造方法について詳しく説明するが、これは延性に優れた熱間プレス成形部材を得るための好ましい鋼板の製造方法の一例に過ぎない。
(Method for producing hot press-formed steel sheet)
Below, although the manufacturing method of the hot press forming steel plate of this invention is demonstrated in detail, this is only an example of the preferable manufacturing method of the steel plate for obtaining the hot press forming member excellent in ductility.

先ず、本発明の熱間プレス成形用鋼板の製造方法は、重量%で、C:0.3〜1.0%、Mn:0.01〜4.0%、Si:1.0〜2.0%、Al:0.01〜2.0%、S:0.015%以下、N:0.01%以下、及び残部を含み、残部はFe及びその他不可避な不純物からなる鋼スラブを1100〜1300℃に加熱する段階と、Ar変態点〜950℃で仕上げ熱間圧延する段階と、M〜720℃で巻取する段階と、を含む。 First, the manufacturing method of the steel plate for hot press forming of this invention is weight%, C: 0.3-1.0%, Mn: 0.01-4.0%, Si: 1.0-2. 0%, Al: 0.01-2.0%, S: 0.015% or less, N: 0.01% or less, and the balance, including 1100 steel slab made of Fe and other inevitable impurities Heating to 1300 ° C., finishing hot rolling at Ar 3 transformation point to 950 ° C., and winding at M S to 720 ° C.

上記鋼スラブ加熱温度が1100℃未満では、連鋳組織の均質化が十分でなく、仕上げ圧延の際に温度確保が困難であるという問題があり、1300℃を超えると、結晶粒度が増加し、表面酸化が発生して強度が減少したり、表面特性が劣るという問題が発生する恐れがあるため、上記鋼スラブ加熱温度は1100〜1300℃であることが好ましい。また、上記仕上げ圧延温度がAr変態点未満では、二相域で圧延されて混粒が発生し、950℃を超えると、結晶粒が粗大化して圧延時に表面酸化が発生する問題が生じる恐れがあるため、上記仕上げ圧延温度はAr変態点〜950℃であることが好ましい。また、上記巻取温度がM未満では、オーステナイトがマルテンサイトに変態して鋼板の延性を悪化させて熱間巻取操業性を非常に悪くし、720℃を超えると、鋼板の表面に厚い酸化膜が生成され、且つ内部酸化が起こるため、上記巻取温度はM〜720℃であることが好ましい。 When the steel slab heating temperature is less than 1100 ° C., there is a problem that homogenization of the continuous cast structure is not sufficient, and there is a problem that it is difficult to ensure the temperature during finish rolling. When the temperature exceeds 1300 ° C., the crystal grain size increases. The steel slab heating temperature is preferably 1100 to 1300 ° C., because there is a risk that surface oxidation may occur and the strength may decrease or the surface characteristics may be poor. Further, when the finish rolling temperature is lower than the Ar 3 transformation point, rolling is performed in a two-phase region and mixed grains are generated. When the finishing rolling temperature is higher than 950 ° C., the crystal grains are coarsened and surface oxidation may occur during rolling. Therefore, the finish rolling temperature is preferably Ar 3 transformation point to 950 ° C. Further, below the coiling temperature M S, austenite very poor hot winding workability by deteriorating the ductility of the steel sheet was transformed into martensite, it exceeds 720 ° C., thick on the surface of the steel sheet Since the oxide film is generated and internal oxidation occurs, the winding temperature is preferably M S to 720 ° C.

また、本発明の熱間プレス成形用鋼板の製造方法は、重量%で、C:0.3〜1.0%、Mn:0.01〜4.0%、Si:1.0〜2.0%、Al:0.01〜2.0%、S:0.015%以下、N:0.01%以下、及び残部を含み、残部はFe及びその他不可避な不純物からなる鋼スラブを1100〜1300℃に加熱する段階と、Ar変態点〜950℃で仕上げ熱間圧延する段階と、M〜720℃で巻取する段階と、酸洗い処理する段階と、冷間圧延する段階と、750〜900℃で連続焼鈍する段階と、M〜550℃で過時効熱処理を行う段階と、を含んでもよい。 Moreover, the manufacturing method of the steel plate for hot press forming of this invention is weight%, C: 0.3-1.0%, Mn: 0.01-4.0%, Si: 1.0-2. 0%, Al: 0.01-2.0%, S: 0.015% or less, N: 0.01% or less, and the balance, including 1100 steel slab made of Fe and other inevitable impurities Heating to 1300 ° C., finishing hot rolling at Ar 3 transformation point to 950 ° C., winding up at M S to 720 ° C., pickling treatment, cold rolling, A step of continuous annealing at 750 to 900 ° C. and a step of performing an overaging heat treatment at M S to 550 ° C. may be included.

上記酸洗い処理とは、上記加熱及び熱間圧延段階で生成された表面酸化物を除去することである。その後、冷間圧延を施す。上記冷間圧延された鋼板の焼鈍温度が750℃未満では、再結晶が十分に行われず加工性の確保に限界があり、900℃を超えると、設備の限界により加熱ができなくなる。また、上記過時効熱処理温度がM以下では、マルテンサイトが得られ鋼板の強度が高くなりすぎて延性に悪影響を与えるため、熱間プレス成形前のブランク操業時に操業性を劣化させ、550℃を超えると、焼鈍炉のロール表面が劣化して操業性に悪影響を与え、炭化物析出及びベイナイト変態のための過時効帯の機能に合わないという問題がある。 The pickling treatment is to remove the surface oxide generated in the heating and hot rolling steps. Then, cold rolling is performed. When the annealing temperature of the cold-rolled steel sheet is less than 750 ° C., recrystallization is not sufficiently performed, and there is a limit in securing workability, and when it exceeds 900 ° C., heating cannot be performed due to the limit of equipment. Further, the overage heat treatment temperature below M S, since an adverse effect becomes too high strength of the steel sheet martensite obtained in the ductility, deteriorate the operability during blank operation before hot press forming, 550 ° C. If it exceeds 1, the roll surface of the annealing furnace deteriorates, adversely affecting the operability, and there is a problem that the function of the overaging zone for carbide precipitation and bainite transformation is not met.

