JP2014241450A - Supercritical drying method of semiconductor substrate, and substrate processing apparatus - Google Patents

Supercritical drying method of semiconductor substrate, and substrate processing apparatus Download PDF

Info

Publication number
JP2014241450A
JP2014241450A JP2014189608A JP2014189608A JP2014241450A JP 2014241450 A JP2014241450 A JP 2014241450A JP 2014189608 A JP2014189608 A JP 2014189608A JP 2014189608 A JP2014189608 A JP 2014189608A JP 2014241450 A JP2014241450 A JP 2014241450A
Authority
JP
Japan
Prior art keywords
water
semiconductor substrate
chamber
organic solvent
soluble organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014189608A
Other languages
Japanese (ja)
Other versions
JP6005702B2 (en
Inventor
藤 洋 平 佐
Yohei Sato
藤 洋 平 佐
口 寿 史 大
Hisashi Oguchi
口 寿 史 大
田 寛 冨
Hiroshi Tomita
田 寛 冨
秀 和 林
Hidekazu Hayashi
秀 和 林
島 由貴子 北
Yukiko Kitajima
島 由貴子 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2014189608A priority Critical patent/JP6005702B2/en
Publication of JP2014241450A publication Critical patent/JP2014241450A/en
Application granted granted Critical
Publication of JP6005702B2 publication Critical patent/JP6005702B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a supercritical drying method of a semiconductor substrate, capable of reducing particles generated on the semiconductor substrate and reducing time required for drying processing.SOLUTION: A supercritical drying method of a semiconductor substrate, comprises the steps of: rinsing, by using pure water, the semiconductor substrate having a fine pattern formed thereon; thereafter replacing the pure water on a surface of the semiconductor substrate with a water-soluble organic solvent; then introducing the semiconductor substrate wet with the water-soluble organic solvent into a chamber; then increasing temperature in the chamber to bring the water-soluble organic solvent to a supercritical state; then decreasing pressure in the chamber while keeping the temperature in the chamber at temperature at which the pure water is not liquefied; changing the water-soluble organic solvent in the supercritical state into gas to discharge the gas out of the chamber; and drying the semiconductor substrate.

Description

本発明の実施形態は、半導体基板の超臨界乾燥方法に関する。   Embodiments described herein relate generally to a supercritical drying method for a semiconductor substrate.

半導体装置の製造工程には、リソグラフィ工程、エッチング工程、イオン注入工程などの様々な工程が含まれている。各工程の終了後、次の工程に移る前に、ウェーハ表面に残存した不純物や残渣を除去してウェーハ表面を清浄にするための洗浄工程及び乾燥工程が実施されている。   The manufacturing process of a semiconductor device includes various processes such as a lithography process, an etching process, and an ion implantation process. After completion of each process, before moving to the next process, a cleaning process and a drying process are performed to remove impurities and residues remaining on the wafer surface and clean the wafer surface.

例えば、エッチング工程後のウェーハの洗浄処理では、ウェーハの表面に洗浄処理のための薬液が供給され、その後に純水が供給されてリンス処理が行われる。リンス処理後は、ウェーハ表面に残っている純水を除去してウェーハを乾燥させる乾燥処理が行われる。   For example, in the wafer cleaning process after the etching process, a chemical solution for the cleaning process is supplied to the surface of the wafer, and then pure water is supplied to perform a rinsing process. After the rinsing process, a drying process for removing the pure water remaining on the wafer surface and drying the wafer is performed.

乾燥処理を行う方法としては、例えばウェーハ上の純水をイソプロピルアルコール(IPA)に置換してウェーハを乾燥させるものが知られている。しかし、この乾燥処理時に、液体の表面張力によりウェーハ上に形成されたパターンが倒壊するという問題があった。   As a method for performing a drying process, for example, a method is known in which pure water on a wafer is replaced with isopropyl alcohol (IPA) to dry the wafer. However, there has been a problem in that the pattern formed on the wafer collapses due to the surface tension of the liquid during the drying process.

このような問題を解決するため、表面張力がゼロとなる超臨界乾燥が提案されている。
例えば、チャンバ内において、表面がIPAで濡れているウェーハを、超臨界状態とした二酸化炭素(超臨界CO流体)に浸漬した状態とすることで、ウェーハ上のIPAが超臨界CO流体に溶解する。そして、IPAが溶解している超臨界CO流体を徐々にチャンバから排出する。その後、チャンバ内を降圧/降温し、超臨界CO流体をガス(気体)へ相転換させてからチャンバ外へ排出することによりウェーハを乾燥させる。
In order to solve such a problem, supercritical drying in which the surface tension becomes zero has been proposed.
For example, in a chamber, a wafer whose surface is wet with IPA is immersed in carbon dioxide (supercritical CO 2 fluid) in a supercritical state, so that IPA on the wafer becomes supercritical CO 2 fluid. Dissolve. Then, the supercritical CO 2 fluid in which IPA is dissolved is gradually discharged from the chamber. Thereafter, the pressure in the chamber is decreased / decreased, the supercritical CO 2 fluid is phase-converted into gas (gas), and then discharged out of the chamber to dry the wafer.

しかし、チャンバ内の圧力を下げて、二酸化炭素を超臨界状態からガス(気体)へ相転換する際に、超臨界CO流体に溶解した状態でチャンバ内に残留していたIPAが、ウェーハ上に凝集再吸着し、パーティクル(乾燥痕)が生じるという問題があった。また、超臨界CO流体に溶解したIPAをチャンバ内から十分に排出するには、超臨界CO流体をチャンバへ供給し続けると共に、IPAが溶解した超臨界CO流体を少しずつ排出し続ける必要があるため、乾燥処理に要する時間が長くなるという問題があった。 However, when the pressure in the chamber is lowered and carbon dioxide is phase-converted from a supercritical state to a gas (gas), the IPA remaining in the chamber in a state dissolved in the supercritical CO 2 fluid is There is a problem that the particles are re-adsorbed to form particles (dry marks). Moreover, to fully discharge the IPA dissolved in the supercritical CO 2 fluid from the chamber, the supercritical CO 2 fluid with continuously supplied to the chamber continues to discharge the supercritical CO 2 fluid IPA is dissolved little by little Since this is necessary, there is a problem that the time required for the drying process becomes long.

特開2003−92240号公報JP 2003-92240 A

本発明は、半導体基板上に生じるパーティクルを低減すると共に、乾燥処理に要する時間を短縮することができる半導体基板の超臨界乾燥方法を提供することを目的とする。   An object of the present invention is to provide a supercritical drying method for a semiconductor substrate that can reduce particles generated on the semiconductor substrate and reduce the time required for the drying process.

本実施形態によれば、微細パターンが形成された半導体基板の純水リンス後に、半導体基板の表面を水溶性有機溶媒に置換し、水溶性有機溶媒に濡れた状態でチャンバ内に導入する。そして、チャンバ内の温度を昇温して、水溶性有機溶媒を超臨界状態にする。その後、チャンバ内を純水(水溶性有機溶媒中に混入したリンス純水)が液化しない温度に保ちながら圧力を下げ、超臨界状態の水溶性有機溶媒を気体に変化させてチャンバから排出し、半導体基板を乾燥させる。   According to this embodiment, after rinsing the semiconductor substrate on which the fine pattern is formed with water, the surface of the semiconductor substrate is replaced with a water-soluble organic solvent, and the semiconductor substrate is introduced into the chamber while being wet with the water-soluble organic solvent. Then, the temperature in the chamber is raised to bring the water-soluble organic solvent into a supercritical state. Then, the pressure is lowered while maintaining the temperature at which pure water (rinse pure water mixed in the water-soluble organic solvent) does not liquefy in the chamber, and the water-soluble organic solvent in the supercritical state is changed to gas and discharged from the chamber. The semiconductor substrate is dried.

圧力と温度と物質の相状態との関係を示す状態図である。It is a state diagram which shows the relationship between pressure, temperature, and the phase state of a substance. 本発明の第1の実施形態に係る超臨界乾燥装置の概略構成図である。It is a schematic block diagram of the supercritical drying apparatus which concerns on the 1st Embodiment of this invention. 同第1の実施形態に係る超臨界乾燥方法を説明するフローチャートである。It is a flowchart explaining the supercritical drying method which concerns on the 1st embodiment. 水溶性有機溶媒と純水の蒸気圧曲線を示すグラフである。It is a graph which shows the vapor pressure curve of a water-soluble organic solvent and pure water. 本発明の第2の実施形態に係る超臨界乾燥方法を説明するフローチャートである。It is a flowchart explaining the supercritical drying method which concerns on the 2nd Embodiment of this invention. 水溶性有機溶媒と非水溶性有機溶媒の蒸気圧曲線を示すグラフである。It is a graph which shows the vapor pressure curve of a water-soluble organic solvent and a water-insoluble organic solvent.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1の実施形態)まず、超臨界乾燥について説明する。図1は、圧力と温度と物質の相状態との関係を示す状態図である。超臨界乾燥に用いられる超臨界流体の機能物質には、三態と称される気相(気体)、液相(液体)、固相(固体)の3つの存在状態がある。   (First Embodiment) First, supercritical drying will be described. FIG. 1 is a state diagram showing a relationship among pressure, temperature, and phase state of a substance. The functional material of the supercritical fluid used for supercritical drying has three existence states called a gas phase (gas), a liquid phase (liquid), and a solid phase (solid), which are called three states.

図1に示すように、上記3つの相は、気相と液相との境界を示す蒸気圧曲線(気相平衡線)、気相と固相との境界を示す昇華曲線、固相と液相との境界を示す溶解曲線で区切られる。これら3つの相が重なったところが三重点である。この三重点から蒸気圧曲線が高温側に延びると、気相と液相が共存する限界である臨界点に達する。この臨界点では、気相と液相の密度が等しくなり、気液共存状態の界面が消失する。   As shown in FIG. 1, the above three phases are a vapor pressure curve (gas phase equilibrium line) indicating the boundary between the gas phase and the liquid phase, a sublimation curve indicating the boundary between the gas phase and the solid phase, and the solid phase and the liquid. It is delimited by a dissolution curve indicating the boundary with the phase. The triple point is where these three phases overlap. When the vapor pressure curve extends from this triple point to the high temperature side, it reaches a critical point where the gas phase and the liquid phase coexist. At this critical point, the gas phase and liquid phase densities are equal, and the gas-liquid coexistence interface disappears.

そして、臨界点より高温、高圧の状態では、気相、液相の区別がなくなり、物質は超臨界流体となる。超臨界流体とは、臨界温度以上で高密度に圧縮された流体である。超臨界流体は、溶媒分子の拡散力が支配的である点においては気体と類似している。一方、超臨界流体は、分子の凝集力の影響が無視できない点においては液体と類似しているため、種々の物質を溶解する性質を有している。   In the state of higher temperature and higher pressure than the critical point, there is no distinction between the gas phase and the liquid phase, and the substance becomes a supercritical fluid. A supercritical fluid is a fluid compressed at a high density above the critical temperature. Supercritical fluids are similar to gases in that the diffusive power of solvent molecules is dominant. On the other hand, supercritical fluids are similar to liquids in that the influence of molecular cohesion cannot be ignored, and thus have the property of dissolving various substances.

また、超臨界流体は、液体に比べ非常に高い浸潤性を有し、微細な構造にも容易に浸透する特徴がある。   Supercritical fluids have a very high infiltration property compared to liquids, and easily penetrate into fine structures.

また、超臨界流体は、超臨界状態から直接気相に転移するように乾燥させることで、気体と液体の界面が存在しないように、すなわち毛管力(表面張力)が働かないようにして、微細構造を破壊することなく乾燥することができる。超臨界乾燥とは、このような超臨界流体の超臨界状態を利用して基板を乾燥することである。   Also, the supercritical fluid is dried so that it transitions directly from the supercritical state to the gas phase, so that there is no interface between gas and liquid, that is, the capillary force (surface tension) does not work, It can be dried without destroying the structure. Supercritical drying is to dry a substrate using the supercritical state of such a supercritical fluid.

次に、図2を用いて、半導体基板の超臨界乾燥を行う超臨界乾燥装置について説明する。図2に示すように、超臨界乾燥装置10は、ヒータ12が内蔵されたチャンバ11を備えている。チャンバ11は、SUS等で形成された高圧容器である。ヒータ12は、チャンバ11内の温度を調整することができる。図2では、ヒータ12がチャンバ11に内蔵されている構成を示しているが、ヒータ12をチャンバ11の外周部に設ける構成にしてもよい。   Next, a supercritical drying apparatus that performs supercritical drying of a semiconductor substrate will be described with reference to FIG. As shown in FIG. 2, the supercritical drying apparatus 10 includes a chamber 11 in which a heater 12 is built. The chamber 11 is a high-pressure vessel made of SUS or the like. The heater 12 can adjust the temperature in the chamber 11. Although FIG. 2 shows a configuration in which the heater 12 is built in the chamber 11, the heater 12 may be provided on the outer periphery of the chamber 11.

また、チャンバ11には、超臨界乾燥処理の対象となる半導体基板Wを保持するリング状の平板であるステージ13が設けられている。   Further, the chamber 11 is provided with a stage 13 that is a ring-shaped flat plate that holds a semiconductor substrate W to be subjected to supercritical drying.

チャンバ11には配管15が連結されており、チャンバ11内の気体や超臨界流体を、この配管15を介して外部に排出することができる。配管15には、チャンバ11の内圧を監視制御しながらバルブ開度を調整する制御バルブ16が設けられている。制御バルブ16を閉じることにより、チャンバ11内を密閉状態にすることができる。   A pipe 15 is connected to the chamber 11, and the gas and supercritical fluid in the chamber 11 can be discharged to the outside through the pipe 15. The pipe 15 is provided with a control valve 16 that adjusts the valve opening while monitoring and controlling the internal pressure of the chamber 11. By closing the control valve 16, the inside of the chamber 11 can be sealed.

次に、図3に示すフローチャートを用いて、本実施形態に係る半導体基板の洗浄及び乾燥方法を説明する。   Next, a method for cleaning and drying a semiconductor substrate according to the present embodiment will be described with reference to the flowchart shown in FIG.

(ステップS101)処理対象の半導体基板が図示しない洗浄チャンバに搬入される。
そして、半導体基板の表面に薬液が供給され、洗浄処理が行われる。薬液には、例えば、硫酸、フッ酸、塩酸、過酸化水素等を用いることができる。
(Step S101) A semiconductor substrate to be processed is carried into a cleaning chamber (not shown).
And a chemical | medical solution is supplied to the surface of a semiconductor substrate, and a washing process is performed. As the chemical solution, for example, sulfuric acid, hydrofluoric acid, hydrochloric acid, hydrogen peroxide, or the like can be used.

ここで、洗浄処理とは、レジストを半導体基板から剥離するような処理や、パーティクルや金属不純物を除去する処理や、基板上に形成された膜をエッチング除去する処理等を含むものである。半導体基板には、微細パターンが形成されている。この微細パターンは、洗浄処理前から形成されているものでもよいし、この洗浄処理により形成されるものでもよい。   Here, the cleaning process includes a process for removing the resist from the semiconductor substrate, a process for removing particles and metal impurities, a process for etching and removing a film formed on the substrate, and the like. A fine pattern is formed on the semiconductor substrate. This fine pattern may be formed before the cleaning process or may be formed by this cleaning process.

(ステップS102)ステップS101の洗浄処理の後に、半導体基板の表面に純水が供給され、半導体基板の表面に残留していた薬液を純水によって洗い流す純水リンス処理が行われる。   (Step S102) After the cleaning process in step S101, a pure water rinse process is performed in which pure water is supplied to the surface of the semiconductor substrate and the chemical solution remaining on the surface of the semiconductor substrate is washed away with pure water.

