JP2014509048A5 - - Google Patents

Download PDF

Info

Publication number
JP2014509048A5
JP2014509048A5 JP2013552291A JP2013552291A JP2014509048A5 JP 2014509048 A5 JP2014509048 A5 JP 2014509048A5 JP 2013552291 A JP2013552291 A JP 2013552291A JP 2013552291 A JP2013552291 A JP 2013552291A JP 2014509048 A5 JP2014509048 A5 JP 2014509048A5
Authority
JP
Japan
Prior art keywords
group
photovoltaic element
type
organic
photovoltaic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013552291A
Other languages
Japanese (ja)
Other versions
JP6150732B2 (en
JP2014509048A (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/IB2012/050315 external-priority patent/WO2012104742A1/en
Publication of JP2014509048A publication Critical patent/JP2014509048A/en
Publication of JP2014509048A5 publication Critical patent/JP2014509048A5/ja
Application granted granted Critical
Publication of JP6150732B2 publication Critical patent/JP6150732B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (20)

電磁線を電気エネルギーへ変換するための光起電力素子(110)であって、前記の光起電力素子(110)が、少なくとも1つの第1の電極(116)、少なくとも1つのn型半導体の金属酸化物(120)、電磁線を吸収する、少なくとも1つの色素(122)、少なくとも1つの固体のp型有機半導体(126)および少なくとも1つの第2の電極(132)を有し、その際にp型半導体(126)は、酸化物の形の銀を有する、前記の光起電力素子(110)。 A photovoltaic element (110) for converting electromagnetic radiation into electrical energy, wherein the photovoltaic element (110) comprises at least one first electrode (116) and at least one n-type semiconductor. Having a metal oxide (120), at least one dye (122) that absorbs electromagnetic radiation, at least one solid p-type organic semiconductor (126) and at least one second electrode (132), The p-type semiconductor (126) comprises the photovoltaic element (110), comprising silver in the form of an oxide. 前記のp型半導体が、少なくとも1つのp型伝導性有機材料(128)および酸化物の形の銀を少なくとも1つの支持体エレメント上に施すことによって製造可能であるかまたは製造されている、請求項1記載の光起電力素子(110)。 P-type semiconductor of the have been or produced can be prepared by subjecting the form of silver of at least one p-type conducting organic material (128) and the oxide to the at least one support on elements,請 The photovoltaic element (110) according to claim 1. 銀が少なくとも1つの銀(I)塩[Ag+m[Am-]の形で施され、その際に[Am-]は、有機酸のアニオンである、請求項2記載の光起電力素子(110)。 Silver decorated in the form of at least Tsunogin (I) salt [Ag +] m [A m- ], [A m-] At that time, Ru anion der organic acids, the Motomeko 2 wherein Photovoltaic element (110). [Am-]が、式(II)
Figure 2014509048
〔式中、Raは、フルオロ基−Fまたはそのつど少なくとも1個のフルオロ基もしくはシアノ基で置換された、アルキル基、シクロアルキル基、アリール基またはヘテロアリール基であり、
およびXは、−O-または−N-−Rbであり、
およびRbは、フルオロ基−Fまたはシアノ基を含み、
およびRbは、さらに式−S(O)2−の基を含む〕の構造式を有する、請求項3記載の光起電力素子(110)。
[A m− ] is represented by the formula (II)
Figure 2014509048
Wherein, R a is substituted with a fluoro group -F or in each case at least one fluoro group or cyano group, an alkyl group, a cycloalkyl group, an aryl group or a heteroaryl group,
And X, -O - or -N - a -R b,
And R b comprises a fluoro group —F or a cyano group,
And R b further comprises a group of formula —S (O) 2 —].
aが、−F、−CF3、−CF2−CF3および−CH2−CNからなる群から選択されている、請求項4記載の光起電力素子(110)。 The photovoltaic element (110) according to claim 4, wherein R a is selected from the group consisting of -F, -CF 3 , -CF 2 -CF 3 and -CH 2 -CN. Xが、−N-−Rbであり、その際にRbが、−S(O)2−F、−S(O)2−CF3、−S(O)2−CF2−CF3および−S(O)2−CH2−CNからなる群から選択されている、請求項4または5記載の光起電力素子(110)。 X is —N —R b , where R b is —S (O) 2 —F, —S (O) 2 —CF 3 , —S (O) 2 —CF 2 —CF 3. and -S (O) 2 -CH 2 is selected from the group consisting of -CN, claim 4 or 5 photovoltaic device (110) according. [Am-]がビス(トリフルオロメチルスルホニル)イミド(TFSI-)、ビス(トリフルオロエチルスルホニル)イミド、ビス(フルオロスルホニル)イミドおよびトリフルオロメチルスルホネートからなる群から選択されている、請求項3から5までのいずれか1項に記載の光起電力素子(110)。 [A m-] bis (trifluoromethylsulfonyl) imide (TFSI -), bis (trifluoroethyl) imide is selected from bis (fluorosulfonyl) imide and the group consisting of trifluoromethyl sulfonate, billed Item 6. The photovoltaic element (110) according to any one of Items 3 to 5. [Am-]がトリフルオロアセテート基である、請求項3記載の光起電力素子(110)。 The photovoltaic element (110) according to claim 3, wherein [A m- ] is a trifluoroacetate group. [Am-]がNO3 -である、請求項3記載の光起電力素子(110)。 [A m-] is NO 3 - is a photovoltaic device according to claim 3, wherein (110). p型半導体が、少なくとも1つのp型伝導性有機材料(128)および少なくとも1つの銀(I)塩[Ag+m[Am-]を少なくとも1つの支持体エレメント上に施すことによって製造可能であるかまたは製造されており、その際にこの施与は、少なくとも1つのp型伝導性有機材料および少なくとも1つの銀(I)塩[Ag+m[Am-]を含む液相からの析出によって行なわれる、請求項3から8までのいずれか1項に記載の光起電力素子(110)。 A p-type semiconductor can be produced by applying at least one p-type conductive organic material (128) and at least one silver (I) salt [Ag + ] m [A m− ] on at least one support element. Wherein the application is from a liquid phase comprising at least one p-type conducting organic material and at least one silver (I) salt [Ag + ] m [A m− ]. The photovoltaic element (110) according to any one of claims 3 to 8, wherein the photovoltaic element (110) is carried out by precipitation. 前記液相が、さらに少なくとも1つの溶剤、殊に有機溶剤、殊にシクロヘキサノン;クロロベンゼン;ベンゾフラン;シクロペンタノンから選択された溶剤を含む、請求項10記載の光起電力素子(110)。   11. The photovoltaic device (110) according to claim 10, wherein the liquid phase further comprises at least one solvent, in particular an organic solvent, in particular a solvent selected from cyclohexanone; chlorobenzene; benzofuran; cyclopentanone. 少なくともAg+がマトリックス材料(128)中に基本的に均一に分配されている、請求項10記載の光起電力素子(110)。 At least Ag + is essentially uniformly distributed in the matrix material (128), the photovoltaic element Motomeko 10, wherein (110). マトリックス材料(128)が少なくとも1つの低分子p型有機半導体(126)を含む、請求項10または12記載の光起電力素子(110)。   The photovoltaic device (110) of claim 10 or 12, wherein the matrix material (128) comprises at least one small molecule p-type organic semiconductor (126). p型伝導性有機材料(128)がスピロ化合物、殊にスピロ−MeOTAD、および/または構造式
Figure 2014509048
〔式中、
1、A2、A3は、互いに独立して、置換されたかまたは置換されていないアリール基またはヘテロアリール基であり、
1、R2、R3は、互いに独立して、置換基−R、−OR、−NR2、−A4−ORおよび−A4−NR2からなる群から選択されており、
Rは、アルキル、アリールおよびヘテロアリールからなる群から選択されており、
および
4は、アリール基またはヘテロアリール基であり、かつ
nは、式Iでのそれぞれの場合に独立して、0、1、2または3の値であり、
但し、個々の値nの総和は、少なくとも2であり、および基R1、R2およびR3の少なくとも2つは、−ORおよび/または−NR2である〕を有する化合物を含む、請求項2から11までのいずれか1項に記載の光起電力素子(110)。
p-type conductive organic material (128) is a spiro compound, in particular spiro-MeOTAD, and / or structural formula
Figure 2014509048
[Where,
A 1, A 2, A 3 are independently from each other, replacement has been or unsubstituted aryl group or a heteroaryl group,
R 1 , R 2 , R 3 are independently selected from the group consisting of the substituents —R, —OR, —NR 2 , —A 4 —OR and —A 4 —NR 2 ;
