JP2014240728A - Dew condensation suppression member for refrigerator/freezer, and refrigerator/freezer - Google Patents

Dew condensation suppression member for refrigerator/freezer, and refrigerator/freezer Download PDF

Info

Publication number
JP2014240728A
JP2014240728A JP2013123636A JP2013123636A JP2014240728A JP 2014240728 A JP2014240728 A JP 2014240728A JP 2013123636 A JP2013123636 A JP 2013123636A JP 2013123636 A JP2013123636 A JP 2013123636A JP 2014240728 A JP2014240728 A JP 2014240728A
Authority
JP
Japan
Prior art keywords
dew condensation
microprojection
freezer
refrigerated
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013123636A
Other languages
Japanese (ja)
Other versions
JP5652507B2 (en
Inventor
慶一 金澤
Keiichi Kanazawa
慶一 金澤
祐一 宮崎
Yuichi Miyazaki
祐一 宮崎
洋一郎 大橋
Yoichiro Ohashi
洋一郎 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2013123636A priority Critical patent/JP5652507B2/en
Publication of JP2014240728A publication Critical patent/JP2014240728A/en
Application granted granted Critical
Publication of JP5652507B2 publication Critical patent/JP5652507B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a dew condensation suppression member for a refrigerator/freezer which has an excellent dew condensation suppressing effect and excellent quick-drying properties, and a refrigerator/freezer which comprises the dew condensation suppression member for the refrigerator/freezer and which suppresses dew condensation.SOLUTION: A dew condensation suppression member for a refrigerator/freezer is characterized as follows: at least one surface of a base material has a minute protrusion structure body comprising a minute protrusion group in which a plurality of minute protrusions made of a hardened material of a resin composition are arranged in an intimate contact state; and a distance between the adjacent minute protrusions is in the range of 50-500 nm on average.

Description

本発明は、冷蔵及び/又は冷凍庫に用いられる結露抑制部材、並びに当該結露抑制部材を備えた冷蔵及び/又は冷凍庫に関するものである。   The present invention relates to a dew condensation suppressing member used in a refrigeration and / or freezer, and a refrigeration and / or freezer provided with the dew condensation suppressing member.

店頭に置かれる冷蔵冷凍ショーケースや、家庭用或いは業務用の冷蔵冷凍庫等は、冷却された内部空間が開閉時に外気に晒されると結露が発生しやすく、食品等の貯蔵物の劣化防止や、視認性の観点等から、結露の防止が求められている。
従来、冷蔵冷凍庫の内部の結露を防止するためには、断熱部材を用いて冷熱を遮断したり、結露防止用のヒータを用いる等、様々な方法が試みられてきた。
また、冷蔵ショーケース正面にあたるガラス部分には、二重ガラスの間に断熱層やガス層を形成したり、ガラス表面等に電熱線を通すなど、製造時やエネルギー的に負荷が高い方法がとられてきた。これらの方法は、既製品に対して後付けで加工することがいずれも困難である。
Refrigerated showcases placed in stores, refrigerated freezers for home use or business use, etc., when the cooled internal space is exposed to the outside air when opening and closing, condensation tends to occur, preventing deterioration of stored items such as food, Prevention of condensation is required from the viewpoint of visibility.
Conventionally, in order to prevent dew condensation inside the refrigerated freezer, various methods have been tried, such as using a heat insulating member to block cold heat or using a heater for preventing dew condensation.
Also, on the glass part that is in front of the refrigerated showcase, a heat-insulating layer or gas layer is formed between the double glasses, or a heating wire is passed through the glass surface, etc. Has been. All of these methods are difficult to retrofit to ready-made products.

また、結露を防止する手段として、基体表面に吸水性能を付与した防曇性部材を用いることも提案されている。
例えば特許文献1には、基体と該基体表面に設けられた飽和吸水量が45mg/cm以上の吸水性の架橋樹脂層とを有する防曇性物品が開示されている。また、特許文献2には、透明樹脂フィルム上に、無機酸化物粒子と、反応性官能基を有するポリマーと、該反応性官能基と反応する架橋剤とを含有し、特定の吸水量を有する微細空隙層を有する防曇フィルムが開示されている。
しかしながら、このような吸水性能を有する防曇性部材は、吸収した水分が飽和吸水量に達すると吸水性能を発揮することができない。そのため、再度吸水性能を発揮するためには、吸収した水分を放出する必要があるが、吸収した水分を放出するためには長時間要する場合があったり、水分を放出しても吸水性能が完全に回復しない場合がある。また、吸水性能を有する防曇性部材は、材料自体の劣化により吸水性が低下してしまう。このような理由から、吸水性能を有する防曇性部材は、長期間持続的に結露抑制効果を発揮することが困難であるという問題がある。さらに、吸水性能を有する防曇性部材は、材料の劣化により変色が生じるという問題もある。
In addition, as a means for preventing condensation, it has also been proposed to use an antifogging member having water absorption performance on the substrate surface.
For example, Patent Document 1 discloses an antifogging article having a base and a water-absorbing crosslinked resin layer having a saturated water absorption of 45 mg / cm 3 or more provided on the surface of the base. Further, Patent Document 2 contains inorganic oxide particles, a polymer having a reactive functional group, and a crosslinking agent that reacts with the reactive functional group on the transparent resin film, and has a specific water absorption amount. An antifogging film having a fine void layer is disclosed.
However, the antifogging member having such a water absorption performance cannot exhibit the water absorption performance when the absorbed water reaches the saturated water absorption amount. Therefore, it is necessary to release the absorbed moisture in order to demonstrate the water absorption performance again, but it may take a long time to release the absorbed moisture, or the water absorption performance will be complete even if moisture is released. May not recover. Moreover, the anti-fogging member which has a water absorption performance will fall in water absorption by deterioration of material itself. For these reasons, the anti-fogging member having water absorption performance has a problem that it is difficult to exert the dew condensation suppressing effect for a long period of time. Further, the antifogging member having water absorption performance also has a problem that discoloration occurs due to deterioration of the material.

一方、特許文献3では、長時間親水性を維持することにより、高い防曇性能を有する冷蔵ショーケースとして、構成する透明材料の少なくとも外側表面に酸化タングステンまたは酸化タングステンの複合材の微粒子を具備し、前記微粒子の平均粒径が1nm〜200nmの範囲であり、かつ、微粒子のアスペクト比が1〜3.5の範囲である冷蔵ショーケースを提案している。
しかしながら、酸化タングステンは可視光応答型光触媒材料であるため、冷蔵庫の内部等の暗室において結露抑制効果を発揮することが困難である。
On the other hand, in Patent Document 3, as a refrigerated showcase having a high anti-fogging performance by maintaining hydrophilicity for a long time, at least the outer surface of the transparent material to be configured has fine particles of tungsten oxide or a composite material of tungsten oxide. A refrigerated showcase in which the average particle diameter of the fine particles is in the range of 1 nm to 200 nm and the aspect ratio of the fine particles is in the range of 1 to 3.5 is proposed.
However, since tungsten oxide is a visible light responsive photocatalytic material, it is difficult to exert a dew condensation suppressing effect in a dark room such as the inside of a refrigerator.

国際公開第2007/052710号パンフレットInternational Publication No. 2007/052710 Pamphlet 特開2012−86506号公報JP 2012-86506 A 特開2010−96359号公報JP 2010-96359 A

本発明は上記問題点に鑑みてなされたものであり、優れた結露抑制効果及び優れた速乾性を有する冷蔵冷凍庫用結露抑制部材と、当該冷蔵冷凍庫用結露抑制部材を備え、結露が抑制された冷蔵冷凍庫を提供することを目的とする。   The present invention has been made in view of the above problems, and includes a dew condensation suppressing member for a refrigerated freezer having an excellent dew condensation suppressing effect and an excellent quick drying property, and the dew condensation suppressing member for the refrigerated freezer is suppressed. The purpose is to provide a refrigerated freezer.

本発明に係る冷蔵冷凍庫用結露抑制部材は、基材の少なくとも一方の面に、樹脂組成物の硬化物からなる複数の微小突起が密接して配置されてなる微小突起群を備えた微小突起構造体を有し、隣接する前記微小突起間の距離の平均が50〜500nmであることを特徴とする。   The dew condensation suppressing member for a refrigerated freezer according to the present invention has a microprojection structure provided with a microprojection group in which a plurality of microprojections made of a cured resin composition are placed in close contact with at least one surface of a substrate. The average distance between adjacent microprotrusions is 50 to 500 nm.

本発明に係る冷蔵冷凍庫用結露抑制部材は、結露抑制効果がさらに向上する点から、前記微小突起構造体の表面における純水の静的接触角が、θ/2法で20°以下であることが好ましい。   In the dew condensation suppressing member for a refrigerated freezer according to the present invention, the static contact angle of pure water on the surface of the microprojection structure is 20 ° or less by the θ / 2 method because the dew condensation suppressing effect is further improved. Is preferred.

本発明に係る冷蔵冷凍庫用結露抑制部材は、防曇性に優れる点から、前記微小突起構造体の表面におけるn−ヘキサデカンの静的接触角が、θ/2法で20°以下であることが好ましい。   The dew condensation suppressing member for a refrigerated freezer according to the present invention has a static contact angle of n-hexadecane on the surface of the microprojection structure of 20 ° or less by the θ / 2 method from the viewpoint of excellent antifogging properties. preferable.

本発明に係る冷蔵冷凍庫は、前記本発明に係る冷蔵冷凍庫用結露抑制部材を備えることを特徴とする。   The refrigeration freezer which concerns on this invention is equipped with the dew condensation suppression member for refrigeration freezers which concerns on the said this invention, It is characterized by the above-mentioned.

本発明によれば、優れた結露抑制効果及び優れた速乾性を有する冷蔵冷凍庫用結露抑制部材と、当該冷蔵冷凍庫用結露抑制部材を備え、結露が抑制された冷蔵冷凍庫を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the dew condensation suppression member for refrigeration freezers which has the outstanding dew condensation suppression effect and the outstanding quick-drying property, and the said refrigeration freezer dew condensation suppression member can be provided, and the refrigeration freezer by which the dew condensation was suppressed can be provided.

本発明に係る冷蔵冷凍庫用結露抑制部材の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the dew condensation suppression member for refrigerated refrigerators which concerns on this invention. 頂点を複数有する多峰性の微小突起の説明に供する断面図(図2(a))、斜視図(図2(b))、平面図(図2(c))である。It is sectional drawing (FIG.2 (a)), a perspective view (FIG.2 (b)), and top view (FIG.2 (c)) with which it uses for description of the multimodal microprotrusion which has two or more vertices. ドロネー図の一例を模式的に示す図である。It is a figure which shows an example of a Delaunay diagram typically. 凸状突起群の説明に供する図である。It is a figure where it uses for description of a convex-shaped protrusion group. 本発明に係る冷蔵冷凍庫用結露抑制部材の製造方法の一例を示す概略図である。It is the schematic which shows an example of the manufacturing method of the dew condensation suppression member for refrigerators which concerns on this invention.

I.冷蔵冷凍庫用結露抑制部材
次に、本発明に係る冷蔵冷凍庫用結露抑制部材の実施の形態について詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、その趣旨の範囲内で種々変形して実施することができる。
本発明に係る冷蔵冷凍庫用結露抑制部材は、基材の少なくとも一方の面に、樹脂組成物の硬化物からなる複数の微小突起が密接して配置されてなる微小突起群を備えた微小突起構造体を有し、隣接する前記微小突起間の距離の平均が50〜500nmであることを特徴とする。
なお、本発明における冷蔵冷凍庫は、冷蔵及び冷凍庫の少なくとも1つの機能を有すればよく、冷蔵庫、冷凍庫、並びに冷蔵及び冷凍の両方の機能を有する冷蔵冷凍庫のいずれも包含するものである。
I. Next, embodiments of the dew condensation suppressing member for a refrigerated freezer according to the present invention will be described in detail, but the present invention is not limited to the following embodiments, and the scope of the purpose The present invention can be implemented with various modifications.
The dew condensation suppressing member for a refrigerated freezer according to the present invention has a microprojection structure provided with a microprojection group in which a plurality of microprojections made of a cured resin composition are placed in close contact with at least one surface of a substrate. The average distance between adjacent microprotrusions is 50 to 500 nm.
In addition, the refrigeration freezer in this invention should just have at least 1 function of refrigeration and a freezer, and includes all of the refrigerator, freezer, and the refrigeration freezer which has both the functions of refrigeration and freezing.

本発明に係る冷蔵冷凍庫用結露抑制部材は、基材上に形成された微小突起構造体が上記特定の隣接突起間距離を有して微小突起が密接配置された微小突起群を備えることにより、その構造上、液体が濡れ広がり易く、且つ広がった液体が再凝集され難く、部材に保持されるため、結露抑制効果に優れると考えられる。広がった液体が再凝集され難いのは、微小突起構造体を構成する微小突起間の谷部に液体が保持されることにより、重力に従って液体が集合して液滴を形成することが抑制されることも一因になっていると考えられる。また、当該微小突起構造体は、その表面積が大きいことから、微小突起構造体表面の速乾性に優れる。このように、本発明の冷蔵冷凍庫用結露抑制部材は、結露抑制効果に優れ、速乾性にも優れることから、抗菌剤の付与なく湿気によるカビ菌等細菌類の繁殖を抑えることもできる。
また、本発明に係る冷蔵冷凍庫用結露抑制部材は、微小突起構造体の特定の形状により、十分な水の濡れ広がり性を有するため、吸水性材料や光触媒材料を用いなくても優れた結露抑制効果を有する。これにより、本発明は材料選択の幅が広く、また、光エネルギーを必要としない。
また、本発明に係る冷蔵冷凍庫用結露抑制部材は、基材として可撓性のある樹脂基材を用いることにより柔軟性を有することから、設置場所を限定され難く、また、設置作業も容易である。
The dew condensation suppressing member for a refrigerated freezer according to the present invention includes a microprojection group in which microprojections are formed on a substrate and the microprojections are closely arranged with the above-mentioned distance between adjacent projections. Because of its structure, the liquid is easily spread and wet, and the spread liquid is difficult to re-aggregate and is held by the member. The reason why the spread liquid is difficult to be re-aggregated is that the liquid is held in the valleys between the microprojections constituting the microprojection structure, thereby suppressing the liquid from collecting and forming droplets according to gravity. This is also considered to be a factor. Moreover, since the microprojection structure has a large surface area, the microprojection structure surface is excellent in quick drying. As described above, the dew condensation suppressing member for a refrigerated freezer of the present invention is excellent in dew condensation suppressing effect and excellent in quick-drying properties. Therefore, it is possible to suppress the growth of bacteria such as molds due to moisture without the addition of an antibacterial agent.
In addition, the dew condensation suppressing member for a refrigerated freezer according to the present invention has sufficient water wetting and spreading due to the specific shape of the microprojection structure, and therefore excellent dew condensation suppression without using a water absorbing material or a photocatalytic material. Has an effect. Accordingly, the present invention has a wide range of material selection and does not require light energy.
Further, the dew condensation suppressing member for a refrigerated freezer according to the present invention has flexibility by using a flexible resin base material as a base material, so that the installation location is not easily limited and the installation work is easy. is there.

図1は、本発明に係る冷蔵冷凍庫用結露抑制部材の一例を模式的に示す断面図である。図1に示す冷蔵冷凍庫用結露抑制部材100は、基材10の一方の面に、複数の微小突起2が密接して配置されてなる微小突起群を備えた微小突起構造体20を有し、当該微小突起構造体20は、基材10とは別の材料からなる微小突起層21に形成されている。   FIG. 1 is a cross-sectional view schematically showing an example of a dew condensation suppressing member for a refrigerated freezer according to the present invention. The dew condensation suppressing member 100 for a refrigerated freezer shown in FIG. 1 has a microprojection structure 20 having a microprojection group in which a plurality of microprojections 2 are arranged in close contact with one surface of a substrate 10. The microprojection structure 20 is formed on a microprojection layer 21 made of a material different from the base material 10.