また、本発明の熱間プレス成形用鋼板の製造方法は、重量%で、C:0.3〜1.0%、Mn:0.01〜4.0%、Si:1.0〜2.0%、Al:0.01〜2.0%、S:0.015%以下、N:0.01%以下、及び残部を含み、残部はFe及びその他不可避な不純物からなる鋼スラブを1100〜1300℃に加熱する段階と、Ar変態点〜950℃で仕上げ熱間圧延する段階と、M〜720℃で巻取する段階と、酸洗い処理する段階と、冷間圧延する段階と、750〜900℃で連続焼鈍する段階と、M〜550℃で過時効熱処理を行う段階と、上記過時効熱処理した鋼板の表面に溶融亜鉛めっき処理、合金化亜鉛めっき処理、電気亜鉛めっき処理または溶融アルミニウムめっき処理のうち何れか一つを行うめっき段階と、を含んでもよい。 Moreover, the manufacturing method of the steel plate for hot press forming of this invention is weight%, C: 0.3-1.0%, Mn: 0.01-4.0%, Si: 1.0-2. 0%, Al: 0.01-2.0%, S: 0.015% or less, N: 0.01% or less, and the balance, including 1100 steel slab made of Fe and other inevitable impurities Heating to 1300 ° C., finishing hot rolling at Ar 3 transformation point to 950 ° C., winding up at M S to 720 ° C., pickling treatment, cold rolling, A step of continuous annealing at 750 to 900 ° C., a step of performing an overaging heat treatment at M S to 550 ° C., and a hot dip galvanizing treatment, an alloyed galvanizing treatment, an electrogalvanizing treatment or the like Plating stage that performs any one of hot-dip aluminum plating treatment And it may include.

上記溶融亜鉛めっき鋼板は、上記冷間圧延した鋼板を亜鉛めっき浴に沈積して製造してもよく、上記合金化亜鉛めっき鋼板は、上記冷間圧延した鋼板をめっき浴沈積後に合金化熱処理を施すことで製造してもよく、上記電気亜鉛めっき鋼板は、上記冷延鋼板を利用して連続電気めっきラインで亜鉛電気めっきまたはZn−Fe電気めっきを行って製造してもよい。また、上記溶融アルミニウムめっき鋼板は、上記冷間圧延した鋼板を750〜900℃に加熱した後、アルミニウムめっき浴に沈積させてから5〜15℃/secの冷却速度で常温まで冷却することで製造することができる。   The hot-dip galvanized steel sheet may be manufactured by depositing the cold-rolled steel sheet in a galvanizing bath. The electrogalvanized steel sheet may be manufactured by performing zinc electroplating or Zn-Fe electroplating on a continuous electroplating line using the cold-rolled steel sheet. The hot-dip aluminum-plated steel sheet is manufactured by heating the cold-rolled steel sheet to 750 to 900 ° C. and then depositing it in an aluminum plating bath and then cooling to room temperature at a cooling rate of 5 to 15 ° C./sec. can do.

また、上記鋼スラブは、Mo:0.5%以下(0は除く)、Cr:1.5%以下(0は除く)、Ni:0.5%以下(0は除く)、Nb:0.005〜0.1%及びV:0.005〜0.1%からなる群より選ばれる1種または2種以上をさらに含むことが好ましく、B:0.005%以下(0は除く)及びTi:0.06%以下(0は除く)をさらに含むことがより好ましい。   The steel slab has Mo: 0.5% or less (excluding 0), Cr: 1.5% or less (excluding 0), Ni: 0.5% or less (excluding 0), Nb: 0.00%. It is preferable to further include one or more selected from the group consisting of 005 to 0.1% and V: 0.005 to 0.1%. B: 0.005% or less (excluding 0) and Ti : More preferably 0.06% or less (excluding 0).

(熱間プレス成形部材)
以下、本発明の熱間プレス成形部材について詳しく説明する。
(Hot press-molded member)
Hereinafter, the hot press-formed member of the present invention will be described in detail.

上記熱間プレス成形部材は、延性に優れた超高強度製品であることを目的とするため、重量%で、C:0.3〜1.0%、Mn:0.01〜4.0%、Si:1.0〜2.0%、Al:0.01〜2.0%、S:0.015%以下、N:0.01%以下、及び残部を含み、残部はFe及びその他不可避な不純物からなり、マルテンサイトが排除され、ベイナイトと残留オーステナイトからなる微細組織を有することが好ましい。   The above hot press-formed member is intended to be an ultra-high strength product excellent in ductility, so that by weight%, C: 0.3-1.0%, Mn: 0.01-4.0% , Si: 1.0-2.0%, Al: 0.01-2.0%, S: 0.015% or less, N: 0.01% or less, and the remainder, Fe and other inevitable It is preferable that it has a fine structure consisting of bainite and retained austenite.

また、上記成形部材は、Mo:0.5%以下(0は除く)、Cr:1.5%以下(0は除く)、Ni:0.5%以下(0は除く)、Nb:0.005〜0.1%及びV:0.005〜0.1%からなる群より選ばれる1種または2種以上をさらに含むことが好ましく、B:0.005%以下(0は除く)及びTi:0.06%以下(0は除く)をさらに含んでもよい。   The molded member has Mo: 0.5% or less (excluding 0), Cr: 1.5% or less (excluding 0), Ni: 0.5% or less (excluding 0), Nb: 0.0. It is preferable to further include one or more selected from the group consisting of 005 to 0.1% and V: 0.005 to 0.1%. B: 0.005% or less (excluding 0) and Ti : It may further contain 0.06% or less (excluding 0).

従来の熱間プレス成形部材は、超高強度を有することを目的としたため、マルテンサイトを必ず含むが、そのために、延性が低下して自動車の衝突部材には適さないという問題があった。よって、本発明は成形部材の微細組織において、マルテンサイトの生成を抑制して残留オーステナイトの量を増加させることで、ベイナイトと残留オーステナイトの二相(dual phase)からなるようにした。   The conventional hot press-formed member is intended to have ultra-high strength, and therefore always includes martensite. However, there is a problem that ductility is lowered and it is not suitable for an automobile collision member. Therefore, in the present invention, in the microstructure of the molded member, the formation of martensite is suppressed and the amount of retained austenite is increased, so that it consists of a dual phase of bainite and retained austenite.

上記組成と微細組織からなる熱間プレス成形部材は、強度及び延性のバランス(balance)に極めて優れるため、TS(引張強度、MPa)*El(伸び率、%)値が25,000以上となり、自動車の衝撃部材だけでなく、衝突部材にも好適に適用できる。   A hot press-molded member having the above composition and a fine structure is extremely excellent in balance between strength and ductility, so that TS (tensile strength, MPa) * El (elongation rate,%) value is 25,000 or more, It can be suitably applied not only to automobile impact members but also to collision members.

(熱間プレス成形部材の製造方法)
以下で、本発明の熱間プレス成形部材の製造方法について詳しく説明する。
(Method for producing hot press-formed member)
Below, the manufacturing method of the hot press molding member of this invention is demonstrated in detail.