(ステップS103)ステップS102の純水リンス処理の後に、表面が純水で濡れている半導体基板を水溶性有機溶媒に浸漬させ、半導体基板表面の液体を純水から水溶性有機溶媒に置換する液体置換処理が行われる。   (Step S103) After the pure water rinsing process in step S102, the semiconductor substrate whose surface is wet with pure water is immersed in a water-soluble organic solvent, and the liquid on the surface of the semiconductor substrate is replaced with pure water from the water-soluble organic solvent. Replacement processing is performed.

ここで用いられる水溶性有機溶媒は、例えば、イソプロピルアルコール(IPA)等のアルコールや、ケトンなどであり、純水よりも蒸気圧が高い(沸点が低い)ものである。
以下、水溶性有機溶媒にIPAを使用した場合について説明を行う。
The water-soluble organic solvent used here is, for example, alcohol such as isopropyl alcohol (IPA) or ketone, and has a higher vapor pressure (lower boiling point) than pure water.
Hereinafter, the case where IPA is used as the water-soluble organic solvent will be described.

なお、この液体置換処理により、半導体基板表面はIPAに濡れた状態となるが、このIPAには(少量ではあるが)純水が混入すると考えられる。   Note that the surface of the semiconductor substrate is wetted by the IPA by this liquid replacement treatment, but it is considered that pure water is mixed into the IPA (although a small amount).

(ステップS104)ステップS103の液体置換処理の後に、半導体基板が、表面がIPAで濡れた状態のまま、自然乾燥しないように、洗浄チャンバから搬出され、図2に示すチャンバ11に導入され、ステージ13に固定される。そして、制御バルブ16を閉じてチャンバ11の内部を密閉状態にする。   (Step S104) After the liquid replacement process in step S103, the semiconductor substrate is unloaded from the cleaning chamber and introduced into the chamber 11 shown in FIG. 13 is fixed. Then, the control valve 16 is closed to make the inside of the chamber 11 sealed.

(ステップS105)ヒータ12を用いて、密閉状態のチャンバ11内において、半導体基板の表面を覆っているIPAを加熱する。加熱されて気化したIPAの増加により、密閉されて一定容積となっているチャンバ11内の圧力は、図4の破線で示されるIPAの蒸気圧曲線に従って増加する。   (Step S105) The heater 12 is used to heat the IPA covering the surface of the semiconductor substrate in the sealed chamber 11. As the heated and vaporized IPA increases, the pressure in the chamber 11 which is sealed and has a constant volume increases according to the vapor pressure curve of the IPA shown by the broken line in FIG.

ここで、チャンバ11内の実際の圧力は、チャンバ11内に存在する全ての気体分子の分圧の総和となるが、本実施形態では、気体IPAの分圧をチャンバ11内の圧力として説明する。   Here, the actual pressure in the chamber 11 is the sum of the partial pressures of all the gas molecules existing in the chamber 11. In this embodiment, the partial pressure of the gas IPA is described as the pressure in the chamber 11. .

図4に示すように、チャンバ11内の圧力がIPAの臨界圧力Pcに達した状態で、IPAを臨界温度Tc以上に加熱すると、チャンバ11内のIPA(気体IPA及び液体IPA)は、超臨界状態となる。これにより、チャンバ11内は超臨界IPA(超臨界状態のIPA)で充填され、半導体基板の表面は、超臨界IPAに覆われた状態となる。   As shown in FIG. 4, when the pressure in the chamber 11 reaches the critical pressure Pc of the IPA and the IPA is heated to the critical temperature Tc or higher, the IPA (gas IPA and liquid IPA) in the chamber 11 becomes supercritical. It becomes a state. Thereby, the inside of the chamber 11 is filled with supercritical IPA (supercritical IPA), and the surface of the semiconductor substrate is covered with the supercritical IPA.

なお、IPAが超臨界状態となるまで、半導体基板の表面を覆う液体IPAが全て気化しないように、すなわち半導体基板が液体IPAで濡れ、チャンバ11内に気体IPAと液体IPAが共存しているようにする。   Note that until the IPA reaches a supercritical state, the liquid IPA covering the surface of the semiconductor substrate is not completely vaporized, that is, the semiconductor substrate is wetted with the liquid IPA, and the gas IPA and the liquid IPA coexist in the chamber 11. To.

気体の状態方程式(PV=nRT;Pは圧力、Vは体積、nはモル数、Rは気体定数、Tは温度)に、温度Tc、圧力Pc、チャンバ11の容積を代入することで、IPAが超臨界状態になる時に、チャンバ11内に気体状態で存在するIPAの量nc(mol)が求められる。   By substituting the temperature Tc, the pressure Pc, and the volume of the chamber 11 into the gas equation of state (PV = nRT; P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature). When is in a supercritical state, the amount nc (mol) of IPA present in the gaseous state in the chamber 11 is obtained.

従って、ステップS105で加熱を開始する前にチャンバ11内にはnc(mol)以上の液体IPAが存在する必要がある。チャンバ11に導入される半導体基板上のIPAの量がnc(mol)未満である場合は、図示しない薬液供給部からチャンバ11内に液体IPAを供給し、チャンバ11内にnc(mol)以上の液体IPAを存在させるようにする。   Therefore, it is necessary that liquid IPA of nc (mol) or more exists in the chamber 11 before heating is started in step S105. When the amount of IPA on the semiconductor substrate introduced into the chamber 11 is less than nc (mol), liquid IPA is supplied into the chamber 11 from a chemical supply unit (not shown), and nc (mol) or more is supplied into the chamber 11. Make liquid IPA present.

なお、このステップS105における加熱に伴い、液体IPAに混入して半導体基板の表面に存在していた純水も気化が進み、図4において実線で示される純水の蒸気圧曲線に従って、純水の分圧が上昇する。純水は、チャンバ11内の温度、その時の純水の蒸気圧、及びチャンバ11の容積に基づく量が気体(水蒸気)として存在し、それ以外は液体として存在する。液体IPAに混入していた純水は少量であるため、全て又は大半の純水が水蒸気になっていると考えられる。   With the heating in step S105, the pure water mixed in the liquid IPA and existing on the surface of the semiconductor substrate is also vaporized, and the pure water is purified according to the vapor pressure curve of pure water shown by a solid line in FIG. The partial pressure increases. The pure water exists as a gas (water vapor) in an amount based on the temperature in the chamber 11, the vapor pressure of the pure water at that time, and the volume of the chamber 11, and otherwise exists as a liquid. Since the pure water mixed in the liquid IPA is a small amount, all or most of the pure water is considered to be steam.

(ステップS106)ステップS105でIPAが超臨界状態になった後、ヒータ12を用いてさらに加熱を行い、チャンバ11内を所定温度Tw以上に昇温する(図4の矢印A1参照)。温度Twは、飽和水蒸気圧がIPAの臨界圧力Pcとなるときの純水の温度(沸点)である。IPAの臨界圧力Pcは約5.4MPaであるため、温度Twは約270℃となる。この時、チャンバ11内の純水は全て水蒸気として存在する。   (Step S106) After the IPA enters the supercritical state in Step S105, the heater 12 is further heated to raise the temperature inside the chamber 11 to a predetermined temperature Tw or more (see arrow A1 in FIG. 4). The temperature Tw is the temperature (boiling point) of pure water when the saturated water vapor pressure becomes the critical pressure Pc of IPA. Since the critical pressure Pc of IPA is about 5.4 MPa, the temperature Tw is about 270 ° C. At this time, all the pure water in the chamber 11 exists as water vapor.

(ステップS107)ステップS106の加熱後、制御バルブ16を開いて、チャンバ11内の超臨界IPAを排出し、チャンバ11内を降圧する(図4の矢印A2参照)。この時、チャンバ11内の温度を所定温度Tw以上に維持しておく。   (Step S107) After the heating in step S106, the control valve 16 is opened, the supercritical IPA in the chamber 11 is discharged, and the pressure in the chamber 11 is lowered (see arrow A2 in FIG. 4). At this time, the temperature in the chamber 11 is maintained at a predetermined temperature Tw or higher.