<基材>
本発明に用いられる基材は、用途に応じて適宜選択することができ、特に限定されない。前記基材に用いられる材料としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂、ポリエチレンやポリメチルペンテン等のオレフィン系樹脂、アクリル系樹脂、ポリウレタン系樹脂、ポリエーテルサルホンやポリカーボネート、ポリスルホン、ポリエーテル、ポリエーテルケトン、アクリロニトリル、メタクリロニトリル、シクロオレフィンポリマー、シクロオレフィンコポリマー等の樹脂、ソーダ硝子、カリ硝子、鉛ガラス等の硝子、ジルコン酸チタン酸鉛ランタン(PLZT)等のセラミックス、石英、蛍石等の無機材料、金属、紙、木、及びこれらの複合材料等が挙げられる。
また、前記基材は、シートであってもフィルムであってもよく、また、ロールの形で供給されるもの、巻き取れるほどには曲がらないが負荷をかけることによって湾曲するもの、完全に曲がらないもののいずれであってもよい。基材の厚みは、用途に応じて適宜選択することができ、特に限定されないが、通常20〜5000μmである。
<Base material>
The base material used for this invention can be suitably selected according to a use, and is not specifically limited. Examples of the material used for the base material include polyester resins such as polyethylene terephthalate and polyethylene naphthalate, olefin resins such as polyethylene and polymethylpentene, acrylic resins, polyurethane resins, polyethersulfone and polycarbonate, Resins such as polysulfone, polyether, polyetherketone, acrylonitrile, methacrylonitrile, cycloolefin polymer, cycloolefin copolymer, glass such as soda glass, potassium glass, lead glass, ceramics such as lead lanthanum zirconate titanate (PLZT) Inorganic materials such as quartz and fluorite, metals, paper, wood, and composite materials thereof.
The substrate may be a sheet or a film. Also, the substrate may be supplied in the form of a roll, may not be bent so that it can be wound, but may be bent by applying a load, or may be completely bent. Any of those that do not exist. Although the thickness of a base material can be suitably selected according to a use and is not specifically limited, Usually, it is 20-5000 micrometers.

本発明に用いられる基材の構成は、単一の層からなる構成に限られるものではなく、複数の層が積層された構成を有してもよい。複数の層が積層された構成を有する場合は、同一組成の層が積層されてもよく、また、異なった組成を有する複数の層が積層されてもよい。
また、後述する微小突起構造体が基材とは別の材料からなる微小突起層に形成される場合は、層間の密着性、塗工適性、表面平滑性等の基材表面性能を向上させる点から、基材上に中間層を形成してもよい。
The structure of the base material used in the present invention is not limited to a structure composed of a single layer, and may have a structure in which a plurality of layers are laminated. When it has the structure by which the several layer was laminated | stacked, the layer of the same composition may be laminated | stacked, and the several layer which has a different composition may be laminated | stacked.
In addition, when the microprojection structure to be described later is formed on a microprojection layer made of a material different from the substrate, the surface performance of the substrate such as adhesion between layers, coating suitability, and surface smoothness is improved. From the above, an intermediate layer may be formed on the substrate.

本発明に用いられる基材の可視光領域における透過率は、用途に応じて適宜調節することができ、特に限定されず、80%以上の透明の基材を用いることもできるし、80%未満の半透明の基材又は不透明の基材を用いることもできる。前記透過率は、JIS K7361−1(プラスチック−透明材料の全光透過率の試験方法)により測定することができる。
例えば、冷蔵ショーケースの前面板のような透明部材に用いる場合には、透明基材を用いることが好ましい。
また、ガラス部分へ本発明の冷蔵冷凍庫用結露抑制部材を設置する場合、ポリエチレンテレフタレート(PET)等のポリエステル系樹脂基材がガラス破損時の耐飛散性を付与する点から好ましい。
The transmittance in the visible light region of the substrate used in the present invention can be appropriately adjusted depending on the application, and is not particularly limited. A transparent substrate of 80% or more can be used, or less than 80%. A semi-transparent substrate or an opaque substrate can also be used. The transmittance can be measured by JIS K7361-1 (Plastic—Testing method for total light transmittance of transparent material).
For example, when used for a transparent member such as a front plate of a refrigerated showcase, it is preferable to use a transparent substrate.
Moreover, when installing the dew condensation suppression member for refrigerator refrigerators of this invention to a glass part, polyester-type resin base materials, such as a polyethylene terephthalate (PET), are preferable from the point which provides the scattering resistance at the time of glass breakage.

<微小突起構造体>
本発明の冷蔵冷凍庫用結露抑制部材は、基材の少なくとも一方の面に、樹脂組成物の硬化物からなる複数の微小突起が密接して配置されてなる微小突起群を備えた微小突起構造体を有する。
前記微小突起構造体は、図1に示すように、基材10とは別の材料からなる微小突起層21に形成されていても良いし、図示はしないが、基材の表面に一体となって形成されていても良い。
<Microprojection structure>
The dew condensation suppressing member for a refrigerated freezer according to the present invention includes a microprojection structure including a microprojection group in which a plurality of microprojections made of a cured resin composition are placed in close contact with at least one surface of a substrate. Have
As shown in FIG. 1, the microprojection structure may be formed on a microprojection layer 21 made of a material different from the base material 10, and although not shown, it is integrated with the surface of the base material. It may be formed.

前記微小突起構造体を構成する各微小突起は、基材に植立するように形成され、その形状は、特に限定されないが、中でも、当該微小突起の深さ方向と直交する水平面で切断したと仮定したときの水平断面内における当該微小突起を形成する材料部分の断面積占有率が、当該微小突起の頂部から最深部方向に近づくに従い連続的に漸次増加する構造、すなわち各微小突起が先細りとなる構造を有するものが好ましい。このような微小突起の形状の具体例としては、半円状、半楕円状、三角形状、放物線状、釣鐘状等の垂直断面形状を有するものが挙げられる。複数ある微小突起は、同一の形状を有していても異なる形状を有していてもよい。   Each microprotrusion constituting the microprotrusion structure is formed so as to be planted on a base material, and the shape thereof is not particularly limited, but when cut by a horizontal plane orthogonal to the depth direction of the microprotrusion Assuming that the cross-sectional area occupancy of the material part forming the microprotrusion in the horizontal cross section when assumed is gradually increased gradually from the top of the microprotrusion toward the deepest portion, that is, each microprotrusion is tapered. What has the structure which becomes is preferable. Specific examples of the shape of such minute protrusions include those having a vertical cross-sectional shape such as semicircular, semielliptical, triangular, parabolic, bell-shaped. The plurality of microprotrusions may have the same shape or different shapes.

また、前記微小突起構造体を構成する微小突起群の中には、頂点を複数有する微小突起(以下、「多峰性の微小突起」と称する場合がある。)が含まれていても良い。なお、多峰性の微小突起との対比により、頂点が1つのみの微小突起を「単峰性の微小突起」と称する場合がある。また多峰性の微小突起、単峰性の微小突起に係る各頂点を形成する各凸部を、適宜、「峰」と称する。
本発明においては、前記微小突起群の中に多峰性の微小突起を含むことにより、前記微小突起構造体の表面積がさらに増大するので、速乾性及び結露抑制効果がより向上する。また、多峰性の微小突起は、単峰性の微小突起に比して、頂点近傍の寸法に対する裾の部分の太さが相対的に太く、さらに、外力をより多くの頂点で分散して受ける為、各頂点に加わる外力を低減し、樹脂組成物からなる微小突起を損傷し難いようにすることができると考えられる。よって、本発明の冷蔵冷凍庫用結露抑制部材は、多峰性の微小突起を有することにより、機械的強度及び耐擦傷性も向上する。
Further, the microprojection group constituting the microprojection structure may include microprojections having a plurality of vertices (hereinafter sometimes referred to as “multimodal microprojections”). Note that a microprojection having only one vertex may be referred to as a “unimodal microprojection” in comparison with a multimodal microprojection. In addition, each convex portion that forms each vertex related to a multi-peak microprojection or a single-peak microprojection is appropriately referred to as a “peak”.
In the present invention, since the surface area of the microprojection structure is further increased by including multimodal microprojections in the microprojection group, the quick drying property and the dew condensation suppression effect are further improved. In addition, the multi-peaked microprojections are relatively thicker at the hem than the single-peaked microprojections, and the external force is distributed at more vertices. Therefore, it is considered that the external force applied to each apex can be reduced and the micro-projections made of the resin composition can be hardly damaged. Therefore, the dew condensation suppressing member for a refrigerated freezer of the present invention has multi-peaked microprojections, thereby improving the mechanical strength and scratch resistance.

図2は、多峰性の微小突起の説明に供する断面図(図2(a))、斜視図(図2(b))、平面図(図2(c))である。なお、この図2は、理解を容易にするために模式的に示す図であり、図2(a)は、連続する微小突起の頂点を結ぶ折れ線により断面を取って示す図である。図2において、xy方向は、基材10の面内方向であり、z方向は微小突起の高さ方向である。図2(a)に示す冷蔵冷凍庫用結露抑制部材100において、単峰性の微小突起2は、例えば、基材10より離れて頂点に向かうに従って徐々に断面積(高さ方向に直交する面(図2においてXY平面と平行な面)で切断した場合の断面積)が小さくなって、頂点が1つにより作製される。一方、多峰性の微小突起としては、例えば、複数の微小突起が結合したかのように、先端部分に溝gが形成され、頂点が2つになったもの(2A)、頂点が3つになったもの(2B)、さらには頂点が4つ以上のもの(図示略)等が挙げられる。なお単峰性の微小突起2の形状は、回転放物面の様な頂部の丸い形状、或いは円錐の様な頂点の尖った形状で近似することができる。一方、多峰性の微小突起2A、2Bの形状は、単峰性の微小突起2の頂部近傍に溝状の凹部を切り込んで、頂部を複数の峰に分割したような形状で近似することができる。多峰性の微小突起2A、2Bの形状は、複数の峰を含み高さ方向(図2ではZ軸方向)を含む仮想的切断面で切断した場合の縦断面形状が、極大点を複数個含み各極大点近傍が上に凸の曲線になる代数曲線Z=a+a+・・+a2n2n+・・で近似されるような形状である。 FIG. 2 is a cross-sectional view (FIG. 2 (a)), a perspective view (FIG. 2 (b)), and a plan view (FIG. 2 (c)) for explaining the multi-peak microprojections. Note that FIG. 2 is a diagram schematically showing for easy understanding, and FIG. 2A is a diagram showing a cross section by a broken line connecting the vertices of continuous minute protrusions. In FIG. 2, the xy direction is the in-plane direction of the substrate 10, and the z direction is the height direction of the microprotrusions. In the dew condensation suppressing member 100 for a refrigerated freezer shown in FIG. 2A, the unimodal microprotrusions 2 are, for example, gradually increased in cross-sectional area (surface orthogonal to the height direction ( In FIG. 2, the cross-sectional area when cut along a plane parallel to the XY plane) is reduced, and one vertex is produced. On the other hand, as the multi-peak microprotrusions, for example, a groove g is formed at the tip portion as if a plurality of microprotrusions are combined, and the apex is two (2A), and there are three apexes. (2B), and those having four or more vertices (not shown). The shape of the unimodal microprotrusions 2 can be approximated by a round shape at the top like a paraboloid of revolution or a shape with a sharp apex like a cone. On the other hand, the shape of the multimodal microprotrusions 2A and 2B can be approximated by a shape in which a groove-shaped recess is cut in the vicinity of the top of the monomodal microprotrusion 2 and the top is divided into a plurality of peaks. it can. The shape of the multi-peak microprotrusions 2A and 2B has a plurality of maximal points when the vertical cross-sectional shape is cut by a virtual cut surface including a plurality of peaks and including the height direction (Z-axis direction in FIG. 2). The shape is approximated by an algebraic curve Z = a 2 X 2 + a 4 X 4 +... + A 2n X 2n +.

前記微小突起構造体表面に存在する全微小突起中における多峰性の微小突起の個数の比率は、特に限定されないが、前記効果を発揮する点からは、10%以上であることが好ましく、より好ましくは30%以上、更に好ましくは50%以上である。   The ratio of the number of multimodal microprotrusions in all the microprotrusions present on the surface of the microprotrusion structure is not particularly limited, but is preferably 10% or more from the standpoint of exerting the above effects, Preferably it is 30% or more, more preferably 50% or more.

本発明において、前記微小突起構造体を構成する微小突起は、液体が濡れ広がりやすく且つ広がった液体が再凝集されないように部材に保持させる観点から、隣接する前記微小突起間の距離d(以下、「隣接突起間距離d」と称する。)の平均dAVGが、50〜500nmとなるよう密接して配置される。この隣接突起間距離dに係る隣接する微小突起は、いわゆる隣り合う微小突起であり、基材側の付け根部分である微小突起の裾の部分が接している突起である。本発明に係る冷蔵冷凍庫用結露抑制部材では、微小突起が密接して配置されることにより、微小突起間の谷の部位を順次辿るようにして線分を作成すると、平面視において各微小突起を囲む多角形状領域を多数連結してなる網目状の模様が作製されることになる。隣接突起間距離dに係る隣接する微小突起は、この網目状の模様を構成する一部の線分を共有する突起である。
また、前記微小突起の平均隣接突起間距離dAVGは、濡れ性が向上する点から、70〜400nmであることが好ましく、70〜300nmであることがより好ましく、70〜180nmであることが特に好ましい。
In the present invention, the microprotrusions constituting the microprotrusion structure have a distance d between the adjacent microprotrusions (hereinafter, referred to as “dwelling”) from the viewpoint of holding the member so that the liquid easily wets and spreads and the spread liquid does not re-aggregate. It is closely arranged so that the average d AVG of “distance between adjacent projections d”) is 50 to 500 nm. The adjacent minute protrusions related to the distance d between the adjacent protrusions are so-called adjacent minute protrusions, and are protrusions that are in contact with the skirt portions of the minute protrusions that are base portions on the base material side. In the dew condensation suppressing member for a refrigerated freezer according to the present invention, the minute protrusions are closely arranged so that when the line segments are created so as to sequentially follow the valley portions between the minute protrusions, A mesh-like pattern formed by connecting a number of surrounding polygonal regions is produced. The adjacent minute protrusions related to the distance d between the adjacent protrusions are protrusions that share a part of the line segments constituting the mesh pattern.
Further, the average distance d AVG between the adjacent adjacent protrusions of the minute protrusions is preferably 70 to 400 nm, more preferably 70 to 300 nm, and particularly preferably 70 to 180 nm from the viewpoint of improving wettability. preferable.

また、前記微小突起構造体を構成する微小突起の高さHの平均値HAVGは、特に限定されないが、液体が濡れ広がりやすく且つ広がった液体が再凝集されないように部材に保持させる観点から、50〜350nmであることが好ましく、100〜250nmであることが特に好ましい。
ここで各微小突起の高さとは、その頂部に存在する最高高さを有する峰(最高峰)の高さを言う。図2(a)の微小突起2の如くの単峰性の微小突起の場合は、頂部における唯一の峰の高さが該微小突起の突起高さとなる。また図2(a)の微小突起2A、2Bのような多峰性の微小突起の場合は、頂部に在る麓部を共有する複数の峰のうちの最高峰の高さをもって該微小突起の高さとする。
In addition, the average value HAVG of the height H of the microprojections constituting the microprojection structure is not particularly limited, but from the viewpoint of holding the member so that the liquid easily wets and spreads and does not re-aggregate. It is preferable that it is 50-350 nm, and it is especially preferable that it is 100-250 nm.
Here, the height of each microprotrusion means the height of the peak (the highest peak) having the highest height at the top. In the case of a single-peaked microprojection such as the microprojection 2 in FIG. 2A, the height of the only peak at the top is the projection height of the microprojection. In the case of a multi-peak microprojection such as the microprotrusions 2A and 2B in FIG. 2A, the height of the microprotrusions has the highest peak height among a plurality of peaks sharing the ridge at the top. The height.

本発明において、隣接突起間距離dの平均値dAVG及び微小突起の高さHの平均値HAVGは、以下の方法により測定される。
(1)先ず、原子間力顕微鏡(Atomic Force Microscope:AFM)又は走査型電子顕微鏡(Scanning Electron Microscope:SEM)を用いて突起の面内配列(突起配列の平面視形状)を検出する。
In the present invention, the mean value H AVG average value d AVG and height H of the minute projections of adjacent projection distance d is measured by the following method.
(1) First, an in-plane arrangement of projections (planar shape of the projection arrangement) is detected using an atomic force microscope (AFM) or a scanning electron microscope (SEM).

(2)続いてこの求められた面内配列から各突起の高さの極大点(以下、単に極大点と称する。)を検出する。なお極大点を求める方法としては、平面視形状と対応する断面形状の拡大写真とを逐次対比して極大点を求める方法、平面視拡大写真の画像処理によって極大点を求める方法等、種々の手法を適用することができる。   (2) Subsequently, a maximum point of the height of each protrusion (hereinafter simply referred to as a maximum point) is detected from the obtained in-plane arrangement. There are various methods for obtaining the maximum point, such as a method of sequentially comparing the planar view shape and the enlarged photograph of the corresponding cross-sectional shape to obtain the maximum point, and a method of obtaining the maximum point by image processing of the plan view enlarged photo. Can be applied.

