JP2014505657A5 - - Google Patents

Download PDF

Info

Publication number
JP2014505657A5
JP2014505657A5 JP2013536520A JP2013536520A JP2014505657A5 JP 2014505657 A5 JP2014505657 A5 JP 2014505657A5 JP 2013536520 A JP2013536520 A JP 2013536520A JP 2013536520 A JP2013536520 A JP 2013536520A JP 2014505657 A5 JP2014505657 A5 JP 2014505657A5
Authority
JP
Japan
Prior art keywords
nanoparticles
compound represented
molecular sieve
chemical formula
zwitterionic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013536520A
Other languages
Japanese (ja)
Other versions
JP2014505657A (en
JP5714115B2 (en
Filing date
Publication date
Priority claimed from KR1020100106731A external-priority patent/KR101276693B1/en
Application filed filed Critical
Publication of JP2014505657A publication Critical patent/JP2014505657A/en
Publication of JP2014505657A5 publication Critical patent/JP2014505657A5/ja
Application granted granted Critical
Publication of JP5714115B2 publication Critical patent/JP5714115B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (13)

下記化学式(I)で表される化合物からなる両性イオン分子篩で表面改質されたことを特徴とする、ナノ粒子。
Figure 2014505657
Characterized in that it is surface modified with a zwitterionic molecular sieve comprising a compound represented by the following chemical formula (I), the nanoparticles.
Figure 2014505657
前記ナノ粒子は、前記両性イオン分子篩で表面置換されたことを特徴とする、請求項1に記載のナノ粒子 The nanoparticles are characterized in that it is resurfacing in the zwitterionic molecular sieve Nanoparticles according to claim 1. 記ナノ粒子が、金属、非金属、セラミック、プラスチック、高分子、半導体、量子ドット、またはこれらの1種以上の複合材質からなることを特徴とする、請求項1または2に記載のナノ粒子。 Before SL nanoparticles, wherein the metal, nonmetal, ceramics, plastics, polymers, semiconductors, that a quantum dot or a composite material of one or more of these, nano according to claim 1 or 2 particle. 前記ナノ粒子が光学的特性を有するナノ粒子であることを特徴とする、請求項1または2に記載のナノ粒子。 Wherein the nanoparticles are nanoparticles with optical properties, the nanoparticles according to claim 1 or 2. 前記ナノ粒子は内部が充填された充填型、または内部の少なくとも一部に空間が含まれたキャビティ型であることを特徴とする、請求項1または2に記載のナノ粒子 The nanoparticle according to claim 1 or 2 , wherein the nanoparticle is a filled type in which an inside is filled or a cavity type in which a space is included in at least a part of the inside . 記分子篩の長さがナノ粒子の外径より短いことを特徴とする、請求項1または2に記載のナノ粒子 Length before Symbol molecular sieve is characterized in that less than the outer diameter of the nanoparticles, the nanoparticles according to claim 1 or 2. ナノ粒子を下記化学式(I)で表される化合物からなる両性イオン分子篩と反応させ、前記両性イオン分子篩で表面改質されたナノ粒子を製造することを特徴とする方法。A method comprising reacting nanoparticles with a zwitterionic molecular sieve comprising a compound represented by the following chemical formula (I) to produce nanoparticles surface-modified with the zwitterionic molecular sieve.
Figure 2014505657
Figure 2014505657
記両性イオン分子篩と反応する前のナノ粒子は、表面に、前記両性イオン分子篩と置換可能なリガンドが形成され、前記リガンドが前記両性イオン分子篩と置換されることを特徴とする、請求項に記載の方法。 Nanoparticles before reacting with the previous SL zwitterionic molecular sieves, the surface, the zwitterionic molecular sieve and replaceable ligands is formed, wherein the ligand is replaced with the zwitterionic molecular sieve, according to claim 7 The method described in 1. 前記両性イオン分子篩と反応する前のナノ粒子は有機溶媒、水またはこれらの混合物からなる分散媒に分散したナノ粒子であることを特徴とする、請求項に記載の方法 The method according to claim 7 , wherein the nanoparticles before reacting with the zwitterionic molecular sieve are nanoparticles dispersed in a dispersion medium composed of an organic solvent, water , or a mixture thereof . 下記化学式(I)で表される化合物からなる両性イオン分子篩とカルボキシ基を有する分子篩とで表面改質されたナノ粒子。Nanoparticles surface-modified with a zwitterionic molecular sieve comprising a compound represented by the following chemical formula (I) and a molecular sieve having a carboxy group.
Figure 2014505657
Figure 2014505657
記化学式(I)で表される化合物からなる両性イオン分子篩。
Figure 2014505657
Zwitterionic molecular sieve comprising a compound represented by the following Symbol Formula (I).
Figure 2014505657
請求項11に記載の化学式(I)で表される化合物を製造する方法であって、
下記化学式(IV)で表される化合物を水素化ホウ素ナトリウムと反応させて、前記化学式(I)で表される化合物を製造する方法。
Figure 2014505657
A method for producing a compound represented by the chemical formula (I) according to claim 11,
And a compound represented by the following formula (IV) is reacted with sodium borohydride, a method for producing a compound represented by the formula (I).
Figure 2014505657
請求項12に記載の化学式(IV)で表される化合物を製造する方法であって
下記化学式(II)で表される化合物と下記化学式(III)で表される化合物とを反応させて、前記化学式(IV)で表される化合物を製造する方
Figure 2014505657
A method for producing a compound represented by the chemical formula (IV) according to claim 12 ,
Following chemical formula (II) compound represented by the following chemical formula by reacting a compound represented by (III), how you produce a compound represented by Formula (IV).
Figure 2014505657
JP2013536520A 2010-10-29 2011-10-28 Synthesis and application of molecular sieves for surface modification of nanoparticles with zwitterions Active JP5714115B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2010-0106731 2010-10-29
KR1020100106731A KR101276693B1 (en) 2010-10-29 2010-10-29 Synthesis of zwitterion functionalized surface molecules for nanoparticles and the applications thereof
PCT/KR2011/008116 WO2012057556A2 (en) 2010-10-29 2011-10-28 Synthesis of molecular sieves for modifying the surfaces of nanoparticles having amphoteric ions, and application thereof

Publications (3)

Publication Number Publication Date
JP2014505657A JP2014505657A (en) 2014-03-06
JP2014505657A5 true JP2014505657A5 (en) 2014-07-17
JP5714115B2 JP5714115B2 (en) 2015-05-07

Family

ID=45994583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013536520A Active JP5714115B2 (en) 2010-10-29 2011-10-28 Synthesis and application of molecular sieves for surface modification of nanoparticles with zwitterions

Country Status (6)

Country Link
US (1) US9221752B2 (en)
EP (1) EP2634135B1 (en)
JP (1) JP5714115B2 (en)
KR (1) KR101276693B1 (en)
CN (1) CN103189306B (en)
WO (1) WO2012057556A2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2672269A1 (en) * 2012-06-07 2013-12-11 Solarwell Enhanced affinity ligands
KR101459192B1 (en) * 2012-11-28 2014-11-10 연세대학교 산학협력단 Extraterritorially controllable on-off pulsed drug carrier using NIR laser, method for producing the same, and drug delivery system
KR101522722B1 (en) * 2013-09-27 2015-05-26 에이스틴 주식회사 Aggregates Comprising Ionic Organic/Inorganic Hybrid Particle, Cosmetic Composition Comprising the Aggregates, and Method for Preparing the Same
CN105273711B (en) * 2014-07-25 2017-08-08 中国科学院苏州纳米技术与纳米仿生研究所 A kind of surface modifying method of nano-particle material
CN104231181B (en) * 2014-08-22 2017-10-03 中科院广州化学有限公司南雄材料生产基地 A kind of comb shape polyelectrolyte type dispersant of dispersing nanoparticles and preparation method thereof
EP3260862B1 (en) * 2015-02-19 2019-10-23 National University Corporation Kyoto Institute of Technology Method for suppressing protein adsorption
EP3328961B1 (en) * 2015-07-31 2019-04-03 Avantama AG Luminescent crystals and manufacturing thereof
CN106928997A (en) * 2015-12-29 2017-07-07 有研稀土新材料股份有限公司 Light-emitting particles and the luminescent device comprising it
JP6830967B2 (en) * 2016-12-22 2021-02-17 住友化学株式会社 Compositions, films, laminated structures, light emitting devices, and displays
TWI746745B (en) * 2016-12-22 2021-11-21 日商住友化學股份有限公司 Composition, film, laminated structure, light emitting device, and display
WO2019010999A1 (en) * 2017-07-11 2019-01-17 Tcl集团股份有限公司 Quantum dot and quantum dot preparation method
US11180696B2 (en) * 2017-10-11 2021-11-23 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Fabrication of luminescent quantum dot thiol-yne nanocomposites with tailorable optical, thermal and mechanical properties
CN108298558A (en) 2018-01-03 2018-07-20 中国石油天然气股份有限公司 Amphiphilic molecular sieve with hydrophilic group on outer side and lipophilic group on inner side and preparation method thereof
CN108298557A (en) * 2018-01-03 2018-07-20 中国石油天然气股份有限公司 Amphiphilic molecular sieve with lipophilic group on outer side and hydrophilic group on inner side and preparation method thereof
CN108559513B (en) * 2018-05-30 2021-06-11 上海双洳生物科技有限公司 Near-infrared quantum dot with core-shell structure and preparation method thereof, and ligand functionalized quantum dot and preparation method thereof
CL2018001473A1 (en) * 2018-06-01 2019-10-25 Univ Tecnica Federico Santa Maria Utfsm Kit and methods to evaluate the adsorbent properties of the surface of a material
KR102040083B1 (en) 2018-09-06 2019-11-05 숭실대학교산학협력단 Supramolecular structure and method of manufacturing the same and self healing elastomer
KR102046907B1 (en) * 2019-01-16 2019-11-20 주식회사 신아티앤씨 Quantum dots in which ionic liquids are ion-bonded and their preparation method
CN109607560B (en) * 2019-01-17 2022-08-09 大连理工大学 Lamellar heteroatom molecular sieve and green synthesis method thereof
WO2020148912A1 (en) * 2019-01-18 2020-07-23 シャープ株式会社 Light emitting element, electroluminescent device, and manufacturing method of light emitting element
JP7256521B2 (en) * 2019-02-28 2023-04-12 国立大学法人福島大学 Metal nanoparticle-containing resin and method for producing metal nanoparticle-containing resin
CN115699998A (en) * 2020-05-26 2023-02-03 夏普株式会社 Light emitting element and method for manufacturing light emitting element
WO2024136511A1 (en) * 2022-12-22 2024-06-27 가톨릭대학교 산학협력단 Synthesis of surface-modified molecular sieve for cytoplasmic nanoparticle and application thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100555584B1 (en) 2003-06-10 2006-03-03 좌용호 The Fabrication of Metal Nanoparticles by Application of Electro-Decomposition Method
ATE376978T1 (en) * 2004-01-27 2007-11-15 Merck Patent Gmbh NANOPARTICLES
KR100555594B1 (en) 2004-03-23 2006-03-03 김원일 The device of wastewater purification in stream for hydraulic power
KR100652251B1 (en) 2004-09-03 2006-12-01 학교법인연세대학교 Method for Preparing Water-soluble Nanoparticles via Multi-Functional Group Ligand Assisted Surface Modification Processes
KR100790948B1 (en) 2006-05-25 2008-01-03 삼성전기주식회사 Method for preparing metal nanoparticles and metal nanoparticles prepared using the same
US10087082B2 (en) 2006-06-06 2018-10-02 Florida State University Research Foundation, Inc. Stabilized silica colloid
KR100836659B1 (en) 2006-07-06 2008-06-10 삼성전기주식회사 Method for manufacturing metal nanoparticles
KR100724807B1 (en) 2006-08-21 2007-06-04 고려대학교 산학협력단 Method for preparing tin oxide nano particle and the tin oxide nano particle prepared by the same, and method for preparing metal-doped tin oxide nano particle and the metal-doped tin oxide nano particle prepared by the same
ES2534215T3 (en) 2006-08-30 2015-04-20 Oerlikon Metco Ag, Wohlen Plasma spray device and a method for introducing a liquid precursor into a plasma gas system
ATE541902T1 (en) * 2006-12-20 2012-02-15 Ct Fuer Angewandte Nanotechnologie Can Gmbh SURFACE TREATMENT PROCESS FOR NANOPARTICLES
KR101365141B1 (en) 2007-03-06 2014-02-20 한국생산기술연구원 Method for the preparation of size and density controlled metal nanoparticle catalysts for carbon nanotube and metal nanoparticle catalysts prepared by the same
KR100820231B1 (en) 2007-04-30 2008-04-08 삼성전기주식회사 Reactor for synthesis of metal nanoparticles and manufacturing method for metal nanoparticles using the same
KR100861355B1 (en) 2007-06-27 2008-10-01 성균관대학교산학협력단 Equipment for the fabrication of metal nanoparticles using electroless plating solution and method of using the same
KR101014246B1 (en) * 2008-07-03 2011-02-16 포항공과대학교 산학협력단 pH SENSITIVE METAL NONAPARTICLES AND MANUFACTURING MEHTODS THEREOF
KR101999853B1 (en) 2008-12-29 2019-07-12 제너럴 일렉트릭 캄파니 Nanoparticle contrast agents for diagnostic imaging

Similar Documents

Publication Publication Date Title
JP2014505657A5 (en)
Yuan et al. Paving metal–organic frameworks with upconversion nanoparticles via self-assembly
Yao et al. Highly thermally conductive composite papers prepared based on the thought of bioinspired engineering
Chen et al. Scalable Routes to Janus Au− SiO2 and Ternary Ag− Au− SiO2 Nanoparticles
Zhang et al. Microplasma processed ultrathin boron nitride nanosheets for polymer nanocomposites with enhanced thermal transport performance
Wang et al. Sonochemical synthesis of hollow PbS nanospheres
Huang et al. Transparent dispersions of monodispersed ZnO nanoparticles with ultrahigh content and stability for polymer nanocomposite film with excellent optical properties
Johan et al. Synthesis and growth mechanism of silver nanowires through different mediated agents (CuCl2 and NaCl) polyol process
Liu et al. Micro-and nanocubes of carbon with C8-like and blue luminescence
Ager et al. Aqueous graphene dispersions–optical properties and stimuli-responsive phase transfer
Golsheikh et al. Sonochemical synthesis of reduced graphene oxide uniformly decorated with hierarchical ZnS nanospheres and its enhanced photocatalytic activities
Kouloumpis et al. Graphene/carbon dot hybrid thin films prepared by a modified langmuir–schaefer method
Reddy et al. Polyamine-mediated interfacial assembly of rGO-ZnO nanostructures: a bio-inspired approach and enhanced photocatalytic properties
Ayazi Application of nanocomposite-based sorbents in microextraction techniques: a review
Lee et al. Functionalization effects of single-walled carbon nanotubes as templates for the synthesis of silica nanorods and study of growing mechanism of silica
Baizaee et al. A simple, one-pot, low temperature and pressure route for the synthesis of RGO/ZnO nanocomposite and investigating its photocatalytic activity
Xiong et al. CdS with various novel hierarchical nanostructures by nanobelts/nanowires self-assembly: controllable preparation and their optical properties
Peng et al. Ultrasound-assisted fabrication of dispersed two-dimensional copper/reduced graphene oxide nanosheets nanocomposites
Ma et al. Hydrothermal exfoliation of boron nitride into few-layer nanosheets in mixed NaOH/KOH solution
JP2007154166A5 (en)
Park et al. Toward green synthesis of graphene oxide using recycled sulfuric acid via couette–taylor flow
Shobin et al. One pot rapid synthesis of silver nanowires using NaCl assisted glycerol mediated polyol process
Jawaid et al. Functionalized graphene nanocomposites and their derivatives: Synthesis, processing and applications
Gwak et al. Facile synthetic route to prepare ultrathin silver nanosheets by reducing silver thiolates in interlayer surface of layered double hydroxides
Gao et al. Hierarchical Bi based nanobundles: An excellent photocatalyst for visible-light degradation of Rhodamine B dye