チャンバ11内の圧力がIPAの臨界圧力Pc以下になると、IPAは超臨界流体から気体に相変化する。チャンバ11内の温度をTw以上にしているため、IPAが相変化した後も、純水は気体のままであり、再液化を防止できる。   When the pressure in the chamber 11 becomes equal to or lower than the critical pressure Pc of the IPA, the IPA changes from a supercritical fluid to a gas. Since the temperature in the chamber 11 is equal to or higher than Tw, the pure water remains a gas even after the phase change of the IPA, and reliquefaction can be prevented.

(ステップS108)チャンバ11内を大気圧まで降圧した後、チャンバ11を冷却し、半導体基板をチャンバ11から搬出する。   (Step S <b> 108) After the pressure inside the chamber 11 is reduced to atmospheric pressure, the chamber 11 is cooled and the semiconductor substrate is unloaded from the chamber 11.

または、チャンバ11内を大気圧まで降圧した後、半導体基板を高温のまま冷却チャンバ(図示せず)に搬送して冷却してもよい。この場合、チャンバ11を常にある程度の高温状態に保つことができるので、半導体基板の乾燥処理に要する時間を短縮することができる。   Alternatively, after the pressure inside the chamber 11 is reduced to atmospheric pressure, the semiconductor substrate may be transferred to a cooling chamber (not shown) while being kept at a high temperature and cooled. In this case, since the chamber 11 can always be kept at a certain high temperature, the time required for the drying process of the semiconductor substrate can be shortened.

このように、本実施形態では、半導体基板の表面を覆うIPAを液体IPAから超臨界IPAに置換し、その後、チャンバ11内の超臨界IPAを気体IPAに直接相変化するように乾燥させる。そのため、半導体基板上の微細パターンに毛管力(表面張力)が働かず、微細パターンを破壊することなく半導体基板を乾燥させることができる。   As described above, in this embodiment, the IPA covering the surface of the semiconductor substrate is replaced from the liquid IPA to the supercritical IPA, and then the supercritical IPA in the chamber 11 is dried so as to directly change the phase to the gas IPA. Therefore, capillary force (surface tension) does not act on the fine pattern on the semiconductor substrate, and the semiconductor substrate can be dried without destroying the fine pattern.

また、チャンバ11内を降圧して、超臨界IPAを気体IPAに相変化させる際に、チャンバ11内の温度を、IPAの臨界圧力よりも純水の蒸気圧が高くなる温度にしておくことで、チャンバ11内の純水を気体(水蒸気)のままにしておき、液体になることを防止している。そのため、チャンバ11内の水蒸気が液化して半導体基板上に吸着し、パーティクル(乾燥シミ)が生じることを防止できる。   Further, when the pressure inside the chamber 11 is reduced to change the phase of the supercritical IPA into the gas IPA, the temperature in the chamber 11 is set to a temperature at which the vapor pressure of pure water is higher than the critical pressure of IPA. The pure water in the chamber 11 is left as a gas (water vapor) to prevent it from becoming a liquid. Therefore, it is possible to prevent the water vapor in the chamber 11 from being liquefied and adsorbed onto the semiconductor substrate, thereby generating particles (dry spots).

本実施形態は、チャンバ11内のIPAを加熱して超臨界状態にし、チャンバ11内の温度をTw以上に維持しながらチャンバ11内を降圧して半導体基板を乾燥させている。
一方、従来の超臨界乾燥方法では、長い時間をかけてチャンバに超臨界CO流体を供給し続け、半導体基板上及びチャンバ内のIPAを十分に溶解させて少しずつチャンバから排出し、チャンバ内から十分にIPAを排出してから、チャンバ内を降圧/硬温していた。本実施形態では、従来の超臨界乾燥方法のようにIPAが溶解した超臨界CO流体をチャンバから少しずつ排出させるといった時間のかかる処理を行う必要がないため、乾燥処理に要する時間を短縮することができる。
In this embodiment, the IPA in the chamber 11 is heated to a supercritical state, and the semiconductor substrate is dried by reducing the pressure in the chamber 11 while maintaining the temperature in the chamber 11 at Tw or higher.
On the other hand, in the conventional supercritical drying method, the supercritical CO 2 fluid is continuously supplied to the chamber over a long period of time, IPA on the semiconductor substrate and in the chamber is sufficiently dissolved, and gradually discharged from the chamber. After exhausting IPA sufficiently, the pressure in the chamber was lowered / hardened. In the present embodiment, since it is not necessary to perform time-consuming processing such as discharging the supercritical CO 2 fluid in which IPA is dissolved little by little from the chamber as in the conventional supercritical drying method, the time required for the drying processing is shortened. be able to.

このように、本実施形態に係る半導体基板の超臨界乾燥方法によれば、半導体基板上に生じるパーティクルを低減すると共に、乾燥処理に要する時間を短縮することができる。   As described above, according to the supercritical drying method of the semiconductor substrate according to the present embodiment, it is possible to reduce the particles generated on the semiconductor substrate and to shorten the time required for the drying process.

上記第1の実施形態では、水溶性有機溶媒にIPAを用いた例について説明したが、IPA以外の水溶性有機溶媒を使用した場合でも、同様の処理を行うことができる。   In the first embodiment, the example in which IPA is used as the water-soluble organic solvent has been described. However, the same treatment can be performed even when a water-soluble organic solvent other than IPA is used.

また、上記第1の実施形態では、ステップS106でチャンバ11内を温度Tw以上まで昇温してから、ステップS107でチャンバ11内を降圧していたが、超臨界IPAが気体IPAに相変化する時にチャンバ11内の温度がTw以上になっていればよいので、チャンバ11内の降圧と昇温を並行して実施してもよい。   In the first embodiment, the temperature in the chamber 11 is raised to the temperature Tw or higher in step S106, and then the pressure in the chamber 11 is lowered in step S107. However, the supercritical IPA changes to the gas IPA. Sometimes, the temperature in the chamber 11 only needs to be equal to or higher than Tw, so the pressure reduction and temperature increase in the chamber 11 may be performed in parallel.

(第2の実施形態)上記第1の実施形態では、半導体基板の純水リンス処理(ステップS102)の後に、半導体基板表面の液体を純水から水溶性有機溶媒に置換する液体置換処理(ステップS103)を行い、表面が水溶性有機溶媒で濡れた半導体基板をチャンバ11に導入(ステップS104)していたが、本実施形態では、半導体基板表面の液体を純水から水溶性有機溶媒に置換した後、半導体基板をチャンバ11に導入する前に、半導体基板表面の液体を水溶性有機溶媒から非水溶性有機溶媒に置換する。不燃性の非水溶性有機溶媒を使用することで、可燃性の水溶性有機溶媒を使用する上記第1の実施形態と比較して、チャンバ11のコストを削減することができる。   (Second Embodiment) In the first embodiment, after the pure water rinsing process for the semiconductor substrate (step S102), the liquid replacement process (step for replacing the liquid on the surface of the semiconductor substrate with pure water from a water-soluble organic solvent) (step S102). In step S104, the semiconductor substrate whose surface is wet with a water-soluble organic solvent is introduced into the chamber 11 (step S104). In this embodiment, the liquid on the surface of the semiconductor substrate is replaced with pure water from a water-soluble organic solvent. Then, before introducing the semiconductor substrate into the chamber 11, the liquid on the surface of the semiconductor substrate is replaced with a water-insoluble organic solvent from a water-soluble organic solvent. By using a nonflammable water-insoluble organic solvent, the cost of the chamber 11 can be reduced as compared with the first embodiment using a flammable water-soluble organic solvent.

図5に示すフローチャートを用いて、本実施形態に係る半導体基板の洗浄及び乾燥方法を説明する。なお、図5のステップS201、ステップS202、及びステップS203は、上記第1の実施形態における図3のステップS101、S102、及びステップS103と同様であるため、説明を省略する。   A method for cleaning and drying a semiconductor substrate according to the present embodiment will be described with reference to the flowchart shown in FIG. Note that steps S201, S202, and S203 in FIG. 5 are the same as steps S101, S102, and S103 in FIG. 3 in the first embodiment, and thus description thereof is omitted.

(ステップS204)ステップS203の液体置換処理の後、表面が水溶性有機溶媒(IPAとする)で濡れた半導体基板を非水溶性有機溶媒に浸漬させ、半導体基板表面の液体をIPAから非水溶性有機溶媒に置換する液体置換処理が行われる。   (Step S204) After the liquid replacement process in step S203, the semiconductor substrate whose surface is wetted with a water-soluble organic solvent (IPA) is immersed in a water-insoluble organic solvent, and the liquid on the surface of the semiconductor substrate is made water-insoluble from IPA. A liquid replacement process for replacing with an organic solvent is performed.

非水溶性有機溶媒には、水溶性有機溶媒よりも蒸気圧が高い(沸点が低い)もの、例えば、フッ化アルコール、ハイドロフルオロエーテル(HFE(例えばAE−3000(CFCHOCFCHF)))、クロロフルオロカーボン(CFC)、ハイドロフルオロカーボン(HFC)、パーフルオロカーボン(PFC)等を用いることができる。以下、非水溶性有機溶媒にHFEを使用する場合について説明する。 Non-water-soluble organic solvents include those having a higher vapor pressure (lower boiling point) than water-soluble organic solvents, such as fluorinated alcohols, hydrofluoroethers (HFE (for example, AE-3000 (CF 3 CH 2 OCF 2 CHF 2 ))), Chlorofluorocarbon (CFC), hydrofluorocarbon (HFC), perfluorocarbon (PFC), and the like. Hereinafter, the case where HFE is used as the water-insoluble organic solvent will be described.

この液体置換処理により、半導体基板表面はHFEに濡れた状態となるが、このHFEには(少量ではあるが)IPAが混入すると考えられる。   By this liquid replacement treatment, the surface of the semiconductor substrate becomes wet with HFE, but it is considered that IPA is mixed into this HFE (although a small amount).

(ステップS205)ステップS204の液体置換処理の後に、半導体基板が、表面がHFEで濡れた状態のまま、自然乾燥しないように、洗浄チャンバから搬出され、図2に示すチャンバ11に導入され、ステージ13に固定される。そして、制御バルブ16を閉じてチャンバ11の内部を密閉状態にする。   (Step S205) After the liquid replacement process in step S204, the semiconductor substrate is unloaded from the cleaning chamber and introduced into the chamber 11 shown in FIG. 13 is fixed. Then, the control valve 16 is closed to make the inside of the chamber 11 sealed.

(ステップS206)ヒータ12を用いて、密閉状態のチャンバ11内において、半導体基板の表面を覆っているHFEを加熱する。加熱されて気化したHFEの増加により、密閉されて一定容積となっているチャンバ11内の圧力は、図6の破線で示されるHFEの蒸気圧曲線に従って増加する。   (Step S206) The heater 12 is used to heat the HFE covering the surface of the semiconductor substrate in the sealed chamber 11. As the heated and vaporized HFE increases, the pressure in the sealed chamber 11 having a constant volume increases according to the vapor pressure curve of the HFE indicated by the broken line in FIG.

ここで、チャンバ11内の実際の圧力は、チャンバ11内に存在する全ての気体分子の分圧の総和となるが、本実施形態では、気体HFEの分圧をチャンバ11内の圧力として説明する。   Here, the actual pressure in the chamber 11 is the sum of the partial pressures of all the gas molecules existing in the chamber 11. In the present embodiment, the partial pressure of the gas HFE will be described as the pressure in the chamber 11. .

図6に示すように、チャンバ11内の圧力がHFEの臨界圧力Pc’に達した状態で、HFEを臨界温度Tc’以上に加熱すると、チャンバ11内のHFE(気体HFE及び液体HFE)は、超臨界状態となる。これにより、チャンバ11内は超臨界HFE(超臨界状態のHFE)で充填され、半導体基板の表面は、超臨界HFEに覆われた状態となる。   As shown in FIG. 6, when HFE is heated to a critical temperature Tc ′ or higher in a state where the pressure in the chamber 11 has reached the critical pressure Pc ′ of HFE, the HFE (gas HFE and liquid HFE) in the chamber 11 is It becomes a supercritical state. As a result, the chamber 11 is filled with supercritical HFE (supercritical HFE), and the surface of the semiconductor substrate is covered with the supercritical HFE.

なお、HFEが超臨界状態となるまで、半導体基板の表面を覆う液体HFEが全て気化しないように、すなわち半導体基板が液体HFEで濡れ、チャンバ11内に気体HFEと液体HFEが共存しているようにする。   It should be noted that until the HFE is in a supercritical state, the liquid HFE covering the surface of the semiconductor substrate is not completely vaporized, that is, the semiconductor substrate is wetted with the liquid HFE, and the gas HFE and the liquid HFE coexist in the chamber 11. To.

気体の状態方程式(PV=nRT;Pは圧力、Vは体積、nはモル数、Rは気体定数、Tは温度)に、温度Tc’、圧力Pc’、チャンバ11の容積を代入することで、HFEが超臨界状態になる時に、チャンバ11内に気体状態で存在するHFEの量nc’(mol)が求められる。   By substituting the temperature Tc ′, the pressure Pc ′, and the volume of the chamber 11 into the gas equation of state (PV = nRT; P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature). When the HFE enters the supercritical state, the amount nc ′ (mol) of HFE existing in the gaseous state in the chamber 11 is obtained.

従って、ステップS206で加熱を開始する前にチャンバ11内にはnc’(mol)以上の液体HFEが存在する必要がある。チャンバ11に導入される半導体基板上のHFEの量がnc’(mol)未満である場合は、図示しない薬液供給部からチャンバ11内に液体HFEを供給し、チャンバ11内にnc’(mol)以上の液体HFEを存在させるようにする。   Therefore, before heating is started in step S206, it is necessary that liquid HFE of nc ′ (mol) or more exists in the chamber 11. When the amount of HFE on the semiconductor substrate introduced into the chamber 11 is less than nc ′ (mol), liquid HFE is supplied into the chamber 11 from a chemical supply unit (not shown), and nc ′ (mol) is supplied into the chamber 11. The liquid HFE is made to exist.

なお、このステップS206における加熱に伴い、液体HFEに混入して半導体基板の表面に存在していたIPAも気化が進み、図6において実線で示されるIPAの蒸気圧曲線に従って、IPAの分圧が上昇する。IPAは、チャンバ11内の温度、その時のIPAの蒸気圧、及びチャンバ11の容積に基づく量が気体として存在し、それ以外は液体として存在する。液体HFEに混入していたIPAは少量であるため、全て又は大半のIPAが気体になっていると考えられる。   With the heating in step S206, the IPA mixed in the liquid HFE and existing on the surface of the semiconductor substrate is also vaporized, and the IPA partial pressure is changed according to the vapor pressure curve of the IPA shown by the solid line in FIG. To rise. The IPA exists as a gas in an amount based on the temperature in the chamber 11, the vapor pressure of the IPA at that time, and the volume of the chamber 11, and otherwise exists as a liquid. Since the IPA mixed in the liquid HFE is a small amount, it is considered that all or most of the IPA is in a gas state.

(ステップS207)ステップS206でHFEが超臨界状態になった後、ヒータ12を用いてさらに加熱を行い、チャンバ11内を所定温度Ts以上に昇温する(図6の矢印A3参照)。温度Tsは、IPAの蒸気圧が、HFEの臨界圧力Pc’となるときのIPAの温度(沸点)である。HFEの臨界圧力Pc’は約2.4MPaであるため、温度Tsは約200℃となる。この時、チャンバ11内のIPAは全て気体として存在する。   (Step S207) After the HFE enters the supercritical state in Step S206, the heater 12 is further heated to raise the temperature inside the chamber 11 to a predetermined temperature Ts or higher (see arrow A3 in FIG. 6). The temperature Ts is the temperature (boiling point) of IPA when the vapor pressure of IPA becomes the critical pressure Pc ′ of HFE. Since the critical pressure Pc ′ of HFE is about 2.4 MPa, the temperature Ts is about 200 ° C. At this time, all of the IPA in the chamber 11 exists as a gas.