(3)次に検出した極大点を母点とするドロネー図(Delaunary Diagram)を作成する。ここでドロネー図とは、各極大点を母点としてボロノイ分割を行った場合に、ボロノイ領域が隣接する母点同士を隣接母点と定義し、各隣接母点同士を線分で結んで得られる3角形の集合体からなる網状図形である。各3角形は、ドロネー3角形と呼ばれ、各3角形の辺(隣接母点同士を結ぶ線分)は、ドロネー線と呼ばれる。図3は、ドロネー図(白色の線分により表される図である)を平面視拡大写真の模式図と重ね合わせた図である。   (3) Next, a Delaunay diagram with the detected maximum point as a generating point is created. Here, Delaunay diagram is obtained by dividing the Voronoi region adjacent to the Voronoi region when the Voronoi division is performed with each local maximum as the generating point, and connecting the adjacent generating points with line segments. This is a net-like figure made up of triangular aggregates. Each triangle is called a Delaunay triangle, and a side of each triangle (a line segment connecting adjacent generating points) is called a Delaunay line. FIG. 3 is a diagram in which a Delaunay diagram (a diagram represented by a white line segment) is superimposed on a schematic diagram of an enlarged photograph in plan view.

(4)次に、各ドロネー線の線分長の度数分布、すなわち隣接する極大点間の距離(隣接突起間距離)の度数分布を求める。なお、突起の頂部に溝状等の凹部が存在したり、あるいは頂部が複数の峰に分裂している場合は、求めた度数分布から、このような突起の頂部に凹部が存在する微細構造、頂部が複数の峰に分裂している微細構造に起因するデータを除去し、突起本体自体のデータのみを選別して度数分布を作成する。   (4) Next, the frequency distribution of the line segment length of each Delaunay line, that is, the frequency distribution of the distance between adjacent maximum points (distance between adjacent protrusions) is obtained. In addition, when there is a groove-like recess at the top of the protrusion, or when the top is split into a plurality of peaks, from the obtained frequency distribution, the microstructure in which there is a recess at the top of such protrusion, The data resulting from the fine structure in which the top part is divided into a plurality of peaks is removed, and only the data of the projection body itself is selected to create a frequency distribution.

具体的には、突起の頂部に凹部が存在する微細構造、頂部が複数の峰に分裂している微小突起(多峰性の微小突起)に係る微細構造においては、このような微細構造を備えていない微小突起(単峰性の微小突起)の場合の数値範囲から、隣接突起間距離が明らかに大きく異なることになる。これによりこの特徴を利用して対応するデータを除去することにより突起本体自体のデータのみを選別して度数分布を検出する。より具体的には、例えば微小突起(群)の平面視の拡大写真から、5〜20個程度の互いに隣接する単峰性の微小突起を選んで、その隣接突起間距離の値を標本抽出し、この標本抽出して求められる数値範囲から明らかに外れる値(通常、標本抽出して求められる隣接突起間距離平均値に対して、値が1/2以下のデータ)を除外して度数分布を検出する。   Specifically, a fine structure in which a concave portion exists on the top of the protrusion, or a fine structure related to a fine protrusion (multi-modal micro protrusion) in which the top is divided into a plurality of peaks has such a fine structure. The distance between adjacent protrusions is clearly different from the numerical range in the case of non-protruding microprotrusions (single-peak microprotrusions). Thus, by removing the corresponding data using this feature, only the data of the projection body itself is selected and the frequency distribution is detected. More specifically, for example, about 5 to 20 adjacent single-peaked microprojections are selected from an enlarged photograph of the microprojections (group) in plan view, and the value of the distance between the adjacent projections is sampled. The frequency distribution is excluded by excluding values that are clearly out of the numerical range obtained by sampling (usually, data having a value of 1/2 or less of the average distance between adjacent protrusions obtained by sampling). To detect.

同様の手法を適用して微小突起の高さHの平均値HAVGを求める。まず、上述の(2)により求められる極大点から、特定の基準位置からの各極大点位置の相対的な高さの差を取得してヒストグラム化する。このヒストグラムによる度数分布から突起高さの平均値HAVG、標準偏差σを求める。突起高さHのヒストグラムにおいて、多峰性の微小突起の場合は、頂点を複数有していることにより、1つの突起に対してこれら複数のデータが混在することになる。この場合は麓(付け根)部が同一の微小突起に属するそれぞれ複数の頂点の中から高さの最も高い頂点を、当該微小突起の突起高さとして採用して度数分布を求める。 The same method is applied to obtain the average value HAVG of the height H of the microprojections. First, the relative height difference of each local maximum point position from a specific reference position is acquired from the local maximum point obtained by the above (2) to form a histogram. The average value HAVG of the protrusion height and the standard deviation σ are obtained from the frequency distribution based on the histogram. In the histogram of the protrusion height H, in the case of a multi-peak microprotrusion, the plurality of data are mixed for one protrusion due to having a plurality of vertices. In this case, the frequency distribution is obtained by adopting the vertex having the highest height from among the plurality of vertices belonging to the same microprotrusion at the heel (base) portion as the protrusion height of the microprotrusion.

なお、微小突起の高さを測る際の基準位置は、突起付け根位置、すなわち隣接する微小突起の間の谷底(高さの極小点)を高さ0の基準とする。但し、係る谷底の高さ自体が場所によって異なる場合、例えば、各微小突起間の谷底を連ねた包絡面が、微小突起の隣接突起間距離に比べて大きな周期でうねった凹凸形状を有する場合等は、(1)先ず、基材の表面又は裏面から測った各谷底の高さの平均値を、該平均値が収束するに足る面積の中で算出する。(2)次いで、該平均値の高さを有し、且つ基材の表面又は裏面と平行な面を基準面として考える。(3)その後、該基準面を改めて高さ0として、該基準面からの各微小突起の高さを算出する。   The reference position for measuring the height of the microprojections is the base position of the projection, that is, the valley bottom (minimum point of height) between the adjacent microprojections is used as the reference for the height 0. However, when the height of the valley bottom itself varies depending on the location, for example, when the envelope surface connecting the valley bottoms between the microprotrusions has a concavo-convex shape with a large period compared to the distance between adjacent protrusions of the microprotrusions, etc. (1) First, the average value of the height of each valley bottom measured from the front surface or the back surface of the base material is calculated within an area sufficient for the average value to converge. (2) Next, a plane having the average height and parallel to the front surface or the back surface of the substrate is considered as a reference surface. (3) Then, the height of each microprotrusion from the reference surface is calculated by setting the reference surface to a height of 0 again.

図2に示すような頂点を複数有する多峰性の微小突起を含む実施形態の度数分布においては、隣接突起間距離d(横軸の値)について、例えば20nm及び40nmの短距離の極大値と120nm及び174nmの長距離の極大値との2種類の極大値が存在することになる。これらの極大値のうちの長距離の極大値は、微小突起本体(頂部よりも下の中腹から麓にかけての部分)の配列に対応し、一方、短距離の極大値は頂部近傍に存在する複数の頂点(峰)に対応する。これにより極大点間距離の度数分布によっても、多峰性の微小突起の存在を見て取ることができる。   In the frequency distribution of the embodiment including multi-peak microprojections having a plurality of vertices as shown in FIG. 2, the distance d between adjacent projections (value on the horizontal axis) is, for example, a maximum value of a short distance of 20 nm and 40 nm. There are two types of local maxima, long maxima of 120 nm and 174 nm. Among these maximum values, the maximum value of the long distance corresponds to the arrangement of the microprojection bodies (the part from the middle to the heel below the top part), while the maximum value of the short distance exists in the vicinity of the top part. Corresponds to the apex (peak) of. As a result, the presence of multi-peaked microprotrusions can be seen also from the frequency distribution of the distance between the maximal points.

また、前記微小突起構造体を構成する各微小突起は、高さに高低差があるものとすることができる。各微小突起の高さに高低差がある場合には、例えば冷蔵冷凍庫用結露抑制部材の微小突起構造体表面上に各種の部材が配置されたときに、多数の微小突起のうちの高さの高い微小突起のみが、当該部材と接触することになる。これにより、例えば物体の接触により高さの高い微小突起の形状が損なわれた場合でも、高さの低い微小突起においては、形状が維持されることになるため、耐擦傷性が向上する。さらに、多数の微小突起のうちの高さの高い微小突起のみが、当該部材と接触することになるため、相対的に高さの低い微小突起には汚れが付きにくくなるので、耐汚染性も向上する。
また、微小突起の高さが種々に異なる場合には、微小突起構造体が同一高さの微小突起のみにより構成される場合に比して格段的に滑りを良くすることができ、製造工程等における冷蔵冷凍庫用結露抑制部材の取り扱いを容易とすることができる。
In addition, each microprotrusion constituting the microprotrusion structure may have a height difference. When there is a height difference in the height of each microprojection, for example, when various members are arranged on the surface of the microprojection structure of the dew condensation suppressing member for a refrigerated freezer, Only the high microprotrusions come into contact with the member. As a result, even when the shape of the fine protrusion having a high height is lost due to contact with an object, for example, the shape of the fine protrusion having a low height is maintained, so that the scratch resistance is improved. Furthermore, since only the high microprojections out of the many microprojections come into contact with the member, the relatively small microprojections are less likely to be contaminated, so that the contamination resistance is also improved. improves.
In addition, when the heights of the microprotrusions are variously different, the sliding can be remarkably improved as compared with the case where the microprotrusion structure is composed of only the microprotrusions having the same height. The handling of the dew condensation suppressing member for a refrigerated refrigerator can be facilitated.

各微小突起の高さの高低差は、標準偏差により規定した場合に、15nm以上60nm以下であることが好ましい。15nm以上であることにより、微小突起構造体表面の滑り、耐擦傷性及び耐汚染性がより向上する。60nmを超えると、微小突起構造体表面のざらつき感が感じられるようになる場合がある。   The height difference of each microprotrusion is preferably 15 nm or more and 60 nm or less when defined by the standard deviation. By being 15 nm or more, the slip, scratch resistance and contamination resistance of the surface of the microprojection structure are further improved. When the thickness exceeds 60 nm, a rough feeling on the surface of the microprojection structure may be felt.

また、前記微小突起構造体を構成する微小突起群は、少なくともその一部が、頂部微小突起と、該頂部微小突起の周囲に隣接して形成されており該頂部微小突起よりも高さが低い複数の周辺微小突起とからなる一群の微小突起の集合(本発明において「凸状突起群」と称する。)を構成していても良い。これにより、微小突起構造体表面の耐汚染性及び耐擦傷性がさらに向上し、滑りをさらに良くすることができる。
図4に、複数の微小突起によって構成される凸状突起群の斜視図(図4(a))及び平面図(図4(b))を示す。図4に示す凸状突起群22は、相対的に高さの高い頂部微小突起2Cと、その周囲に隣接して配置された相対的に高さの低い複数の周辺微小突起2Dからなる。尚、図4(a)及び図4(b)は、理解を容易にするために模式的に示す図であり、xy方向は、基材の面内方向であり、z方向は微小突起の高さ方向である。
なお、本発明において、前記頂部微小突起は、前記周辺微小突起よりも相対的に高さが高く、高さの差が15nm以上のものをいい、当該高さの差は、20nm以上であることが好ましい。また、前記高さの差は、微小突起構造体表面のざらつき感を抑える観点から、60nm以下であることが好ましい。
In addition, at least a part of the microprojection group constituting the microprojection structure is formed adjacent to the top microprojection and the periphery of the top microprojection, and the height is lower than the top microprojection. You may comprise the group of a group of microprotrusions (it calls a "convex-shaped protrusion group" in this invention) which consists of a some peripheral microprotrusion. Thereby, the contamination resistance and the scratch resistance on the surface of the microprojection structure can be further improved, and slipping can be further improved.
FIG. 4 shows a perspective view (FIG. 4A) and a plan view (FIG. 4B) of a convex protrusion group constituted by a plurality of minute protrusions. The convex projection group 22 shown in FIG. 4 includes a top microprojection 2C having a relatively high height and a plurality of peripheral microprojections 2D having a relatively low height arranged adjacent to the periphery thereof. 4 (a) and 4 (b) are diagrams schematically shown for ease of understanding, where the xy direction is the in-plane direction of the substrate, and the z direction is the height of the minute protrusion. It is the direction.
In the present invention, the top microprotrusion has a relatively higher height than the peripheral microprotrusions, and the height difference is 15 nm or more, and the height difference is 20 nm or more. Is preferred. In addition, the difference in height is preferably 60 nm or less from the viewpoint of suppressing the feeling of roughness on the surface of the microprojection structure.

前記微小突起構造体においては、特に限定されないが、耐汚染性及び耐擦傷性がさらに向上する点から、凸状突起群の周辺に配置される微小突起が、頂部微小突起から離れるに連れて、順次高さが低くなっていくように配置されていることが好ましい。   In the microprojection structure, although not particularly limited, as the stain resistance and scratch resistance are further improved, as the microprojections arranged around the convex projection group are separated from the top microprojections, It is preferable that they are arranged so that the height decreases sequentially.

前記微小突起構造体表面に存在する全微小突起中における前記凸状突起群を構成する微小突起の個数の比率は、特に限定されないが、前記効果を発揮する点からは、10%以上であることが好ましく、より好ましくは30%以上、更に好ましくは50%以上である。
なお、前記凸状突起群には、前記周辺微小突起にのみ隣接し、且つ前記頂部微小突起よりも高さが低い微小突起は含まれない。また、凸状突起群同士が隣接して形成される場合において、周辺微小突起が互いに隣接する凸状突起群に共有される場合がある。
前記凸状突起群を構成する微小突起の個数の比率は、例えば、前記微小突起構造体の表面をSEM等により観察し、画像解析により存在を確認できた微小突起の個数のうち、凸状突起群を構成する微小突起の個数の割合を算出することにより、求めることができる。
The ratio of the number of the microprojections constituting the convex projection group in the total microprojections present on the surface of the microprojection structure is not particularly limited, but is 10% or more from the viewpoint of exerting the effect. Is preferable, more preferably 30% or more, still more preferably 50% or more.
The convex protrusion group does not include a micro protrusion that is adjacent only to the peripheral micro protrusion and has a height lower than that of the top micro protrusion. Further, when the convex protrusion groups are formed adjacent to each other, the peripheral minute protrusions may be shared by the adjacent convex protrusion groups.
The ratio of the number of the microprojections constituting the convex projection group is, for example, the number of the microprojections out of the number of microprojections whose presence was confirmed by image analysis by observing the surface of the microprojection structure with an SEM or the like. This can be obtained by calculating the ratio of the number of microprojections constituting the group.

前記微小突起のアスペクト比(平均突起高さHAVG/平均隣接突起間距離dAVG)は、特に限定されないが、0.4〜2.5であることが好ましく、0.8〜2.1であることが特に好ましい。 The aspect ratio of the fine protrusions (average projection height H AVG / average adjacent protrusions distance d AVG) is not particularly limited, but is preferably 0.4 to 2.5, with 0.8 to 2.1 It is particularly preferred.

本発明の冷蔵冷凍庫用結露抑制部材は、前記微小突起構造体の表面における純水の静的接触角が、θ/2法で20°以下であることが好ましく、10°以下であることが特に好ましい。これにより、前記微小突起構造体の表面に付着した水が濡れ広がり易くなるため、速乾性に優れ、結露抑制効果が向上する。また、前記微小突起構造体の表面における純水の静的接触角は、特に限定されないが、通常3°以上である。   In the dew condensation suppressing member for a refrigerated freezer of the present invention, the static contact angle of pure water on the surface of the microprojection structure is preferably 20 ° or less by the θ / 2 method, and particularly preferably 10 ° or less. preferable. Thereby, since the water adhering to the surface of the microprojection structure becomes easy to spread and spread, it is excellent in quick-drying and the effect of suppressing condensation is improved. The static contact angle of pure water on the surface of the microprojection structure is not particularly limited, but is usually 3 ° or more.

また、前記微小突起構造体の表面は、n−ヘキサデカンの静的接触角が、θ/2法で20°以下であることが好ましく、16°以下であることが特に好ましい。これにより、微小突起構造体の表面に付着した油性の汚れが薄く広がり易くなるため、汚れが目立ち難く、防曇性が向上する。また、前記微小突起構造体の表面におけるn−ヘキサデカンの静的接触角は、特に限定されないが、通常8°以上である。   The surface of the microprojection structure has a static contact angle of n-hexadecane of preferably 20 ° or less, particularly preferably 16 ° or less, according to the θ / 2 method. Thereby, since the oily dirt adhering to the surface of the microprojection structure becomes thin and spreads easily, the dirt is hardly noticeable and the antifogging property is improved. The static contact angle of n-hexadecane on the surface of the microprojection structure is not particularly limited, but is usually 8 ° or more.