上記熱間プレス成形部材の製造方法は、上記鋼板を熱間プレス成形することで、成形後に延性に優れた超高強度自動車部品を提供し、重量%で、C:0.3〜1.0%、Mn:0.01〜4.0%、Si:1.0〜2.0%、Al:0.01〜2.0%、S:0.015%以下、N:0.01%以下、及び残部を含み、残部はFe及びその他不可避な不純物からなる鋼板をAc点以上の温度に加熱する段階と、熱間プレス成形する段階と、20℃/sec以上の冷却速度でM〜550℃まで冷却する段階と、M〜550℃の温度に加熱されている加熱炉で熱処理する段階と、を含む。 The manufacturing method of the hot press-molded member provides an ultra-high-strength automobile part having excellent ductility after forming by hot press-molding the steel sheet, and in weight%, C: 0.3 to 1.0 %, Mn: 0.01 to 4.0%, Si: 1.0 to 2.0%, Al: 0.01 to 2.0%, S: 0.015% or less, N: 0.01% or less , And the balance, wherein the balance is a steel plate made of Fe and other inevitable impurities, a step of heating to a temperature of Ac 3 point or higher, a step of hot press forming, and a cooling rate of 20 ° C./sec or more at a rate of M S. Cooling to 550 ° C. and heat treating in a furnace heated to a temperature of M S to 550 ° C.

また、上記鋼板はMo:0.5%以下(0は除く)、Cr:1.5%以下(0は除く)、Ni:0.5%以下(0は除く)、Nb:0.005〜0.1%及びV:0.005〜0.1%からなる群より選ばれる1種または2種以上をさらに含むことが好ましく、B:0.005%以下(0は除く)及びTi:0.06%以下(0は除く)をさらに含んでもよく、上記鋼板は熱延鋼板、冷延鋼板または冷延鋼板の表面にめっき層が形成されためっき鋼板の一つであってもよい。   Further, the steel sheet has Mo: 0.5% or less (excluding 0), Cr: 1.5% or less (excluding 0), Ni: 0.5% or less (excluding 0), Nb: 0.005 It is preferable to further include one or more selected from the group consisting of 0.1% and V: 0.005 to 0.1%, B: 0.005% or less (excluding 0) and Ti: 0 0.06% or less (excluding 0) may be further included, and the steel sheet may be one of a hot-rolled steel sheet, a cold-rolled steel sheet, or a plated steel sheet in which a plating layer is formed on the surface of the cold-rolled steel sheet.

本発明の上記熱間プレス成形部材の製造方法は、熱間プレス成形後の熱処理段階を従来の方法と異なるように制御することで、従来とは異なる微細組織の構成を有する成形部品を得、その製品の延性を向上させるのに目的がある。即ち、従来においては、超高強度の部品を得ることが最終的な目標であったため、マルテンサイトを主組織として含ませるための熱処理条件を付与したが、本発明者らは、このような従来の技術では優れた延性が得られず、自動車の衝突部材には適用できないという問題があったため、マルテンサイトを排除し、ベイナイトと残留オーステナイトのみからなる組織にするための熱処理条件を付与するに至った。   The method for producing the hot press-formed member of the present invention is to obtain a molded part having a microstructure different from the conventional one by controlling the heat treatment stage after the hot press forming to be different from the conventional method, The purpose is to improve the ductility of the product. That is, in the past, since the ultimate goal was to obtain an ultra-high-strength part, heat treatment conditions were included to include martensite as the main structure. This technology has a problem that excellent ductility cannot be obtained and it cannot be applied to a collision member of an automobile, and therefore, it has led to the application of heat treatment conditions for eliminating martensite and forming a structure composed only of bainite and residual austenite. It was.

先ず、Ac点以上に加熱するのは、オーステナイトへの変態のためであり、その後、オーステナイト領域に加熱された鋼板を熱間プレス成形する過程を経る。 First, Ac is heated to three or more points because of transformation to austenite, and then undergoes a process of hot press forming a steel sheet heated to the austenite region.

また、上記成形後の熱処理条件は、製品の微細組織の構成を決めるのに極めて重要な要素であるが、従来は、プレス成形された製品を直ぐM以下の温度でダイクエンチすることで、最終製品の微細組織にマルテンサイトを主組織として含ませて強度を増加させることが一般的であった。 The heat treatment conditions after the molding is a very important factor in determining the structure of the product microstructure, conventionally, by die quenching at a temperature immediately M S products that are press-formed, final It is common to increase the strength by including martensite as the main structure in the microstructure of the product.

しかし、本発明は、軽量化に好適な強度を保持させながら延性に優れた最終製品を得るために、マルテンサイトを微細組織から排除することを目的とする。従って、成形された製品を直ぐM以下の常温まで冷却させるのではなく、M〜550℃に先ず冷却した後、加熱炉でM〜550℃で熱処理することで、ベイナイトに変態する過程を経る。M以下に冷却されると、マルテンサイトが生成されて延性が低下するという問題があり、550℃を超えると、パーライト相が生じ、鋼の物性が低下する。従って、冷却速度をM〜550℃に制御することで、ベイナイトと残留オーステナイトからなる二相(dual phase)の微細組織を得る。 However, an object of the present invention is to eliminate martensite from the microstructure in order to obtain a final product excellent in ductility while maintaining a strength suitable for weight reduction. Thus, instead of being cooled to below room temperature immediately M S a formed product, after first cooling in the M S to 550 ° C., by heat treatment at M S to 550 ° C. in a heating furnace, the process of transformation to bainite Go through. When cooled below M S, martensite is generated there is a problem that ductility is lowered, if it exceeds 550 ° C., pearlite phase occurs, the physical properties of the steel is lowered. Therefore, by controlling the cooling rate to M S ˜550 ° C., a dual phase microstructure composed of bainite and retained austenite is obtained.

上記過程で生成されたベイナイトにはFeC炭化物が形成されない。これは、上記熱間プレス成形に用いられる鋼の組成にSiなどが十分に添加されて、Cが残留オーステナイトに拡散されるためである。即ち、Cがベイナイトにおいて炭化物を形成するのに用いられず、残留オーステナイトに固溶されて残留オーステナイトを安定化させることで、Mを下げ、後に冷却過程において、マルテンサイトへの変態を防止する役割をする。これにより、最終製品にマルテンサイトに変態されない残留オーステナイトが残存するため、優れた延性を確保することができる。 Fe 3 C carbides are not formed in the bainite produced in the above process. This is because Si or the like is sufficiently added to the composition of the steel used for the hot press forming and C is diffused into the retained austenite. Ie, C can not be used to form carbides in bainite, to stabilize the residual austenite is dissolved in the retained austenite, lowering the M S, in the cooling process after to prevent transformation to martensite To play a role. Thereby, since the retained austenite not transformed into martensite remains in the final product, excellent ductility can be ensured.

このとき、上記冷却速度は20℃/sec以上であることが好ましく、20℃/sec未満の低い速度で冷却すると、パーライト組織に変態しやすいため、最終製品の物性が低下するという問題が生じる恐れがある。即ち、図2の(a)に示されたように、30℃/secで冷却させると、ベイナイト組織が現われるが、図2の(b)及び(c)に示されたように、5℃/secで冷却させると、フェライトとFeCが層状からなるパーライト組織が現われることが分かる。 At this time, the cooling rate is preferably 20 ° C./sec or more, and when cooled at a low rate of less than 20 ° C./sec, since it easily transforms into a pearlite structure, there may be a problem that the physical properties of the final product are deteriorated. There is. That is, as shown in FIG. 2A, when cooled at 30 ° C./sec, a bainite structure appears, but as shown in FIGS. 2B and 2C, 5 ° C. / It can be seen that a pearlite structure in which ferrite and Fe 3 C are layered appears when cooled in sec.

上述した本発明の熱間プレス成形部材の製造過程の一例を、図1に基づいて簡単に説明すると、先ず、鋼板を加熱炉内に注入し、オーステナイトの形成のためにAc点以上の温度に加熱した後、熱間プレス成形を行う。成形後にはパーライトが発生しないように20℃/sec以上の冷却速度で冷却させるが、その冷却温度をM〜550℃にし、同様に加熱炉でM〜550℃で熱処理を行う。これは、ベイナイトへの変態のためのものであり、この過程でCのオーステナイトへの拡散によりMが低くなる。上記の過程により製造された成形製品は、人為的な制御なしに常温まで冷却しても、マルテンサイトに変態せず、ベイナイトと残留オーステナイトの二相の微細組織を得ることができる。 An example of the manufacturing process of the hot press-formed member of the present invention described above will be briefly described with reference to FIG. 1. First, a steel plate is poured into a heating furnace, and a temperature of Ac 3 or higher is used for forming austenite. And then hot press forming. After molding, cooling is performed at a cooling rate of 20 ° C./sec or more so as not to generate pearlite. The cooling temperature is set to M S to 550 ° C., and similarly, heat treatment is performed at M S to 550 ° C. in a heating furnace. This is for the transformation to bainite, M S is lowered by the diffusion of the C in the austenite in the process. Even if the molded product produced by the above process is cooled to room temperature without artificial control, it does not transform into martensite, and a two-phase microstructure of bainite and retained austenite can be obtained.

以下で、実施例を通じて本発明を具体的に説明する。但し、これは本発明をより完全に説明するためのものに過ぎず、下記それぞれの実施例により本発明の権利範囲が制限されるものではない。   Hereinafter, the present invention will be described in detail through examples. However, this is merely for explaining the present invention more completely, and the scope of rights of the present invention is not limited by the following examples.

(実施例)
真空誘導溶解により、表1に示された組成の鋼塊を、厚さ90mm、幅175mmに製造し、1200℃で1時間再加熱を行った後、厚さが3mmになるように熱間圧延した。熱間圧延仕上げ温度はAr変態点以上にし、冷却後、600℃に予め加熱された加熱炉に装入して1時間保持してから炉冷させることで熱延巻取をシミュレーションし、熱間圧延した板材をさらに60%の圧下率で冷間圧延して1.2mmにした後、900℃で焼鈍を施した。次いで、400℃でベイナイト変態を行った。下記成分の単位はwt%で、S、Nの単位はppmである。
(Example)
A steel ingot having the composition shown in Table 1 is manufactured to a thickness of 90 mm and a width of 175 mm by vacuum induction melting, reheated at 1200 ° C. for 1 hour, and then hot rolled to a thickness of 3 mm. did. The hot rolling finish temperature is set to the Ar 3 transformation point or higher, and after cooling, it is charged into a heating furnace preheated to 600 ° C., held for 1 hour, and then cooled in the furnace to simulate hot rolling and heat The cold-rolled sheet was further cold-rolled at a reduction rate of 60% to 1.2 mm, and then annealed at 900 ° C. Subsequently, bainite transformation was performed at 400 degreeC. The unit of the following components is wt%, and the units of S and N are ppm.

Figure 2014520961
Figure 2014520961

上記のような方法で製造された1.2mm鋼材を利用して、熱間プレス成形工程の加熱炉熱処理シミュレーションのために900℃に加熱し、30秒間保持してから30℃/秒の冷却速度で冷却して加熱炉に投入し、冷却温度と同様の温度で400〜10800秒間熱処理を行い、空冷して熱間プレス成形部品を得た。上記工程条件と最終製品の機械的性質を表2に示した。   Using 1.2 mm steel manufactured by the above method, heat to 900 ° C for simulation of heat treatment in the hot press forming process, hold for 30 seconds, and then cool at 30 ° C / second Then, it was put into a heating furnace, heat-treated at a temperature similar to the cooling temperature for 400 to 10800 seconds, and air-cooled to obtain a hot press-formed part. The process conditions and the mechanical properties of the final product are shown in Table 2.

Figure 2014520961
Figure 2014520961

先ず、比較鋼1において、冷却速度が400℃の場合は、TS*El値が16785MPa%と低くて自動車の衝突部材としては適さないことが分かる。これは、組成に、Cが十分に含まれず、残留オーステナイトの安定化がうまく行われなかったためであると分析でき、また、冷却速度を250℃にした場合は、M以下に冷却されてマルテンサイトに多く変態することにより、引張強度は相当高いが、伸び率が極めて低くてTS*El値が9066MPa%で、自動車の衝突部材としてはより適さない性質を有する。 First, in the comparative steel 1, when the cooling rate is 400 ° C., it can be seen that the TS * El value is as low as 16785 MPa%, which is not suitable as an automobile collision member. This can be analyzed because the composition does not contain enough C and the retained austenite has not been stabilized well, and when the cooling rate is 250 ° C., it is cooled to below M 2 S and martensite. By transformation to many sites, the tensile strength is quite high, but the elongation is extremely low and the TS * El value is 9066 MPa%, which makes it less suitable as a collision member for automobiles.

そして、比較鋼2においても、Cが十分でなく、Siも足りないため、残留オーステナイトの安定化がうまく行われず、冷却温度もM以下であり、マルテンサイトへの変態が行われて伸び率が極めて低くてTS*El値が10150MPa%と良くないものと分析できる。また、比較鋼3においても、Cが十分でなく、冷却温度もM以下であり、TS*El値が8940MPa%であるため、自動車の衝突部材としては適さないことが分かる。 Also in Comparative Steel 2, because C is not sufficient, not enough even Si, not performed well the stabilization of the residual austenite, the cooling temperature or less M S, elongation percentage being made transformation to martensite Is very low and the TS * El value is 10150 MPa%, which is not good. Also in comparative steels 3, C is not sufficient, the cooling temperature or less M S, since TS * El value is 8940MPa%, it can be seen that unsuitable as a collision member of the motor vehicle.

また、比較鋼4では、Cは十分に添加されたが、Siが足りず、Cの残留オーステナイトへの拡散が十分に行われないため、TS*El値が19216MPa%と他の比較鋼よりは高いものの、依然として25000MPa%を越えず、自動車の衝突部材としては適さないことが分かる。   In Comparative Steel 4, C was sufficiently added, but Si was insufficient, and C was not sufficiently diffused into retained austenite. Therefore, the TS * El value was 19216 MPa%, which was higher than that of other comparative steels. Although it is high, it still does not exceed 25000 MPa%, indicating that it is not suitable as a collision member for automobiles.

また、鋼の組成が本発明の範囲である発明鋼7を、30℃/secで冷却した場合と、5℃/secで冷却した場合とに分けて実験を行ったが、30℃/secで冷却した場合はTS*El値が46923MPa%と高くて自動車の衝突部材に適する性質を有するが、5℃/secで冷却した場合はTS*El値が12480MPa%と低くて自動車の衝突部材に適さなかった。これは、図2に示したように、低い冷却速度によりパーライト組織が生成されて製品の物性が低下したためであると分析できる。   In addition, the inventive steel 7 whose steel composition is within the scope of the present invention was tested separately when cooled at 30 ° C./sec and when cooled at 5 ° C./sec. When cooled, the TS * El value is as high as 46923 MPa% and suitable for automobile collision members, but when cooled at 5 ° C./sec, the TS * El value is as low as 12480 MPa% and suitable for automobile collision members. There wasn't. As shown in FIG. 2, it can be analyzed that a pearlite structure is generated at a low cooling rate and the physical properties of the product are lowered.

Claims (22)