(ステップS208)ステップS207の加熱後、制御バルブ16を開いて、チャンバ11内の超臨界HFEを排出し、チャンバ11内を降圧する(図6の矢印A4参照)。この時、チャンバ11内の温度を所定温度Ts以上に維持しておく。   (Step S208) After heating in step S207, the control valve 16 is opened, the supercritical HFE in the chamber 11 is discharged, and the pressure in the chamber 11 is lowered (see arrow A4 in FIG. 6). At this time, the temperature in the chamber 11 is maintained at a predetermined temperature Ts or higher.

チャンバ11内の圧力がHFEの臨界圧力Pc’以下になると、HFEは超臨界流体から気体に相変化する。チャンバ11内の温度をTs以上にしているため、HFEが相変化した後も、IPAは気体のままであり、再液化を防止できる。   When the pressure in the chamber 11 becomes equal to or lower than the critical pressure Pc ′ of HFE, the HFE changes from a supercritical fluid to a gas. Since the temperature in the chamber 11 is equal to or higher than Ts, the IPA remains a gas even after the phase change of the HFE, and reliquefaction can be prevented.

(ステップS209)チャンバ11内を大気圧まで降圧した後、チャンバ11を冷却し、半導体基板をチャンバ11から搬出する。   (Step S209) The pressure inside the chamber 11 is reduced to atmospheric pressure, the chamber 11 is cooled, and the semiconductor substrate is carried out of the chamber 11.

または、チャンバ11内を大気圧まで降圧した後、半導体基板を高温のまま冷却チャンバ(図示せず)に搬送して冷却してもよい。この場合、チャンバ11を常にある程度の高温状態に保つことができるので、半導体基板の乾燥処理に要する時間を短縮することができる。   Alternatively, after the pressure inside the chamber 11 is reduced to atmospheric pressure, the semiconductor substrate may be transferred to a cooling chamber (not shown) while being kept at a high temperature and cooled. In this case, since the chamber 11 can always be kept at a certain high temperature, the time required for the drying process of the semiconductor substrate can be shortened.

このように、本実施形態では、半導体基板の表面を覆うHFEを液体HFEから超臨界HFEに置換し、その後、チャンバ11内の超臨界HFEを気体HFEに直接相変化するように乾燥させる。そのため、半導体基板上の微細パターンに毛管力(表面張力)が働かず、微細パターンを破壊することなく半導体基板を乾燥させることができる。   As described above, in this embodiment, the HFE that covers the surface of the semiconductor substrate is replaced with the supercritical HFE from the liquid HFE, and thereafter, the supercritical HFE in the chamber 11 is dried so as to undergo a phase change directly to the gas HFE. Therefore, capillary force (surface tension) does not act on the fine pattern on the semiconductor substrate, and the semiconductor substrate can be dried without destroying the fine pattern.

また、チャンバ11内を降圧して、超臨界HFEを気体HFEに相変化させる際に、チャンバ11内の温度を、HFEの臨界圧力よりもIPAの蒸気圧が高くなる温度にしておくことで、チャンバ11内のIPAを気体のままにしておき、液体になることを防止している。そのため、チャンバ11内の気体IPAが液化して半導体基板上に吸着し、パーティクルが生じることを防止できる。   In addition, by lowering the pressure in the chamber 11 and changing the supercritical HFE to the gas HFE, the temperature in the chamber 11 is set to a temperature at which the vapor pressure of IPA is higher than the critical pressure of HFE. The IPA in the chamber 11 is left as a gas to prevent it from becoming a liquid. Therefore, it is possible to prevent the gas IPA in the chamber 11 from being liquefied and adsorbed on the semiconductor substrate to generate particles.

また、本実施形態は、チャンバ11内のHFEを加熱して超臨界状態にし、チャンバ11内の温度をTs以上に維持しながらチャンバ11内を降圧して半導体基板を乾燥させている。一方、従来の超臨界乾燥方法では、長い時間をかけてチャンバに超臨界CO流体を供給し続け、半導体基板上及びチャンバ内のIPAを十分に溶解させて少しずつチャンバから排出し、チャンバ内から十分にIPAを排出してから、チャンバ内を降圧/硬温していた。本実施形態では、従来の超臨界乾燥方法のようにIPAが溶解した超臨界CO流体をチャンバから少しずつ排出させるといった時間のかかる処理を行う必要がないため、乾燥処理に要する時間を短縮することができる。 In the present embodiment, the HFE in the chamber 11 is heated to a supercritical state, and the semiconductor substrate is dried by reducing the pressure in the chamber 11 while maintaining the temperature in the chamber 11 at Ts or higher. On the other hand, in the conventional supercritical drying method, the supercritical CO 2 fluid is continuously supplied to the chamber over a long period of time, IPA on the semiconductor substrate and in the chamber is sufficiently dissolved, and gradually discharged from the chamber. After exhausting IPA sufficiently, the pressure in the chamber was lowered / hardened. In the present embodiment, since it is not necessary to perform time-consuming processing such as discharging the supercritical CO 2 fluid in which IPA is dissolved little by little from the chamber as in the conventional supercritical drying method, the time required for the drying processing is shortened. be able to.

このように、本実施形態に係る半導体基板の超臨界乾燥方法によれば、半導体基板上に生じるパーティクルを低減すると共に、乾燥処理に要する時間を短縮することができる。
さらに、乾燥に用いるチャンバ11のコストを削減することができる。
As described above, according to the supercritical drying method of the semiconductor substrate according to the present embodiment, it is possible to reduce the particles generated on the semiconductor substrate and to shorten the time required for the drying process.
Furthermore, the cost of the chamber 11 used for drying can be reduced.

上記第2の実施形態では、水溶性有機溶媒にIPA、非水溶性有機溶媒にHFEを使用した例について説明したが、IPA以外の水溶性有機溶媒、HFE以外の非水溶性有機溶媒を使用した場合でも、同様の処理を行うことができる。   In the second embodiment, an example in which IPA is used as the water-soluble organic solvent and HFE is used as the water-insoluble organic solvent has been described. However, a water-soluble organic solvent other than IPA and a water-insoluble organic solvent other than HFE were used. Even in this case, the same processing can be performed.

上記第2の実施形態では、ステップS207でチャンバ11内を温度Ts以上まで昇温してから、ステップS208でチャンバ11内を降圧していたが、超臨界HFEが気体HFEに相変化する時にチャンバ11内の温度がTs以上になっていればよいので、チャンバ11内の降圧と昇温を並行して実施してもよい。   In the second embodiment, the temperature in the chamber 11 is raised to the temperature Ts or higher in step S207, and then the pressure in the chamber 11 is lowered in step S208. However, when the supercritical HFE changes to gas HFE, the chamber 11 Since the temperature in the chamber 11 only needs to be equal to or higher than Ts, the pressure reduction and the temperature increase in the chamber 11 may be performed in parallel.

なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

10 超臨界乾燥装置
11 チャンバ
12 ヒータ
13 ステージ
15 配管
16 制御バルブ
10 Supercritical dryer 11 Chamber 12 Heater 13 Stage 15 Piping 16 Control valve

本発明の実施形態は、半導体基板の超臨界乾燥方法および基板処理装置に関する。 Embodiments described herein relate generally to a supercritical drying method and a substrate processing apparatus for a semiconductor substrate.

実施形態は、半導体基板上に生じるパーティクルを低減すると共に乾燥処理に要する時間を短縮することができる半導体基板の超臨界乾燥方法および基板処理装置を提供するThis embodiment provides a supercritical drying method and a substrate processing apparatus of a semiconductor substrate which can shorten the time required for the drying process as well as reduce particles generated on the semiconductor substrate.

本実施形態の半導体基板の超臨界乾燥方法は、薬液を用いて基板を洗浄する工程と、前記洗浄後に、純水を用いて前記基板をリンスする工程と、前記リンス後に、前記基板の表面に水溶性有機溶媒を供給して、前記基板の表面を覆う液体を純水から前記水溶性有機溶媒に置換する工程と、前記置換後に、前記基板の表面に非水溶性有機溶媒を供給して、前記基板の表面を覆う液体を前記水溶性有機溶媒から前記非水溶性有機溶媒に置換する工程と、表面が前記非水溶性有機溶媒で濡れた前記基板をチャンバ内に導入する工程と、前記チャンバ内の温度を前記非水溶性有機溶媒の臨界温度以上に昇温して、前記非水溶性有機溶媒を超臨界状態にする工程と、前記非水溶性有機溶媒を超臨界状態にした後、前記チャンバ内の温度を前記水溶性有機溶媒の沸点以上の所定温度に保ちながら前記チャンバ内の圧力を下げ、超臨界状態の前記非水溶性有機溶媒を気体に変化させて、前記チャンバから排出する工程と、を備えるThe method of supercritical drying of a semiconductor substrate according to this embodiment includes a step of cleaning a substrate using a chemical solution, a step of rinsing the substrate using pure water after the cleaning, and a surface of the substrate after the rinsing. Supplying a water-soluble organic solvent, replacing the liquid covering the surface of the substrate from pure water with the water-soluble organic solvent, and after the replacement, supplying a water-insoluble organic solvent to the surface of the substrate; Replacing the liquid covering the surface of the substrate with the water-insoluble organic solvent from the water-soluble organic solvent, introducing the substrate whose surface is wetted with the water-insoluble organic solvent into the chamber, and the chamber Raising the temperature of the water-insoluble organic solvent above the critical temperature of the water-insoluble organic solvent to bring the water-insoluble organic solvent into a supercritical state, and bringing the water-insoluble organic solvent into a supercritical state, The temperature in the chamber is adjusted to the water-soluble organic While maintaining a predetermined temperature higher than the boiling point of the medium reducing the pressure in the chamber, wherein the water-insoluble organic solvent in the supercritical state by varying the gas, and a step of discharging from said chamber.

Claims (8)

薬液を用いて半導体基板を洗浄する工程と、
前記洗浄後に、純水を用いて前記半導体基板をリンスする工程と、
前記リンス後に、前記半導体基板の表面に水溶性有機溶媒を供給して、前記半導体基板の表面を覆う液体を純水から前記水溶性有機溶媒に置換する工程と、
表面が前記水溶性有機溶媒で濡れた前記半導体基板をチャンバ内に導入する工程と、
前記チャンバ内の温度を前記水溶性有機溶媒の臨界温度以上に昇温して、前記水溶性有機溶媒を超臨界状態にする工程と、
前記水溶性有機溶媒を超臨界状態にした後、前記チャンバ内の温度を純水が液化しない所定温度に保ちながら前記チャンバ内の圧力を下げ、超臨界状態の前記水溶性有機溶媒を気体に変化させて、前記チャンバから排出する工程と、
を備える半導体基板の超臨界乾燥方法。
Cleaning the semiconductor substrate using a chemical solution;
Rinsing the semiconductor substrate with pure water after the cleaning;
After the rinsing, supplying a water-soluble organic solvent to the surface of the semiconductor substrate, replacing the liquid covering the surface of the semiconductor substrate from pure water with the water-soluble organic solvent;
Introducing the semiconductor substrate whose surface is wetted with the water-soluble organic solvent into the chamber;
Raising the temperature in the chamber above the critical temperature of the water-soluble organic solvent to bring the water-soluble organic solvent into a supercritical state;
After the water-soluble organic solvent is brought into a supercritical state, the pressure in the chamber is lowered while keeping the temperature in the chamber at a predetermined temperature at which pure water does not liquefy, and the water-soluble organic solvent in the supercritical state is changed to a gas. Draining from the chamber;
A method for supercritical drying of a semiconductor substrate comprising:
前記所定温度は、前記水溶性有機溶媒の臨界圧力よりも純水の蒸気圧が高くなる温度であることを特徴とする請求項1に記載の半導体基板の超臨界乾燥方法。   2. The method of supercritical drying of a semiconductor substrate according to claim 1, wherein the predetermined temperature is a temperature at which a vapor pressure of pure water is higher than a critical pressure of the water-soluble organic solvent. 前記水溶性有機溶媒は純水よりも蒸気圧が高いことを特徴とする請求項1又は2に記載の半導体基板の超臨界乾燥方法。   The method for supercritical drying of a semiconductor substrate according to claim 1 or 2, wherein the water-soluble organic solvent has a higher vapor pressure than pure water. 前記水溶性有機溶媒は、アルコール又はケトンを含むことを特徴とする請求項3に記載の半導体基板の超臨界乾燥方法。   The method for supercritical drying of a semiconductor substrate according to claim 3, wherein the water-soluble organic solvent contains alcohol or ketone. 薬液を用いて半導体基板を洗浄する工程と、
前記洗浄後に、純水を用いて前記半導体基板をリンスする工程と、
前記リンス後に、前記半導体基板の表面に水溶性有機溶媒を供給して、前記半導体基板の表面を覆う液体を純水から前記水溶性有機溶媒に置換する工程と、
前記置換後に、前記半導体基板の表面に非水溶性有機溶媒を供給して、前記半導体基板の表面を覆う液体を前記水溶性有機溶媒から前記非水溶性有機溶媒に置換する工程と、
表面が前記非水溶性有機溶媒で濡れた前記半導体基板をチャンバ内に導入する工程と、 前記チャンバ内の温度を前記非水溶性有機溶媒の臨界温度以上に昇温して、前記非水溶性有機溶媒を超臨界状態にする工程と、
前記非水溶性有機溶媒を超臨界状態にした後、前記チャンバ内の温度を前記水溶性有機溶媒が液化しない所定温度に保ちながら前記チャンバ内の圧力を下げ、超臨界状態の前記非水溶性有機溶媒を気体に変化させて、前記チャンバから排出する工程と、
を備える半導体基板の超臨界乾燥方法。
Cleaning the semiconductor substrate using a chemical solution;
Rinsing the semiconductor substrate with pure water after the cleaning;
After the rinsing, supplying a water-soluble organic solvent to the surface of the semiconductor substrate, replacing the liquid covering the surface of the semiconductor substrate from pure water with the water-soluble organic solvent;
After the replacement, supplying a water-insoluble organic solvent to the surface of the semiconductor substrate and replacing the liquid covering the surface of the semiconductor substrate from the water-soluble organic solvent to the water-insoluble organic solvent;
Introducing the semiconductor substrate whose surface is wetted with the water-insoluble organic solvent into the chamber; raising the temperature in the chamber to a critical temperature of the water-insoluble organic solvent; A step of bringing the solvent into a supercritical state;
After bringing the water-insoluble organic solvent into a supercritical state, the pressure in the chamber is lowered while maintaining the temperature in the chamber at a predetermined temperature at which the water-soluble organic solvent does not liquefy, Changing the solvent to a gas and discharging from the chamber;
A method for supercritical drying of a semiconductor substrate comprising:
前記所定温度は、前記非水溶性有機溶媒の臨界圧力よりも前記水溶性有機溶媒の蒸気圧が高くなる温度であることを特徴とする請求項5に記載の半導体基板の超臨界乾燥方法。   6. The semiconductor substrate supercritical drying method according to claim 5, wherein the predetermined temperature is a temperature at which a vapor pressure of the water-soluble organic solvent is higher than a critical pressure of the water-insoluble organic solvent. 前記非水溶性有機溶媒は前記水溶性有機溶媒よりも蒸気圧が高いことを特徴とする請求項5又は6に記載の半導体基板の超臨界乾燥方法。   The method of supercritical drying of a semiconductor substrate according to claim 5 or 6, wherein the water-insoluble organic solvent has a higher vapor pressure than the water-soluble organic solvent. 前記水溶性有機溶媒はアルコール又はケトンを含み、前記非水溶性有機溶媒はフッ化アルコール、ハイドロフルオロエーテル(HFE)、クロロフルオロカーボン(CFC)、ハイドロフルオロカーボン(HFC)、及びパーフルオロカーボンのうちいずれか1つを含むことを特徴とする請求項7に記載の半導体基板の超臨界乾燥方法。   The water-soluble organic solvent includes alcohol or ketone, and the water-insoluble organic solvent is any one of fluorinated alcohol, hydrofluoroether (HFE), chlorofluorocarbon (CFC), hydrofluorocarbon (HFC), and perfluorocarbon. The method of supercritical drying of a semiconductor substrate according to claim 7, comprising:
JP2014189608A 2014-09-18 2014-09-18 Supercritical drying method and substrate processing apparatus for semiconductor substrate Active JP6005702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014189608A JP6005702B2 (en) 2014-09-18 2014-09-18 Supercritical drying method and substrate processing apparatus for semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014189608A JP6005702B2 (en) 2014-09-18 2014-09-18 Supercritical drying method and substrate processing apparatus for semiconductor substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010254922A Division JP5620234B2 (en) 2010-11-15 2010-11-15 Supercritical drying method and substrate processing apparatus for semiconductor substrate

Publications (2)

Publication Number Publication Date
JP2014241450A true JP2014241450A (en) 2014-12-25
JP6005702B2 JP6005702B2 (en) 2016-10-12

Family

ID=52140511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014189608A Active JP6005702B2 (en) 2014-09-18 2014-09-18 Supercritical drying method and substrate processing apparatus for semiconductor substrate

Country Status (1)

Country Link
JP (1) JP6005702B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170007122A (en) * 2015-07-10 2017-01-18 도쿄엘렉트론가부시키가이샤 Substrate processing method, substrate processing apparatus and storage medium
WO2017062135A1 (en) * 2015-10-04 2017-04-13 Applied Materials, Inc. Drying process for high aspect ratio features
US9831081B2 (en) 2015-09-04 2017-11-28 Samsung Electronics Co., Ltd. Method for treating substrate
KR20170133693A (en) * 2016-05-26 2017-12-06 세메스 주식회사 Apparatus and method for treating substrate
US10032624B2 (en) 2015-10-04 2018-07-24 Applied Materials, Inc. Substrate support and baffle apparatus
CN109300802A (en) * 2017-07-25 2019-02-01 无尽电子有限公司 For drying the device and method of chip
US10283344B2 (en) 2014-07-11 2019-05-07 Applied Materials, Inc. Supercritical carbon dioxide process for low-k thin films
US10304703B2 (en) 2015-10-04 2019-05-28 Applied Materials, Inc. Small thermal mass pressurized chamber
US10347511B2 (en) 2012-11-26 2019-07-09 Applied Materials, Inc. Stiction-free drying process with contaminant removal for high-aspect ratio semiconductor device STR
US11133174B2 (en) 2015-10-04 2021-09-28 Applied Materials, Inc. Reduced volume processing chamber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10116813A (en) * 1996-10-09 1998-05-06 Komatsu Ltd Method and device for washing/drying
JP2001517864A (en) * 1997-09-23 2001-10-09 フェラル、ゲアリー・ダブリュー Improved chemical drying and cleaning system
WO2009142281A1 (en) * 2008-05-22 2009-11-26 旭硝子株式会社 Method for cleaning with fluorine compound
JP2010161165A (en) * 2009-01-07 2010-07-22 Tokyo Electron Ltd Supercritical processing apparatus, substrate processing system, and supercritical processing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10116813A (en) * 1996-10-09 1998-05-06 Komatsu Ltd Method and device for washing/drying
JP2001517864A (en) * 1997-09-23 2001-10-09 フェラル、ゲアリー・ダブリュー Improved chemical drying and cleaning system
WO2009142281A1 (en) * 2008-05-22 2009-11-26 旭硝子株式会社 Method for cleaning with fluorine compound
JP2010161165A (en) * 2009-01-07 2010-07-22 Tokyo Electron Ltd Supercritical processing apparatus, substrate processing system, and supercritical processing method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10347511B2 (en) 2012-11-26 2019-07-09 Applied Materials, Inc. Stiction-free drying process with contaminant removal for high-aspect ratio semiconductor device STR
US11011392B2 (en) 2012-11-26 2021-05-18 Applied Materials, Inc. Stiction-free drying process with contaminant removal for high-aspect ratio semiconductor device structures
US10354892B2 (en) 2012-11-26 2019-07-16 Applied Materials, Inc. Stiction-free drying process with contaminant removal for high-aspect ratio semiconductor device structures
US10283344B2 (en) 2014-07-11 2019-05-07 Applied Materials, Inc. Supercritical carbon dioxide process for low-k thin films
KR102515859B1 (en) * 2015-07-10 2023-03-29 도쿄엘렉트론가부시키가이샤 Substrate processing method, substrate processing apparatus and storage medium
KR20170007122A (en) * 2015-07-10 2017-01-18 도쿄엘렉트론가부시키가이샤 Substrate processing method, substrate processing apparatus and storage medium
US9831081B2 (en) 2015-09-04 2017-11-28 Samsung Electronics Co., Ltd. Method for treating substrate
US10032624B2 (en) 2015-10-04 2018-07-24 Applied Materials, Inc. Substrate support and baffle apparatus
US10304703B2 (en) 2015-10-04 2019-05-28 Applied Materials, Inc. Small thermal mass pressurized chamber
US10573510B2 (en) 2015-10-04 2020-02-25 Applied Materials, Inc. Substrate support and baffle apparatus
US10777405B2 (en) 2015-10-04 2020-09-15 Applied Materials, Inc. Drying process for high aspect ratio features
US11133174B2 (en) 2015-10-04 2021-09-28 Applied Materials, Inc. Reduced volume processing chamber
US11424137B2 (en) 2015-10-04 2022-08-23 Applied Materials, Inc. Drying process for high aspect ratio features
WO2017062135A1 (en) * 2015-10-04 2017-04-13 Applied Materials, Inc. Drying process for high aspect ratio features
KR102096952B1 (en) 2016-05-26 2020-04-06 세메스 주식회사 Apparatus and method for treating substrate
KR20170133693A (en) * 2016-05-26 2017-12-06 세메스 주식회사 Apparatus and method for treating substrate
CN109300802A (en) * 2017-07-25 2019-02-01 无尽电子有限公司 For drying the device and method of chip

Also Published As

Publication number Publication date
JP6005702B2 (en) 2016-10-12

Similar Documents

Publication Publication Date Title
JP5620234B2 (en) Supercritical drying method and substrate processing apparatus for semiconductor substrate
JP6005702B2 (en) Supercritical drying method and substrate processing apparatus for semiconductor substrate
JP5843277B2 (en) Method and apparatus for supercritical drying of semiconductor substrate
JP5450494B2 (en) Supercritical drying method for semiconductor substrates
JP2013055230A (en) Supercritical drying method of semiconductor substrate
US6602349B2 (en) Supercritical fluid cleaning process for precision surfaces
JP2011249454A (en) Supercritical drying method
KR101329317B1 (en) Apparatus and method for drying substrate
KR101422332B1 (en) Supercritical drying method and apparatus for semiconductor substrates
US20120048304A1 (en) Supercritical drying method and supercritical drying system
JP5422497B2 (en) Substrate drying method
KR101643455B1 (en) Substrate processing method and apparatus therefor
TWI623968B (en) Method and apparatus for drying semiconductor substrates using liquid carbon dioxide
JP2007049065A (en) Super-critical processor
KR101044408B1 (en) Substrate treating method
US20040003831A1 (en) Supercritical fluid cleaning process for precision surfaces
JP2013062417A (en) Supercritical drying method of semiconductor substrate and device
WO2001087505A1 (en) Supercritical fluid cleaning process for precision surfaces
KR102515859B1 (en) Substrate processing method, substrate processing apparatus and storage medium
KR102447216B1 (en) Substrate drying apparatus
KR20190002060A (en) Apparatus and Method for processing substrate
KR102228517B1 (en) Substrate processing apparatus and substrate processing method using the same
JP2006040969A (en) Supercritical processing method
JP2017195312A (en) Substrate processing method and substrate processing apparatus of semiconductor substrate
KR20100123471A (en) Substrate treating method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141016

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160907

R151 Written notification of patent or utility model registration

Ref document number: 6005702

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350