R is selected from the group consisting of alkyl, aryl and heteroaryl;
And A 4 is an aryl or heteroaryl group, and n is independently in each case in formula I a value of 0, 1, 2 or 3;
Wherein the sum of the individual values n is at least 2 and at least two of the groups R 1 , R 2 and R 3 are —OR and / or —NR 2 ). The photovoltaic element (110) according to any one of 2 to 11.
さらに少なくとも1つのカプセル化部を含み、このカプセル化部が光起電力素子(110)、殊に電極(116、132)および/またはp型半導体(126)を周囲大気に対して遮蔽するために備えられている、請求項1から14までのいずれか1項に記載の光起電力素子(110)。   It further comprises at least one encapsulating part, which encapsulates the photovoltaic element (110), in particular the electrodes (116, 132) and / or the p-type semiconductor (126), from the ambient atmosphere. 15. The photovoltaic element (110) according to any one of claims 1 to 14, which is provided. 液相が、少なくとも1つの銀(I)塩[Ag+m[Am-]を0.5mM/ml〜50mM/mlの濃度で有する、請求項10または11記載の光起電力素子(110)。 Liquid phase, at least Tsunogin (I) salt [Ag +] m [A m- ] a is closed at a concentration of 0.5mM / ml~50mM / ml, the photovoltaic element according to claim 10 or 11, wherein ( 110). 有機素子に使用するために、殊に請求項1から16までのいずれか1項に記載の光起電力素子(110)に使用するために、固体のp型有機半導体(126)を製造する方法であって、少なくとも1つのp型伝導性有機マトリックス材料(128)および少なくとも酸化物の形の銀が、少なくとも1つの液相から少なくとも1つの支持体エレメント上に施され、その際に[A]-は、有機酸または無機酸のアニオンである、前記方法。 Method for producing a solid p-type organic semiconductor (126) for use in an organic device, in particular for use in a photovoltaic device (110) according to any one of claims 1-16. Wherein at least one p-type conductive organic matrix material (128) and at least silver in the form of an oxide are applied on at least one support element from at least one liquid phase, wherein [A] - is Ru anion der of an organic or inorganic acid, before Symbol methods. 前記液相は、さらに少なくとも1つの溶剤、殊に有機溶剤、殊にシクロヘキサノン;クロロベンゼン;ベンゾフラン;シクロペンタノンから選択された溶剤を含む、請求項17記載の方法。   18. Process according to claim 17, wherein the liquid phase further comprises at least one solvent, in particular an organic solvent, in particular a solvent selected from cyclohexanone; chlorobenzene; benzofuran; cyclopentanone. 前記方法は、少なくとも部分的に酸素不足の雰囲気中で実施される、請求項17または18記載の方法。   19. A method according to claim 17 or 18, wherein the method is performed at least partially in an oxygen-deficient atmosphere. 光起電力素子(110)の製造法であって、この方法の際に少なくとも1つの第1の電極(116)、少なくとも1つのn型半導体の金属酸化物(120)、電磁線を吸収する、少なくとも1つの色素(122)、少なくとも1つの固体のp型有機半導体(126)および少なくとも1つの第2の電極(132)を準備し、その際にp型半導体(126)は、請求項17から19までのいずれか1項に記載の方法により製造される、光起電力素子(110)の製造法。 A method of manufacturing a photovoltaic device (110) , wherein at least one first electrode (116), at least one n-type semiconductor metal oxide (120), electromagnetic radiation is absorbed during the method, 18. At least one dye (122), at least one solid p-type organic semiconductor (126) and at least one second electrode (132) are provided, wherein the p-type semiconductor (126) comprises: produced by the method according to any one of up to 19, preparation of the optical electromotive force element (110).
JP2013552291A 2011-02-01 2012-01-24 Photovoltaic element Expired - Fee Related JP6150732B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11152830 2011-02-01
EP11152830.3 2011-02-01
PCT/IB2012/050315 WO2012104742A1 (en) 2011-02-01 2012-01-24 Photovoltaic element

Publications (3)

Publication Number Publication Date
JP2014509048A JP2014509048A (en) 2014-04-10
JP2014509048A5 true JP2014509048A5 (en) 2015-03-19
JP6150732B2 JP6150732B2 (en) 2017-06-21

Family

ID=46602123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013552291A Expired - Fee Related JP6150732B2 (en) 2011-02-01 2012-01-24 Photovoltaic element

Country Status (7)

Country Link
EP (1) EP2671271A4 (en)
JP (1) JP6150732B2 (en)
KR (1) KR20140007416A (en)
CN (1) CN103443948B (en)
AU (1) AU2012213134B2 (en)
WO (1) WO2012104742A1 (en)
ZA (1) ZA201306535B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5897427B2 (en) * 2012-08-23 2016-03-30 株式会社豊田中央研究所 Dye-sensitized solar cell
JP6578006B2 (en) * 2014-09-29 2019-09-18 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Detector for optically determining the position of at least one object
JP6730037B2 (en) * 2015-01-27 2020-07-29 積水化学工業株式会社 Solar cells and organic semiconductor materials
US20180175222A1 (en) * 2015-07-30 2018-06-21 Sekisui Chemical Co., Ltd. Solar cell and organic semiconductor material
DE102015121844A1 (en) * 2015-12-15 2017-06-22 Osram Oled Gmbh Organic electronic device and use of a fluorinated sulfonimide metal salt
DE102016106917A1 (en) * 2016-04-14 2017-10-19 Osram Oled Gmbh Organic electronic component with carrier generation layer
JP6880748B2 (en) * 2017-01-10 2021-06-02 株式会社リコー Photoelectric conversion element and solar cell
DE102017111425A1 (en) 2017-05-24 2018-11-29 Osram Oled Gmbh Organic electronic component and method for producing an organic electronic component
CN108997384B (en) * 2018-08-28 2020-01-17 清华大学 Spiro-ring silver cluster luminescent cluster compound and preparation method and application thereof
TWI705576B (en) * 2019-05-30 2020-09-21 國立臺灣大學 Perovskite solar cell and method of manufacturing the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1289030A1 (en) * 2001-09-04 2003-03-05 Sony International (Europe) GmbH Doping of a hole transporting material
KR100942038B1 (en) * 2002-04-15 2010-02-11 쇼오트 아게 Organic electro-optical elements and process for producing organic electro-optical elements
US20040096664A1 (en) * 2002-11-19 2004-05-20 Michiya Fujiki Optically active polythiophene aggregate and its preparation
US7816016B1 (en) * 2003-02-13 2010-10-19 E. I. Du Pont De Nemours And Company Electroluminescent iridium compounds and devices made therefrom
EP1513171A1 (en) * 2003-09-05 2005-03-09 Sony International (Europe) GmbH Tandem dye-sensitised solar cell and method of its production
WO2007011741A2 (en) * 2005-07-14 2007-01-25 Konarka Technologies, Inc. Stable organic devices
JP2007035893A (en) * 2005-07-26 2007-02-08 Matsushita Electric Works Ltd Organic power generation element
WO2008018982A2 (en) * 2006-08-03 2008-02-14 North Carolina State University Self-assembled photosynthesis-inspired light harvesting material and solar cells containing the same
JP5167636B2 (en) * 2006-12-21 2013-03-21 セイコーエプソン株式会社 Photoelectric conversion element and electronic device
KR101479803B1 (en) * 2007-07-23 2015-01-06 바스프 에스이 Photovoltaic tandem cell
WO2009070534A1 (en) * 2007-11-28 2009-06-04 Konarka Technologies Gmbh Organic photovoltaic cells comprising a doped metal oxide buffer layer
CN101544845B (en) * 2009-04-27 2012-11-07 中国科学院长春应用化学研究所 Pure organic dye containing conjugated units of different heterocyclic rings and derivatives thereof and application thereof in dye-sensitized solar cell

Similar Documents

Publication Publication Date Title
JP2014509048A5 (en)
Iftikhar et al. Progress on electrolytes development in dye-sensitized solar cells
Wang et al. Cesium lead chloride/bromide perovskite quantum dots with strong blue emission realized via a nitrate-induced selective surface defect elimination process
Xiang et al. Highly air-stable carbon-based α-CsPbI3 perovskite solar cells with a broadened optical spectrum
Yuan et al. Self-assembled high quality CsPbBr3 quantum dot films toward highly efficient light-emitting diodes
Shang et al. Unveiling structurally engineered carrier dynamics in hybrid quasi-two-dimensional perovskite thin films toward controllable emission
Ju et al. Tunable Band Gap and Long Carrier Recombination Lifetime of Stable Mixed CH3NH3Pb x Sn1–x Br3 Single Crystals
Zhang et al. Perovskite CH3NH3PbI3–x Br x Single Crystals with Charge-Carrier Lifetimes Exceeding 260 μs
Levchuk et al. Brightly luminescent and color-tunable formamidinium lead halide perovskite FAPbX3 (X= Cl, Br, I) colloidal nanocrystals
Dualeh et al. Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells
Shekhirev et al. Synthesis of cesium lead halide perovskite quantum dots
Noel et al. Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic–inorganic lead halide perovskites
Yang et al. Shape-controlled micro/nanostructures of 9, 10-diphenylanthracene (DPA) and their application in light-emitting devices
CN106025067B (en) A kind of solwution method generates film build method and its device application of perovskite thin film
JP5106381B2 (en) Dye-sensitized photoelectric conversion element
Ding et al. Enhancing the phase stability of inorganic α-CsPbI3 by the bication-conjugated organic molecule for efficient perovskite solar cells
Das et al. Bacteriorhodopsin enhances efficiency of perovskite solar cells
Thambidurai et al. Dye-sensitized ZnO nanorod based photoelectrochemical solar cells with natural dyes extracted from Ixora coccinea, Mulberry and Beetroot
Tanaka et al. Long-term durability and degradation mechanism of dye-sensitized solar cells sensitized with indoline dyes
CN109411607A (en) Solar battery and preparation method thereof and the method for improving calcium titanium ore bed transmission characteristic
CN106252511B (en) Photo-electric conversion element and its manufacturing method
JP6278504B2 (en) Novel compound and photoelectric conversion element using the same
Adel et al. Effect of polymer electrolyte on the performance of natural dye sensitized solar cells
Zhang et al. Molecular engineering of the lead iodide perovskite surface: case study on molecules with pyridyl groups
Yan et al. CsPbBr 3 quantum dots photodetectors boosting carrier transport via molecular engineering strategy