重量%で、C:0.3〜1.0%、Mn:0.01〜4.0%、Si:1.0〜2.0%、Al:0.01〜2.0%、S:0.015%以下、N:0.01%以下、及び残部を含み、残部はFe及びその他不可避な不純物からなることを特徴とする、熱間プレス成形用鋼板。   C: 0.3-1.0%, Mn: 0.01-4.0%, Si: 1.0-2.0%, Al: 0.01-2.0%, S: A steel plate for hot press forming characterized by including 0.015% or less, N: 0.01% or less, and the balance, the balance being made of Fe and other inevitable impurities. Mo:0.5%以下(0は除く)、Cr:1.5%以下(0は除く)、Ni:0.5%以下(0は除く)、Nb:0.005〜0.1%及びV:0.005〜0.1%からなる群より選ばれる1種または2種以上をさらに含むことを特徴とする、請求項1に記載の熱間プレス成形用鋼板。   Mo: 0.5% or less (excluding 0), Cr: 1.5% or less (excluding 0), Ni: 0.5% or less (excluding 0), Nb: 0.005 to 0.1% and The steel sheet for hot press forming according to claim 1, further comprising one or more selected from the group consisting of V: 0.005 to 0.1%. B:0.005%以下(0は除く)及びTi:0.06%以下(0は除く)をさらに含むことを特徴とする、請求項1または2に記載の熱間プレス成形用鋼板。   The steel sheet for hot press forming according to claim 1 or 2, further comprising B: 0.005% or less (excluding 0) and Ti: 0.06% or less (excluding 0). 前記鋼板は熱延鋼板、冷延鋼板または冷延鋼板の表面にめっき層が形成されためっき鋼板の何れか一つであることを特徴とする、請求項1または2に記載の熱間プレス成形用鋼板。   3. The hot press forming according to claim 1, wherein the steel sheet is any one of a hot-rolled steel sheet, a cold-rolled steel sheet, or a plated steel sheet having a plating layer formed on a surface of the cold-rolled steel sheet. Steel plate. 重量%で、C:0.3〜1.0%、Mn:0.01〜4.0%、Si:1.0〜2.0%、Al:0.01〜2.0%、S:0.015%以下、N:0.01%以下、及び残部を含み、残部はFe及びその他不可避な不純物からなる鋼スラブを1100〜1300℃に加熱する段階と、Ar変態点〜950℃で仕上げ熱間圧延する段階と、M〜720℃で巻取する段階と、を含むことを特徴とする、熱間プレス成形用鋼板の製造方法。 C: 0.3-1.0%, Mn: 0.01-4.0%, Si: 1.0-2.0%, Al: 0.01-2.0%, S: 0.015% or less, N: 0.01% or less, and the balance including a balance, the remainder being a steel slab composed of Fe and other inevitable impurities, heated to 1100-1300 ° C., and at an Ar 3 transformation point of 950 ° C. A method for producing a hot press-formed steel sheet, comprising: a step of finish hot rolling and a step of winding at M S to 720 ° C. 前記鋼スラブはMo:0.5%以下(0は除く)、Cr:1.5%以下(0は除く)、Ni:0.5%以下(0は除く)、Nb:0.005〜0.1%及びV:0.005〜0.1%からなる群より選ばれる1種または2種以上をさらに含むことを特徴とする、請求項5に記載の熱間プレス成形用鋼板の製造方法。   The steel slab is Mo: 0.5% or less (excluding 0), Cr: 1.5% or less (excluding 0), Ni: 0.5% or less (excluding 0), Nb: 0.005-0 The method for producing a steel sheet for hot press forming according to claim 5, further comprising one or more selected from the group consisting of 0.1% and V: 0.005 to 0.1%. . 前記鋼スラブはB:0.005%以下(0は除く)及びTi:0.06%以下(0は除く)をさらに含むことを特徴とする、請求項5または6に記載の熱間プレス成形用鋼板の製造方法。   The hot press forming according to claim 5 or 6, wherein the steel slab further includes B: 0.005% or less (excluding 0) and Ti: 0.06% or less (excluding 0). Steel plate manufacturing method. 重量%で、C:0.3〜1.0%、Mn:0.01〜4.0%、Si:1.0〜2.0%、Al:0.01〜2.0%、S:0.015%以下、N:0.01%以下、及び残部を含み、残部はFe及びその他不可避な不純物からなる鋼スラブを1100〜1300℃に加熱する段階と、Ar変態点〜950℃で仕上げ熱間圧延する段階と、M〜720℃で巻取する段階と、酸洗い処理する段階と、冷間圧延する段階と、750〜900℃で連続焼鈍する段階と、M〜550℃で過時効熱処理を行う段階と、を含むことを特徴とする、熱間プレス成形用鋼板の製造方法。 C: 0.3-1.0%, Mn: 0.01-4.0%, Si: 1.0-2.0%, Al: 0.01-2.0%, S: 0.015% or less, N: 0.01% or less, and the balance including a balance, the remainder being a steel slab composed of Fe and other inevitable impurities, heated to 1100-1300 ° C., and at an Ar 3 transformation point of 950 ° C. Finish hot rolling, winding at M S to 720 ° C, pickling, cold rolling, continuous annealing at 750 to 900 ° C, M S to 550 ° C And a step of performing an overaging heat treatment at the step of manufacturing a steel sheet for hot press forming. 前記鋼スラブはMo:0.5%以下(0は除く)、Cr:1.5%以下(0は除く)、Ni:0.5%以下(0は除く)、Nb:0.005〜0.1%及びV:0.005〜0.1%からなる群より選ばれる1種または2種以上をさらに含むことを特徴とする、請求項8に記載の熱間プレス成形用鋼板の製造方法。   The steel slab is Mo: 0.5% or less (excluding 0), Cr: 1.5% or less (excluding 0), Ni: 0.5% or less (excluding 0), Nb: 0.005-0 The method for producing a steel sheet for hot press forming according to claim 8, further comprising one or more selected from the group consisting of 0.1% and V: 0.005 to 0.1%. . 前記鋼スラブはB:0.005%以下(0は除く)及びTi:0.06%以下(0は除く)をさらに含むことを特徴とする、請求項8または9に記載の熱間プレス成形用鋼板の製造方法。   The hot press forming according to claim 8 or 9, wherein the steel slab further includes B: 0.005% or less (excluding 0) and Ti: 0.06% or less (excluding 0). Steel plate manufacturing method. 重量%で、C:0.3〜1.0%、Mn:0.01〜4.0%、Si:1.0〜2.0%、Al:0.01〜2.0%、S:0.015%以下、N:0.01%以下、及び残部を含み、残部はFe及びその他不可避な不純物からなる鋼スラブを1100〜1300℃に加熱する段階と、Ar変態点〜950℃で仕上げ熱間圧延する段階と、M〜720℃で巻取する段階と、酸洗い処理する段階と、冷間圧延する段階と、750〜900℃で連続焼鈍する段階と、M〜550℃で過時効熱処理を行う段階と、前記過時効熱処理した鋼板の表面に溶融亜鉛めっき処理、合金化亜鉛めっき処理、電気亜鉛めっき処理または溶融アルミニウムめっき処理の何れか一つを行うめっき段階と、を含むことを特徴とする、熱間プレス成形用鋼板の製造方法。 C: 0.3-1.0%, Mn: 0.01-4.0%, Si: 1.0-2.0%, Al: 0.01-2.0%, S: 0.015% or less, N: 0.01% or less, and the balance including a balance, the remainder being a steel slab composed of Fe and other inevitable impurities, heated to 1100-1300 ° C., and at an Ar 3 transformation point of 950 ° C. Finish hot rolling, winding at M S to 720 ° C, pickling, cold rolling, continuous annealing at 750 to 900 ° C, M S to 550 ° C And a plating step of performing any one of hot dip galvanizing treatment, alloying galvanizing treatment, electrogalvanizing treatment or hot dip aluminum plating treatment on the surface of the steel sheet subjected to the over aging heat treatment. Of hot-press forming steel sheet, characterized in that Production method. 前記鋼スラブはMo:0.5%以下(0は除く)、Cr:1.5%以下(0は除く)、Ni:0.5%以下(0は除く)、Nb:0.005〜0.1%及びV:0.005〜0.1%からなる群より選ばれる1種または2種以上をさらに含むことを特徴とする、請求項11に記載の熱間プレス成形用鋼板の製造方法。   The steel slab is Mo: 0.5% or less (excluding 0), Cr: 1.5% or less (excluding 0), Ni: 0.5% or less (excluding 0), Nb: 0.005-0 The method for producing a steel sheet for hot press forming according to claim 11, further comprising one or more selected from the group consisting of 0.1% and V: 0.005 to 0.1%. . 前記鋼スラブはB:0.005%以下(0は除く)及びTi:0.06%以下(0は除く)をさらに含むことを特徴とする、請求項11または12に記載の熱間プレス成形用鋼板の製造方法。   The hot press forming according to claim 11 or 12, wherein the steel slab further includes B: 0.005% or less (excluding 0) and Ti: 0.06% or less (excluding 0). Steel plate manufacturing method. 重量%で、C:0.3〜1.0%、Mn:0.01〜4.0%、Si:1.0〜2.0%、Al:0.01〜2.0%、S:0.015%以下、N:0.01%以下、及び残部を含み、残部はFe及びその他不可避な不純物からなり、ベイナイトと残留オーステナイトからなる二相(dual phase)の微細組織を有することを特徴とする、熱間プレス成形部材。   C: 0.3-1.0%, Mn: 0.01-4.0%, Si: 1.0-2.0%, Al: 0.01-2.0%, S: 0.015% or less, N: 0.01% or less, and the balance, Fe is composed of Fe and other inevitable impurities, and has a dual phase microstructure composed of bainite and retained austenite A hot press-formed member. Mo:0.5%以下(0は除く)、Cr:1.5%以下(0は除く)、Ni:0.5%以下(0は除く)、Nb:0.005〜0.1%及びV:0.005〜0.1%からなる群より選ばれる1種または2種以上をさらに含むことを特徴とする、請求項14に記載の熱間プレス成形部材。   Mo: 0.5% or less (excluding 0), Cr: 1.5% or less (excluding 0), Ni: 0.5% or less (excluding 0), Nb: 0.005 to 0.1% and The hot press-formed member according to claim 14, further comprising one or more selected from the group consisting of V: 0.005 to 0.1%. B:0.005%以下(0は除く)及びTi:0.06%以下(0は除く)をさらに含むことを特徴とする、請求項14または15に記載の熱間プレス成形部材。   The hot press-formed member according to claim 14 or 15, further comprising B: 0.005% or less (excluding 0) and Ti: 0.06% or less (excluding 0). TS(MPa)*El(%)値が25,000MPa%以上であることを特徴とする、請求項14または15に記載の熱間プレス成形部材。   The hot press-molded member according to claim 14 or 15, wherein a TS (MPa) * El (%) value is 25,000 MPa% or more. TS(MPa)*El(%)値が25,000MPa%以上であることを特徴とする、請求項16に記載の熱間プレス成形部材。   The hot press-molded member according to claim 16, wherein a TS (MPa) * El (%) value is 25,000 MPa% or more. 重量%で、C:0.3〜1.0%、Mn:0.01〜4.0%、Si:1.0〜2.0%、Al:0.01〜2.0%、S:0.015%以下、N:0.01%以下、及び残部を含み、残部はFe及びその他不可避な不純物からなる鋼板をAc点以上の温度で加熱する段階と、前記加熱した鋼板を熱間プレス成形する段階と、20℃/sec以上の冷却速度でM〜550℃の温度まで冷却する段階と、加熱炉でM〜550℃で熱処理する段階と、を含むことを特徴とする、熱間プレス成形部材の製造方法。 C: 0.3-1.0%, Mn: 0.01-4.0%, Si: 1.0-2.0%, Al: 0.01-2.0%, S: 0.015% or less, N: 0.01% or less, and the balance including a balance, wherein the balance is a step of heating a steel plate made of Fe and other inevitable impurities at a temperature of Ac 3 or higher, and the heated steel plate is hot A step of press molding, a step of cooling to a temperature of M S to 550 ° C. at a cooling rate of 20 ° C./sec or more, and a step of heat treatment at M S to 550 ° C. in a heating furnace, Manufacturing method of hot press-formed member. 前記鋼板はMo:0.5%以下(0は除く)、Cr:1.5%以下(0は除く)、Ni:0.5%以下(0は除く)、Nb:0.005〜0.1%及びV:0.005〜0.1%からなる群より選ばれる1種または2種以上をさらに含むことを特徴とする、請求項19に記載の熱間プレス成形部材の製造方法。   The steel sheet has Mo: 0.5% or less (excluding 0), Cr: 1.5% or less (excluding 0), Ni: 0.5% or less (excluding 0), Nb: 0.005-0. The method for producing a hot press-formed member according to claim 19, further comprising one or more selected from the group consisting of 1% and V: 0.005 to 0.1%. 前記鋼板はB:0.005%以下(0は除く)及びTi:0.06%以下(0は除く)をさらに含むことを特徴とする、請求項19または20に記載の熱間プレス成形部材の製造方法。   The hot-press formed member according to claim 19 or 20, wherein the steel sheet further includes B: 0.005% or less (excluding 0) and Ti: 0.06% or less (excluding 0). Manufacturing method. 前記鋼板は熱延鋼板、冷延鋼板または冷延鋼板の表面にめっき層が形成されためっき鋼板の何れか一つであることを特徴とする、請求項19または20に記載の熱間プレス成形部材の製造方法。   The hot press forming according to claim 19 or 20, wherein the steel sheet is any one of a hot-rolled steel sheet, a cold-rolled steel sheet, or a plated steel sheet having a plating layer formed on a surface of the cold-rolled steel sheet. Manufacturing method of member.
JP2014520100A 2011-07-15 2011-07-15 Steel plate for hot press forming, formed member using the same, and method for producing them Pending JP2014520961A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/005242 WO2013012103A1 (en) 2011-07-15 2011-07-15 Hot press forming steel plate, formed member using same, and method for manufacturing the plate and member

Publications (1)

Publication Number Publication Date
JP2014520961A true JP2014520961A (en) 2014-08-25

Family

ID=47558269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014520100A Pending JP2014520961A (en) 2011-07-15 2011-07-15 Steel plate for hot press forming, formed member using the same, and method for producing them

Country Status (5)

Country Link
US (1) US20140150930A1 (en)
EP (1) EP2733228B1 (en)
JP (1) JP2014520961A (en)
CN (1) CN103687973B (en)
WO (1) WO2013012103A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160078850A (en) * 2014-12-24 2016-07-05 주식회사 포스코 Steel material for heat treating, formed component having extra high strength and high fatigue resistance and method for manufacturing the formed component
WO2017010470A1 (en) * 2015-07-13 2017-01-19 Jfeスチール株式会社 Press forming method and method of manufacturing press-formed component
WO2021141097A1 (en) * 2020-01-09 2021-07-15 日本製鉄株式会社 Hot stamp molded body
KR102658729B1 (en) 2020-01-09 2024-04-22 닛폰세이테츠 가부시키가이샤 hot stamp molding body

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013010946B3 (en) * 2013-06-28 2014-12-31 Daimler Ag Method and plant for producing a press-hardened sheet steel component
JP6327737B2 (en) * 2013-07-09 2018-05-23 国立研究開発法人物質・材料研究機構 Martensitic steel and manufacturing method thereof
MX2016003258A (en) * 2013-09-10 2016-06-07 Kobe Steel Ltd Method for manufacturing press-molded article, and press-molded article.
KR101569508B1 (en) * 2014-12-24 2015-11-17 주식회사 포스코 Hot press formed parts having excellent bendability, and method for the same
MX2018013869A (en) 2016-05-10 2019-03-21 United States Steel Corp High strength steel products and annealing processes for making the same.
US11560606B2 (en) 2016-05-10 2023-01-24 United States Steel Corporation Methods of producing continuously cast hot rolled high strength steel sheet products
KR101858863B1 (en) 2016-12-23 2018-05-17 주식회사 포스코 Hot dip aluminum alloy plated steel material having excellent corrosion resistance and workability
CN106947907B (en) * 2017-03-03 2018-12-07 北京科技大学 A kind of preparation method of graphitized free-machining steel high-speed rod
KR102021200B1 (en) * 2017-06-27 2019-09-11 현대제철 주식회사 Hot stamping product and method of manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006104546A (en) * 2004-10-08 2006-04-20 Nippon Steel Corp High strength automobile member and hot pressing method
JP2007169679A (en) * 2005-12-19 2007-07-05 Kobe Steel Ltd Steel sheet for hot forming having excellent joining strength in spot weld zone and hot formability, and hot formed article
WO2011081392A2 (en) * 2009-12-29 2011-07-07 주식회사 포스코 Zinc-plated steel sheet for hot pressing having outstanding surface characteristics, hot-pressed moulded parts obtained using the same, and a production method for the same
JP2011184758A (en) * 2010-03-09 2011-09-22 Jfe Steel Corp High strength pressed member and method for producing the same
JP2011202205A (en) * 2010-03-24 2011-10-13 Jfe Steel Corp Method for producing ultra-high strength member

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2718332B2 (en) * 1992-09-29 1998-02-25 住友金属工業株式会社 Method for producing high carbon steel strip with good formability
US20040074529A1 (en) * 2002-10-21 2004-04-22 Robert Levy Self-contained and ventilated temporary shelter
PT1790422E (en) * 2004-09-15 2012-05-25 Nippon Steel Corp Process for producing a high-strength part
JP4771745B2 (en) * 2004-10-13 2011-09-14 新日本製鐵株式会社 Steel material for high strength constant velocity joint intermediate shaft and high strength constant velocity joint intermediate shaft
JP4495064B2 (en) * 2005-10-24 2010-06-30 新日本製鐵株式会社 Steel sheet for hot press
KR100840288B1 (en) * 2005-12-26 2008-06-20 주식회사 포스코 Carbon steel sheet superior in formability and manufacturing method thereof
JP5292698B2 (en) * 2006-03-28 2013-09-18 Jfeスチール株式会社 Extremely soft high carbon hot-rolled steel sheet and method for producing the same
KR101133870B1 (en) * 2006-05-10 2012-04-06 수미도모 메탈 인더스트리즈, 리미티드 Hot-pressed steel sheet member and process for production thereof
KR101010971B1 (en) * 2008-03-24 2011-01-26 주식회사 포스코 Steel sheet for forming having low temperature heat treatment property, method for manufacturing the same, method for manufacturing parts using the same and parts manufactured by the method
JP5418047B2 (en) * 2008-09-10 2014-02-19 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
JP4766186B2 (en) * 2009-08-21 2011-09-07 Jfeスチール株式会社 Hot pressed member, steel plate for hot pressed member, method for manufacturing hot pressed member
JP5883351B2 (en) * 2011-06-10 2016-03-15 株式会社神戸製鋼所 Hot press-formed product, manufacturing method thereof, and thin steel plate for hot press forming

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006104546A (en) * 2004-10-08 2006-04-20 Nippon Steel Corp High strength automobile member and hot pressing method
JP2007169679A (en) * 2005-12-19 2007-07-05 Kobe Steel Ltd Steel sheet for hot forming having excellent joining strength in spot weld zone and hot formability, and hot formed article
WO2011081392A2 (en) * 2009-12-29 2011-07-07 주식회사 포스코 Zinc-plated steel sheet for hot pressing having outstanding surface characteristics, hot-pressed moulded parts obtained using the same, and a production method for the same
JP2011184758A (en) * 2010-03-09 2011-09-22 Jfe Steel Corp High strength pressed member and method for producing the same
JP2011202205A (en) * 2010-03-24 2011-10-13 Jfe Steel Corp Method for producing ultra-high strength member

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160078850A (en) * 2014-12-24 2016-07-05 주식회사 포스코 Steel material for heat treating, formed component having extra high strength and high fatigue resistance and method for manufacturing the formed component
KR101665819B1 (en) 2014-12-24 2016-10-13 주식회사 포스코 Steel material for heat treating, formed component having extra high strength and high fatigue resistance and method for manufacturing the formed component
WO2017010470A1 (en) * 2015-07-13 2017-01-19 Jfeスチール株式会社 Press forming method and method of manufacturing press-formed component
JPWO2017010470A1 (en) * 2015-07-13 2017-10-05 Jfeスチール株式会社 Press molding method and manufacturing method of press molded parts
KR20180017162A (en) 2015-07-13 2018-02-20 제이에프이 스틸 가부시키가이샤 Press forming method and method of manufacturing press-formed component
WO2021141097A1 (en) * 2020-01-09 2021-07-15 日本製鉄株式会社 Hot stamp molded body
CN114829651A (en) * 2020-01-09 2022-07-29 日本制铁株式会社 Hot press molded body
CN114829651B (en) * 2020-01-09 2023-05-12 日本制铁株式会社 Hot-pressed molded body
JP7319569B2 (en) 2020-01-09 2023-08-02 日本製鉄株式会社 hot stamped body
KR102658729B1 (en) 2020-01-09 2024-04-22 닛폰세이테츠 가부시키가이샤 hot stamp molding body

Also Published As

Publication number Publication date
US20140150930A1 (en) 2014-06-05
EP2733228B1 (en) 2019-06-19
CN103687973B (en) 2016-08-31
WO2013012103A1 (en) 2013-01-24
EP2733228A4 (en) 2015-08-12
CN103687973A (en) 2014-03-26
EP2733228A1 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
JP6043801B2 (en) Steel plate for warm press forming, warm press forming member, and manufacturing method thereof
JP6474415B2 (en) Steel sheet for hot press-formed product having excellent bendability and ultra-high strength, hot press-formed product using the same, and manufacturing method thereof
JP5042232B2 (en) High-strength cold-rolled steel sheet excellent in formability and plating characteristics, galvanized steel sheet using the same, and method for producing the same
KR101010971B1 (en) Steel sheet for forming having low temperature heat treatment property, method for manufacturing the same, method for manufacturing parts using the same and parts manufactured by the method
JP2014520961A (en) Steel plate for hot press forming, formed member using the same, and method for producing them
JP7150022B2 (en) High-strength steel sheet with excellent workability and its manufacturing method
KR101758567B1 (en) Clad steel sheet having superior strength and formability, and method for manufacturing the same
JP2016504490A (en) High formability ultra-high strength hot-dip galvanized steel sheet and method for producing the same
JPWO2014024831A1 (en) Cold-rolled steel sheet, method for producing the same, and hot stamping molded body
KR20200075991A (en) Cold rolled steel sheet with excellent formability, galvanized steel sheet, and manufacturing method thereof
KR20110119285A (en) Cold rolled steel sheet and zinc plated steel sheet having high strength and manufacturing method thereof
KR20120033008A (en) High strength cold-rolled dual phase steel sheet for automobile with excellent formability and method of manufacturing the cold-rolled multi phase steel sheet
KR101228711B1 (en) Steel for hot press forming, Forming part by using the same and Manufacturing method thereof
JP2019533083A (en) Cold-rolled steel sheet for hot forming excellent in corrosion resistance and spot weldability, hot-formed member, and manufacturing method thereof
CN113403550A (en) High-plasticity fatigue-resistant cold-rolled hot-galvanized DH1180 steel plate and preparation method thereof
KR20140013333A (en) The high strength high manganese steel sheet having excellent bendability and elongation and manufacturing method for the same
KR101778404B1 (en) Clad steel sheet having excellent strength and formability, and method for manufacturing the same
CN107109601B (en) Composite structure steel sheet having excellent formability and method for producing same
JP2022535254A (en) Cold-rolled and coated steel sheet and method for producing same
KR101403262B1 (en) Ultra high strength hot-dip plated steel sheet and method for manufacturing the same
KR20160114019A (en) Hot press forming parts having superior ductility and impact toughness and method for manufacturing the same
KR101024800B1 (en) High strength hot- dip galvanized steel sheet having excellent formability and galvanizing property, and method for producing the same
KR101003254B1 (en) Quenched steel sheet having excellent formability hot press, and method for producing the same
KR20090103619A (en) High-strength steel sheet, and method for producing the same
KR20110124078A (en) Steel for hot press forming, forming part by using the same and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151020