なお、本発明において静的接触角は、測定対象物の表面に接触角を測定しようとする溶剤(純水又はn−ヘキサデカン)の1.0μLの液滴を滴下し、着滴1秒後に、滴下した液滴の左右端点と頂点を結ぶ直線の、固体表面に対する角度から接触角を算出するθ/2法に従って測定した接触角とする。測定装置としては、例えば、協和界面科学社製 接触角計DM 500を用いることができる。
また、前記静的接触角は、微小突起構造体を形成する樹脂組成物の成分、微小突起構造体の形状等を変更することにより、調整することができる。
In the present invention, the static contact angle is determined by dropping a 1.0 μL droplet of a solvent (pure water or n-hexadecane) whose contact angle is to be measured on the surface of the object to be measured. The contact angle measured according to the θ / 2 method for calculating the contact angle from the angle of the straight line connecting the left and right end points and the vertex of the dropped droplet to the solid surface. As the measuring device, for example, a contact angle meter DM 500 manufactured by Kyowa Interface Science Co., Ltd. can be used.
The static contact angle can be adjusted by changing the components of the resin composition forming the microprojection structure, the shape of the microprojection structure, and the like.

本発明において、前記微小突起構造体を、基材とは別の材料からなる別層である微小突起層に形成する場合、当該微小突起層の厚みは、特に限定されないが、通常3〜30μmである。なお、この場合の微小突起層の厚みとは、微小突起層の基材側の界面から、最も高さの高い微小突起の頂部の高さまでの基材平面に対する垂線方向の距離を意味する(図1中のT)。
また、本発明において、前記微小突起構造体は、基材の両面に形成されていても良い。
In the present invention, when the microprojection structure is formed on a microprojection layer which is a separate layer made of a material different from the base material, the thickness of the microprojection layer is not particularly limited, but is usually 3 to 30 μm. is there. Note that the thickness of the microprojection layer in this case means the distance in the direction perpendicular to the substrate plane from the interface on the substrate side of the microprojection layer to the height of the top of the microprojection having the highest height (FIG. T in 1).
In the present invention, the microprojection structure may be formed on both surfaces of the substrate.

本発明において、前記微小突起構造体を構成する各微小突起は、樹脂組成物を硬化させてなるものである。樹脂組成物は、少なくとも樹脂を含有し、必要に応じて重合開始剤等その他の成分を含有する。なお、本発明において樹脂とは、モノマーやオリゴマーの他、ポリマーを含む概念である。
前記樹脂としては、特に限定されないが、例えば、アクリレート系、エポキシ系、ポリエステル系等の電離放射線硬化性樹脂、アクリレート系、ウレタン系、エポキシ系、ポリシロキサン系等の熱硬化性樹脂、アクリレート系、ポリエステル系、ポリカーボネート系、ポリエチレン系、ポリプロピレン系等の熱可塑性樹脂等の各種材料及び各種硬化形態の賦形用樹脂を使用することができる。また、非反応性重合体を含有してもよい。なお、電離放射線とは、分子を重合させて硬化させ得るエネルギーを有する電磁波または荷電粒子を意味し、例えば、すべての紫外線(UV−A、UV−B、UV−C)、可視光線、ガンマー線、X線、電子線等が挙げられる。
前記樹脂としては、中でも成形性及び機械的強度に優れる点から電離放射線硬化性樹脂が好ましい。本発明に用いられる電離放射線硬化性樹脂とは、分子中にラジカル重合性及び/又はカチオン重合性結合を有する単量体又は重合体を適宜混合したものであり、適宜重合開始剤を用いて電離放射線により硬化されるものである。また、本発明において成形性に優れるとは、所望の形状に精度良く成形できることをいう。
中でも、本発明に用いられる樹脂組成物は、アクリレート系、エポキシ系、ポリエステル系の電離放射線硬化性樹脂よりなる群から選ばれる少なくとも一種を含むことが好ましく、更に、アクリロイル基及び/又はメタクリロイル基を有するアクリレート系の電離放射線硬化性樹脂から選ばれる少なくとも一種を含むことが好ましい。
In the present invention, each microprojection constituting the microprojection structure is formed by curing a resin composition. The resin composition contains at least a resin and, if necessary, other components such as a polymerization initiator. In addition, in this invention, resin is the concept containing a polymer other than a monomer and an oligomer.
The resin is not particularly limited, for example, ionizing radiation curable resins such as acrylate, epoxy, and polyester, acrylate, urethane, epoxy, polysiloxane, and other thermosetting resins, acrylate, Various materials such as polyester-based, polycarbonate-based, polyethylene-based, polypropylene-based thermoplastic resins, and various curing resins for shaping can be used. Moreover, you may contain a non-reactive polymer. The ionizing radiation means electromagnetic waves or charged particles having energy that can be cured by polymerizing molecules. For example, all ultraviolet rays (UV-A, UV-B, UV-C), visible rays, gamma rays , X-rays, electron beams and the like.
As the resin, an ionizing radiation curable resin is preferable because it is excellent in moldability and mechanical strength. The ionizing radiation curable resin used in the present invention is a mixture of a monomer or a polymer having radically polymerizable and / or cationically polymerizable bonds in a molecule as appropriate, and ionized using a suitable polymerization initiator. It is cured by radiation. Further, in the present invention, being excellent in moldability means that it can be accurately molded into a desired shape.
Among them, the resin composition used in the present invention preferably contains at least one selected from the group consisting of acrylate-based, epoxy-based, and polyester-based ionizing radiation curable resins, and further includes an acryloyl group and / or a methacryloyl group. It is preferable to contain at least one selected from acrylate-based ionizing radiation curable resins.

本発明に用いられる樹脂組成物は、強度を付与する等の目的のため、必要に応じて有機微粒子又は無機微粒子等の微粒子を含有させてもよいが、粒径が100nm以上の金属含有微粒子の含有量は、全固形分に対して20質量%未満であることが好ましく、10質量%未満であることがより好ましく、5質量%未満であることがさらに好ましい。これにより冷蔵冷凍庫用結露抑制部材の透明性が向上し、コスト削減にもなる。前記樹脂組成物における粒径100nm以上の金属含有微粒子の含有量が高いほど、本発明の冷蔵冷凍庫用結露抑制部材は、ヘイズが増加し、透明性が低下する恐れがある。
また、前記微小突起構造体は、後述するように、賦形により好ましく形成される。しかし、前記樹脂組成物における粒径100nm以上の金属含有微粒子の含有量が高いほど、賦形による不具合が生じやすくなる。
また、前記金属含有微粒子が凝集し易いことを鑑みると、さらに好ましくは、粒径が4nm以上の金属含有微粒子の含有量が、全固形分に対して20質量%未満であり、より好ましくは10質量%未満であり、さらにより好ましくは5質量%未満であり、金属含有微粒子を含有しないことが好ましい。
The resin composition used in the present invention may contain fine particles such as organic fine particles or inorganic fine particles as necessary for the purpose of imparting strength, but the metal-containing fine particles having a particle size of 100 nm or more. The content is preferably less than 20% by mass relative to the total solid content, more preferably less than 10% by mass, and even more preferably less than 5% by mass. Thereby, the transparency of the dew condensation suppressing member for a refrigerated freezer is improved, and the cost is reduced. As the content of the metal-containing fine particles having a particle size of 100 nm or more in the resin composition is higher, the dew condensation suppressing member for a refrigerated freezer of the present invention may have increased haze and lower transparency.
Further, the microprojection structure is preferably formed by shaping as will be described later. However, the higher the content of the metal-containing fine particles having a particle diameter of 100 nm or more in the resin composition, the more easily a problem due to shaping is caused.
In view of the fact that the metal-containing fine particles are likely to aggregate, the content of the metal-containing fine particles having a particle diameter of 4 nm or more is more preferably less than 20% by mass, more preferably 10%. It is preferably less than 5% by weight, more preferably less than 5% by weight, and it is preferable not to contain metal-containing fine particles.

前記金属含有微粒子としては、例えば、チタン、アルミニウム、セリウム、ジルコニウム、ネオジウム、タングステン、バナジウム、鉛、亜鉛、ニッケル、ビスマス、スズ、スカンジウム等の金属元素、ケイ素、ホウ素、ゲルマニウム、ヒ素、テルル等の半金属元素、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウム等のアルカリ金属、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウム等のアルカリ土類金属等の金属、または、これら金属の酸化物の微粒子等が挙げられる。   Examples of the metal-containing fine particles include metal elements such as titanium, aluminum, cerium, zirconium, neodymium, tungsten, vanadium, lead, zinc, nickel, bismuth, tin, and scandium, silicon, boron, germanium, arsenic, tellurium, and the like. Metals such as semi-metal elements, alkali metals such as lithium, sodium, potassium, rubidium, cesium and francium, alkaline earth metals such as magnesium, calcium, strontium, barium and radium, or fine particles of oxides of these metals Can be mentioned.

本発明に用いられる樹脂組成物は、さらに必要に応じて、重合開始剤、離型剤、光増感剤、酸化防止剤、重合禁止剤、架橋剤、赤外線吸収剤、帯電防止剤、粘度調整剤、密着性向上剤等を含有することもできる。   The resin composition used in the present invention may further comprise a polymerization initiator, a release agent, a photosensitizer, an antioxidant, a polymerization inhibitor, a crosslinking agent, an infrared absorber, an antistatic agent, and a viscosity adjustment as necessary. An agent, an adhesion improver, etc. can also be contained.

また、本発明に用いられる樹脂組成物は、特に限定されないが、微小突起構造体表面の結露抑制効果を向上する点から、平坦な硬化膜としたときの表面における、純水の静的接触角が、θ/2法で85°以下であることが好ましく、より好ましくは70°以下であり、より更に好ましくは60°以下である。
また、本発明に用いられる樹脂組成物は、特に限定されないが、微小突起構造体表面の結露抑制効果を向上する点から、平坦な硬化膜としたときの表面における、n−ヘキサデカンの静的接触角が、θ/2法で70°以下であることが好ましく、より好ましくは60°以下である。
Further, the resin composition used in the present invention is not particularly limited, but from the viewpoint of improving the dew condensation suppressing effect on the surface of the microprojection structure, the static contact angle of pure water on the surface when a flat cured film is formed. However, it is preferable that it is 85 degrees or less by the (theta) / 2 method, More preferably, it is 70 degrees or less, More preferably, it is 60 degrees or less.
Further, the resin composition used in the present invention is not particularly limited, but from the viewpoint of improving the dew condensation suppressing effect on the surface of the microprojection structure, static contact of n-hexadecane on the surface when a flat cured film is formed. The angle is preferably 70 ° or less, more preferably 60 ° or less in the θ / 2 method.

本発明の冷蔵冷凍庫用結露抑制部材は、微小突起構造体の表面に、剥離可能な保護フィルムを仮接着した状態で保管、搬送、売買、後加工又は施工を行い、適時、該保護フィルムを剥離除去する形態とすることもできる。これにより、保管、搬送等の間における微小突起構造体の表面の損傷、汚染を防止することができる。   The dew condensation suppressing member for a refrigerator / freezer according to the present invention is stored, transported, bought and sold, post-processed or constructed in a state in which a peelable protective film is temporarily bonded to the surface of the microprojection structure, and the protective film is peeled off at appropriate times. It can also be set as the form removed. Thereby, damage and contamination of the surface of the microprojection structure during storage, transportation, etc. can be prevented.

また、本発明の冷蔵冷凍庫用結露抑制部材は、微小突起構造体を有しない面に接着剤層を形成し、更に当該接着剤層の表面に離型フィルムを剥離可能に積層してなる接着加工品とすることもできる。接着剤としては、粘着剤(感圧接着剤)、2液硬化型接着剤、紫外線硬化型接着剤、熱硬化型接着剤、熱溶融型接着剤等の公知の接着形態のものが各種使用できる。   Further, the dew condensation suppressing member for a refrigerated freezer of the present invention is formed by forming an adhesive layer on a surface not having a microprojection structure, and further laminating a release film on the surface of the adhesive layer in a peelable manner. It can also be a product. As the adhesive, various types of known adhesive forms such as a pressure-sensitive adhesive (pressure-sensitive adhesive), a two-component curable adhesive, an ultraviolet curable adhesive, a thermosetting adhesive, and a hot-melt adhesive can be used. .

本発明の冷蔵冷凍庫用結露抑制部材の可視光領域における透過率は、用途に応じて適宜調節することができ、特に限定されず、80%以上の透明であっても良いし、80%未満の半透明又は不透明であっても良い。前記透過率は、JIS K7361−1(プラスチック−透明材料の全光透過率の試験方法)により測定することができる。   The transmittance in the visible light region of the dew condensation suppressing member for a refrigerated freezer of the present invention can be appropriately adjusted depending on the application, and is not particularly limited, and may be 80% or more transparent or less than 80%. It may be translucent or opaque. The transmittance can be measured by JIS K7361-1 (Plastic—Testing method for total light transmittance of transparent material).

<冷蔵冷凍庫用結露抑制部材の製造方法>
本発明の冷蔵冷凍庫用結露抑制部材の製造方法は、上述した本発明の冷蔵冷凍庫用結露抑制部材を製造することができる方法であれば特に限定されないが、成形性に優れ、且つ安定量産ができる点から、基材の少なくとも一方の面に、賦形により微小突起構造体を形成する方法が好ましい。
前記微小突起構造体は、基材上に設けた当該基材とは別の材料からなる別層の表面に賦形しても良いし、基材が樹脂組成物等の賦形可能な材料からなる場合は、当該基材表面に直接賦形しても良い。
<Method for producing dew condensation suppressing member for refrigerated refrigerator>
Although the manufacturing method of the dew condensation suppression member for refrigerated freezers of this invention will not be specifically limited if it is a method which can manufacture the dew condensation suppression member for refrigerated freezers of this invention mentioned above, it is excellent in a moldability and can perform stable mass production. In view of this, a method of forming a microprojection structure on at least one surface of the substrate by shaping is preferable.
The microprojection structure may be shaped on the surface of another layer made of a material different from the base material provided on the base material, or the base material is made of a shapeable material such as a resin composition. When it becomes, you may shape directly on the said base-material surface.

本発明の冷蔵冷凍庫用結露抑制部材の製造方法としては、例えば以下の方法等が挙げられる。すなわち、まず基材上に微小突起層形成用の樹脂組成物を塗布して塗膜を形成し、所望の凹凸形状を有する微小突起構造体形成用原版の該凹凸形状を、前記樹脂組成物の塗膜に賦形した後、前記樹脂組成物を硬化させることにより微小突起構造体を形成し、前記微小突起構造体形成用原版を剥離する方法等である。
なお、微小突起構造体形成用原版の凹凸形状とは、多数の微小孔が密に形成されたものであり、微小突起構造体が備える微小突起群の形状に対応する形状である。
また、微小突起構造体形成用原版の凹凸形状を樹脂組成物に賦形し、該樹脂組成物を硬化させる方法は、樹脂組成物の種類等に応じて適宜選択することができる。
As a manufacturing method of the dew condensation suppression member for refrigerated freezers of this invention, the following methods etc. are mentioned, for example. That is, first, a resin composition for forming a microprojection layer is applied onto a substrate to form a coating film, and the uneven shape of the original plate for forming a microprojection structure having a desired uneven shape is obtained by using the resin composition. For example, a method for forming a microprojection structure by curing the resin composition after shaping the coating film, and peeling the original plate for forming the microprojection structure.
The concave / convex shape of the original plate for forming a microprojection structure is a shape in which a large number of micropores are densely formed and corresponds to the shape of a group of microprojections provided in the microprojection structure.
Moreover, the method of shaping the concave / convex shape of the original plate for forming a microprojection structure into a resin composition and curing the resin composition can be appropriately selected according to the type of the resin composition.

前記微小突起構造体形成用原版としては、繰り返し使用した際に変形および摩耗するものでなければ、特に限定されるものではなく、金属製であっても良く、樹脂製であっても良いが、通常、耐変形性および耐摩耗性に優れている点から、金属製が好適に用いられる。
前記微小突起構造体形成用原版の凹凸形状を有する面は、特に限定されないが、酸化されやすく、陽極酸化による加工が容易である点から、アルミニウムからなることが好ましい。
前記微小突起構造体形成用原版は、具体的には、例えば、ステンレス、銅、アルミニウム等の金属製の母材の表面に、直接に又は各種の中間層を介して、スパッタリング等により純度の高いアルミニウム層が設けられ、当該アルミニウム層に凹凸形状を形成したものが挙げられる。前記母材は、前記アルミニウム層を設ける前に、電解溶出作用と、砥粒による擦過作用の複合による電解複合研磨法によって母材の表面を超鏡面化しても良い。
前記微小突起構造体形成用原版に凹凸形状を形成する方法としては、例えば、陽極酸化法によって前記アルミニウム層の表面に複数の微小孔を形成する陽極酸化工程と、前記アルミニウム層をエッチングすることにより前記微小孔の開口部にテーパー形状を形成する第1エッチング工程と、前記アルミニウム層を前記第1エッチング工程のエッチングレートよりも高いエッチングレートでエッチングすることにより前記微小孔の孔径を拡大する第2エッチング工程とを順次繰り返し実施することによって形成することができる。
微小突起構造体形成用原版に凹凸形状を形成する際には、アルミニウム層の純度(不純物量)や結晶粒径、陽極酸化処理及び/又はエッチング処理の諸条件を適宜調整することによって、所望の形状とすることができる。前記陽極酸化処理において、より具体的には、液温、印加する電圧、陽極酸化に供する時間等の管理により、微小孔をそれぞれ目的とする深さ及び形状に作製することができる。
The original plate for forming the microprojection structure is not particularly limited as long as it is not deformed and worn when repeatedly used, and may be made of metal or resin, Usually, metal is preferably used because it is excellent in deformation resistance and wear resistance.
The surface having the concavo-convex shape of the original plate for forming a microprojection structure is not particularly limited, but is preferably made of aluminum from the viewpoint of being easily oxidized and easily processed by anodization.
Specifically, the original plate for forming the microprojection structure has high purity by sputtering or the like directly on the surface of a metal base material such as stainless steel, copper, or aluminum, or through various intermediate layers. An aluminum layer is provided, and the aluminum layer is formed with an uneven shape. Prior to providing the aluminum layer, the surface of the base material may be made into a super mirror surface by an electrolytic composite polishing method in which electrolytic elution action and abrasion action by abrasive grains are combined.
Examples of a method for forming a concavo-convex shape on the original plate for forming a microprojection structure include, for example, an anodic oxidation step of forming a plurality of micropores on the surface of the aluminum layer by an anodic oxidation method, and etching the aluminum layer. A first etching step for forming a tapered shape in the opening of the microhole, and a second for enlarging the hole diameter of the microhole by etching the aluminum layer at an etching rate higher than the etching rate of the first etching step. It can be formed by sequentially repeating the etching process.
When forming a concavo-convex shape on an original plate for forming a microprojection structure, the purity (impurity amount), crystal grain size, anodizing treatment and / or etching treatment conditions of the aluminum layer are appropriately adjusted to obtain a desired shape. It can be a shape. In the anodic oxidation treatment, more specifically, the micropores can be produced to the desired depth and shape by managing the liquid temperature, the applied voltage, the time for the anodic oxidation, and the like.

また、前記微小突起構造体形成用原版の形状としては、例えば、平板状、ロール状等が挙げられ、特に限定されるものではないが、生産性向上の観点からは、ロール状が好ましい。本発明においては、前記微小突起構造体形成用原版として、ロール状の金型(以下、「ロール金型」と称する場合がある。)を用いることが好ましい。
前記ロール金型としては、例えば、母材として、円筒形状の金属材料を用い、当該母材の周側面に、直接に又は各種の中間層を介して設けられたアルミニウム層に、上述したように、陽極酸化処理、エッチング処理の繰り返しにより、凹凸形状が作製されたものが挙げられる。
Moreover, examples of the shape of the original plate for forming a microprojection structure include a flat plate shape and a roll shape, and are not particularly limited, but a roll shape is preferable from the viewpoint of improving productivity. In the present invention, it is preferable to use a roll-shaped mold (hereinafter sometimes referred to as “roll mold”) as the original plate for forming the microprojection structure.
As the roll mold, for example, as described above, a cylindrical metal material is used as a base material, and the aluminum layer provided on the peripheral side surface of the base material directly or through various intermediate layers, as described above. In other words, the concavo-convex shape is produced by repeating the anodizing treatment and the etching treatment.

図5に、微小突起構造体形成用の樹脂組成物として紫外線硬化性樹脂組成物を用い、微小突起構造体形成用原版としてロール金型を用いて、本発明の冷蔵冷凍庫用結露抑制部材を製造する方法の一例を示す。この製造方法では、まず、樹脂供給工程において、ダイ31により、帯状フィルム形態の基材10に、微小突起層21となる微小突起構造体の受容層21’を構成する未硬化で液状の紫外線硬化性樹脂組成物を塗布する。尚、紫外線硬化性樹脂組成物の塗布については、ダイ31による場合に限らず、各種の手法を適用することができる。続いて、押圧ローラ33により、賦形用金型であるロール金型32の周側面に基材10を加圧押圧し、これにより基材10に未硬化の受容層21’を密着させると共に、ロール金型32の周側面に形成された微小な凹凸形状の凹部に受容層21’を構成する紫外線硬化性樹脂組成物を充分に充填する。この状態で、紫外線の照射により紫外線硬化性樹脂組成物を硬化させ、これにより基材10の表面に微小突起構造体を有する微小突起層21が形成される。続いて剥離ローラ34を介してロール金型32から、硬化した微小突起層21と一体に基材10を剥離する。必要に応じてこの基材10に粘着層等を積層した後、所望の大きさに切断する。これにより、所望の形状の微小突起構造体が形成された本発明の冷蔵冷凍庫用結露抑制部材が、効率良く大量生産される。   FIG. 5 shows the production of a dew condensation suppressing member for a refrigerated freezer according to the present invention, using an ultraviolet curable resin composition as a resin composition for forming a microprojection structure and using a roll mold as an original plate for forming the microprojection structure. An example of how to do this is shown. In this manufacturing method, first, in the resin supply step, an uncured and liquid ultraviolet curing that forms the receiving layer 21 ′ of the microprojection structure to be the microprojection layer 21 on the base material 10 in the form of a strip by the die 31. The conductive resin composition is applied. In addition, about application | coating of an ultraviolet curable resin composition, not only the case by the die | dye 31 but various methods are applicable. Subsequently, the pressing roller 33 presses and presses the substrate 10 against the peripheral side surface of the roll die 32 which is a shaping die, thereby bringing the uncured receiving layer 21 ′ into close contact with the substrate 10, The minute concavo-convex recesses formed on the peripheral side surface of the roll mold 32 are sufficiently filled with the ultraviolet curable resin composition constituting the receiving layer 21 ′. In this state, the ultraviolet curable resin composition is cured by irradiation with ultraviolet rays, whereby the microprojection layer 21 having the microprojection structure is formed on the surface of the substrate 10. Subsequently, the base material 10 is peeled from the roll mold 32 through the peeling roller 34 together with the hard microprojection layer 21. If necessary, an adhesive layer or the like is laminated on the base material 10 and then cut into a desired size. Thereby, the dew condensation suppressing member for a refrigerated freezer according to the present invention in which a microprojection structure having a desired shape is formed is efficiently mass-produced.

なお、多峰性の微小突起と単峰性の微小突起とを混在させるには、陽極酸化処理において作製される微小突起構造体形成用原版の微小孔の間隔をばらつかせることにより実現することができる。多峰性の微小突起は、その頂部に対応する形状の凹部を備えた微小孔により作成されるものであり、このような微小孔は、極めて近接して作製された微小孔が、エッチング処理により、一体化して形成されると考えられる。
また、微小突起構造体の少なくとも一部を上述した凸状突起群とするためには、個々の微小突起について、その高さに所定範囲のばらつきがあることが必須である。個々の微小突起の高さのばらつきは、微小突起構造体形成用原版に形成される微小孔の深さのばらつきによるものであり、このような微小孔の深さのばらつきは、陽極酸化処理におけるばらつきに起因するものと言える。これにより相対的に高さの高い頂部微小突起と、相対的に高さの低い複数の周辺微小突起とを混在させるには、陽極酸化処理におけるばらつきを大きくすることにより実現することができる。
In order to mix multi-peak microprojections and monomodal micro-protrusions, it must be realized by varying the micro-hole intervals of the micro-projection structure forming original plate produced in the anodizing process. Can do. Multi-modal microprotrusions are created by micropores having a concave portion corresponding to the top of the microprotrusions, and such micropores are produced by etching processing. It is thought that they are formed integrally.
In order to make at least a part of the microprojection structure into the convex projection group described above, it is essential that the height of each microprotrusion has a predetermined range. The variation in the height of each microprojection is due to the variation in the depth of the microhole formed in the original plate for forming the microprojection structure. It can be said that it is caused by variation. In this way, a mixture of a relatively high top microprojection and a plurality of relatively low peripheral microprojections can be realized by increasing the variation in anodizing treatment.

また上述の実施形態では、ロール金型を使用した賦形処理により、フィルム形状の基材上に微小突起構造体を形成する場合について述べたが、本発明はこれに限らず、基材の形状に応じて、賦形処理に係る工程、金型は適宜変更することができる。例えば、平板状又は特定の曲面形状の賦形用金型を使用した賦形処理等により、枚葉状の基材上に微小突起構造体を形成することができる。   In the above-described embodiment, the case where the microprojection structure is formed on the film-shaped base material by the shaping process using the roll mold is described. However, the present invention is not limited thereto, and the shape of the base material is not limited thereto. Depending on the process, the process and mold for the shaping process can be changed as appropriate. For example, a microprojection structure can be formed on a sheet-like substrate by a shaping process using a shaping mold having a flat plate shape or a specific curved surface.

<冷蔵冷凍庫用結露抑制部材の用途>
本発明の冷蔵冷凍庫用結露抑制部材は、冷蔵冷凍庫の結露しやすい部分を構成する部材として用いることができる。冷蔵冷凍庫としては、例えば、冷蔵冷凍ショーケース、家庭用或いは業務用の冷蔵冷凍庫、冷蔵冷凍車、冷蔵冷凍コンテナ等が挙げられる。なお、上述のように、本発明における「冷蔵冷凍」は、冷蔵及び冷凍の少なくとも1つの機能を有しているものを包含しており、例えば、冷蔵冷凍ショーケースには、冷蔵ショーケース、冷凍ショーケース、並びに冷蔵及び冷凍の両方の機能を有する冷蔵冷凍ショーケースのいずれも包含するものである。
本発明の冷蔵冷凍庫用結露抑制部材は、中でも、既製の冷蔵冷凍庫の冷却される内部空間を構成する内装用部材に後から貼り付ける態様において、又は冷蔵冷凍庫の内装用部材そのものとして、好ましく用いることができる。冷蔵冷凍庫の冷却された内部空間では、開閉時等に外気が入り込むことにより結露が生じやすいため、本発明に係る部材の結露抑制効果を特に効果的に発揮することができる。
前記内装用部材としては、例えば、内壁、仕切り板、観察窓、内部環境測定用センサ測定子、手入力部及びその周辺部材、並びに内部照明部及びその周辺部材等が挙げられる。
また、中でも、透過率が80%以上の本発明の冷蔵冷凍庫用結露抑制部材の場合には、当該部材を後から冷蔵冷凍庫に設置しても意匠性を妨げることなく、結露抑制効果を付与することができる点から好ましい。
さらに、本発明の冷蔵冷凍庫用結露抑制部材は、前記微小突起が、当該微小突起の深さ方向と直交する水平面で切断したと仮定したときの水平断面内における当該微小突起を形成する材料部分の断面積占有率が、当該微小突起の頂部から最深部方向に近づくに従い連続的に漸次増加する構造を有し、隣接する前記微小突起間の距離dの最大値が380nm以下の場合には、透明なショーケースの内部の側壁や仕切り部材に用いた場合であっても、結露を抑制すると共に、視認性を向上する点から好ましい。
<Uses of dew condensation suppression members for refrigerated refrigerators>
The dew condensation suppressing member for a refrigerated freezer of the present invention can be used as a member that constitutes a portion of the refrigerated freezer where condensation is likely to occur. Examples of the refrigerated freezer include a refrigerated freezer showcase, a domestic or commercial refrigerated freezer, a refrigerated freezer, a refrigerated freezer container, and the like. As described above, “refrigerated” in the present invention includes those having at least one function of refrigeration and freezing. For example, a refrigerated freezer showcase includes a refrigerated showcase, a freezer. It includes both a showcase and a refrigerated freezer showcase having both refrigeration and freezing functions.
The dew condensation suppressing member for a refrigerated freezer of the present invention is preferably used, in particular, in an aspect that is later attached to an interior member that constitutes an internal space to be cooled of a ready-made refrigerated freezer, or as an interior member of a refrigerated freezer. Can do. In the cooled internal space of the refrigerated freezer, dew condensation is likely to occur due to outside air entering when opening and closing or the like, so that the dew condensation suppressing effect of the member according to the present invention can be particularly effectively exhibited.
Examples of the interior member include an inner wall, a partition plate, an observation window, a sensor probe for measuring internal environment, a manual input unit and its peripheral member, and an internal illumination unit and its peripheral member.
Moreover, in particular, in the case of the dew condensation suppressing member for a refrigerated freezer of the present invention having a transmittance of 80% or more, even if the member is installed in the refrigerated freezer later, a dew condensation suppressing effect is imparted without hindering the design. It is preferable because it can be used.
Furthermore, the dew condensation suppressing member for a refrigerated freezer of the present invention is a material portion that forms the micro protrusion in a horizontal cross section when the micro protrusion is assumed to be cut by a horizontal plane perpendicular to the depth direction of the micro protrusion. The cross-sectional area occupancy rate has a structure that increases gradually and gradually as it approaches the deepest part from the top of the microprotrusions, and is transparent when the maximum value of the distance d between the adjacent microprotrusions is 380 nm or less. Even if it is a case where it uses for the internal side wall and partition member of a showcase, it is preferable from the point which suppresses condensation and improves visibility.

II.冷蔵冷凍庫
本発明に係る冷蔵冷凍庫は、前記本発明に係る冷蔵冷凍庫用結露抑制部材を備えることを特徴とする。
前記冷蔵冷凍庫用結露抑制部材が優れた結露抑制効果及び優れた速乾性を有するため、本発明に係る冷蔵冷凍庫は、当該部材が備えられた部分において結露が抑制される。
本発明に係る冷蔵冷凍庫としては、例えば、前記本発明の冷蔵冷凍庫用結露抑制部材の用途として例示した冷蔵冷凍庫等が挙げられる。
このような冷蔵冷凍庫は、開閉時等に冷却された内部空間に外気が入り込むことにより特に結露が発生じやすいため、本発明に係る冷蔵冷凍庫においては、前記本発明の冷蔵冷凍庫用結露抑制部材を、内部空間の内装用部材自体として用いたり、内装用部材に貼り付けて用いることにより、特に効果的に結露を抑制することができる。
II. Refrigerated freezer The refrigerated freezer which concerns on this invention is equipped with the dew condensation suppression member for refrigerated refrigerators which concerns on the said this invention, It is characterized by the above-mentioned.
Since the dew condensation suppressing member for a refrigerated freezer has an excellent dew condensation suppressing effect and an excellent quick-drying property, in the refrigerated freezer according to the present invention, dew condensation is suppressed at a portion provided with the member.
As a refrigeration freezer which concerns on this invention, the refrigeration freezer illustrated as an application of the dew condensation suppression member for refrigeration freezers of the said this invention is mentioned, for example.
Such a refrigerated freezer is particularly susceptible to dew condensation due to outside air entering the cooled internal space during opening and closing, etc. Therefore, in the refrigerated freezer according to the present invention, the dew condensation suppressing member for the refrigerated freezer of the present invention is provided. Condensation can be particularly effectively suppressed by using the interior space as the interior member itself or by sticking it to the interior member.

(金型1の作製)
純度99.50%の圧延されたアルミニウム板を、研磨後、0.02Mシュウ酸水溶液の電解液中で、印加電圧40V、20℃の条件にて100秒間、陽極酸化を実施した。次に、第一エッチング処理として、陽極酸化後の電解液で50秒間エッチング処理を行った。続いて、第二エッチング処理として、1.0Mリン酸水溶液で120秒間孔径処理を行った。さらに、上記処理を繰り返し、これらを合計5回追加実施した。これにより、アルミニウム基板上に微小孔が密に形成された陽極酸化アルミニウム層が形成された。最後に、フッ素系離型剤を塗布し、余分な離型剤を洗浄することで、微小突起構造体形成用の金型1を得た。なお、金型1のアルミニウム層に形成された微細な凹凸形状は、平均隣接微小孔間距離100nm、平均深さ160nmであった。また、頂点を複数有する微小突起となるような微小孔が一部存在しており、一部の微小孔に深さのばらつきがある形状であった。
(Production of mold 1)
The polished aluminum plate having a purity of 99.50% was polished and then anodized in an electrolyte solution of 0.02 M oxalic acid aqueous solution at an applied voltage of 40 V and 20 ° C. for 100 seconds. Next, as a first etching process, an etching process was performed for 50 seconds with the electrolytic solution after anodization. Subsequently, as the second etching treatment, a pore size treatment was performed for 120 seconds with a 1.0 M phosphoric acid aqueous solution. Furthermore, the said process was repeated and these were added and implemented 5 times in total. As a result, an anodized aluminum layer having minute holes formed densely on the aluminum substrate was formed. Finally, a mold release agent for forming a microprojection structure was obtained by applying a fluorine-based release agent and washing away the excess release agent. In addition, the fine uneven | corrugated shape formed in the aluminum layer of the metal mold | die 1 was the average distance between adjacent micropores of 100 nm, and the average depth of 160 nm. In addition, a part of the microholes which become microprotrusions having a plurality of vertices are present, and the part of the microholes has a variation in depth.

(金型2の作製)
金型1と同様の操作を用いて、繰り返し操作を7回追加実施したこと以外は、金型1の作製と同様にして、平均隣接微小孔間距離150nm、平均深さ200nmの微小突起構造体形成用の金型2を得た。なお、金型2のアルミニウム層に形成された微細な凹凸形状は、頂点を複数有する微小突起となるような微小孔が一部存在しており、一部の微小孔に深さのばらつきがある形状であった。
(Production of mold 2)
A microprojection structure having an average distance between adjacent micropores of 150 nm and an average depth of 200 nm, in the same manner as in the manufacture of the mold 1, except that the same operation as that of the mold 1 was used and the repeated operation was added seven times. A forming mold 2 was obtained. Note that the fine uneven shape formed on the aluminum layer of the mold 2 has a part of micro holes that become micro projections having a plurality of apexes, and some micro holes have variations in depth. It was a shape.

(金型3の作製)
第一エッチング処理時間を60秒、第二エッチング処理時間を130秒とし、繰り返し操作を7回追加実施したこと以外は、金型1の作製と同様にして、平均隣接微小孔間距離200nm、平均深さ160nmの微小突起構造体形成用の金型3を得た。なお、金型3のアルミニウム層に形成された微細な凹凸形状は、頂点を複数有する微小突起となるような微小孔が一部存在しており、一部の微小孔に深さのばらつきがある形状であった。
(Production of mold 3)
Except that the first etching treatment time was 60 seconds, the second etching treatment time was 130 seconds, and the repeating operation was additionally performed seven times, the average distance between adjacent micro-holes was 200 nm, the average A mold 3 for forming a microprojection structure having a depth of 160 nm was obtained. Note that the fine uneven shape formed in the aluminum layer of the mold 3 has a part of micro holes that become micro projections having a plurality of vertices, and some micro holes have variations in depth. It was a shape.

(金型4の作製)
第一エッチング処理時間を70秒、第二エッチング処理時間を170秒とし、繰り返し操作を5回追加実施したこと以外は、金型1の作製と同様にして、平均隣接微小孔間距離400nm、平均深さ210nmの微小突起構造体形成用の金型4を得た。なお、金型4のアルミニウム層に形成された微細な凹凸形状は、頂点を複数有する微小突起となるような微小孔が一部存在しており、一部の微小孔に深さのばらつきがある形状であった。
(Production of mold 4)
Except that the first etching treatment time was 70 seconds, the second etching treatment time was 170 seconds, and the repeating operation was additionally performed five times, in the same manner as in the fabrication of the mold 1, the average distance between adjacent micropores was 400 nm, the average A mold 4 for forming a microprojection structure having a depth of 210 nm was obtained. In addition, the fine uneven shape formed in the aluminum layer of the mold 4 has a part of micro holes which become micro protrusions having a plurality of apexes, and some micro holes have variations in depth. It was a shape.

(金型5の作製)
第一エッチング処理時間を70秒、第二エッチング処理時間を170秒とし、繰り返し操作を7回追加実施したこと以外は、金型1の作製と同様にして、平均隣接微小孔間距離500nm、平均深さ230nmの微小突起構造体形成用の金型5を得た。なお、金型5のアルミニウム層に形成された微細な凹凸形状は、頂点を複数有する微小突起となるような微小孔が一部存在しており、一部の微小孔に深さのばらつきがある形状であった。
(Production of mold 5)
Except that the first etching treatment time was 70 seconds, the second etching treatment time was 170 seconds, and the repeating operation was additionally performed seven times, the average distance between adjacent micropores was 500 nm and the average was the same as in the manufacture of the mold 1. A mold 5 for forming a microprojection structure having a depth of 230 nm was obtained. In addition, the fine uneven shape formed in the aluminum layer of the mold 5 has a part of minute holes that become minute protrusions having a plurality of apexes, and some of the minute holes have variations in depth. It was a shape.

(樹脂組成物Aの調製)
以下の各成分を混合し、微小突起構造体形成用の樹脂組成物Aを調製した。
・EO変性ビスフェノールAジアクリレート 70質量部
・ポリエチレングリコールジアクリレート 30質量部
・ジフェニル(2,4,6−トリメトキシベンゾイル)ホスフィンオキシド(ルシリンTPO) 1質量部
(Preparation of resin composition A)
The following components were mixed to prepare a resin composition A for forming a microprojection structure.
-EO-modified bisphenol A diacrylate 70 parts by mass-Polyethylene glycol diacrylate 30 parts by mass-Diphenyl (2,4,6-trimethoxybenzoyl) phosphine oxide (Lucillin TPO) 1 part by mass

(樹脂組成物Bの調製)
以下の各成分を混合し、微小突起構造体形成用の樹脂組成物Bを調製した。
・EO変性ビスフェノールAジアクリレート 30質量部
・EO変性トリメチロールプロパントリアクリレート 20質量部
・ドデシルアクリレート 50質量部
・ジフェニル(2,4,6−トリメトキシベンゾイル)ホスフィンオキシド(ルシリンTPO) 1質量部
(Preparation of resin composition B)
The following components were mixed to prepare a resin composition B for forming a microprojection structure.
-EO-modified bisphenol A diacrylate 30 parts by mass-EO-modified trimethylolpropane triacrylate 20 parts by mass-dodecyl acrylate 50 parts by mass-diphenyl (2,4,6-trimethoxybenzoyl) phosphine oxide (lucillin TPO) 1 part by mass

(樹脂組成物Cの調製)
以下の各成分を混合し、微小突起構造体形成用の樹脂組成物Cを調製した。
・EO変性ビスフェノールAジアクリレート 50質量部
・EO変性トリメチロールプロパントリアクリレート 30質量部
・トリデシルアクリレート 5質量部
・ドデシルアクリレート 5質量部
・メチルメタクリレート 5質量部
・ヘキシルメタクリレート 5質量部
・ジフェニル(2,4,6−トリメトキシベンゾイル)ホスフィンオキシド(ルシリンTPO) 1質量部
(Preparation of resin composition C)
The following components were mixed to prepare a resin composition C for forming a microprojection structure.
-EO-modified bisphenol A diacrylate 50 parts by mass-EO-modified trimethylolpropane triacrylate 30 parts by mass-tridecyl acrylate 5 parts by mass-dodecyl acrylate 5 parts by mass-methyl methacrylate 5 parts by mass-hexyl methacrylate 5 parts by mass-diphenyl (2 , 4,6-Trimethoxybenzoyl) phosphine oxide (Lucillin TPO) 1 part by mass

(樹脂組成物Dの調製)
以下の各成分を混合し、微小突起構造体形成用の樹脂組成物Dを調製した。
・EO変性ビスフェノールAジアクリレート 70質量部
・ポリエチレングリコールジアクリレート 30質量部
・ジフェニル(2,4,6−トリメトキシベンゾイル)ホスフィンオキシド(ルシリンTPO) 1質量部
・シリカゲル 5質量部
(Preparation of resin composition D)
The following components were mixed to prepare a resin composition D for forming a microprojection structure.
-EO-modified bisphenol A diacrylate 70 parts by mass-Polyethylene glycol diacrylate 30 parts by mass-Diphenyl (2,4,6-trimethoxybenzoyl) phosphine oxide (Lucirin TPO) 1 part by mass-Silica gel 5 parts by mass

[実施例1]
樹脂組成物Aを、金型1の凹凸形状を有する面が覆われ、微小突起構造体が形成される微小突起層の硬化後の厚さが20μmとなるように塗布、充填し、その上に基材(材質:PET、厚さ:25μm、商品名:ルミラー、東レ社製)を斜めから貼り合わせた後、貼り合わせられた貼合体をゴムローラーで10N/cmの加重で圧着した。金型全体に均一な組成物が塗布されたことを確認し、基材側から2000mJ/cmのエネルギーで紫外線を照射して樹脂を硬化させた。その後、金型より剥離し、実施例1の冷蔵冷凍庫用結露抑制部材を得た。
得られた冷蔵冷凍庫用結露抑制部材の表面の断面をSEMにより観察したところ、平均隣接微小突起間距離100nm、平均微小突起高さ160nmの微小突起群が形成されていた。また、微小突起の一部が頂点を複数有する微小突起であり、各微小突起の高さに、標準偏差30nmの高低差があった。
[Example 1]
The resin composition A is applied and filled so that the surface of the mold 1 having the concavo-convex shape is covered, and the thickness of the microprojection layer on which the microprojection structure is formed is 20 μm after curing. After a base material (material: PET, thickness: 25 μm, trade name: Lumirror, manufactured by Toray Industries, Inc.) was bonded from an oblique direction, the bonded body was pressed with a rubber roller under a load of 10 N / cm 2 . After confirming that the uniform composition was applied to the entire mold, the resin was cured by irradiating ultraviolet rays with energy of 2000 mJ / cm 2 from the substrate side. Then, it peeled from the metal mold | die and the dew condensation suppression member for refrigeration freezers of Example 1 was obtained.
When the cross section of the surface of the obtained dew condensation suppressing member for a refrigerated freezer was observed with an SEM, a microprojection group having an average distance between adjacent microprojections of 100 nm and an average microprojection height of 160 nm was formed. Further, a part of the microprotrusions are microprotrusions having a plurality of vertices, and the height of each microprotrusion has a height difference with a standard deviation of 30 nm.

[実施例2]
微小突起構造体形成用の金型として金型2を用いたこと以外は、実施例1と同様にして、実施例2の冷蔵冷凍庫用結露抑制部材を得た。
実施例2の冷蔵冷凍庫用結露抑制部材の表面の断面をSEMにより観察したところ、平均隣接微小突起間距離150nm、平均微小突起高さ200nmの微小突起群が形成されていた。また、微小突起の一部が頂点を複数有する微小突起であり、各微小突起の高さに、標準偏差25nmの高低差があった。
[Example 2]
A dew condensation suppressing member for a refrigerated freezer of Example 2 was obtained in the same manner as in Example 1 except that the mold 2 was used as a mold for forming the microprojection structure.
When the cross section of the surface of the dew condensation suppressing member for a refrigerated freezer of Example 2 was observed by SEM, a microprojection group having an average distance between adjacent microprojections of 150 nm and an average microprojection height of 200 nm was formed. Moreover, a part of the microprotrusions are microprotrusions having a plurality of vertices, and the height of each microprotrusion has a height difference of standard deviation 25 nm.

[実施例3]
微小突起構造体形成用の金型として金型3を用いたこと以外は、実施例1と同様にして、実施例3の冷蔵冷凍庫用結露抑制部材を得た。
実施例3の冷蔵冷凍庫用結露抑制部材の表面の断面をSEMにより観察したところ、平均隣接微小突起間距離200nm、平均微小突起高さ160nmの微小突起群が形成されていた。また、微小突起の一部が頂点を複数有する微小突起であり、各微小突起の高さに、標準偏差30nmの高低差があった。
[Example 3]
A dew condensation suppressing member for a refrigerated freezer of Example 3 was obtained in the same manner as in Example 1 except that the mold 3 was used as a mold for forming the microprojection structure.
When the cross section of the surface of the dew condensation suppression member for a refrigerated freezer of Example 3 was observed with an SEM, a microprojection group having an average distance between adjacent microprojections of 200 nm and an average microprojection height of 160 nm was formed. Further, a part of the microprotrusions are microprotrusions having a plurality of vertices, and the height of each microprotrusion has a height difference with a standard deviation of 30 nm.

[実施例4]
微小突起構造体形成用の樹脂組成物として樹脂組成物Bを用い、微小突起構造体形成用の金型として金型2を用いたこと以外は、実施例1と同様にして、実施例4の冷蔵冷凍庫用結露抑制部材を得た。
実施例4の冷蔵冷凍庫用結露抑制部材の表面の断面をSEMにより観察したところ、平均隣接微小突起間距離150nm、平均微小突起高さ200nmの微小突起群が形成されていた。また、微小突起の一部が頂点を複数有する微小突起であり、各微小突起の高さに、標準偏差25nmの高低差があった。
[Example 4]
Example 4 is the same as Example 1 except that the resin composition B is used as the resin composition for forming the microprojection structure and the mold 2 is used as the mold for forming the microprojection structure. A dew condensation suppressing member for a refrigerated freezer was obtained.
When the cross section of the surface of the dew condensation suppressing member for a refrigerated freezer of Example 4 was observed by SEM, a microprojection group having an average distance between adjacent microprojections of 150 nm and an average microprojection height of 200 nm was formed. Moreover, a part of the microprotrusions are microprotrusions having a plurality of vertices, and the height of each microprotrusion has a height difference of standard deviation 25 nm.

[実施例5]
微小突起構造体形成用の樹脂組成物として樹脂組成物Cを用い、微小突起構造体形成用の金型として金型2を用いたこと以外は、実施例1と同様にして、実施例5の冷蔵冷凍庫用結露抑制部材を得た。
実施例5の冷蔵冷凍庫用結露抑制部材の表面の断面をSEMにより観察したところ、平均隣接微小突起間距離150nm、平均微小突起高さ200nmの微小突起群が形成されていた。また、微小突起の一部が頂点を複数有する微小突起であり、各微小突起の高さに、標準偏差35nmの高低差があった。
[Example 5]
Example 5 is the same as Example 1 except that the resin composition C is used as the resin composition for forming the microprojection structure and the mold 2 is used as the mold for forming the microprojection structure. A dew condensation suppressing member for a refrigerated freezer was obtained.
When the cross section of the surface of the dew condensation suppressing member for a refrigerated freezer of Example 5 was observed by SEM, a microprojection group having an average distance between adjacent microprojections of 150 nm and an average microprojection height of 200 nm was formed. Further, a part of the microprotrusions are microprotrusions having a plurality of vertices, and the height of each microprotrusion has a height difference with a standard deviation of 35 nm.

[実施例6]
微小突起構造体形成用の樹脂組成物として樹脂組成物Aを用い、微小突起構造体形成用の金型として金型4を用いたこと以外は、実施例1と同様にして、実施例6の冷蔵冷凍庫用結露抑制部材を得た。
実施例6の冷蔵冷凍庫用結露抑制部材の表面の断面をSEMにより観察したところ、平均隣接微小突起間距離400nm、平均微小突起高さ210nmの微小突起群が形成されていた。また、微小突起の一部が頂点を複数有する微小突起であり、各微小突起の高さに、標準偏差25nmの高低差があった。
[Example 6]
Example 6 is the same as Example 1 except that the resin composition A is used as the resin composition for forming the microprojection structure and the mold 4 is used as the mold for forming the microprojection structure. A dew condensation suppressing member for a refrigerated freezer was obtained.
When the cross section of the surface of the dew condensation suppressing member for a refrigerated refrigerator of Example 6 was observed with an SEM, a microprojection group having an average distance between adjacent microprojections of 400 nm and an average microprojection height of 210 nm was formed. Moreover, a part of the microprotrusions are microprotrusions having a plurality of vertices, and the height of each microprotrusion has a height difference of standard deviation 25 nm.

[実施例7]
微小突起構造体形成用の樹脂組成物として樹脂組成物Bを用い、微小突起構造体形成用の金型として金型4を用いたこと以外は、実施例1と同様にして、実施例7の冷蔵冷凍庫用結露抑制部材を得た。
実施例7の冷蔵冷凍庫用結露抑制部材の表面の断面をSEMにより観察したところ、平均隣接微小突起間距離400nm、平均微小突起高さ210nmの微小突起群が形成されていた。また、微小突起の一部が頂点を複数有する微小突起であり、各微小突起の高さに、標準偏差30nmの高低差があった。
[Example 7]
Example 7 is the same as Example 1 except that the resin composition B is used as the resin composition for forming the microprojection structure and the mold 4 is used as the mold for forming the microprojection structure. A dew condensation suppressing member for a refrigerated freezer was obtained.
When the cross section of the surface of the dew condensation suppressing member for a refrigerated freezer of Example 7 was observed with an SEM, a microprojection group having an average distance between adjacent microprojections of 400 nm and an average microprojection height of 210 nm was formed. Further, a part of the microprotrusions are microprotrusions having a plurality of vertices, and the height of each microprotrusion has a height difference with a standard deviation of 30 nm.

[実施例8]
微小突起構造体形成用の樹脂組成物として樹脂組成物Cを用い、微小突起構造体形成用の金型として金型4を用いたこと以外は、実施例1と同様にして、実施例8の冷蔵冷凍庫用結露抑制部材を得た。
実施例8の冷蔵冷凍庫用結露抑制部材の表面の断面をSEMにより観察したところ、平均隣接微小突起間距離400nm、平均微小突起高さ210nmの微小突起群が形成されていた。また、微小突起の一部が頂点を複数有する微小突起であり、各微小突起の高さに、標準偏差30nmの高低差があった。
[Example 8]
Example 8 is the same as Example 1 except that the resin composition C is used as the resin composition for forming the microprojection structure and the mold 4 is used as the mold for forming the microprojection structure. A dew condensation suppressing member for a refrigerated freezer was obtained.
When the cross section of the surface of the dew condensation suppressing member for a refrigerated freezer of Example 8 was observed by SEM, a microprojection group having an average distance between adjacent microprojections of 400 nm and an average microprojection height of 210 nm was formed. Further, a part of the microprotrusions are microprotrusions having a plurality of vertices, and the height of each microprotrusion has a height difference with a standard deviation of 30 nm.

[実施例9]
微小突起構造体形成用の樹脂組成物として樹脂組成物Aを用い、微小突起構造体形成用の金型として金型5を用いたこと以外は、実施例1と同様にして、実施例9の冷蔵冷凍庫用結露抑制部材を得た。
実施例9の冷蔵冷凍庫用結露抑制部材の表面の断面をSEMにより観察したところ、平均隣接微小突起間距離500nm、平均微小突起高さ230nmの微小突起群が形成されていた。また、微小突起の一部が頂点を複数有する微小突起であり、各微小突起の高さに、標準偏差35nmの高低差があった。
[Example 9]
Example 9 is the same as Example 1 except that the resin composition A is used as the resin composition for forming the microprojection structure and the mold 5 is used as the mold for forming the microprojection structure. A dew condensation suppressing member for a refrigerated freezer was obtained.
When the cross section of the surface of the dew condensation suppressing member for a refrigerated freezer of Example 9 was observed by SEM, a microprojection group having an average distance between adjacent microprojections of 500 nm and an average microprojection height of 230 nm was formed. Further, a part of the microprotrusions are microprotrusions having a plurality of vertices, and the height of each microprotrusion has a height difference with a standard deviation of 35 nm.

[実施例10]
微小突起構造体形成用の樹脂組成物として樹脂組成物Bを用い、微小突起構造体形成用の金型として金型5を用いたこと以外は、実施例1と同様にして、実施例10の冷蔵冷凍庫用結露抑制部材を得た。
実施例10の冷蔵冷凍庫用結露抑制部材の表面の断面をSEMにより観察したところ、平均隣接微小突起間距離500nm、平均微小突起高さ230nmの微小突起群が形成されていた。また、微小突起の一部が頂点を複数有する微小突起であり、各微小突起の高さに、標準偏差25nmの高低差があった。
[Example 10]
Example 10 is the same as Example 10 except that the resin composition B is used as the resin composition for forming the microprojection structure and the mold 5 is used as the mold for forming the microprojection structure. A dew condensation suppressing member for a refrigerated freezer was obtained.
When the cross section of the surface of the dew condensation suppressing member for a refrigerated freezer of Example 10 was observed by SEM, a microprojection group having an average distance between adjacent microprojections of 500 nm and an average microprojection height of 230 nm was formed. Moreover, a part of the microprotrusions are microprotrusions having a plurality of vertices, and the height of each microprotrusion has a height difference of standard deviation 25 nm.

[実施例11]
微小突起構造体形成用の樹脂組成物として樹脂組成物Cを用い、微小突起構造体形成用の金型として金型5を用いたこと以外は、実施例1と同様にして、実施例11の冷蔵冷凍庫用結露抑制部材を得た。
実施例11の冷蔵冷凍庫用結露抑制部材の表面の断面をSEMにより観察したところ、平均隣接微小突起間距離500nm、平均微小突起高さ230nmの微小突起群が形成されていた。また、微小突起の一部が頂点を複数有する微小突起であり、各微小突起の高さに、標準偏差30nmの高低差があった。
[Example 11]
Example 11 is the same as Example 1 except that the resin composition C is used as the resin composition for forming the microprojection structure and the mold 5 is used as the mold for forming the microprojection structure. A dew condensation suppressing member for a refrigerated freezer was obtained.
When the cross section of the surface of the dew condensation suppressing member for a refrigerated freezer of Example 11 was observed by SEM, a microprojection group having an average distance between adjacent microprojections of 500 nm and an average microprojection height of 230 nm was formed. Further, a part of the microprotrusions are microprotrusions having a plurality of vertices, and the height of each microprotrusion has a height difference with a standard deviation of 30 nm.

[比較例1]
基材(材質:PET、厚さ:25μm、商品名:ルミラー、東レ社製)上に、樹脂組成物Aを、硬化後の厚さが20μmの平坦膜となるように塗布し、基材側から2000mJ/cmのエネルギーで紫外線を照射して樹脂を硬化させることにより、比較例1の冷蔵冷凍庫用部材を得た。
[Comparative Example 1]
On the base material (material: PET, thickness: 25 μm, trade name: Lumirror, manufactured by Toray Industries, Inc.), the resin composition A is applied so as to form a flat film having a thickness of 20 μm after curing. The resin for refrigeration freezer of the comparative example 1 was obtained by irradiating an ultraviolet-ray with energy of 2000 mJ / cm < 2 > and hardening resin.

[比較例2]
樹脂組成物Aの代わりに樹脂組成物Bを用いたこと以外は、比較例1と同様にして、比較例2の冷蔵冷凍庫用部材を得た。
[Comparative Example 2]
A member for a refrigerated freezer of Comparative Example 2 was obtained in the same manner as Comparative Example 1 except that the resin composition B was used instead of the resin composition A.

[比較例3]
樹脂組成物Aの代わりに樹脂組成物Cを用いたこと以外は、比較例1と同様にして、比較例3の冷蔵冷凍庫用部材を得た。
[Comparative Example 3]
A refrigerated freezer member of Comparative Example 3 was obtained in the same manner as Comparative Example 1 except that the resin composition C was used instead of the resin composition A.

[比較例4]
比較例1で得られた冷蔵冷凍庫用部材において、硬化させた樹脂表面を#2000の紙やすりを用いて粗面化することにより表面に凹凸を形成し、比較例4の冷蔵冷凍庫用部材を得た。
[Comparative Example 4]
In the refrigerated freezer member obtained in Comparative Example 1, the cured resin surface was roughened using # 2000 sandpaper to form irregularities on the surface, and the refrigerated freezer member of Comparative Example 4 was obtained. It was.

[比較例5]
比較例1で得られた冷蔵冷凍庫用部材において、硬化させた樹脂表面を#1200の紙やすりを用いて粗面化することにより表面に凹凸を形成し、比較例5の冷蔵冷凍庫用部材を得た。
[Comparative Example 5]
In the refrigerated freezer member obtained in Comparative Example 1, the cured resin surface was roughened using # 1200 sandpaper to form irregularities on the surface, and the refrigerated freezer member of Comparative Example 5 was obtained. It was.

[比較例6]
まず、樹脂組成物Dを厚さ25μmのフィルム状に硬化させることにより、表面に凹凸形状を有する防眩フィルムを作製した。次いで、当該防眩フィルムを、粘着層を介して基材(材質:PET、厚さ:25μm、商品名:ルミラー、東レ社製)上に貼り合わせることにより、比較例6の冷蔵冷凍庫用部材を得た。
比較例6の冷蔵冷凍庫用部材の表面の断面をSEMにより観察したところ、防眩フィルム側の表面は、高さ10〜800nmの範囲内で高さにバラつきのある微小突起が、隣接微小突起間距離500nm〜1μmの範囲で不規則に配置された、不規則な凹凸形状が形成されていた。
[Comparative Example 6]
First, the anti-glare film which has uneven | corrugated shape on the surface was produced by hardening the resin composition D in the film form of thickness 25 micrometers. Next, the antiglare film is bonded onto a base material (material: PET, thickness: 25 μm, trade name: Lumirror, manufactured by Toray Industries, Inc.) via an adhesive layer, whereby the refrigerated freezer member of Comparative Example 6 is obtained. Obtained.
When the cross-section of the surface of the refrigerated freezer member of Comparative Example 6 was observed by SEM, the surface on the antiglare film side had minute protrusions with variations in height within a range of 10 to 800 nm in height, between adjacent minute protrusions. Irregular uneven | corrugated shape arrange | positioned irregularly in the range of distance 500nm-1 micrometer was formed.

[比較例7]
1500mJ/cmのエネルギーで紫外線を照射して樹脂を硬化させたこと以外は、実施例1と同様にして、比較例7の冷蔵冷凍庫用部材を得た。
比較例7の冷蔵冷凍庫用部材の表面の断面をSEMにより観察したところ、金型の形状が十分に賦形されておらず、各微小突起の形状は先細りでなく、また、各微小突起は密接配置されていなかった。平均隣接微小突起間距離は650nm、平均微小突起高さは150nmであった。
[Comparative Example 7]
A refrigerated freezer member of Comparative Example 7 was obtained in the same manner as in Example 1 except that the resin was cured by irradiating ultraviolet rays with an energy of 1500 mJ / cm 2 .
When the cross section of the surface of the refrigerated freezer member of Comparative Example 7 was observed by SEM, the shape of the mold was not sufficiently shaped, the shape of each microprojection was not tapered, and each microprojection was closely It was not arranged. The average distance between adjacent microprotrusions was 650 nm, and the average microprotrusion height was 150 nm.

[比較例8]
1500mJ/cmのエネルギーで紫外線を照射して樹脂を硬化させたこと以外は、実施例4と同様にして、比較例8の冷蔵冷凍庫用部材を得た。
比較例8の冷蔵冷凍庫用部材の表面の断面をSEMにより観察したところ、金型の形状が十分に賦形されておらず、各微小突起の形状は先細りでなく、また、各微小突起は密接配置されていなかった。平均隣接微小突起間距離は600nm、平均微小突起高さは200nmであった。
[Comparative Example 8]
A refrigerated freezer member of Comparative Example 8 was obtained in the same manner as in Example 4 except that the resin was cured by irradiating ultraviolet rays with an energy of 1500 mJ / cm 2 .
When the cross section of the surface of the refrigerated freezer member of Comparative Example 8 was observed by SEM, the shape of the mold was not sufficiently shaped, the shape of each microprojection was not tapered, and each microprojection was closely It was not arranged. The average distance between adjacent minute protrusions was 600 nm, and the average minute protrusion height was 200 nm.

[比較例9]
1500mJ/cmのエネルギーで紫外線を照射して樹脂を硬化させたこと以外は、実施例5と同様にして、比較例9の冷蔵冷凍庫用部材を得た。
比較例9の冷蔵冷凍庫用部材の表面の断面をSEMにより観察したところ、金型の形状が十分に賦形されておらず、各微小突起の形状は先細りでなく、また、各微小突起は密接配置されていなかった。平均隣接微小突起間距離は600nm、平均微小突起高さは150nmであった。
[Comparative Example 9]
A refrigerated freezer member of Comparative Example 9 was obtained in the same manner as in Example 5 except that the resin was cured by irradiating ultraviolet rays with an energy of 1500 mJ / cm 2 .
When the cross section of the surface of the refrigerated freezer member of Comparative Example 9 was observed by SEM, the shape of the mold was not sufficiently shaped, the shape of each microprojection was not tapered, and each microprojection was closely It was not arranged. The average distance between adjacent minute protrusions was 600 nm, and the average minute protrusion height was 150 nm.

(評価)
実施例1〜11で得られた冷蔵冷凍庫用結露抑制部材及び比較例1〜9で得られた冷蔵冷凍庫用部材について、下記の評価を行った。
(Evaluation)
The following evaluation was performed about the dew condensation suppression member for refrigeration freezers obtained in Examples 1-11 and the member for refrigeration freezers obtained in Comparative Examples 1-9.

<静的接触角の測定>
得られた冷蔵冷凍庫用結露抑制部材又は冷蔵冷凍庫用部材の基材側表面を、粘着層を介して黒アクリル板に貼り付け、該黒アクリル板とは反対側の冷蔵冷凍庫用結露抑制部材又は冷蔵冷凍庫用部材の表面に、純水(液クロマトグラフィー用蒸留水(純正化学(株)製))1.0μLの液滴を滴下し、着滴1秒後、協和界面科学社製 接触角計DM 500を用いて、θ/2法に従って静的接触角を測定した。
また、純水の代わりにn−ヘキサデカンをそれぞれ用いて、同様にして静的接触角を測定した。
評価結果を表1に示す。
<Measurement of static contact angle>
The substrate side surface of the obtained refrigerated freezer dew condensation prevention member or refrigerated freezer member is attached to a black acrylic plate via an adhesive layer, and the dew condensation freezing member for refrigerated freezer on the side opposite to the black acrylic plate or refrigerated A drop of 1.0 μL of pure water (distilled water for liquid chromatography (manufactured by Junsei Chemical Co., Ltd.)) was dropped on the surface of the freezer member, and after contacted 1 second, contact angle meter DM manufactured by Kyowa Interface Science Co., Ltd. Using 500, the static contact angle was measured according to the θ / 2 method.
Moreover, the static contact angle was similarly measured using n-hexadecane instead of pure water.
The evaluation results are shown in Table 1.

<速乾性評価>
得られた冷蔵冷凍庫用結露抑制部材又は冷蔵冷凍庫用部材の基材側表面を、粘着層を介してガラス板に貼り付け、ガラス板が存在する側とは反対側の冷蔵冷凍庫用結露抑制部材表面又は冷蔵冷凍庫用部材に水蒸気が直接当たるように、80℃に加熱した温浴上に水平に配置し、3分間水蒸気を当てた。その後、ガラス板面が下になるように冷蔵冷凍庫用結露抑制部材又は冷蔵冷凍庫用部材を水平に配置し、温度25℃、湿度50%RHの環境下で3分間静置した。
次に、予め80℃のオーブンで乾燥させた青色の塩化コバルト紙(アドバンテック東洋(株)製)を、水蒸気を当てた冷蔵冷凍庫用結露抑制部材又は冷蔵冷凍庫用部材の表面にあてがい、目視により呈色を観察し、以下の評価基準により速乾性を評価した。評価結果を表1に示す。
なお、塩化コバルト紙は乾燥時に青色に呈色し、水分が付着することにより赤色に呈色する。
[速乾性評価基準]
○:塩化コバルト紙は青色のまま変化がなく、乾燥していた。
×:塩化コバルト紙が青色から赤色へと変化し、水分の付着が確認された。
<Quick drying evaluation>
The substrate side surface of the obtained refrigeration freezer dew condensation suppression member or the refrigeration freezer member is attached to a glass plate via an adhesive layer, and the surface of the dew condensation freezing member for the refrigeration freezer opposite to the side on which the glass plate is present. Or it arrange | positioned horizontally on the warm bath heated at 80 degreeC so that water vapor | steam might hit the member for refrigeration freezer, and water vapor | steam was applied for 3 minutes. Then, the dew condensation prevention member for refrigeration freezer or the member for refrigeration freezer was arrange | positioned horizontally so that a glass plate surface might become down, and it left still for 3 minutes in the environment of temperature 25 degreeC and humidity 50% RH.
Next, blue cobalt chloride paper (manufactured by Advantech Toyo Co., Ltd.) previously dried in an oven at 80 ° C. is applied to the surface of the condensation control member for a refrigerated freezer or a member for a refrigerated freezer that has been exposed to water vapor, and is visually presented. The color was observed and the quick drying property was evaluated according to the following evaluation criteria. The evaluation results are shown in Table 1.
Cobalt chloride paper turns blue when dried, and turns red when moisture adheres.
[Quick Drying Evaluation Criteria]
○: Cobalt chloride paper remained blue and was dry.
X: Cobalt chloride paper changed from blue to red, and adhesion of moisture was confirmed.

Figure 2014240728
Figure 2014240728

<結露抑制評価>
得られた冷蔵冷凍庫用結露抑制部材又は冷蔵冷凍庫用部材の基材側表面を、粘着層を介して、ホシザキ電機製の冷蔵冷凍ショーケース(RS−63XT)の前扉内側ガラス面および内壁に貼り付けた。さらにその上に、予め80℃のオーブンで乾燥させた青色の塩化コバルト紙(アドバンテック東洋(株)製)を貼り付けた。また、比較例10及び11として、それぞれ何も貼り付けていない前扉及び内壁の上に、前記と同様の塩化コバルト紙を貼り付けた。
冷蔵冷凍ショーケースを、温度25℃、湿度60%に保った環境に設置し、該冷蔵冷凍ショーケースの庫内の温度を表2に示す所定の温度に設定した。庫内を所定温度に維持したまま20分間静置し、その後、扉を開けて庫内を外気(温度25℃、湿度60%)に触れさせた。扉を開けて1分経過後の前扉の曇り状態、及び前扉と内壁にそれぞれ貼り付けた塩化コバルト紙の色変化を目視確認した。
次いで、冷蔵冷凍ショーケースの扉を閉めて1分経過後に、前扉の曇り状態、及び前扉と内壁にそれぞれ貼り付けた塩化コバルト紙の色変化を目視確認した。
以下の基準により、冷蔵冷凍ショーケースの前扉と内壁にそれぞれ貼り付けた冷蔵冷凍庫用結露抑制部材又は冷蔵冷凍庫用部材、並びに未貼り付け状態での前扉及び内壁の結露抑制評価を行った。
評価結果を表2に示す。
[前扉における結露抑制評価]
○:曇りがなく、塩化コバルト紙は青色のまま変化がない。
△:わずかに曇りがあり、塩化コバルト紙が青色からわずかに紫色がかった。
×:明らかに曇りがあり、塩化コバルト紙が青色から赤色へと変化した。
[内壁における結露抑制評価]
○:塩化コバルト紙が青色のまま変化がない。
△:塩化コバルト紙が青色からわずかに紫色がかった。
×:塩化コバルト紙が青色から赤色へと変化した。
<Dew condensation suppression evaluation>
The base material side surface of the obtained refrigeration / freezer dew condensation suppression member or refrigeration / freezer member is pasted to the front door inner glass surface and inner wall of Hoshizaki Electric's refrigerated freezer showcase (RS-63XT) via an adhesive layer. I attached. Further, blue cobalt chloride paper (manufactured by Advantech Toyo Co., Ltd.) previously dried in an oven at 80 ° C. was pasted thereon. Further, as Comparative Examples 10 and 11, cobalt chloride paper similar to that described above was pasted on the front door and the inner wall on which nothing was pasted.
The refrigerated showcase was installed in an environment maintained at a temperature of 25 ° C. and a humidity of 60%, and the temperature inside the refrigerated showcase was set to a predetermined temperature shown in Table 2. The chamber was kept at a predetermined temperature for 20 minutes, then the door was opened, and the chamber was exposed to the outside air (temperature 25 ° C., humidity 60%). After the door was opened, the cloudiness of the front door after 1 minute and the color change of the cobalt chloride paper affixed to the front door and the inner wall were visually confirmed.
Next, the door of the refrigerated freezer display case was closed, and after 1 minute, the cloudy state of the front door and the color change of the cobalt chloride paper affixed to the front door and the inner wall were visually confirmed.
Based on the following criteria, the dew condensation suppression member for the refrigerated freezer or the refrigerated freezer member affixed to the front door and the inner wall of the refrigerated freezer showcase, and the dew condensation suppression evaluation of the front door and the inner wall in an unattached state were performed.
The evaluation results are shown in Table 2.
[Dew condensation suppression evaluation at the front door]
○: No cloudiness and cobalt chloride paper remains blue.
Δ: Slightly cloudy, cobalt chloride paper was blue to slightly purple.
X: There was clearly cloudiness, and the cobalt chloride paper changed from blue to red.
[Dew condensation suppression evaluation on the inner wall]
○: Cobalt chloride paper remains blue and does not change.
Δ: Cobalt chloride paper was slightly purple from blue.
X: Cobalt chloride paper changed from blue to red.

Figure 2014240728
Figure 2014240728

(結果のまとめ)
何も貼り付けていない冷蔵冷凍ショーケースのガラス製の前扉(比較例10)、及び、冷蔵冷凍ショーケースの樹脂製の内壁(比較例11)においては、上記結露抑制評価方法によって結露が観測されるものであった。
それに対し、実施例1〜11で得られた冷蔵冷凍庫用結露抑制部材は、基材上に形成された微小突起構造体が、樹脂組成物の硬化物からなる複数の微小突起が特定の隣接突起間距離を有して密接配置された微小突起群を備えるため、液体が濡れ広がり易く、速乾性及び結露抑制効果に優れていた。中でも、微小突起間の距離の平均が相対的に小さい実施例1〜8は、特に結露抑制効果に優れていた。
一方、比較例1〜3で得られた冷蔵冷凍庫用部材は、基材上に形成された樹脂層表面が未加工で平坦であるため、速乾性及び結露抑制効果に劣っていた。
比較例4〜9で得られた冷蔵冷凍庫用部材も速乾性及び結露抑制効果に劣っていた。これらは、基材上に形成された樹脂層表面の凹凸形状が不適切で親水性を向上できなかったためと考えられる。なお、比較例7〜9では、紫外線の照射が不十分であったことにより、微小突起同士が接触した状態で樹脂が硬化し、その結果、独立した微小突起が連続して形成されず、あたかも大きな突起形状として振舞ったため、親水性が低下したと考えられる。
(Summary of results)
In the front door made of glass of the refrigerated freezer showcase (Comparative Example 10) and the resin inner wall of the refrigerated freezer showcase (Comparative Example 11), no dew condensation was observed by the above dew condensation suppression evaluation method. It was to be done.
On the other hand, in the dew condensation suppressing member for a refrigerated freezer obtained in Examples 1 to 11, the microprojection structure formed on the base material has a plurality of microprojections made of a cured product of the resin composition. Since the microprojections are arranged closely with a distance, the liquid easily spreads and is excellent in quick-drying and dew condensation suppression effects. Among these, Examples 1 to 8 in which the average distance between the microprotrusions was relatively small were particularly excellent in the dew condensation suppressing effect.
On the other hand, since the surface of the resin layer formed on the base material was unprocessed and flat, the members for refrigerated freezers obtained in Comparative Examples 1 to 3 were inferior in quick-drying and dew condensation suppression effects.
The members for refrigerated refrigerators obtained in Comparative Examples 4 to 9 were also inferior in quick-drying and dew condensation suppression effects. These are considered because the unevenness | corrugation shape of the resin layer surface formed on the base material was inadequate and hydrophilicity was not able to be improved. In Comparative Examples 7 to 9, since the ultraviolet irradiation was insufficient, the resin hardened in a state where the microprotrusions were in contact with each other. As a result, independent microprotrusions were not continuously formed, as if It is thought that hydrophilicity was lowered because it behaved as a large protrusion shape.

10 基材
20 微小突起構造体
2 微小突起
21 微小突起層
21’ 受容層
22 凸状突起群
31 ダイ
32 ロール金型
33 押圧ローラ
34 剥離ローラ
100 冷蔵冷凍庫用結露抑制部材
DESCRIPTION OF SYMBOLS 10 Base material 20 Microprotrusion structure 2 Microprotrusion 21 Microprotrusion layer 21 'Receptive layer 22 Convex protrusion group 31 Die 32 Roll die 33 Pressing roller 34 Peeling roller 100

本発明に係る冷蔵冷凍庫用結露抑制部材は、基材の少なくとも一方の面に、樹脂組成物の硬化物からなる複数の微小突起が密接して配置されてなる微小突起群を備えた微小突起構造体を有し、隣接する前記微小突起間の距離の平均が50〜500nmであり、前記微小突起群を構成する全微小突起中における頂点を複数有する微小突起の個数の比率が10%以上であることを特徴とする。 The dew condensation suppressing member for a refrigerated freezer according to the present invention has a microprojection structure provided with a microprojection group in which a plurality of microprojections made of a cured resin composition are placed in close contact with at least one surface of a substrate. in a body, average 50~500nm der the distance between adjacent said microprojection is, the ratio of the number of microprojections having a plurality of vertices in the entire fine in protrusions constituting the microprojections group more than 10% characterized in that there.

Claims (4)

基材の少なくとも一方の面に、樹脂組成物の硬化物からなる複数の微小突起が密接して配置されてなる微小突起群を備えた微小突起構造体を有し、
隣接する前記微小突起間の距離の平均が50〜500nmであることを特徴とする、冷蔵冷凍庫用結露抑制部材。
A microprojection structure including a microprojection group in which a plurality of microprojections made of a cured product of the resin composition are arranged in close contact with at least one surface of a substrate;
The dew condensation suppressing member for a refrigerated freezer, characterized in that the average distance between adjacent microprotrusions is 50 to 500 nm.
前記微小突起構造体の表面における純水の静的接触角が、θ/2法で20°以下である、請求項1に記載の冷蔵冷凍庫用結露抑制部材。   The dew condensation suppressing member for a refrigerator-freezer according to claim 1, wherein a static contact angle of pure water on the surface of the microprojection structure is 20 ° or less by a θ / 2 method. 前記微小突起構造体の表面におけるn−ヘキサデカンの静的接触角が、θ/2法で20°以下である、請求項1又は2に記載の冷蔵冷凍庫用結露抑制部材。   The dew condensation suppressing member for a refrigerated freezer according to claim 1 or 2, wherein a static contact angle of n-hexadecane on the surface of the microprojection structure is 20 ° or less by a θ / 2 method. 前記請求項1乃至3のいずれか一項に記載の冷蔵冷凍庫用結露抑制部材を備えた冷蔵冷凍庫。   A refrigerated freezer comprising the dew condensation suppressing member for a refrigerated freezer according to any one of claims 1 to 3.
JP2013123636A 2013-06-12 2013-06-12 Condensation suppression member for refrigerated freezer and refrigerated freezer Expired - Fee Related JP5652507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013123636A JP5652507B2 (en) 2013-06-12 2013-06-12 Condensation suppression member for refrigerated freezer and refrigerated freezer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013123636A JP5652507B2 (en) 2013-06-12 2013-06-12 Condensation suppression member for refrigerated freezer and refrigerated freezer

Publications (2)

Publication Number Publication Date
JP2014240728A true JP2014240728A (en) 2014-12-25
JP5652507B2 JP5652507B2 (en) 2015-01-14

Family

ID=52140069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013123636A Expired - Fee Related JP5652507B2 (en) 2013-06-12 2013-06-12 Condensation suppression member for refrigerated freezer and refrigerated freezer

Country Status (1)

Country Link
JP (1) JP5652507B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018100821A (en) * 2016-12-20 2018-06-28 パナソニック株式会社 Dew condensation removal structure and cold equipment including the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101871632B1 (en) * 2017-05-19 2018-06-26 공주대학교 산학협력단 Device for prevents the formation of ice on the inner part of the freezer door
CN108534337A (en) * 2018-03-16 2018-09-14 青岛海尔空调器有限总公司 A kind of anti-condensation plate face micro-structure and air-conditioning

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008158293A (en) * 2006-12-25 2008-07-10 Nissan Motor Co Ltd Hydrophilic antireflection structure
JP2010096359A (en) * 2008-10-14 2010-04-30 Toshiba Corp Refrigerating showcase
US20100178466A1 (en) * 2006-06-14 2010-07-15 Kanagawa Academy Of Science And Technology Anti-Reflective Film and Production Method Thereof, and Stamper for Producing Anti-Reflective Film and Production Method Thereof
JP2011242094A (en) * 2010-05-21 2011-12-01 Nakajima Glass Co Inc Glass unit for refrigerator or freezer
JP2012093570A (en) * 2010-10-27 2012-05-17 Konica Minolta Opto Inc Manufacturing method of anti-glare film, anti-glare film, polarizer, and liquid crystal display device
US20120134023A1 (en) * 2009-09-15 2012-05-31 Sharp Kabushiki Kaisha Structure with observation port
JP2012171277A (en) * 2011-02-23 2012-09-10 Nissan Motor Co Ltd Fine structure
WO2012124693A1 (en) * 2011-03-14 2012-09-20 旭化成ケミカルズ株式会社 Organic/inorganic composite, manufacturing method therefor, organic/inorganic composite film, manufacturing method therefor, photonic crystal, coating material, thermoplastic composition, microstructure, optical material, antireflection member, and optical lens
JP2012242525A (en) * 2011-05-17 2012-12-10 Dnp Fine Chemicals Co Ltd Structure having specific surface shape and method for manufacturing the structure
JP2013037102A (en) * 2011-08-05 2013-02-21 Dainippon Printing Co Ltd Antireflection article
US20130128362A1 (en) * 2010-07-30 2013-05-23 Gwangju Institute Of Science And Technology Micro/nano combined structure, manufacturing method of micro/nano combined structure, and manufacturing method of an optical device having a micro/nano combined structure integrated therewith

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100178466A1 (en) * 2006-06-14 2010-07-15 Kanagawa Academy Of Science And Technology Anti-Reflective Film and Production Method Thereof, and Stamper for Producing Anti-Reflective Film and Production Method Thereof
JP2008158293A (en) * 2006-12-25 2008-07-10 Nissan Motor Co Ltd Hydrophilic antireflection structure
JP2010096359A (en) * 2008-10-14 2010-04-30 Toshiba Corp Refrigerating showcase
US20120134023A1 (en) * 2009-09-15 2012-05-31 Sharp Kabushiki Kaisha Structure with observation port
JP2011242094A (en) * 2010-05-21 2011-12-01 Nakajima Glass Co Inc Glass unit for refrigerator or freezer
US20130128362A1 (en) * 2010-07-30 2013-05-23 Gwangju Institute Of Science And Technology Micro/nano combined structure, manufacturing method of micro/nano combined structure, and manufacturing method of an optical device having a micro/nano combined structure integrated therewith
JP2012093570A (en) * 2010-10-27 2012-05-17 Konica Minolta Opto Inc Manufacturing method of anti-glare film, anti-glare film, polarizer, and liquid crystal display device
JP2012171277A (en) * 2011-02-23 2012-09-10 Nissan Motor Co Ltd Fine structure
WO2012124693A1 (en) * 2011-03-14 2012-09-20 旭化成ケミカルズ株式会社 Organic/inorganic composite, manufacturing method therefor, organic/inorganic composite film, manufacturing method therefor, photonic crystal, coating material, thermoplastic composition, microstructure, optical material, antireflection member, and optical lens
JP2012242525A (en) * 2011-05-17 2012-12-10 Dnp Fine Chemicals Co Ltd Structure having specific surface shape and method for manufacturing the structure
JP2013037102A (en) * 2011-08-05 2013-02-21 Dainippon Printing Co Ltd Antireflection article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018100821A (en) * 2016-12-20 2018-06-28 パナソニック株式会社 Dew condensation removal structure and cold equipment including the same

Also Published As

Publication number Publication date
JP5652507B2 (en) 2015-01-14

Similar Documents

Publication Publication Date Title
JP6500409B2 (en) Antibacterial article
JP6409497B2 (en) Water and oil repellent material
JP2016093939A (en) Antibacterial article
JP5652507B2 (en) Condensation suppression member for refrigerated freezer and refrigerated freezer
JP5626395B2 (en) Water droplet holding sheet
JP2014029391A (en) Antireflection article, image display device, and mold for manufacturing antireflection article
JP6361339B2 (en) Condensation suppression member
JP2014071323A (en) Anti-reflection article
JP2016043581A (en) Laminated material and method for manufacturing laminated material
JP2014071292A (en) Anti-reflection article
JP6347132B2 (en) Linear fine concavo-convex structure and manufacturing method thereof
JP5998600B2 (en) Optical film and optical apparatus using the same
JP6427874B2 (en) Condensation control member for interior and interior
JP5626441B1 (en) Method for producing water / oil repellent member and water / oil repellent member
JP6398638B2 (en) Water / oil repellent member and method for producing water / oil repellent member
TW201446512A (en) Window for display device, method for manufacturing the same, and display device including the window
JP6379641B2 (en) Hydrophilic member and method for producing the same
JP6465380B2 (en) Monitoring system, transportation means and store
JP6402625B2 (en) Optical film manufacturing method, optical film, surface light emitter, and optical film manufacturing apparatus
JP2017056592A (en) Droplet holding sheet
JP2016009269A (en) Laminate material, touch panel sensor, electromagnetic wave shielding material and picture display unit
JP2016068469A (en) Self-cleaning member
CN103959361A (en) Display with outer surfacing member, and anti-newton ring sheet
JP2014026247A (en) Scattering-preventive film, board material for displaying use, and display window
JP5616191B2 (en) Mold for producing nanostructure and method for producing the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141103

R150 Certificate of patent or registration of utility model

Ref document number: 5652507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees