JP2014505917A - 3dヒューマンマシンインターフェースのためのハイブリッドリアリティ - Google Patents

3dヒューマンマシンインターフェースのためのハイブリッドリアリティ Download PDF

Info

Publication number
JP2014505917A
JP2014505917A JP2013542078A JP2013542078A JP2014505917A JP 2014505917 A JP2014505917 A JP 2014505917A JP 2013542078 A JP2013542078 A JP 2013542078A JP 2013542078 A JP2013542078 A JP 2013542078A JP 2014505917 A JP2014505917 A JP 2014505917A
Authority
JP
Japan
Prior art keywords
image
virtual
real
plane
parallax
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013542078A
Other languages
English (en)
Other versions
JP5654138B2 (ja
Inventor
ジャン、シュエルイ
ビ、ニン
チ、インギョン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of JP2014505917A publication Critical patent/JP2014505917A/ja
Application granted granted Critical
Publication of JP5654138B2 publication Critical patent/JP5654138B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/006Mixed reality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/156Mixing image signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Graphics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Processing Or Creating Images (AREA)

Abstract

3次元(3D)混合リアリティシステムが、たとえば3Dカメラによってキャプチャされた現実3D画像またはビデオをコンピュータまたは他の機械によってレンダリングされた仮想3D画像と組み合わせて、3D混合リアリティ画像またはビデオをレンダリングする。3Dカメラは、共通のシーンの2つの別個の画像(左側および右側)を取得し、その2つの別個の画像を重畳して、3D深度効果をもつ現実画像を作り出すことができる。3D混合リアリティシステムは、現実3D画像についてのゼロ視差平面までの距離を決定し、ゼロ視差平面までの距離に基づいて射影行列に関する1つまたは複数のパラメータを決定し、射影行列に基づいて仮想3Dオブジェクトをレンダリングし、混合リアリティ3D画像を生成するために現実画像と仮想3Dオブジェクトとを組み合わせることができる。

Description

本出願は、その内容全体が参照により本明細書に組み込まれる、2010年12月3日に出願された米国仮出願第61/419,550号の利益を主張する。
本開示は、一般にマルチメディアデータの処理およびレンダリングに関し、より詳細には、仮想オブジェクトと現実オブジェクトの両方を有する3次元(3D)ピクチャおよびビデオデータの処理およびレンダリングに関する。
ステレオビデオ処理の計算の複雑さは、3次元(3D)グラフィックスのレンダリングにおいて、特に、低電力デバイスまたはリアルタイム設定における3Dシーンの可視化において、重要な考慮事項である。一般に、ステレオ対応ディスプレイ(たとえば、裸眼立体視(auto-stereoscopic)ディスプレイまたは立体視(stereoscopic)ディスプレイ)上での3Dグラフィックスのレンダリングの難しさは、ステレオビデオ処理の計算の複雑さに起因し得る。
計算の複雑さは、現実オブジェクト(real objects)と仮想オブジェクト(virtual objects)の両方を備えた混合リアリティシーン(mixed reality scenes)を生成する、リアルタイムハイブリッドリアリティビデオデバイスの場合、特に重要な考慮事項となり得る。混合リアリティ3Dシーンの可視化は、ビデオゲーム、ユーザインターフェース、および他の3Dグラフィックスアプリケーションなどの多くのアプリケーションにおいて有用であり得る。低電力デバイスの計算リソースが限られていることにより、3Dグラフィックスのレンダリングは過度に時間のかかるルーチンになる可能性があり、時間のかかるルーチンは、一般にリアルタイムアプリケーションに適合しない。
3次元(3D)混合リアリティは、たとえば3Dカメラによってキャプチャされた現実3D画像またはビデオを、コンピュータまたは他の機械によってレンダリングされた仮想3D画像と組み合わせる。3Dカメラは、共通のシーンの2つの別個の画像(たとえば、左側および右側)を取得し、該2つの別個の画像を重畳して、3D深度効果をもつ現実画像を作成することができる。仮想3D画像は、一般に、カメラによって取得された画像から生成されるのではなく、OpenGLなどのコンピュータグラフィックスプログラムによって描かれる。現実3D画像と仮想3D画像の両方を組み合わせる混合リアリティシステムを用いると、ユーザは、コンピュータによって描かれた仮想オブジェクトと3Dカメラによってキャプチャされた現実オブジェクトの両方から構成された空間に没入しているように感じることができる。本開示では、計算効率の良い方法で混合シーンを生成するためのものとし得る技法について説明する。
一例では、方法は、現実3次元(3D)画像についてのゼロ視差(zero disparity)平面までの距離を決定することと、ゼロ視差平面までの距離に少なくとも部分的に基づいて射影行列(projection matrix)に関する1つまたは複数のパラメータを決定することと、射影行列に少なくとも部分的に基づいて仮想3Dオブジェクトをレンダリングすることと、混合リアリティ3D画像を生成するために現実画像と仮想オブジェクトとを組み合わせることとを含む。
別の例では、3次元(3D)ビデオデータを処理するためのシステムは、現実3D画像ソースであって、現実画像ソースが、キャプチャされた3D画像についてのゼロ視差平面までの距離を決定するように構成された、現実3D画像ソースと、ゼロ視差平面までの距離に少なくとも基づいて射影行列に関する1つまたは複数のパラメータを決定し、射影行列に少なくとも部分的に基づいて仮想3Dオブジェクトをレンダリングするように構成された仮想画像ソースと、混合リアリティ3D画像を生成するために現実画像と仮想オブジェクトとを組み合わせるように構成された混合シーン合成ユニットとを含む。
別の例では、装置は、現実3次元(3D)画像についてのゼロ視差平面までの距離を決定するための手段と、ゼロ視差平面までの距離に少なくとも部分的に基づいて射影行列に関する1つまたは複数のパラメータを決定するための手段と、射影行列に少なくとも部分的に基づいて仮想3Dオブジェクトをレンダリングするための手段と、混合リアリティ3D画像を生成するために現実画像と仮想オブジェクトとを組み合わせるための手段とを含む。
本開示で説明する技法は、ハードウェア、ソフトウェア、ファームウェア、またはそれらの任意の組合せで実装され得る。ハードウェアで実装する場合、装置は、集積回路、プロセッサ、ディスクリート論理、またはそれらの任意の組合せとして実現され得る。ソフトウェアで実装する場合、ソフトウェアは、マイクロプロセッサ、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、またはデジタル信号プロセッサ(DSP)など、1つまたは複数のプロセッサで実行され得る。本技法を実行するソフトウェアは、最初にコンピュータ可読媒体に記憶され、プロセッサにロードされて実行され得る。
したがって、別の例では、非一時的コンピュータ可読記憶媒体は、1つまたは複数のプロセッサによって実行されたときに、1つまたは複数のプロセッサに現実3次元(3D)画像についてのゼロ視差平面までの距離を決定することと、ゼロ視差平面までの距離に少なくとも部分的に基づいて射影行列に関する1つまたは複数のパラメータを決定することと、射影行列に少なくとも部分的に基づいて仮想3Dオブジェクトをレンダリングすることと、混合リアリティ3D画像を生成するために現実画像と仮想オブジェクトを組み合わせることとを行わせる1つまたは複数の命令を有形に記憶する。
本開示の1つまたは複数の態様の詳細を添付の図面および以下の説明に記載する。本開示で説明する技法の他の特徴、目的、および利点は、これらの説明および図面、ならびに特許請求の範囲から明らかになろう。
本開示の技法を実行するように構成された例示的なシステムを示すブロック図である。 本開示の技法による、ソースデバイスが宛先デバイスに3次元(3D)画像データを送る例示的なシステムを示すブロック図である。 ピクセルの深度に基づく正の視差値の例を示す概念図である。 ピクセルの深度に基づくゼロ視差値の例を示す概念図である。 ピクセルの深度に基づく負の視差値の例を示す概念図である。 現実シーンの立体視ビューを取得するための2カメラシステムと、得られる3D画像によって包含される視野との概念トップダウン図である。 図4Aに示したものと同じ2カメラシステムの概念側面図である。 仮想ディスプレイシーンの概念トップダウン図である。 図5Aに示したものと同じ仮想ディスプレイシーンの概念側面図である。 混合リアリティシーンをレンダリングするための3D視野角錐体(viewing frustum)を示す3D図である。 図6の視野角錐体の概念トップダウン図である。 本開示の技法を示す流れ図である。
3次元(3D)混合リアリティは、たとえば3Dカメラによってキャプチャされた現実3D画像またはビデオを、コンピュータまたは他の機械によってレンダリングされた仮想3D画像と組み合わせる。3Dカメラは、共通のシーンの2つの別個の画像(たとえば、左側および右側)を取得し、その2つの別個の画像を重畳して、3D深度効果をもつ現実画像を作成することができる。仮想3D画像は、一般に、カメラによって取得された画像から生成されるのではなく、OpenGLなどのコンピュータグラフィックスプログラムによって描かれる。現実3D画像と仮想3D画像の両方を組み合わせる混合リアリティシステムを用いると、ユーザは、コンピュータによって描かれた仮想オブジェクトと3Dカメラによってキャプチャされた現実オブジェクトの両方から構成された空間に没入しているように感じることができる。1ウェイ混合リアリティシーンの一例では、閲覧者(viewer)は、セールスマン(現実オブジェクト)がコンピュータ生成された仮想3D車(仮想オブジェクト)などの仮想オブジェクトと対話するショールームにおいて、そのセールスマンを見ることができる。2ウェイ混合リアリティシーンの一例では、チェスの仮想ゲームなどの仮想ゲームにおいて、第1のコンピュータのところの第1のユーザが第2のコンピュータのところの第2のユーザと対話し得る。2つのコンピュータは、互いに対して遠く離れた物理的ロケーションに位置し得るものであり、インターネットなど、ネットワークを介して接続され得る。3Dディスプレイ上では、第1のユーザは、コンピュータ生成されたチェスボードおよびチェスの駒(仮想オブジェクト)をもつ第2のユーザ(現実オブジェクト)の3Dビデオを見ることができ得る。異なる3Dディスプレイ上で、第2のユーザは、同じコンピュータ生成チェスボード(仮想オブジェクト)をもつ第1のユーザ(現実オブジェクト)の3Dビデオを見ることができ得る。
混合リアリティシステムでは、上述のように、仮想オブジェクトからなる仮想シーンのステレオディスプレイ視差は、現実オブジェクトからなる現実シーンのステレオディスプレイ視差に一致する必要がある。「視差」という用語は、概して、深度などの3D効果をもたらすべき、一方の画像(たとえば、左現実画像)中のピクセルの、他方の画像(たとえば、右現実画像)中の対応するピクセルに対する水平方向オフセットを表す。現実シーンと仮想シーンとの間の視差ずれ(disparity mismatch)は、現実シーンと仮想シーンとが混合リアリティシーンに組み合わされたときに望ましくない効果を引き起こすことがある。たとえば、仮想チェスゲームでは、視差ずれにより、混合シーン中のチェスボード(仮想オブジェクト)が、ユーザ(現実オブジェクト)の前にあるように見えるのではなく、部分的にユーザの後ろにあるように見えるようになるか、またはユーザの中に突き出るように見えるようになることがある。仮想チェスゲームにおける別の例としては、視差ずれにより、チェスの駒(仮想オブジェクト)が正しくないアスペクト比を有し、人間(現実オブジェクト)を備えた混合リアリティシーン中でひずんで見えるようになることがある。
仮想シーンと現実シーンとの視差を一致させることに加えて、現実シーンと仮想シーンとの射影スケールを一致させることも望ましい。射影スケールは、以下でより詳細に説明するように、概して、ディスプレイ平面上に射影されたときの画像のサイズおよびアスペクト比を指す。現実シーンと仮想シーンとの間の射影スケールのミスマッチにより、仮想オブジェクトが現実オブジェクトに対して大きすぎるまたは小さすぎるものになることがあり、または仮想オブジェクトが現実オブジェクトに対してひずんだ形状を有するようになることがある。
本開示の技法は、現実シーンの現実画像と仮想シーンの仮想画像との間の射影スケール一致を達成するためのアプローチと、現実シーンの現実画像と仮想シーンの仮想画像との間の視差スケール一致を達成するためのアプローチとを含む。本技法は、通信ネットワークのアップストリーム方向またはダウンストリーム方向のいずれかにおいて、すなわち、3D画像コンテンツの送信側または3D画像コンテンツの受信側のいずれかによって、計算効率の良い方法で適用され得る。既存のソリューションとは異なり、本開示の技法は、リアルタイムアプリケーションにおける現実シーンと仮想シーンとの間の正しい深度感覚を達成するためにディスプレイチェーンにおいても適用され得る。
本開示で使用する「視差」という用語は、概して、3D効果をもたらすような、一方の画像中のピクセルの、他方の画像中の対応するピクセルに対する水平方向オフセットを表す。本開示で使用する、対応するピクセルとは、概して、3D画像をレンダリングするために左画像と右画像とが合成されるときの3Dオブジェクト中の同じ点に関連するピクセル(左画像中のピクセルおよび右画像中のピクセル)を指す。
画像のステレオペアに関する複数の視差値は、視差マップと呼ばれるデータ構造中に記憶され得る。画像のステレオペアに関連する視差マップは、第1の画像中の所与の(x,y)座標における値dが、第2の画像中の対応するピクセルを見つけるために第2の画像中の座標(x,y)におけるピクセルに適用される必要があるx座標のシフトに対応するような、第1の画像中のピクセル座標(x,y)を視差値(d)にマッッピングする2次元(2D)関数d(x,y)を表す。たとえば、特定の例として、視差マップは、第1の画像中の座標(250,150)におけるピクセルについてのd値6を記憶し得る。この例では、d値6が与えられると、第1の画像中の、クロマ値およびルミナンス値など、ピクセル(250,150)を表すデータが、第2の画像中のピクセル(256,150)において生じる。
図1は、本開示の態様を実装するための例示的なシステムであるシステム110を示すブロック図である。図1に示すように、システム110は、現実画像ソース122と、仮想画像ソース123と、混合シーン合成ユニット(MSSU:mixed scene synthesizing unit)145と、画像ディスプレイ142とを含む。MSSU145は、現実画像ソース122から現実画像を受信し、仮想画像ソース123から仮想画像を受信する。現実画像は、たとえば、3Dカメラによってキャプチャされた3D画像であり得、仮想画像は、たとえば、コンピュータ生成された3D画像であり得る。MSSU145は、現実オブジェクトと仮想オブジェクトの両方を含む混合リアリティシーンを生成し、混合リアリティシーンを画像ディスプレイ142に出力する。本開示の技法によれば、MSSU145は、現実画像に関する複数のパラメータを決定し、それらのパラメータに基づいて、仮想画像の射影スケールおよび視差が現実画像の射影スケールおよび視差に一致するような仮想画像を生成する。
図2は、本開示の諸態様を実装するための別の例示的なシステムであるシステム210を示すブロック図である。図2に示すように、システム210は、現実画像ソース222と、仮想画像ソース223と、視差処理ユニット224と、エンコーダ226と、送信機228とを備えるソースデバイス220を含むことができ、またさらに、画像ディスプレイ242と、現実ビュー合成ユニット244と、混合シーン合成ユニット(MSSU)245と、デコーダ246と、受信機248とを備える宛先デバイス240を含むことができる。図1および図2のシステムは、本開示の諸態様が実装され得る複数のタイプのシステムのうちの2つの例にすぎず、説明の目的で使用される。以下でより詳細に説明するように、本開示の諸態様を実装する代替システムでは、システム210の様々な要素は、別様に構成され、代替要素によって置き換えられ、または場合によっては完全に省略され得る。
図2の例では、宛先デバイス240は、ソースデバイス220から符号化画像データ254を受信する。ソースデバイス220および/または宛先デバイス240は、パーソナルコンピュータ(PC)、デスクトップコンピュータ、ラップトップコンピュータ、タブレットコンピュータ、専用コンピュータ、スマートフォンなどのワイヤレス通信デバイス、または通信チャネルを介してピクチャおよび/またはビデオ情報を通信することができる任意のデバイスを備え得る。いくつかの事例では、単一のデバイスは、双方向通信をサポートするソースデバイスと宛先デバイスの両方であり得、したがってソースデバイス220と宛先デバイス240の両方の機能を含み得る。ソースデバイス220と宛先デバイス240との間の通信チャネルは、ワイヤードまたはワイヤレス通信チャネルを備えることができ、インターネットなどのネットワーク接続であり得、または直接通信リンクであり得る。宛先デバイス240は、3次元(3D)ディスプレイデバイスまたは3Dレンダリングデバイスと呼ばれることがある。
現実画像ソース222は、第1のビュー250と第2のビュー256とを含む画像のステレオペアを視差処理ユニット224に与える。視差処理ユニット224は、第1のビュー250と第2のビュー256とを使用して3D処理情報252を生成する。視差処理ユニット224は、3D処理情報252と、2つのビューのうちの1つ(図2の例では第1のビュー250)とをエンコーダ226に転送し、エンコーダ226は、第1のビュー250と3D処理情報252とを符号化して符号化画像データ254を形成する。エンコーダ226はまた、仮想画像ソース223からの仮想画像データ253を符号化画像データ254内に含める。送信機228は、符号化画像データ254を宛先デバイス240に送信する。
受信機248は、送信機228から符号化画像データ254を受信する。デコーダ246は、符号化画像データ254を復号して、第1のビュー250を抽出し、符号化画像データ254から3D処理情報252ならびに仮想画像データ253を抽出する。第1のビュー250および3D処理情報252に基づいて、ビュー合成ユニット244は第2のビュー256を再構築することができる。第1のビュー250および第2のビュー256に基づいて、現実ビュー合成ユニット244は現実3D画像をレンダリングすることができる。図1には示されていないが、第1のビュー250および第2のビュー256は、ソースデバイス220または宛先デバイス240のいずれかにおいて追加の処理を受け得る。したがって、いくつかの例では、ビュー合成ユニット244によって受信された第1のビュー250、または画像ディスプレイ242によって受信された第1のビュー250および第2のビュー256は、実際には、画像ソース256から受信された第1のビュー250および第2のビュー256の修正されたバージョンであり得る。
3D処理情報252は、たとえば、視差マップを含むことがあり、または視差マップに基づく深度情報を含んでいることがある。視差情報に基づいて深度情報を決定し、またその逆を行うための様々な技法が存在する。したがって、本開示で視差情報の符号化、復号、または送信について説明するときはいつでも、視差情報に基づく深度情報が符号化され、復号され、または送信され得ることも企図される。
現実画像ソース222は、画像センサアレイ、たとえば、デジタル静止ピクチャカメラもしくはデジタルビデオカメラ、1つまたは複数の記憶された画像を備えるコンピュータ可読記憶媒体、または外部ソースからデジタル画像を受信するためのインターフェースを含み得る。いくつかの例では、現実画像ソース222は、デスクトップ、ラップトップ、またはタブレットコンピュータなどのパーソナルコンピューティングデバイスの3Dカメラに対応し得る。仮想画像ソース223は、ビデオゲームまたは他の対話型マルチメディアソース、または画像データの他のソースを実行することなどによって、デジタル画像を生成する処理ユニットを含み得る。現実画像ソース222は、概して、キャプチャされた画像またはプリキャプチャされた画像のいずれか1つのタイプのソースに対応し得る。概して、本開示における画像への言及は、静止ピクチャとビデオデータのフレームの両方を含む。したがって、本開示の諸態様は、静止デジタルピクチャと、キャプチャされたデジタルビデオデータまたはコンピュータ生成されたデジタルビデオデータのフレームの両方に適用し得る。
現実画像ソース222は、画像250および256のステレオペアに関する画像データを、それらの画像間の視差値の計算のために視差処理ユニット224に与える。画像250および256のステレオペアは、第1のビュー250と第2のビュー256とを備える。視差処理ユニット224は、画像250および256のステレオペアに関する視差値を自動的に計算するように構成されることができ、この視差値は、3D画像中のオブジェクトに関する深度値を計算するために使用されることができる。たとえば、現実画像ソース222は、シーンの2つのビューを異なるパースペクティブでキャプチャし、次いで、決定された視差マップに基づいてシーン中のオブジェクトに関する深度情報を計算することができる。様々な例では、現実画像ソース222は、標準的な2次元カメラ、シーンの立体視ビューを与える2カメラシステム、シーンの複数のビューをキャプチャするカメラアレイ、または1つのビューと深度情報とをキャプチャするカメラを備えることができる。
現実画像ソース222は、複数のビュー(すなわち、第1のビュー250および第2のビュー256)を与えることができ、視差処理ユニット224は、これらの複数のビューに基づいて視差値を計算することができる。ソースデバイス220は、しかしながら、第1のビュー250と3D処理情報252(すなわち、視差マップ、または視差マップから決定されたシーンのビューの各ペアに関する深度情報)のみを送信し得る。たとえば、現実画像ソース222は、異なる角度から見られるシーンのビューの4つのペアを生成するように意図された、8カメラアレイを備え得る。ソースデバイス220は、ビューの各ペアに関する視差情報または深度情報を計算し、各ペアのただ1つの画像と、ペアに関する視差情報または深度情報とを宛先デバイス240に送信することができる。したがって、8つのビューを送信するのではなく、ソースデバイス220は、この例では、符号化画像データ254を含むビットストリームの形態で、4つのビューと、4つのビューの各々に関する深度/視差情報(すなわち、3D処理情報252)とを送信することができる。いくつかの例では、視差処理ユニット224は、ユーザから、または別の外部デバイスから、画像に関する視差情報を受信することができる。
視差処理ユニット224は、第1のビュー250と3D処理情報252とをエンコーダ226に渡す。3D処理情報252は、画像250および256のステレオペアに関する視差マップを備え得る。エンコーダ226は、第1のビュー250と3D処理情報252と仮想画像データ253とに関する符号化画像データを含む、符号化画像データ254を形成する。いくつかの例では、エンコーダ226は、符号化画像データ254をソースデバイス220から宛先デバイス240に送信するために必要とされるビット数を低減するために、様々なロスレス(lossless)またはロッシー(lossy)コーディング技法を適用し得る。エンコーダ226は、符号化画像データ254を送信機228に渡す。
第1のビュー250がデジタル静止ピクチャであるときには、エンコーダ226は、たとえば、Joint Photographic Experts Group(JPEG)画像として第1のビュー250を符号化するように構成されることができる。第1のビュー250がビデオデータのフレームであるときには、エンコーダ226は、たとえば、Motion Picture Experts Group(MPEG)、MPEG−2、国際電気通信連合(ITU)H.263、ITU−T H.264/MPEG−4、H.264 Advanced Video Coding(AVC)、ITU−TH.265と呼ばれることもある新生のHEVC規格、または他のビデオ符号化規格などのビデオコーディング規格に従って第1のビュー250を符号化するように構成されることができる。たとえば、ITU−T H.264/MPEG−4(AVC)規格は、Joint Video Team(JVT)として知られる共同パートナーシップの成果として、ISO/IEC Moving Picture Experts Group(MPEG)とともにITU−T Video Coding Experts Group(VCEG)によって策定された。いくつかの態様では、本開示で説明する技法は、概してH.264規格に準拠するデバイスに適用され得る。H.264規格は、ITU−T Study Groupによる2005年3月付けのITU−T勧告H.264「Advanced Video Coding for generic audiovisual services」に記載されており、本明細書では、H.264規格またはH.264仕様、あるいはH.264/AVC規格または仕様と呼ぶことがある。Joint Video Team(JVT)は、H.264/MPEG−4 AVCへの拡張に取り組み続けている。新生のHEVC規格など、新しいビデオコーディング規格が発展し、出現し続けている。本開示で説明する技法は、H.264などの現世代の規格と、新生のHEVC規格などの将来世代の規格の両方と互換性があり得るものである。
視差処理ユニット224は、視差マップの形態で3D処理情報252を生成することができる。エンコーダ226は、符号化画像データ254としてビットストリームで送信される3Dコンテンツの一部として視差マップを符号化するように構成され得る。このプロセスは、1つのキャプチャされたビューに関する1つの視差マップ、またはいくつかの送信されたビューに関する視差マップを生成することができる。エンコーダ226は、1つまたは複数のビューと視差マップとを受信し、複数のビューをジョイントコーディングすることができるH.264またはHEVC、または深度とテクスチャとをジョイントコーディングすることができるスケーラブルビデオコーディング(SVC)のようなビデオコーディング規格を用いて、該1つまたは複数のビューと視差マップとをコーディングすることができる。
上記のように、画像ソース222は、3D処理情報252を生成する目的で、視差処理ユニット224に同じシーンの2つのビューを与えることができる。そのような例では、エンコーダ226は、3D処理情報256とともにビューのうちの1つのみを符号化することができる。概して、ソースデバイス220は、3D処理情報252とともに第1の画像250を宛先デバイス240などの宛先デバイスに送るように構成され得る。視差マップまたは深度マップとともにただ1つの画像を送ることにより、そうでなければ3D画像を生成するためにシーンの2つの符号化ビューを送る結果として生じ得る、帯域幅消費量を低減し、および/または記憶スペースの使用量を低減することができる。
送信機228は、符号化画像データ254を含むビットストリームを宛先デバイス240の受信機248に送ることができる。たとえば、送信機228は、トランスポートレベルカプセル化技法、たとえば、MPEG−2システム技法を使用して、ビットストリーム中の符号化画像データ254をカプセル化することができる。送信機228は、たとえば、ネットワークインターフェース、ワイヤレスネットワークインターフェース、無線周波数送信機、送信機/受信機(トランシーバ)、または他の送信ユニットを備え得る。他の例では、ソースデバイス220は、符号化画像データ254を含むビットストリームを、たとえば、コンパクトディスクなどの光ストレージ媒体、デジタルビデオディスク、ブルーレイ(登録商標)ディスク、フラッシュメモリ、磁気媒体、または他の記憶媒体などの物理媒体に記憶するように構成され得る。そのような例では、記憶媒体は、宛先デバイス240のロケーションに物理的に移送され、データを取り出すために適切なインターフェースユニットによって読み取られ得る。いくつかの例では、符号化画像データ254を含むビットストリームは、送信機228によって送信される前に変調器/復調器(モデム)によって変調され得る。
符号化画像データ254をもつビットストリームを受信し、そのデータをカプセル化解除した後、いくつかの例では、受信機248は、符号化画像データ254をデコーダ246に(または、いくつかの例では、ビットストリームを復調するモデムに)与えることができる。デコーダ246は、符号化画像データ254から、第1のビュー250と、3D処理情報252と、仮想画像データ253とを復号する。たとえば、デコーダ246は、3D処理情報252から第1のビュー250と第1のビュー250に関する視差マップとを再現することができる。視差マップの復号後、送信されていない他のビューに関するテクスチャを生成するためにビュー合成アルゴリズムが実装され得る。デコーダ246はまた、第1のビュー250と3D処理情報252とを現実ビュー合成ユニット244に送ることができる。現実ビュー合成ユニット244は、第1のビュー250と3D処理情報252とに基づいて第2のビュー256を再現する。
概して、ヒューマンビジョンシステム(HVS)は、オブジェクトに対する収束角に基づいて深度を知覚する。閲覧者に比較的近いオブジェクトは、閲覧者から比較的遠いオブジェクトよりも大きい角度で閲覧者の眼がオブジェクトに収束することにより、閲覧者により近いと知覚される。ピクチャおよびビデオなどのマルチメディアにおいて3次元をシミュレートするために、2つの画像、すなわち、閲覧者の眼の各々に対して1つの画像(左側および右側)が、閲覧者に表示される。画像内の同じ空間ロケーションに位置するオブジェクトは、概して、画像が表示されているスクリーンと同じ深度にあるものとして知覚される。
深度の錯覚を生み出すために、オブジェクトは、水平軸に沿って画像の各々におけるわずかに異なる位置に示され得る。2つの画像におけるオブジェクトのロケーション間の差は、視差と呼ばれる。概して、オブジェクトが、スクリーンに対して、閲覧者のより近くに見えるようにするために、負の視差値が使用されることができ、オブジェクトがスクリーンに対してユーザからより遠くに見えるようにするために、正の視差値が使用されることができる。正または負の視差をもつピクセルは、いくつかの例では、焦点からの正または負の深度の効果をさらに生み出すために、シャープネスまたはぼけ度を増加または減少させるように、より高いまたはより低い解像度で表示され得る。
ビュー合成は、任意のビューアングルでビューを生成するために密にサンプリングされたビューを使用するサンプリング問題と見なされ得る。しかしながら、実際の適用例では、密にサンプリングされたビューによって必要とされる記憶または送信帯域幅は、比較的大きいものとなり得る。したがって、疎にサンプリングされたビューとそれらの深度マップとに基づくビュー合成に関する研究が行われている。詳細は異なるが、疎にサンプリングされたビューに基づくアルゴリズムは、ほとんど3Dワーピングに基づいている。3Dワーピングでは、深度とカメラモデルとが与えられると、リファレンスビューのピクセルが最初に2Dカメラ座標から世界座標における点Pに逆射影され得る。点Pは、次いで、宛先ビュー(生成されるべき仮想ビュー)に射影され得る。世界座標における同じオブジェクトの異なる射影に対応する2つのピクセルは、同じ色強度を有し得る。
現実ビュー合成ユニット244は、画像のオブジェクト(たとえば、ピクセル、ブロック、ピクセルのグループ、またはブロックのグループ)に関する視差値を、オブジェクトに関する深度値に基づいて計算するように構成されることができ、または符号化画像データ254をもつビットストリーム中で符号化された視差値を受信することができる。現実ビュー合成ユニット244は、視差値を使用して第1のビュー250から第2のビュー256を生成することができ、これにより、閲覧者が一方の眼で第1のビュー250を見て、他方の眼で第2のビュー256を見るときに3次元効果が生み出される。現実ビュー合成ユニット244は、第1のビュー250と第2のビュー256とを、画像ディスプレイ242上に表示されるべき混合リアリティシーン中に含まれるように、MSSU245に渡すことができる。
画像ディスプレイ242は、立体視ディスプレイまたは裸眼立体視ディスプレイを備えることができる。概して、立体視ディスプレイは、2つの画像を表示することによって3次元をシミュレートする。閲覧者は、1つの画像を一方の眼に、第2の画像を他方の眼に向けるために、ゴーグルまたは眼鏡などの頭部装着型ユニットを着用することができる。いくつかの例では、各画像は、たとえば、偏光眼鏡またはカラーフィルタ処理眼鏡を使用して、同時に表示される。いくつかの例では、画像は、高速で交互に入れ替えられ、眼鏡またはゴーグルは、正しい画像が対応する眼のみに示されるように、ディスプレイと同期して、高速にシャッタリングを交互に入れ替える。裸眼立体視ディスプレイは、眼鏡を使用せず、代わりに、正しい画像を閲覧者の対応する眼に向けることができる。たとえば、裸眼立体視ディスプレイは、閲覧者の眼がどこに位置するかを決定するためのカメラと、閲覧者の眼に画像を向けるための機械的手段および/または電子的手段とを備えることができる。画像を分離し、および/または画像をユーザの異なる眼に向けるために、カラーフィルタ処理技法、偏光フィルタ処理技法、または他の技法も使用され得る。
現実ビュー合成ユニット244は、閲覧者に対して、スクリーンの後ろ、スクリーン、およびスクリーンの前、に関する深度値を用いて構成され得る。現実ビュー合成ユニット244は、符号化画像データ254中に表されたオブジェクトの深度を視差値にマッピングする関数を用いて構成され得る。したがって、現実ビュー合成ユニット244は、オブジェクトに関する視差値を計算するために関数のうちの1つを実行することができる。3D処理情報252に基づいて第1のビュー250のオブジェクトに関する視差値を計算した後に、現実ビュー合成ユニット244は、第1のビュー250と視差値とから第2のビュー256を生成することができる。
現実ビュー合成ユニット244は、スクリーンの前または後ろに最大深度でオブジェクトを表示するための最大視差値を用いて構成されることができる。このようにして、現実ビュー合成ユニット244は、ゼロ視差値から最大の正および負の視差値までの視差範囲を用いて構成されることができる。閲覧者は、宛先デバイス240によってオブジェクトが表示されるスクリーンの前または後ろの最大深度を変更するように設定を調節することができる。たとえば、宛先デバイス240は、閲覧者が操作し得る遠隔制御ユニットまたは他の制御ユニットと通信し得る。遠隔制御は、オブジェクトを表示すべきスクリーンの前の最大深度およびスクリーンの後ろの最大深度を閲覧者が制御できるようにするユーザインターフェースを備え得る。このようにして、閲覧者は、閲覧経験(viewing experience)を改善するために画像ディスプレイ242に関する設定パラメータを調節することが可能である。
スクリーンの前およびスクリーンの後ろにオブジェクトが表示されるように最大視差値を設定することによって、ビュー合成ユニット244は、比較的単純な計算を使用して3D処理情報252に基づいて視差値を計算することが可能である。たとえば、ビュー合成ユニット244は、深度値を視差値にマッピングする関数を適用するように構成されることができる。該関数は、収束深度間隔における深度値を有するピクセルがゼロの視差値にマッピングされ、スクリーンの前の最大深度にあるオブジェクトが最小の(負の)視差値にマッピングされ、したがってスクリーンの前にあるように示され、また、最大深度にあり、したがってスクリーンの後ろにあるように示されるオブジェクトがスクリーンの後ろに関する最大の(正の)視差値にマッピングされるような、深度と対応する視差値範囲内の1つの視差値との間の線形関係を備え得る。
現実世界座標に関する一例では、深度範囲は、たとえば[200,1000]であり得、収束深度距離は、たとえば約400であり得る。この場合、スクリーンの前の最大深度は200に対応し、スクリーンの後ろの最大深度は1000であり、収束深度間隔は、たとえば[395,405]であり得る。しかしながら、現実世界座標系における深度値は、利用可能でないことがあり、または、たとえば、8ビット値(0〜255に及ぶ)であり得る、より小さいダイナミックレンジに量子化され得る。いくつかの例では、値が0〜255であるそのような量子化深度値は、深度マップが格納もしくは送信されるとき、または深度マップが推定されるときのシナリオにおいて使用され得る。一般的な深度画像ベースレンダリング(DIBR)プロセスは、視差が計算される前に、低ダイナミックレンジ量子化深度マップを現実世界深度マップ中のマップに変換することを含み得る。従来は、より小さい量子化深度値が、現実世界座標中のより大きい深度値に対応することに留意されたい。しかしながら、本開示の技法では、この変換を実行することが不要であり、したがって、現実世界座標中の深度範囲、または量子化深度値から現実世界座標中の深度値への変換関数を知ることが不要である。例示的な視差範囲[−disn,disp]について考えると、量子化深度範囲が、(0であり得る)dminから(255であり得る)dmaxまでの値を含むときには、深度値dminはdispにマッピングされ、(255であり得る)深度値dmaxは−disnにマッピングされる。この例ではdisnが正であることに留意されたい。収束深度マップ間隔が[d0−δ,d0+δ]であると仮定した場合、この間隔中の深度値は視差ゼロにマッピングされる。概して、本開示において、「深度値」という句は、低ダイナミックレンジ[dmin,dmax]における値を指す。δ値は、許容値と呼ばれることもあり、各方向で同じである必要はない。すなわち、d0は、第1の許容差値δ1と、潜在的に異なる第2の許容差値δ2とによって修正されることができ、その結果、[d0−δ2,d0+δ1]は、ゼロ視差値にすべてマッピングされ得る様々な深度値を表すことができる。このようにして、宛先デバイス240は、たとえば、焦点距離、仮定されたカメラパラメータ、および現実世界の深度範囲値などの追加の値を考慮する、より複雑な手順を用いることなく、視差値を計算することができる。
システム210は、本開示に合致する1つの例示的な構成にすぎない。上記で説明したように、本開示の技法はソースデバイス220または宛先デバイス240によって実行され得る。いくつかの代替構成では、たとえば、MSSU245の機能の一部は、宛先デバイス240の代わりにソースデバイス220のところにあることができる。そのような構成では、仮想画像ソース223は、実際の仮想3D画像に対応する仮想画像データ223を生成するために本開示の技法を実装し得る。他の構成では、宛先デバイス240のMSSU245が仮想3D画像をレンダリングすることができるように、仮想画像ソース223は、3D画像を記述するデータを生成することができる。さらに、他の構成では、ソースデバイス220は、1つの画像と視差マップとを送信するのではなく、現実画像250および256を直接、宛先デバイス240に送信することができる。さらに他の構成では、ソースデバイス220は、混合リアリティシーンを生成し、その混合リアリティシーンを宛先デバイスに送信することができる。
図3A〜図3Cは、ピクセルの深度に基づく、正の視差値、ゼロの視差値、および負の視差値の例を示す概念図である。概して、3次元効果を作り出すために、2つの画像が、たとえば、スクリーン上に示される。スクリーンの前または後ろのいずれかに表示されるべきオブジェクトのピクセルは、それぞれ正または負の視差値を有しており、スクリーンの深度のところに表示されるべきオブジェクトは、ゼロの視差値を有する。いくつかの例では、たとえば、ユーザが頭部装着型ゴーグルを着用したときには、「スクリーン」の深度は、共通の深度d0に対応し得る。
図3A〜図3Cは、スクリーン382が、同時に、または高速で連続的に、左画像384と右画像386とを表示する例を示す。図3Aは、スクリーン382の後ろに(または内部に)生じるものとしてピクセル380Aを示す。図3Aの例では、スクリーン382は、左画像ピクセル388Aと右画像ピクセル390Aとを表示し、ここで、左画像ピクセル388Aおよび右画像ピクセル390Aは、一般に、同じオブジェクトに対応し、したがって、同様のまたは同一のピクセル値を有し得る。いくつかの例では、たとえば、わずかに異なる角度からオブジェクトを見るときに生じ得る照度または色差におけるわずかな変化を考慮するために、左画像ピクセル388Aと右画像ピクセル390Aとに関するルミナンス値およびクロミナンス値は、3次元閲覧経験をさらに改善するためにわずかに異なり得る。
この例では、左画像ピクセル388Aの位置は、スクリーン382によって表示されたとき、右画像ピクセル90Aの左側に生じる。すなわち、左画像ピクセル388Aと右画像ピクセル390Aとの間に正の視差がある。視差値がdであり、左画像ピクセル392Aが左画像384中の水平位置xのところに生じ、左画像ピクセル392Aが左画像ピクセル388Aに対応すると仮定すると、右画像ピクセル394Aは、右画像386中の水平位置x+dのところに生じ、右画像ピクセル394Aは右画像ピクセル390Aに対応する。この正の視差により、ユーザの左眼が左画像ピクセル88Aに焦点を合わせ、ユーザの右眼が右画像ピクセル390Aに焦点を合わせるときに、閲覧者の眼は、スクリーン382の比較的後ろにある点に収束し、ピクセル80Aがスクリーン382の後ろにあるように見える錯覚を生み出す。
左画像384は、図2に示した第1の画像250に対応し得る。他の例では、右画像386が第1の画像250に対応し得る。図3Aの例において正の視差値を計算するために、現実ビュー合成ユニット244は、左画像384と、スクリーン382の後ろの左画像ピクセル392Aの深度位置を示す左画像ピクセル392Aに関する深度値とを受信することができる。現実ビュー合成ユニット244は、左画像384をコピーして右画像386を形成し、右画像ピクセル394Aの値を、左画像ピクセル392Aの値に合致または類似するように変更することができる。すなわち、右画像ピクセル394Aは、左画像ピクセル392Aと同じまたは同様のルミナンス値および/またはクロミナンス値を有し得る。したがって、画像ディスプレイ242に対応し得るスクリーン382は、ピクセル380Aがスクリーン382の後ろに生じるという効果を生み出すために、左画像ピクセル388Aと右画像ピクセル390Aとを、実質的に同時に、または高速で連続的に、表示することができる。
図3Bは、ピクセル380Bがスクリーン382の深度のところに描かれる一例を示す。図3Bの例では、スクリーン382は、左画像ピクセル388Bと右画像ピクセル390Bとを同じ位置に表示する。すなわち、この例では、左画像ピクセル388Bと右画像ピクセル390Bとの間にゼロ視差がある。左画像384中の(スクリーン382によって表示される左画像ピクセル388Bに対応する)左画像ピクセル392Bが水平位置xのところに生じると仮定すると、(スクリーン382によって表示される右画像ピクセル390Bに対応する)右画像ピクセル394Bも、右画像386中の水平位置xのところに生じる。
現実ビュー合成ユニット244は、左画像ピクセル392Bに関する深度値が、スクリーン382の深度に等しい深度d0のところにある、またはスクリーン382の深度から小さい距離δ内にあると決定し得る。したがって、現実ビュー合成ユニット244は、左画像ピクセル392Bにゼロの視差値を割り当て得る。左画像384と視差値とから右画像386を構築するときには、現実ビュー合成ユニット244は、右画像ピクセル394Bの値を左画像ピクセル392Bと同じままにし得る。
図3Cは、スクリーン382の前にあるピクセル380Cを示す。図3Cの例では、スクリーン382は、左画像ピクセル388Cを、右画像ピクセル390Cの右側に表示する。すなわち、この例では、左画像ピクセル388Cと右画像ピクセル390Cとの間に負の視差がある。したがって、ユーザの眼は、スクリーン382の前の位置に収束し、ピクセル380Cがスクリーン382の前にあるように見える錯覚を生み出す。
現実ビュー合成ユニット244は、左画像ピクセル392Cに関する深度値がスクリーン382の前である深度のところにあると決定し得る。したがって、現実ビュー合成ユニット244は、左画像ピクセル392Cの深度を負の視差値−dにマッピングする関数を実行し得る。次いで、現実ビュー合成ユニット244は、左画像384と負の視差値とに基づいて、右画像386を構築し得る。たとえば、右画像386を構築するときには、左画像ピクセル392Cが水平位置xを有すると仮定すると、現実ビュー合成ユニット244は、右画像386中の水平位置x−dのところにあるピクセル(すなわち、右画像ピクセル394C)の値を、左画像ピクセル392Cの値に変更し得る。
現実ビュー合成ユニット244は、第1のビュー250および第2のビュー256をMSSU245に送信する。MSSU245は、現実3D画像を作り出すために第1のビュー250と第2のビュー256とを組み合わせる。MSSU245はまた、画像ディスプレイ242によるディスプレイのための混合リアリティ3D画像を生成するために、仮想画像データ253に基づいて現実3D画像に仮想3Dオブジェクトを追加する。本開示の技法によれば、MSSU245は、現実3D画像から抽出されたパラメータのセットに基づいて仮想3Dオブジェクトをレンダリングする。
図4Aは、現実シーンの立体視ビューを取得するための2カメラシステムと得られた3D画像によって包含された視野とのトップダウン図を示し、図4Bは、図4Aに示した同じ2カメラシステムの側面図を示す。2カメラシステムは、たとえば、図1中の現実画像ソース122または図2中の現実画像ソース222に対応し得る。L’は2カメラシステムについての左カメラ位置を表し、R’は2カメラシステムについての右カメラ位置を表す。L’およびR’のところに位置するカメラは、上記で説明した第1のビューと第2のビューとを取得することができる。M’はモノスコープカメラ位置を表し、Aは、M’とL’との間の距離ならびにM’とR’との間の距離を表す。したがって、L’とR’との間の距離は2*Aである。
Z’はゼロ視差平面(ZDP)までの距離を表す。ZDPのところにある点は、ディスプレイ上にレンダリングされたときには、ディスプレイ平面上にあるように見える。ZDPの後ろの点は、ディスプレイ上にレンダリングされたときにはディスプレイ平面の後ろにあるように見え、ZDPの前の点は、ディスプレイ上にレンダリングされたときにはディスプレイ平面の前にあるように見える。M’からZDPまでの距離は、レーザ測距器(rangefinder)、赤外線測距器、または他のそのような距離測定ツールを使用するカメラによって測定されることができる。いくつかの動作環境では、Z’の値は、測定される必要のない既知の値であり得る。
写真撮影では、画角(AOV:angle of view)という用語は、一般に、カメラによって画像化される所与のシーンの角度範囲を表すために使用される。AVOは、しばしば、視野(FOV:field of view)というより一般的な用語と互換的に使用される。カメラについての水平方向画角(θ’h)は、特定のカメラについてのセットアップに基づく既知の値である。カメラセットアップによってキャプチャされるZDPの幅の半分を表すW’の値は、θ’hの既知の値とZ’の決定された値とに基づいて、次のように計算される。
Figure 2014505917
カメラによってキャプチャされるZDPの高さの半分を表すH’の値は、カメラに関する既知のパラメータである所与のアスペクト比を使用して、次のように決定される。
Figure 2014505917
したがって、カメラセットアップの垂直方向画角(θ’v)は、次のように計算される。
Figure 2014505917
図5Aは、仮想ディスプレイシーンのトップダウン概念図を示し、図5Bは、同じ仮想ディスプレイシーンの側面図を示す。図5Aおよび図5Bにおいてディスプレイシーンを表すパラメータは、図4Aおよび図4Bの現実シーンについて決定されたパラメータに基づいて選択される。具体的には、仮想シーンの水平方向AOV(θh)は、現実シーンの水平方向AOV(θ’h)に一致するように選択され、仮想シーンの垂直方向AOV(θv)は現実シーンの垂直方向AOV(θ’v)に一致するように選択され、仮想シーンのアスペクト比(R)は、現実シーンのアスペクト比(R’)に一致するように選択される。仮想シーンが現実シーンと同じ閲覧量を有するように、また、仮想オブジェクトがレンダリングされるときに視覚ひずみがないように、仮想ディスプレイシーンの視野は、カメラによって取得された現実3D画像の視野に一致するように選ばれる。
図6は、混合リアリティシーンをレンダリングするための3D視野角錐体を示す3D図である。3D視野角錐体は、3Dグラフィックスを生成するためのアプリケーションプログラムインターフェース(API)によって定義され得る。Open Graphics Library(OpenGL)は、たとえば、3Dコンピュータグラフィックスを生成するために使用される1つの共通のクロスプラットフォームAPIである。OpenGLにおける3D視野角錐体は、図6に示す6つのパラメータ(左境界(l)、右境界(r)、上部境界(t)、下部境界(b)、Znear、およびZfar)によって定義され得る。lパラメータ、rパラメータ、tパラメータ、およびbパラメータは、上記で決定された水平AOVおよび垂直AOVを使用して以下のように決定される。
Figure 2014505917
Figure 2014505917
lの値およびtの値を決定するために、Znearの値が決定される必要がある。ZnearおよびZfarは、以下の制約を満たすように選択される。
Figure 2014505917
以上で決定されたWの値とθhの値とを使用して、ZZDPの値が、以下のように決定される。
Figure 2014505917
ZDPの値を決定した後、ZnearおよびZfarの値が、仮想ディスプレイ平面に対応する、現実シーンのニア(near)およびファー(far)クリッピング平面に基づいて選ばれる。ZDPが、たとえばディスプレイ上にある場合、ZDPは、閲覧者からディスプレイまでの距離に等しい。ZfarとZnearとの間の比が、深度バッファの非線形性問題により深度バッファ精度に影響を及ぼすことがあるが、深度バッファは、通常、ニア平面に近い領域においてより高い精度を有し、ファー平面に近い領域においてより低い精度を有する。この精度変化は、閲覧者により近いオブジェクトの画質を改善し得る。したがって、ZnearおよびZfarの値は、以下のように選択される。
Figure 2014505917
Figure 2014505917
他の、CZnおよびCZfの値が、また、システム設計者およびシステムユーザの選好に基づいて選択され得る。Znearの値とZfarの値とを決定した後、lの値およびtの値が、上記の式(4)および式(5)を使用して決定されることができる。rの値およびbの値は、それぞれ、lの負数およびtの負数であり得る。OpenGL角錐体パラメータが導出される。したがって、OpenGL射影行列は、以下のように導出される。
Figure 2014505917
上記の射影行列を使用して、シーン中の仮想オブジェクトの射影スケールがシーン中の現実オブジェクトの射影スケールと一致する、混合リアリティシーンが、レンダリングされることができる。上記の式4および式5に基づいて、以下であることがわかる。
Figure 2014505917
Figure 2014505917
射影スケール一致に加えて、本開示の諸態様は、現実3D画像と仮想3D画像との間の視差スケールを一致させることをさらに含む。再び図4を参照すると、現実画像の視差は、以下のように決定される。
Figure 2014505917
前述のように、Aの値は、使用された3Dカメラに基づいて既知であり、Z’の値は、既知であるかまたは測定され得る。N’の値およびF’の値は、それぞれ、上記で決定されたZnearの値およびZfarの値に等しい。仮想3D画像の視差スケールを現実3D画像に一致させるために、仮想画像のニア平面視差(dN)は、d’Nに等しく設定され、仮想画像のファー平面視差(dF)は、d’Fに等しく設定される。仮想画像に関する両眼間隔値(eye separation value)(E)を決定するためには、以下のいずれかの式を解くことができる:
Figure 2014505917
例としてニア平面視差(dN)を使用する。
Figure 2014505917
したがって、式13は、ニア視差平面の場合、以下のようになる:
Figure 2014505917
次に、現実世界座標が、画像平面ピクセル座標にマッピングされる必要がある。3Dカメラのカメラ解像度がW’P×H’Pであることがわかっていると仮定すると、ニア平面視差は、以下のようになる:
Figure 2014505917
閲覧者空間視差をグラフィックス座標からディスプレイピクセル座標にマッピングすると、ディスプレイ解像度は、Wp×Hpであり、ここで、以下のとおりである:
Figure 2014505917
d’Np=dNpの視差の等式、およびディスプレイからキャプチャされた画像への以下のスケーリング比(S)を使用すると:
Figure 2014505917
OpenGLにおいて閲覧者ロケーションを決定するために使用され得る両眼間隔値は、以下のように決定される:
Figure 2014505917
両眼間隔値は、仮想3D画像を生成するためのOpenGL関数呼び出しで使用されるパラメータである。
図7は、図6の視野角錐体のような視野角錐体のトップダウン図を示す。OpenGLでは、視野角錐体内のすべての点は、通常、ニアクリッピング平面(たとえば、図7に図示)上に射影され、次いで、ビューポートスクリーン座標にマッピングされる。左ビューポートと右ビューポートの両方を動かすことによって、シーンのうちの特定の部分の視差を変えることができる。これにより、ZDP調整およびビュー深度調整の両方が達成されることができる。ひずみのないステレオビューを維持するために、左ビューポートと右ビューポートの両方が、同じ距離の量だけ対称的に反対方向にシフトされることができる。図7は、左ビューポートが少量の距離だけ左にシフトされ、右ビューポートが同じ量の距離だけ右にシフトされるときのビュー空間ジオメトリを示す。線701aおよび線701bは、元の左ビューポート構成を表し、線702aおよび702b線は、変更された左ビューポート構成を表す。線703aおよび線703bは、元の右ビューポート構成を表し、線704aおよび線704bは、変更された右ビューポート構成を表す。Zobjは、ビューポートのシフト前のオブジェクト距離を表し、Z’objは、ビューポートのシフト後のオブジェクト距離を表す。ZZDPは、ビューポートのシフト前のゼロ視差平面距離を表し、Z’ZDPは、ビューポートのシフト後のゼロ視差平面距離を表す。Znearはニアクリッピング平面距離を表し、Eは上記で決定された両眼間隔値を表す。点Aはビューポートのシフト前のオブジェクト深度位置であり、点A’はビューポートのシフト後のオブジェクト深度位置である。
ビューポートをシフトすることの深度変化の数学的関係は、以下のように導出され、Δはオブジェクトの投影ビューポートサイズの半分であり、VPsはビューポートがシフトされた量である。点A、点A’ならびに左眼および右眼の位置の三角法に基づいて、式(20)および式(21)が導出される。
Figure 2014505917
Figure 2014505917
ビューポートのシフト後の閲覧者空間におけるオブジェクト距離を導出するために、次のように、式(20)および式(21)が組み合わされることができる。
Figure 2014505917
式(22)に基づいて、閲覧者空間における新しいZDP位置が次のように導出される。
Figure 2014505917
Z’ZDPを使用すると、新しい射影行列が、ZnearおよびZfarの新しい値を使用して生成されることができる。
図8は、本開示の技法を示す流れ図である。技法について、図2のシステム210に関連して説明するが、技法は、そのようなシステムに限定されない。現実画像ソース222が、キャプチャされた現実3D画像について、ゼロ視差平面までの距離を決定することができる(810)。MSSU245が、ゼロ視差平面までの距離に基づいて、射影行列に関する1つまたは複数のパラメータを決定することができる(820)。MSSU245が、ゼロ視差平面までの距離に基づいて、仮想画像に関する両眼間隔値も決定することができる(830)。射影行列と両眼間隔値とに少なくとも部分的に基づいて、仮想3Dオブジェクトがレンダリングされることができる(840)。上記で説明したように、射影行列の決定および仮想3Dオブジェクトのレンダリングは、ソースデバイス220など、ソースデバイスによって、または、宛先デバイス240など、宛先デバイスによって実行されることができる。MSSU245は、混合リアリティ3Dシーンを生成するために仮想3Dオブジェクトと現実3D画像とを組み合わせることができる(850)。混合リアリティシーンの生成は、ソースデバイスまたは宛先デバイスのいずれかによって同様に実行され得る。
本開示の技法は、ワイヤレスハンドセット、および集積回路(IC)またはICのセット(すなわち、チップセット)を含む、多種多様なデバイスまたは装置において具体化され得る。機能的態様を強調するために与えられた任意の構成要素、モジュールまたはユニットについて説明したが、異なるハードウェアユニットなどによる実現を必ずしも必要とするわけではない。
したがって、本明細書で説明する技法は、ハードウェア、ソフトウェア、ファームウェア、またはそれの任意の組合せで実装され得る。モジュールまたは構成要素として説明する任意の機能は、集積論理デバイスに一緒に、または個別であるが相互運用可能な論理デバイスとして別々に実装され得る。ソフトウェアで実装する場合、これらの技法は、プロセッサで実行されると、上記で説明した方法の1つまたは複数を実行する命令を備えるコンピュータ可読媒体によって、少なくとも部分的に実現され得る。コンピュータ可読媒体は、有形コンピュータ可読記憶媒体を備え得、パッケージング材料を含むことがあるコンピュータプログラム製品の一部を形成し得る。コンピュータ可読記憶媒体は、同期型ダイナミックランダムアクセスメモリ(SDRAM)などのランダムアクセスメモリ(RAM)、読取り専用メモリ(ROM)、不揮発性ランダムアクセスメモリ(NVRAM)、電気消去可能プログラマブル読取り専用メモリ(EEPROM)、フラッシュメモリ、磁気または光学データ記憶媒体などを備え得る。本技法は、追加または代替として、命令またはデータ構造の形態でコードを搬送または通信し、コンピュータによってアクセス、読取り、および/または実行され得るコンピュータ可読通信媒体によって少なくとも部分的に実現され得る。
コードは、1つまたは複数のデジタル信号プロセッサ(DSP)など、1つまたは複数のプロセッサ、汎用マイクロプロセッサ、特定用途向け集積回路(ASIC)、フィールドプログラマブル論理アレイ(FPGA)、または他の等価な集積回路またはディスクリート論理回路によって実行され得る。したがって、本明細書で使用する「プロセッサ」という用語は、前述の構造、または本明細書で説明する技法の実装に好適な他の構造のいずれかを指し得る。さらに、いくつかの態様では、本明細書で説明した機能は、符号化および復号のために構成された専用のソフトウェアモジュールまたはハードウェアモジュール内に提供され得、あるいは複合ビデオエンコーダ/デコーダ(コーデック)に組み込まれ得る。また、本技法は、1つまたは複数の回路または論理要素中に十分に実装され得る。
本開示の様々な態様について説明した。これらおよび他の態様は以下の特許請求の範囲内に入る。
本開示の多くの態様について説明した。特許請求の範囲から逸脱することなく、様々な修正を行うことができる。これらおよび他の態様は以下の特許請求の範囲内に入る。
本開示の多くの態様について説明した。特許請求の範囲から逸脱することなく、様々な修正を行うことができる。これらおよび他の態様は以下の特許請求の範囲内に入る。
以下に、本願の出願当初請求項に記載された発明を付記する。
[C1]
現実3次元(3D)画像についてのゼロ視差平面までの距離を決定することと、
前記ゼロ視差平面までの前記距離に少なくとも部分的に基づいて射影行列に関する1つまたは複数のパラメータを決定することと、
前記射影行列に少なくとも部分的に基づいて仮想3Dオブジェクトをレンダリングすることと、
混合リアリティ3D画像を生成するために前記現実画像と前記仮想オブジェクトとを組み合わせることと
を備える、方法。
[C2]
前記ゼロ視差平面までの前記距離に少なくとも部分的に基づいて両眼間隔値を決定することと、
前記両眼間隔値に少なくとも部分的に基づいて前記仮想3Dオブジェクトをレンダリングすることと
をさらに備える、上記[C1]に記載の方法。
[C3]
前記現実3D画像がステレオカメラによってキャプチャされる、上記[C1]に記載の方法。
[C4]
前記方法が、
前記ステレオカメラのアスペクト比を決定することと、
前記射影行列に関する1つまたは複数のパラメータのうちの少なくとも1つを決定するために前記アスペクト比を使用することと
をさらに備える、上記[C3]に記載の方法。
[C5]
前記パラメータが、左境界パラメータ、右境界パラメータ、上境界パラメータ、下境界パラメータ、ニアクリッピング平面パラメータ、およびファークリッピング平面パラメータを備える、上記[C1]に記載の方法。
[C6]
前記現実3D画像についてのニア平面視差値を決定することと、
前記ニア平面視差値を用いて前記仮想3Dオブジェクトをレンダリングすることと
をさらに備える、上記[C1]に記載の方法。
[C7]
前記現実3D画像についてのファー平面視差値を決定することと、
前記ファー平面視差値を用いて前記仮想3Dオブジェクトをレンダリングすることと
をさらに備える、上記[C1]に記載の方法。
[C8]
前記混合リアリティ3D画像のビューポートをシフトすること
をさらに備える、上記[C1]に記載の方法。
[C9]
3次元(3D)ビデオデータを処理するためのシステムであって、前記システムが、
現実3D画像ソースであって、キャプチャされた3D画像についてのゼロ視差平面までの距離を決定するように構成された現実3D画像ソースと、
仮想画像ソースであって、
前記ゼロ視差平面までの前記距離に少なくとも基づいて射影行列に関する1つまたは複数のパラメータを決定することと、
前記射影行列に少なくとも部分的に基づいて仮想3Dオブジェクトをレンダリングすることと、を行うように構成された仮想画像ソースと、
混合リアリティ3D画像を生成するために前記現実画像と前記仮想オブジェクトとを組み合わせるように構成された混合シーン合成ユニットと
を備える、システム。
[C10]
前記仮想画像ソースが、さらに、
前記ゼロ視差平面までの前記距離に少なくとも基づいて前記両眼間隔値を決定し、前記両眼間隔値に少なくとも部分的に基づいて前記仮想3Dオブジェクトをレンダリングするように構成された、上記[C9]に記載のシステム。
[C11]
前記現実3D画像ソースがステレオカメラである、上記[C9]に記載のシステム。
[C12]
前記仮想画像ソースが、さらに、前記ステレオカメラのアスペクト比を決定し、前記射影行列に関する1つまたは複数のパラメータのうちの少なくとも1つを決定するために前記アスペクト比を使用するように構成された、上記[C11]に記載のシステム。
[C13]
前記パラメータが、左境界パラメータ、右境界パラメータ、上境界パラメータ、下境界パラメータ、ニアクリッピング平面パラメータ、およびファークリッピング平面パラメータを備える、上記[C9]に記載のシステム。
[C14]
前記仮想画像ソースが、さらに、前記現実3D画像についてのニア平面視差値を決定し、前記同じニア平面視差値を用いて前記仮想3Dオブジェクトをレンダリングするように構成された、上記[C9]に記載のシステム。
[C15]
前記仮想画像ソースが、さらに、前記現実3D画像についてのファー平面視差値を決定し、前記同じファー平面視差値を用いて前記仮想3Dオブジェクトをレンダリングするように構成された、上記[C9]に記載のシステム。
[C16]
前記混合シーン合成ユニットが、さらに、前記混合リアリティ3D画像のビューポートをシフトするように構成された、上記[C9]に記載のシステム。
[C17]
現実3次元(3D)画像についてのゼロ視差平面までの距離を決定するための手段と、
前記ゼロ視差平面までの前記距離に少なくとも部分的に基づいて射影行列に関する1つまたは複数のパラメータを決定するための手段と、
前記射影行列に少なくとも部分的に基づいて仮想3Dオブジェクトをレンダリングするための手段と、
混合リアリティ3D画像を生成するために前記現実画像と前記仮想オブジェクトとを組み合わせるための手段と
を備える、装置。
[C18]
前記ゼロ視差平面までの前記距離に少なくとも部分的に基づいて両眼間隔値を決定するための手段と、
前記両眼間隔値に少なくとも部分的に基づいて前記仮想3Dオブジェクトをレンダリングするための手段と
をさらに備える、上記[C17]に記載の装置。
[C19]
前記現実3D画像がステレオカメラによってキャプチャされる、上記[C17]に記載の装置。
[C20]
前記装置が、
前記ステレオカメラのアスペクト比を決定するための手段と、
前記射影行列に関する1つまたは複数のパラメータのうちの少なくとも1つを決定するために前記アスペクト比を使用するための手段と
をさらに備える、上記[C19]に記載の装置。
[C21]
前記パラメータが、左境界パラメータ、右境界パラメータ、上境界パラメータ、下境界パラメータ、ニアクリッピング平面パラメータ、ファークリッピング平面パラメータを備える、上記[C17]に記載の装置。
[C22]
前記現実3D画像についてのニア平面視差値を決定するための手段と、
前記ニア平面視差値を用いて前記仮想3Dオブジェクトをレンダリングするための手段と
をさらに備える、上記[C17]に記載の装置。
[C23]
前記現実3D画像についてのファー平面視差値を決定するための手段と、
前記ファー平面視差値を用いて前記仮想3Dオブジェクトをレンダリングするための手段と
をさらに備える、上記[C17]に記載の装置。
[C24]
前記混合リアリティ3D画像のビューポートをシフトするための手段
をさらに備える、上記[C17]に記載の装置。
[C25]
1つまたは複数のプロセッサによって実行されたときに前記1つまたは複数のプロセッサに、
現実3次元(3D)画像についてのゼロ視差平面までの距離を決定することと、
前記ゼロ視差平面までの前記距離に少なくとも部分的に基づいて射影行列に関する1つまたは複数のパラメータを決定することと、
前記射影行列に少なくとも部分的に基づいて仮想3Dオブジェクトをレンダリングすることと、
混合リアリティ3D画像を生成するために前記現実画像と前記仮想オブジェクトとを組み合わせることと
を行わせる1つまたは複数の命令を有形に記憶する、非一時的コンピュータ可読記憶媒体。
[C26]
前記1つまたは複数のプロセッサによって実行されたときに前記1つまたは複数のプロセッサに、
前記ゼロ視差平面までの前記距離に少なくとも部分的に基づいて両眼間隔値を決定することと、
前記両眼間隔値に少なくとも部分的に基づいて前記仮想3Dオブジェクトをレンダリングすることと
を行わせるさらなる命令を記憶する、上記[C25]に記載のコンピュータ可読記憶媒体。
[C27]
前記現実3D画像がステレオカメラによってキャプチャされる、上記[C25]に記載のコンピュータ可読記憶媒体。
[C28]
前記1つまたは複数のプロセッサによって実行されたときに前記1つまたは複数のプロセッサに、
前記ステレオカメラのアスペクト比を決定することと、
前記射影行列に関する1つまたは複数のパラメータのうちの少なくとも1つを決定するために前記アスペクト比を使用することと
行わせるさらなる命令を記憶する、上記[C27]に記載のコンピュータ可読記憶媒体。
[C29]
前記パラメータが、左境界パラメータ、右境界パラメータ、上境界パラメータ、下境界パラメータ、ニアクリッピング平面パラメータ、およびファークリッピング平面パラメータを備える、上記[C27]に記載のコンピュータ可読記憶媒体。
[C30]
前記1つまたは複数のプロセッサによって実行されたときに前記1つまたは複数のプロセッサに、
前記現実3D画像についてのニア平面視差値を決定することと、
前記ニア平面視差値を用いて前記仮想3Dオブジェクトをレンダリングすることと
を行わせるさらなる命令を記憶する、上記[C25]に記載のコンピュータ可読記憶媒体。
[C31]
前記1つまたは複数のプロセッサによって実行されたときに前記1つまたは複数のプロセッサに、
前記現実3D画像についてのファー平面視差値を決定することと、
前記ファー平面視差値を用いて前記仮想3Dオブジェクトをレンダリングすることと
を行わせるさらなる命令を記憶する、上記[C25]に記載のコンピュータ可読記憶媒体。
[C32]
前記1つまたは複数のプロセッサによって実行されたときに前記1つまたは複数のプロセッサに、
前記混合リアリティ3D画像のビューポートをシフトすること
を行わせるさらなる命令を記憶する、上記[C25]に記載のコンピュータ可読記憶媒体。

Claims (32)

  1. 現実3次元(3D)画像についてのゼロ視差平面までの距離を決定することと、
    前記ゼロ視差平面までの前記距離に少なくとも部分的に基づいて射影行列に関する1つまたは複数のパラメータを決定することと、
    前記射影行列に少なくとも部分的に基づいて仮想3Dオブジェクトをレンダリングすることと、
    混合リアリティ3D画像を生成するために前記現実画像と前記仮想オブジェクトとを組み合わせることと
    を備える、方法。
  2. 前記ゼロ視差平面までの前記距離に少なくとも部分的に基づいて両眼間隔値を決定することと、
    前記両眼間隔値に少なくとも部分的に基づいて前記仮想3Dオブジェクトをレンダリングすることと
    をさらに備える、請求項1に記載の方法。
  3. 前記現実3D画像がステレオカメラによってキャプチャされる、請求項1に記載の方法。
  4. 前記方法が、
    前記ステレオカメラのアスペクト比を決定することと、
    前記射影行列に関する1つまたは複数のパラメータのうちの少なくとも1つを決定するために前記アスペクト比を使用することと
    をさらに備える、請求項3に記載の方法。
  5. 前記パラメータが、左境界パラメータ、右境界パラメータ、上境界パラメータ、下境界パラメータ、ニアクリッピング平面パラメータ、およびファークリッピング平面パラメータを備える、請求項1に記載の方法。
  6. 前記現実3D画像についてのニア平面視差値を決定することと、
    前記ニア平面視差値を用いて前記仮想3Dオブジェクトをレンダリングすることと
    をさらに備える、請求項1に記載の方法。
  7. 前記現実3D画像についてのファー平面視差値を決定することと、
    前記ファー平面視差値を用いて前記仮想3Dオブジェクトをレンダリングすることと
    をさらに備える、請求項1に記載の方法。
  8. 前記混合リアリティ3D画像のビューポートをシフトすること
    をさらに備える、請求項1に記載の方法。
  9. 3次元(3D)ビデオデータを処理するためのシステムであって、前記システムが、
    現実3D画像ソースであって、キャプチャされた3D画像についてのゼロ視差平面までの距離を決定するように構成された現実3D画像ソースと、
    仮想画像ソースであって、
    前記ゼロ視差平面までの前記距離に少なくとも基づいて射影行列に関する1つまたは複数のパラメータを決定することと、
    前記射影行列に少なくとも部分的に基づいて仮想3Dオブジェクトをレンダリングすることと、を行うように構成された仮想画像ソースと、
    混合リアリティ3D画像を生成するために前記現実画像と前記仮想オブジェクトとを組み合わせるように構成された混合シーン合成ユニットと
    を備える、システム。
  10. 前記仮想画像ソースが、さらに、
    前記ゼロ視差平面までの前記距離に少なくとも基づいて前記両眼間隔値を決定し、前記両眼間隔値に少なくとも部分的に基づいて前記仮想3Dオブジェクトをレンダリングするように構成された、請求項9に記載のシステム。
  11. 前記現実3D画像ソースがステレオカメラである、請求項9に記載のシステム。
  12. 前記仮想画像ソースが、さらに、前記ステレオカメラのアスペクト比を決定し、前記射影行列に関する1つまたは複数のパラメータのうちの少なくとも1つを決定するために前記アスペクト比を使用するように構成された、請求項11に記載のシステム。
  13. 前記パラメータが、左境界パラメータ、右境界パラメータ、上境界パラメータ、下境界パラメータ、ニアクリッピング平面パラメータ、およびファークリッピング平面パラメータを備える、請求項9に記載のシステム。
  14. 前記仮想画像ソースが、さらに、前記現実3D画像についてのニア平面視差値を決定し、前記同じニア平面視差値を用いて前記仮想3Dオブジェクトをレンダリングするように構成された、請求項9に記載のシステム。
  15. 前記仮想画像ソースが、さらに、前記現実3D画像についてのファー平面視差値を決定し、前記同じファー平面視差値を用いて前記仮想3Dオブジェクトをレンダリングするように構成された、請求項9に記載のシステム。
  16. 前記混合シーン合成ユニットが、さらに、前記混合リアリティ3D画像のビューポートをシフトするように構成された、請求項9に記載のシステム。
  17. 現実3次元(3D)画像についてのゼロ視差平面までの距離を決定するための手段と、
    前記ゼロ視差平面までの前記距離に少なくとも部分的に基づいて射影行列に関する1つまたは複数のパラメータを決定するための手段と、
    前記射影行列に少なくとも部分的に基づいて仮想3Dオブジェクトをレンダリングするための手段と、
    混合リアリティ3D画像を生成するために前記現実画像と前記仮想オブジェクトとを組み合わせるための手段と
    を備える、装置。
  18. 前記ゼロ視差平面までの前記距離に少なくとも部分的に基づいて両眼間隔値を決定するための手段と、
    前記両眼間隔値に少なくとも部分的に基づいて前記仮想3Dオブジェクトをレンダリングするための手段と
    をさらに備える、請求項17に記載の装置。
  19. 前記現実3D画像がステレオカメラによってキャプチャされる、請求項17に記載の装置。
  20. 前記装置が、
    前記ステレオカメラのアスペクト比を決定するための手段と、
    前記射影行列に関する1つまたは複数のパラメータのうちの少なくとも1つを決定するために前記アスペクト比を使用するための手段と
    をさらに備える、請求項19に記載の装置。
  21. 前記パラメータが、左境界パラメータ、右境界パラメータ、上境界パラメータ、下境界パラメータ、ニアクリッピング平面パラメータ、ファークリッピング平面パラメータを備える、請求項17に記載の装置。
  22. 前記現実3D画像についてのニア平面視差値を決定するための手段と、
    前記ニア平面視差値を用いて前記仮想3Dオブジェクトをレンダリングするための手段と
    をさらに備える、請求項17に記載の装置。
  23. 前記現実3D画像についてのファー平面視差値を決定するための手段と、
    前記ファー平面視差値を用いて前記仮想3Dオブジェクトをレンダリングするための手段と
    をさらに備える、請求項17に記載の装置。
  24. 前記混合リアリティ3D画像のビューポートをシフトするための手段
    をさらに備える、請求項17に記載の装置。
  25. 1つまたは複数のプロセッサによって実行されたときに前記1つまたは複数のプロセッサに、
    現実3次元(3D)画像についてのゼロ視差平面までの距離を決定することと、
    前記ゼロ視差平面までの前記距離に少なくとも部分的に基づいて射影行列に関する1つまたは複数のパラメータを決定することと、
    前記射影行列に少なくとも部分的に基づいて仮想3Dオブジェクトをレンダリングすることと、
    混合リアリティ3D画像を生成するために前記現実画像と前記仮想オブジェクトとを組み合わせることと
    を行わせる1つまたは複数の命令を有形に記憶する、非一時的コンピュータ可読記憶媒体。
  26. 前記1つまたは複数のプロセッサによって実行されたときに前記1つまたは複数のプロセッサに、
    前記ゼロ視差平面までの前記距離に少なくとも部分的に基づいて両眼間隔値を決定することと、
    前記両眼間隔値に少なくとも部分的に基づいて前記仮想3Dオブジェクトをレンダリングすることと
    を行わせるさらなる命令を記憶する、請求項25に記載のコンピュータ可読記憶媒体。
  27. 前記現実3D画像がステレオカメラによってキャプチャされる、請求項25に記載のコンピュータ可読記憶媒体。
  28. 前記1つまたは複数のプロセッサによって実行されたときに前記1つまたは複数のプロセッサに、
    前記ステレオカメラのアスペクト比を決定することと、
    前記射影行列に関する1つまたは複数のパラメータのうちの少なくとも1つを決定するために前記アスペクト比を使用することと
    行わせるさらなる命令を記憶する、請求項27に記載のコンピュータ可読記憶媒体。
  29. 前記パラメータが、左境界パラメータ、右境界パラメータ、上境界パラメータ、下境界パラメータ、ニアクリッピング平面パラメータ、およびファークリッピング平面パラメータを備える、請求項27に記載のコンピュータ可読記憶媒体。
  30. 前記1つまたは複数のプロセッサによって実行されたときに前記1つまたは複数のプロセッサに、
    前記現実3D画像についてのニア平面視差値を決定することと、
    前記ニア平面視差値を用いて前記仮想3Dオブジェクトをレンダリングすることと
    を行わせるさらなる命令を記憶する、請求項25に記載のコンピュータ可読記憶媒体。
  31. 前記1つまたは複数のプロセッサによって実行されたときに前記1つまたは複数のプロセッサに、
    前記現実3D画像についてのファー平面視差値を決定することと、
    前記ファー平面視差値を用いて前記仮想3Dオブジェクトをレンダリングすることと
    を行わせるさらなる命令を記憶する、請求項25に記載のコンピュータ可読記憶媒体。
  32. 前記1つまたは複数のプロセッサによって実行されたときに前記1つまたは複数のプロセッサに、
    前記混合リアリティ3D画像のビューポートをシフトすること
    を行わせるさらなる命令を記憶する、請求項25に記載のコンピュータ可読記憶媒体。
JP2013542078A 2010-12-03 2011-11-28 3dヒューマンマシンインターフェースのためのハイブリッドリアリティ Expired - Fee Related JP5654138B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US41955010P 2010-12-03 2010-12-03
US61/419,550 2010-12-03
US13/234,028 2011-09-15
US13/234,028 US20120139906A1 (en) 2010-12-03 2011-09-15 Hybrid reality for 3d human-machine interface
PCT/US2011/062261 WO2012074937A1 (en) 2010-12-03 2011-11-28 Hybrid reality for 3d human-machine interface

Publications (2)

Publication Number Publication Date
JP2014505917A true JP2014505917A (ja) 2014-03-06
JP5654138B2 JP5654138B2 (ja) 2015-01-14

Family

ID=46161809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013542078A Expired - Fee Related JP5654138B2 (ja) 2010-12-03 2011-11-28 3dヒューマンマシンインターフェースのためのハイブリッドリアリティ

Country Status (5)

Country Link
US (1) US20120139906A1 (ja)
EP (1) EP2647207A1 (ja)
JP (1) JP5654138B2 (ja)
CN (1) CN103238338B (ja)
WO (1) WO2012074937A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6959682B1 (ja) * 2020-12-28 2021-11-05 株式会社計数技研 画像合成装置、画像合成方法、及びプログラム
JP7044426B1 (ja) 2021-10-14 2022-03-30 株式会社計数技研 画像合成装置、画像合成方法、及びプログラム
WO2022145414A1 (ja) * 2020-12-28 2022-07-07 株式会社計数技研 画像合成装置、画像合成方法、及びプログラム

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2976388B1 (fr) * 2011-06-08 2014-01-10 Media Relief Procede de fabrication d'une image iridescente, image obtenue et dispositif la comprenant, programme associe
US10805625B2 (en) * 2011-07-05 2020-10-13 Texas Instruments Incorporated Method, system and computer program product for adjusting a stereoscopic image in response to decoded disparities between views of the stereoscopic image
US9606992B2 (en) * 2011-09-30 2017-03-28 Microsoft Technology Licensing, Llc Personal audio/visual apparatus providing resource management
CN103108197A (zh) 2011-11-14 2013-05-15 辉达公司 一种用于3d视频无线显示的优先级压缩方法和系统
KR20130053466A (ko) * 2011-11-14 2013-05-24 한국전자통신연구원 인터랙티브 증강공간 제공을 위한 콘텐츠 재생 장치 및 방법
KR20130081569A (ko) * 2012-01-09 2013-07-17 삼성전자주식회사 3d 영상을 출력하기 위한 장치 및 방법
US9829715B2 (en) 2012-01-23 2017-11-28 Nvidia Corporation Eyewear device for transmitting signal and communication method thereof
CN103258339A (zh) * 2012-02-16 2013-08-21 克利特股份有限公司 基于实况记录和基于计算机图形的媒体流的实时合成
EP2675173A1 (en) * 2012-06-15 2013-12-18 Thomson Licensing Method and apparatus for fusion of images
US9578224B2 (en) 2012-09-10 2017-02-21 Nvidia Corporation System and method for enhanced monoimaging
GB2499694B8 (en) 2012-11-09 2017-06-07 Sony Computer Entertainment Europe Ltd System and method of image reconstruction
TWI571827B (zh) * 2012-11-13 2017-02-21 財團法人資訊工業策進會 決定3d物件影像在3d環境影像中深度的電子裝置及其方法
BR112015011804B1 (pt) * 2012-11-23 2022-02-15 Cadens Medical Imaging Inc Método e sistema para exibir a um usuário uma transição, e, meio de armazenamento legível por computador
DE102013201377A1 (de) 2013-01-29 2014-07-31 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtung zum Verarbeiten von 3d-Bilddaten
US10935788B2 (en) 2014-01-24 2021-03-02 Nvidia Corporation Hybrid virtual 3D rendering approach to stereovision
WO2015123775A1 (en) * 2014-02-18 2015-08-27 Sulon Technologies Inc. Systems and methods for incorporating a real image stream in a virtual image stream
EP3175614A4 (en) * 2014-07-31 2018-03-28 Hewlett-Packard Development Company, L.P. Virtual changes to a real object
CN105611267B (zh) * 2014-11-21 2020-12-15 罗克韦尔柯林斯公司 现实世界和虚拟世界图像基于深度和色度信息的合并
KR20160070874A (ko) * 2014-12-10 2016-06-21 브이앤아이 주식회사 모바일 기기를 이용한 위치기반 시설물 관리 시스템
CN104539925B (zh) * 2014-12-15 2016-10-05 北京邮电大学 基于深度信息的三维场景增强现实的方法及系统
US9911232B2 (en) 2015-02-27 2018-03-06 Microsoft Technology Licensing, Llc Molding and anchoring physically constrained virtual environments to real-world environments
US9836117B2 (en) 2015-05-28 2017-12-05 Microsoft Technology Licensing, Llc Autonomous drones for tactile feedback in immersive virtual reality
US9898864B2 (en) 2015-05-28 2018-02-20 Microsoft Technology Licensing, Llc Shared tactile interaction and user safety in shared space multi-person immersive virtual reality
US20170039986A1 (en) * 2015-08-07 2017-02-09 Microsoft Technology Licensing, Llc Mixed Reality Social Interactions
US9600938B1 (en) * 2015-11-24 2017-03-21 Eon Reality, Inc. 3D augmented reality with comfortable 3D viewing
EP3185550A1 (en) * 2015-12-23 2017-06-28 Thomson Licensing Tridimensional rendering with adjustable disparity direction
US20170228916A1 (en) * 2016-01-18 2017-08-10 Paperclip Productions, Inc. System and method for an enhanced, multiplayer mixed reality experience
US9906981B2 (en) 2016-02-25 2018-02-27 Nvidia Corporation Method and system for dynamic regulation and control of Wi-Fi scans
CN106131533A (zh) * 2016-07-20 2016-11-16 深圳市金立通信设备有限公司 一种图像显示方法和终端
US10306215B2 (en) 2016-07-31 2019-05-28 Microsoft Technology Licensing, Llc Object display utilizing monoscopic view with controlled convergence
US20180063205A1 (en) * 2016-08-30 2018-03-01 Augre Mixed Reality Technologies, Llc Mixed reality collaboration
US20180077430A1 (en) 2016-09-09 2018-03-15 Barrie Hansen Cloned Video Streaming
US11202051B2 (en) 2017-05-18 2021-12-14 Pcms Holdings, Inc. System and method for distributing and rendering content as spherical video and 3D asset combination
US10297087B2 (en) 2017-05-31 2019-05-21 Verizon Patent And Licensing Inc. Methods and systems for generating a merged reality scene based on a virtual object and on a real-world object represented from different vantage points in different video data streams
WO2019041035A1 (en) 2017-08-30 2019-03-07 Innovations Mindtrick Inc. STEREOSCOPIC IMAGE DISPLAY DEVICE ADJUSTED BY THE SPECTATOR
CN107995481B (zh) * 2017-11-30 2019-11-15 贵州颐爱科技有限公司 一种混合现实的显示方法及装置
DE102018130770A1 (de) * 2017-12-13 2019-06-13 Apple Inc. Stereoskopische Wiedergabe von virtuellen 3D-Objekten
US11941499B2 (en) * 2019-10-16 2024-03-26 Hewlett-Packard Development Company, L.P. Training using rendered images
US11917119B2 (en) 2020-01-09 2024-02-27 Jerry Nims 2D image capture system and display of 3D digital image
EP4173284A1 (en) * 2020-06-24 2023-05-03 Jerry Nims 2d digital image capture system and simulating 3d digital image sequence

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003284095A (ja) * 2002-03-27 2003-10-03 Sanyo Electric Co Ltd 立体画像処理方法および装置
JP2006285609A (ja) * 2005-03-31 2006-10-19 Canon Inc 画像処理方法、画像処理装置
JP2008146497A (ja) * 2006-12-12 2008-06-26 Canon Inc 画像処理装置、画像処理方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1667471B1 (en) * 2004-12-02 2008-02-06 Sony Ericsson Mobile Communications AB Portable communication device with three dimensional display
JP4847203B2 (ja) * 2006-04-27 2011-12-28 キヤノン株式会社 情報処理方法、情報処理装置
WO2010040146A1 (en) * 2008-10-03 2010-04-08 Real D Optimal depth mapping
RU2554465C2 (ru) * 2009-07-27 2015-06-27 Конинклейке Филипс Электроникс Н.В. Комбинирование 3d видео и вспомогательных данных
JP6106586B2 (ja) * 2010-06-28 2017-04-05 トムソン ライセンシングThomson Licensing 立体コンテンツの3次元効果をカスタマイズする方法及び装置
US9699438B2 (en) * 2010-07-02 2017-07-04 Disney Enterprises, Inc. 3D graphic insertion for live action stereoscopic video
US8854356B2 (en) * 2010-09-28 2014-10-07 Nintendo Co., Ltd. Storage medium having stored therein image processing program, image processing apparatus, image processing system, and image processing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003284095A (ja) * 2002-03-27 2003-10-03 Sanyo Electric Co Ltd 立体画像処理方法および装置
JP2006285609A (ja) * 2005-03-31 2006-10-19 Canon Inc 画像処理方法、画像処理装置
JP2008146497A (ja) * 2006-12-12 2008-06-26 Canon Inc 画像処理装置、画像処理方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CSND201000688006; 加納 裕: '第4章 実世界と3DCGの世界をつないで、画像を立体視させる OpenGLを使って立体視の絵を作ろう' Interface 第37巻 第1号 第37巻 第1号, 20110101, P.71-77, CQ出版株式会社 *
JPN6014027497; 加納 裕: '第4章 実世界と3DCGの世界をつないで、画像を立体視させる OpenGLを使って立体視の絵を作ろう' Interface 第37巻 第1号 第37巻 第1号, 20110101, P.71-77, CQ出版株式会社 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6959682B1 (ja) * 2020-12-28 2021-11-05 株式会社計数技研 画像合成装置、画像合成方法、及びプログラム
WO2022145414A1 (ja) * 2020-12-28 2022-07-07 株式会社計数技研 画像合成装置、画像合成方法、及びプログラム
JP2022103572A (ja) * 2020-12-28 2022-07-08 株式会社計数技研 画像合成装置、画像合成方法、及びプログラム
JP7044426B1 (ja) 2021-10-14 2022-03-30 株式会社計数技研 画像合成装置、画像合成方法、及びプログラム
JP2023059137A (ja) * 2021-10-14 2023-04-26 株式会社計数技研 画像合成装置、画像合成方法、及びプログラム

Also Published As

Publication number Publication date
WO2012074937A1 (en) 2012-06-07
EP2647207A1 (en) 2013-10-09
JP5654138B2 (ja) 2015-01-14
CN103238338A (zh) 2013-08-07
US20120139906A1 (en) 2012-06-07
CN103238338B (zh) 2016-08-10

Similar Documents

Publication Publication Date Title
JP5654138B2 (ja) 3dヒューマンマシンインターフェースのためのハイブリッドリアリティ
JP5763184B2 (ja) 3次元画像に対する視差の算出
US9986258B2 (en) Efficient encoding of multiple views
KR101492876B1 (ko) 사용자 선호도들에 기초하여 3d 비디오 렌더링을 조정하기 위한 3d 비디오 제어 시스템
US20140198182A1 (en) Representation and Coding of Multi-View Images Using Tapestry Encoding
EP3759925A1 (en) An apparatus, a method and a computer program for volumetric video
CN113243112A (zh) 流式传输体积视频和非体积视频
US20230283759A1 (en) System and method for presenting three-dimensional content
JP7344988B2 (ja) ボリュメトリック映像の符号化および復号化のための方法、装置、およびコンピュータプログラム製品
EP3729805A1 (en) Method for encoding and decoding volumetric video data
WO2019077199A1 (en) APPARATUS, METHOD, AND COMPUTER PROGRAM FOR VOLUMETRIC VIDEO
Knorr et al. From 2D-to stereo-to multi-view video
Scheer et al. A client-server architecture for real-time view-dependent streaming of free-viewpoint video
Tan et al. A system for capturing, rendering and multiplexing images on multi-view autostereoscopic display
US20230008125A1 (en) Augmenting a view of a real-world environment with a view of a volumetric video object
Kovács et al. Analysis and optimization of pixel usage of light-field conversion from multi-camera setups to 3D light-field displays
Robitza 3d vision: Technologies and applications
Xing Towards a three-dimensional immersive teleconferencing system: Design and implementation
Lee et al. Technical Challenges of 3D Video Coding

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141119

R150 Certificate of patent or registration of utility model

Ref document number: 5654138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees