JP2014240644A - Internal combustion engine - Google Patents

Internal combustion engine Download PDF

Info

Publication number
JP2014240644A
JP2014240644A JP2013123878A JP2013123878A JP2014240644A JP 2014240644 A JP2014240644 A JP 2014240644A JP 2013123878 A JP2013123878 A JP 2013123878A JP 2013123878 A JP2013123878 A JP 2013123878A JP 2014240644 A JP2014240644 A JP 2014240644A
Authority
JP
Japan
Prior art keywords
intake
valve
exhaust
combustion chamber
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013123878A
Other languages
Japanese (ja)
Other versions
JP6201441B2 (en
Inventor
中井 英夫
Hideo Nakai
英夫 中井
一也 大橋
Kazuya Ohashi
一也 大橋
井上 隆
Takashi Inoue
隆 井上
尚人 藤永
Naohito Fujinaga
尚人 藤永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2013123878A priority Critical patent/JP6201441B2/en
Publication of JP2014240644A publication Critical patent/JP2014240644A/en
Application granted granted Critical
Publication of JP6201441B2 publication Critical patent/JP6201441B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Spark Plugs (AREA)

Abstract

PROBLEM TO BE SOLVED: To make combustion speeds in a combustion chamber of an internal combustion engine uniformly approximate each other.SOLUTION: An internal combustion engine comprises at least one exhaust valve 6 and a plurality of intake valves 5 in one cylinder, and comprises an ignition plug 3 between the intake valve 5 and the exhaust valve 6, and is controlled so that a swirl flow is generated in a combustion chamber 2 by forming phase differences at valve open times of the intake valves 5. The ignition plug 3 is arranged to a side of the intake valves 5 rather than an axial core p of the cylinder. Since the ignition plug 3 is arranged to the side of the intake valves 5 rather than the axial core p of the cylinder, combustion at an intake side which is relatively weak in disturbance can be promoted. By this constitution, a combustion speed at an exhaust side which is relatively strong in disturbance and a combustion speed at the intake side which is relatively weak in disturbance are levelled, thereby the combustion speeds in the combustion chamber 2 are made to approximate each other, and as a result, knocking can be suppressed.

Description

この発明は、1気筒あたりに吸気バルブを複数備えた内燃機関に関する。   The present invention relates to an internal combustion engine having a plurality of intake valves per cylinder.

自動車等に用いられる内燃機関として、1気筒あたりに吸気バルブや排気バルブを複数備えたものが知られている。また、可変バルブ機構を適用して、吸気バルブと排気バルブの双方の開閉タイミングを変更可能とし、各バルブの開閉タイミングの調整により、燃焼室内での吸気や排気の戻りを最適化し、出力の向上や燃費向上等が図られている。   As an internal combustion engine used for an automobile or the like, one having a plurality of intake valves and exhaust valves per cylinder is known. In addition, the variable valve mechanism can be applied to change the opening and closing timings of both the intake and exhaust valves. By adjusting the opening and closing timing of each valve, the return of intake and exhaust in the combustion chamber is optimized, and the output is improved. And improved fuel economy.

例えば、特許文献1には、1気筒あたりに、排気バルブと吸気バルブをそれぞれ2つ備え、2つの吸気バルブの間、及び、2つの排気バルブの間で開閉タイミングをずらすとともに、一方の組の吸気バルブと排気バルブ、他方の組の吸気バルブと排気バルブの開弁動作をオーバーラップさせる技術が記載されている。   For example, in Patent Document 1, two exhaust valves and two intake valves are provided per cylinder, the opening / closing timing is shifted between two intake valves and between two exhaust valves, and one set of A technique for overlapping the opening operation of the intake valve and the exhaust valve and the other set of the intake valve and the exhaust valve is described.

2つの吸気バルブ、排気バルブの開閉タイミングをずらし、吸気バルブと排気バルブの開弁動作をオーバーラップさせることにより、気筒の筒軸回りへの旋回流であるスワール流形成を促進し、燃焼性能の向上を図っている。   By shifting the opening and closing timings of the two intake and exhaust valves and overlapping the opening of the intake and exhaust valves, the swirl flow that forms the swirl flow around the cylinder axis of the cylinder is promoted and the combustion performance is improved. We are trying to improve.

特開2010−150939号公報JP 2010-150939 A

例えば、図6に示すように、2つの吸気バルブ5a,5bを同時に開弁する場合、両吸気バルブ5a,5bからの吸気S10は、燃焼室2内の内周面2aの周方向に沿って互いに逆方向へS11のように旋回し、2つの旋回流S11は、吸気バルブ5の対側である排気バルブ側において衝突する。また、その後、吸気バルブ5a,5bからの別の流れである吸気S12とも衝突する。これらの衝突により、燃焼室2内でのスワール流の勢いは減殺されてしまう。   For example, as shown in FIG. 6, when the two intake valves 5a and 5b are opened simultaneously, the intake air S10 from both intake valves 5a and 5b is along the circumferential direction of the inner peripheral surface 2a in the combustion chamber 2. The two swirl flows S11 collide on opposite sides of the intake valve 5 on the exhaust valve side. After that, it also collides with intake air S12 which is another flow from the intake valves 5a and 5b. Due to these collisions, the momentum of the swirl flow in the combustion chamber 2 is reduced.

この状態で、点火直前に吸気がピストン10により圧縮されても、燃焼室2内に生じる乱れの状態、すなわち小さな渦の集合の発生度合いは弱い状態になる。スワール流の勢いが弱いと、圧縮行程における小さな渦の発生は少なくなるからである。このため、混合気の燃焼速度は緩慢であり、熱効率が低くなるという問題がある。   In this state, even if the intake air is compressed by the piston 10 immediately before ignition, the state of turbulence generated in the combustion chamber 2, that is, the degree of occurrence of small vortex aggregates is weak. This is because if the momentum of the swirl flow is weak, the generation of small vortices in the compression stroke is reduced. For this reason, there is a problem that the combustion speed of the air-fuel mixture is slow and the thermal efficiency is lowered.

このとき、圧縮時の乱れの分布は、例えば、図7に示すようになる。ここで、比較的弱い乱れを示す符号A部分(以下、「弱乱れ部A」と称する。)、強い乱れを示す符号C部分(以下、「強乱れ部C」と称する。)、その中間を示す符号B部分(以下、「中乱れ部B」と称する。)が、燃焼室2内に存在する。
図のように、弱乱れ部Aや中乱れ部Bには、吸気側と排気側にそれぞれ内径側へ(内周面2aから離れる側へ)大きく入り込む部分D,E(以下、入込み部D,Eと称する)が生じている。この入込み部D,Eでは乱れが特に弱いため、燃焼速度が遅くなる。このため、ノッキングを生じやすく、出力や燃費悪化の原因となり得る。また、強い乱れの符号C部分が、気筒の軸心に対して排気側に偏って分布していることも、排気側と吸気側とで燃焼速度の差が生じる原因となっている。
At this time, the distribution of turbulence during compression is as shown in FIG. 7, for example. Here, a code A portion indicating a relatively weak disturbance (hereinafter referred to as “weak disturbance portion A”), a code C portion indicating a strong disturbance (hereinafter referred to as “strong disturbance portion C”), and the middle thereof. A portion indicated by symbol B (hereinafter referred to as “medium disturbance portion B”) exists in the combustion chamber 2.
As shown in the figure, the weakly turbulent portion A and the middle turbulent portion B have portions D and E (hereinafter referred to as the intruding portions D and B) that greatly enter the inner diameter side (to the side away from the inner peripheral surface 2a) on the intake side and the exhaust side, respectively. E)) has occurred. Since the turbulence is particularly weak at the entrances D and E, the combustion speed becomes slow. For this reason, knocking is likely to occur, which may cause output and fuel consumption deterioration. In addition, the fact that the portion C of the strong turbulence is distributed to the exhaust side with respect to the axial center of the cylinder also causes a difference in combustion speed between the exhaust side and the intake side.

それに対し、上記特許文献1のように、2つの吸気バルブのうち一方を開いた後、他方を遅れて開くようにすれば、先に開いた一方の吸気バルブからの吸気により、燃焼室内には安定したスワール流が形成されるので、後に他方の吸気バルブが開いても、スワール流は阻害されにくい。このため、圧縮時における乱れの弱さは幾分解消されるのではないか、と考えられる。 On the other hand, if one of the two intake valves is opened and then the other is opened with delay as in Patent Document 1, the intake air from the one intake valve that has been opened first causes the combustion chamber to enter the combustion chamber. Since a stable swirl flow is formed, even if the other intake valve is opened later, the swirl flow is not easily inhibited. For this reason, it is thought that the weakness of the disturbance at the time of compression may be solved somewhat.

しかしながら、吸気バルブの開弁時期に位相差を設けた場合、圧縮行程において、排気側の入込み部Dは解消されるものの、入込み部E、及び、強乱れ部Cの偏りは依然として存在することが、実験により判明している。すなわち、複数の吸気バルブの開弁時期に位相差を設けた内燃機関においても、燃焼室内の燃焼速度は完全には均一化されていない。   However, when a phase difference is provided in the valve opening timing of the intake valve, the intake side D on the exhaust side is eliminated in the compression stroke, but the bias of the intake part E and the turbulent part C may still exist. It has been found through experiments. That is, even in an internal combustion engine in which a phase difference is provided at the opening timings of a plurality of intake valves, the combustion speed in the combustion chamber is not completely equalized.

そこで、この発明の課題は、燃焼室全体の燃焼速度をできるだけ均一にすることである。   Accordingly, an object of the present invention is to make the combustion speed of the entire combustion chamber as uniform as possible.

上記の課題を解決するために、この発明は、1つの気筒につき少なくとも1つ設けられた排気バルブと、1つの気筒につき複数設けられた吸気バルブと、前記吸気バルブと前記排気バルブの間に設けられた点火プラグを備え、前記複数の吸気バルブは、前記吸気バルブ同士の開弁時期に位相差を設けて燃焼室内にスワール流を発生させるように制御され、前記点火プラグは、前記気筒の軸心よりも吸気バルブ側或いは排気バルブ側のうち前記燃焼室内に生じる乱れが相対的に小さい側にずれて配置されている内燃機関としたのである。   In order to solve the above problems, the present invention provides at least one exhaust valve provided per cylinder, a plurality of intake valves provided per cylinder, and provided between the intake valve and the exhaust valve. The plurality of intake valves are controlled to generate a swirl flow in the combustion chamber by providing a phase difference between the opening timings of the intake valves, and the ignition plugs are connected to the shafts of the cylinders. The internal combustion engine is arranged such that the disturbance generated in the combustion chamber on the intake valve side or the exhaust valve side from the center is shifted to a relatively small side.

前記気筒の軸心よりも吸気バルブ側に生じる乱れが排気バルブ側に生じる乱れよりも相対的に小さい場合、前記点火プラグは、前記気筒の軸心よりも前記吸気バルブ寄りに配置されている内燃機関とすることができる。   When the disturbance generated on the intake valve side relative to the cylinder axis is relatively smaller than the disturbance generated on the exhaust valve side, the ignition plug is disposed closer to the intake valve than the cylinder axis. It can be an institution.

ここで、気筒毎に備えられる点火プラグは、火花を生じさせる電極として、シェルの軸心に位置する中心電極と、前記中心電極から偏心した位置に立ち上がる側方電極とを備える。シェルは、シリンダのプラグ穴に対応するネジ部を備え、そのネジ部の先端側に前記電極が設けられている。   Here, the spark plug provided for each cylinder includes a center electrode positioned at the axial center of the shell and a side electrode rising from the center electrode as an electrode for generating a spark. The shell includes a screw portion corresponding to the plug hole of the cylinder, and the electrode is provided on the tip side of the screw portion.

ここで、前記側方電極は、前記シェルの軸心よりも前記燃焼室内に生じる乱れが相対的に大きい側で立ち上がるように配置されていることが望ましい。   Here, it is preferable that the side electrode is disposed so as to rise on the side where the turbulence generated in the combustion chamber is relatively larger than the axial center of the shell.

また、前記側方電極は、前記シェルに固定される立ち上がり部と、前記立ち上がり部から前記シェルの軸心側へ突出する先端部とを備え、前記立ち上がり部は、排気側と吸気側とを結ぶ方向に直交する方向に対する前記先端部の幅よりも前記直交する方向への幅が広いことが望ましい。さらに、前記立ち上がり部は、前記燃焼室内に生じる乱れが相対的に大きい側に凸な円弧形状であることが望ましい。   The side electrode includes a rising portion fixed to the shell and a tip portion protruding from the rising portion toward the axial center of the shell, and the rising portion connects the exhaust side and the intake side. It is desirable that the width in the orthogonal direction is wider than the width of the tip portion in the direction orthogonal to the direction. Furthermore, it is desirable that the rising portion has an arc shape that is convex toward the side where the turbulence generated in the combustion chamber is relatively large.

この発明によれば、吸気バルブ同士の開弁時期に位相差を設けてスワール流を発生させ、さらに、点火プラグを気筒の軸心よりも相対的に乱れが小さい側にずらして配置したので、圧縮行程において、相対的に乱れの小さい側の燃焼を早めることができる。これにより、相対的に乱れの強い排気側の燃焼速度と、相対的に乱れの弱い吸気側の燃焼速度とを平準化できる。すなわち、圧縮工程で乱れの弱い部分が吸気側に偏って存在していても、燃焼室内の燃焼速度を均一に近づけ、ノッキングを抑制することができる。 According to this invention, a phase difference is provided in the valve opening timing between the intake valves to generate a swirl flow, and further, the spark plug is arranged to be shifted to the side where the turbulence is relatively smaller than the axis of the cylinder. In the compression stroke, combustion on the side with relatively little turbulence can be accelerated. Thereby, the combustion speed on the exhaust side, which is relatively strong in turbulence, and the combustion speed on the intake side, which is relatively weak in turbulence, can be leveled. That is, even if a weakly disturbed portion in the compression process is biased toward the intake side, the combustion speed in the combustion chamber can be made uniform and knocking can be suppressed.

この発明の一実施形態の燃焼室内での吸気の流れを示し、(a)は燃焼室内を示す平面図、(b)は正面図である。The flow of the intake air in the combustion chamber of one Embodiment of this invention is shown, (a) is a top view which shows a combustion chamber, (b) is a front view. 圧縮工程における燃焼室内の乱れの強さの分布を示す平面図である。It is a top view which shows distribution of the intensity of the turbulence in a combustion chamber in a compression process. (a)〜(d)は、点火プラグの側方電極の向きの違いによる各種性能の傾向を示すグラフ図である。(A)-(d) is a graph which shows the tendency of the various performance by the difference in direction of the side electrode of a spark plug. (a)は点火プラグの正面図、(b)は(a)のB−B矢視図、(c)は(b)の変形例である。(A) is a front view of a spark plug, (b) is a BB arrow view of (a), (c) is a modification of (b). 吸気バルブ、排気バルブの動作の例を示すタイムチャートである。It is a time chart which shows the example of operation | movement of an intake valve and an exhaust valve. 2つの吸気バルブが同時に開閉する場合の燃焼室内での吸気の流れを示し、(a)は燃焼室内を示す平面図、(b)は正面図である。The flow of the intake air in a combustion chamber in case two intake valves open and close simultaneously is shown, (a) is a plan view showing the combustion chamber, and (b) is a front view. 2つの吸気バルブが同時に開閉する場合の圧縮工程における燃焼室内の乱れの強さの分布を示す平面図である。It is a top view which shows distribution of the strength of the disorder in a combustion chamber in a compression process in case two intake valves open and close simultaneously.

以下、この発明の一実施形態を図面に基づいて説明する。この実施形態の内燃機関は自動車用エンジンであり、図1(a)(b)に、エンジンが備える1つの気筒における燃焼室2の要部を示す。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The internal combustion engine of this embodiment is an automobile engine, and FIGS. 1A and 1B show a main part of the combustion chamber 2 in one cylinder provided in the engine.

シリンダSには、ピストン10を収容した気筒毎に、燃料噴射弁の燃料の噴射により生成された混合気を燃焼室2内に送り込む吸気ポート1、排気を燃焼室2外へ送り出す排気ポート7、シリンダヘッド側から気筒(シリンダ)の軸線pに沿って下向きに配置された点火プラグ3等が備えられている。吸気ポート1及び排気ポート7は、それぞれ吸気バルブ5、排気バルブ6によって開閉される。なお、図1(b)では、排気ポート7及び排気バルブ6等は図示省略している。   The cylinder S includes an intake port 1 for sending an air-fuel mixture generated by fuel injection of a fuel injection valve into the combustion chamber 2 for each cylinder containing the piston 10, an exhaust port 7 for sending exhaust gas out of the combustion chamber 2, A spark plug 3 or the like disposed downward from the cylinder head side along the axis p of the cylinder (cylinder) is provided. The intake port 1 and the exhaust port 7 are opened and closed by an intake valve 5 and an exhaust valve 6, respectively. In FIG. 1B, the exhaust port 7 and the exhaust valve 6 are not shown.

吸気バルブ5及び排気バルブ6は、シリンダヘッド側に設けたカムシャフトにバルブリフタを介して接続されているので、カムシャフトの回転によって、所定のタイミングで吸気ポート1、排気ポート7を開閉する。カムシャフトへの動力の伝達は、カムシャフト側に設けたスプロケットとクランクシャフト側に設けたスプロケットとの間をタイミングチェーン等で連結することにより行われている。   Since the intake valve 5 and the exhaust valve 6 are connected to a camshaft provided on the cylinder head side via a valve lifter, the intake port 1 and the exhaust port 7 are opened and closed at a predetermined timing by the rotation of the camshaft. Power is transmitted to the camshaft by connecting a sprocket provided on the camshaft side and a sprocket provided on the crankshaft side by a timing chain or the like.

吸気バルブ5は、図1(a)に示すように、1つの気筒に2つ設けられる。一方の吸気バルブ5である第一の吸気バルブ5aと、他方の吸気バルブ5である第二の吸気バルブ5bの開閉タイミングは互いに異なるように、カムシャフト、バルブリフタ、その他からなる制御装置が設定されている。   As shown in FIG. 1A, two intake valves 5 are provided in one cylinder. A control device including a camshaft, a valve lifter, and the like is set so that the opening and closing timings of the first intake valve 5a that is one intake valve 5 and the second intake valve 5b that is the other intake valve 5 are different from each other. ing.

また、排気バルブ6も、図1(a)に示すように、1つの気筒に2つ設けられる。一方の排気バルブ6である第一の排気バルブ6aと、他方の排気バルブ6である第二の排気バルブ6bの開閉タイミングは同じになるよう、カムシャフト、バルブリフタ、その他からなる制御装置が設定されている。   In addition, two exhaust valves 6 are provided in one cylinder as shown in FIG. A control device including a camshaft, a valve lifter, and the like is set so that the opening timing of the first exhaust valve 6a which is one exhaust valve 6 and the second exhaust valve 6b which is the other exhaust valve 6 are the same. ing.

吸気バルブ5、排気バルブ6の動作の例を、図5に示す。第一の吸気バルブ5aの開弁時期は、2つの排気バルブ6a,6bの閉弁終了時期よりも早く設定されており、両者の開弁時期にオーバーラップ期間が設けられている。第二の吸気バルブ5bと2つの排気バルブ6a,6bとは、開弁期間にオーバーラップが生じない状態に設定されている。なお、第一の吸気バルブ5aと2つの排気バルブ6a,6bの開弁期間にオーバーラップが生じないように設定することも可能である。また、2つの吸気バルブ5a,5bの閉弁時期や、2つの排気バルブ6a,6b間に開弁時期、閉弁時期に位相差を設けることも可能である。
上記のような条件で各バルブの開閉時期を設定し、固定のバルブタイミングで車両を運転することも可能であるが、これらの各バルブの開弁時期、閉弁時期は、可変バルブ装置を用いることによって、車両の運転状態に応じて運転中に適宜変更することもできる。
An example of the operation of the intake valve 5 and the exhaust valve 6 is shown in FIG. The opening timing of the first intake valve 5a is set earlier than the closing timing of the two exhaust valves 6a, 6b, and an overlap period is provided between the opening timings of both. The second intake valve 5b and the two exhaust valves 6a and 6b are set in a state where no overlap occurs during the valve opening period. It is also possible to set so that no overlap occurs during the opening period of the first intake valve 5a and the two exhaust valves 6a, 6b. It is also possible to provide a phase difference between the closing timing of the two intake valves 5a and 5b and the opening timing and the closing timing between the two exhaust valves 6a and 6b.
It is possible to set the opening / closing timing of each valve under the above conditions and operate the vehicle at a fixed valve timing, but a variable valve device is used for the opening timing and closing timing of each of these valves. Thus, it can be changed appropriately during driving according to the driving state of the vehicle.

また、上記のように、2つの吸気バルブ5a,5bのうち,第一の吸気バルブ5aを開いた後、第二の吸気バルブ5bを遅れて開くようにしたので、図1(a)に示すように、先に開いた第一の吸気バルブ5aからの吸気S0により、燃焼室2内には安定したスワール流S1が形成され、後に第二の吸気バルブ5bが開いてもスワール流S1は阻害されにくく、図1(b)に示すように、燃焼室2内に大きなスワール流S3が形成される。   Further, as described above, after the first intake valve 5a of the two intake valves 5a and 5b is opened, the second intake valve 5b is opened with a delay. As described above, a stable swirl flow S1 is formed in the combustion chamber 2 by the intake air S0 from the first intake valve 5a opened first, and the swirl flow S1 is inhibited even if the second intake valve 5b is opened later. A large swirl flow S3 is formed in the combustion chamber 2 as shown in FIG.

このバルブ動作に基づいた場合、圧縮工程における燃焼室2内の乱れの分布は、図2に示すようになる。ここで、比較的弱い乱れの「弱乱れ部A」、強い乱れの「強乱れ部C」、その中間を示す「中乱れ部B」は、前述のとおりである。   Based on this valve operation, the distribution of turbulence in the combustion chamber 2 in the compression process is as shown in FIG. Here, the “weak turbulence portion A” having a relatively weak turbulence, the “strong turbulence portion C” having a strong turbulence, and the “medium turbulence portion B” indicating the middle thereof are as described above.

ここで、第一の吸気バルブ5aと第二の吸気バルブ5bのうち、第一の吸気バルブ5aを開いた後、第二の吸気バルブ5bを遅れて開くようにしたので、圧縮時における排気側の前記入込み部Dは解消されている。
しかし、吸気側の前記入込み部Eは解消しておらず、弱乱れ部Aや中乱れ部Bは、気筒の軸心pに対して、全体的に吸気側に偏って分布している。また、強乱れ部Cは、気筒の軸心pに対して、全体的に排気側に偏って分布している。
Here, of the first intake valve 5a and the second intake valve 5b, the first intake valve 5a is opened, and then the second intake valve 5b is opened with a delay. The entry portion D is eliminated.
However, the intake portion E on the intake side is not eliminated, and the weakly disturbed portion A and the moderately disturbed portion B are distributed with a bias toward the intake side as a whole with respect to the axial center p of the cylinder. In addition, the turbulent portion C is distributed with a bias toward the exhaust side as a whole with respect to the axial center p of the cylinder.

これに対応するため、燃焼室2内において、点火プラグ3のシェル3aの軸心qは、図1(b)に示すように、気筒の軸心pよりも距離wだけ吸気バルブ5寄りに偏心して配置している。   In order to cope with this, in the combustion chamber 2, the axis q of the shell 3a of the spark plug 3 is biased closer to the intake valve 5 by a distance w than the axis p of the cylinder, as shown in FIG. Arrange with heart.

点火プラグ3を、気筒の軸心pよりも吸気バルブ5寄りに配置したので、相対的に乱れの弱い吸気側の燃焼を早めることができる。また、相対的に乱れの強い排気側の燃焼を遅らせることができる。これにより、相対的に乱れの強い排気側の燃焼速度と、相対的に乱れの弱い吸気側の燃焼速度とを平準化できるので、燃焼室内の燃焼速度を均一に近づけることができる。燃焼速度が均一に近づけば、圧縮行程における混合気の自然発火等の問題が解消されるので、ノッキングを抑制することができる。   Since the spark plug 3 is disposed closer to the intake valve 5 than the cylinder axis p, combustion on the intake side, which is relatively less disturbed, can be accelerated. Further, combustion on the exhaust side, which is relatively turbulent, can be delayed. As a result, the combustion speed on the exhaust side, which is relatively strong in turbulence, and the combustion speed on the intake side, which is relatively weak in turbulence, can be leveled, so that the combustion speed in the combustion chamber can be made uniform. If the combustion speed is made nearly uniform, problems such as spontaneous combustion of the air-fuel mixture in the compression stroke are solved, so that knocking can be suppressed.

ノッキングが抑制できれば、高圧縮比化が容易に可能となる。また、低オクタン価燃料の使用時や、低速高負荷時、過給時等においてもノッキングを抑制しやすくなるので、内燃機関の熱効率を高め、出力や燃費を向上することができる。   If knocking can be suppressed, a high compression ratio can be easily achieved. In addition, knocking can be easily suppressed even when low-octane fuel is used, at low speed and high load, during supercharging, etc., so that the thermal efficiency of the internal combustion engine can be increased, and the output and fuel consumption can be improved.

図4(a)は点火プラグ3の全体図を示す。図4(b)は点火プラグ3の電極4を平面的に表したものである。点火プラグ3のシェル3aの軸心qに配置される中心電極4cは、カソードとして電子を放出する正極として設計されている。側方電極(側極)4aは接地電極であり、シェル3aの先端側に設けられるネジ部(シリンダ側のプラグ穴に対応するネジ部)3bの先に溶接により固定されている。側方電極4aは、点火プラグ3の軸心から偏心した位置に立ち上がる立上がり部4dを備え、その立上がり部4dの先端がL字状に約90度屈曲して、先端部4bが中心電極4cに所定のギャップをもって対向している。   FIG. 4A shows an overall view of the spark plug 3. FIG. 4B shows the electrode 4 of the spark plug 3 in a plan view. The center electrode 4c arranged at the axis q of the shell 3a of the spark plug 3 is designed as a positive electrode that emits electrons as a cathode. The side electrode (side electrode) 4a is a ground electrode, and is fixed to the tip of a screw part (a screw part corresponding to the plug hole on the cylinder side) 3b provided on the tip side of the shell 3a by welding. The side electrode 4a includes a rising portion 4d that rises at a position eccentric from the axial center of the spark plug 3. The tip of the rising portion 4d bends approximately 90 degrees in an L shape, and the tip portion 4b becomes the center electrode 4c. It faces with a predetermined gap.

この実施形態では、側方電極4aを、図1(b)に示すように、シェル3aの軸心qよりも排気バルブ6側で立ち上がるように配置したので、電極間の火花と相対的に乱れの強い排気側との間には側方電極4aが介在し、火花の一部が遮蔽される。これに対し、相対的に乱れの弱い吸気側には火花を遮蔽する部材が介在しないので、電極間に発生する火花が直接吸気側の空間に面するようになる。このため、排気側の燃焼速度と吸気側の燃焼速度とをさらに均一に近づけることができる。   In this embodiment, as shown in FIG. 1 (b), the side electrode 4a is disposed so as to rise on the exhaust valve 6 side with respect to the axis q of the shell 3a. A side electrode 4a is interposed between the strong exhaust side and a part of the spark is shielded. On the other hand, since there is no spark shielding member on the intake side, which is relatively less disturbed, the spark generated between the electrodes directly faces the space on the intake side. For this reason, the combustion speed on the exhaust side and the combustion speed on the intake side can be made more uniform.

図3(a)〜(d)に、点火プラグ3の側方電極4aの向き(立ち上がり部4dの軸心qに対する向き)の違いによるエンジンEの各種運転性能の傾向を示す。側方電極4aの立上がり位置は、図3(a)〜(d)においてそれぞれ左側から順に、吸気側、排気側、前方、後方(トランスミッション側)の値を示す。点火プラグ3の側方電極4aの燃焼室2に対する向き、及び、エンジンを搭載する車体に対する向きについては、図4(b)に示している。   3A to 3D show trends in various operating performances of the engine E due to differences in the direction of the side electrode 4a of the spark plug 3 (direction of the rising portion 4d with respect to the axis q). The rising position of the side electrode 4a indicates values on the intake side, the exhaust side, the front side, and the rear side (transmission side) in order from the left side in FIGS. The direction of the side electrode 4a of the spark plug 3 with respect to the combustion chamber 2 and the direction with respect to the vehicle body on which the engine is mounted are shown in FIG.

図3(a)は、側方電極4aの向きの違いによる発生トルク(Nm)の差異を示している。側方電極4aの向きを排気側にする場合が、最も高いトルクを示している。図3(b)は、同じく体積効率(%)の差異を示している。側方電極4aの向きを排気側にする場合が、最も高い体積効率を示している。図3(c)は、同じく主燃焼期間(10−90%(°CA))の差異を示している。側方電極4aの向きを排気側にする場合が、最も速い燃焼速度を示している。図3(d)は、同じく等容度(%)の差異を示している。側方電極4aの向きを排気側にする場合、最も熱効率が向上している。   FIG. 3A shows a difference in generated torque (Nm) due to a difference in direction of the side electrode 4a. When the direction of the side electrode 4a is set to the exhaust side, the highest torque is shown. FIG. 3 (b) also shows the difference in volumetric efficiency (%). When the direction of the side electrode 4a is the exhaust side, the highest volumetric efficiency is shown. FIG. 3 (c) also shows the difference in the main combustion period (10-90% (° CA)). The case where the direction of the side electrode 4a is set to the exhaust side indicates the fastest combustion speed. FIG. 3 (d) also shows the difference in isovolume (%). When the direction of the side electrode 4a is set to the exhaust side, the thermal efficiency is most improved.

また、図4(c)に点火プラグ3の変形例を示す。この例において、側方電極4aは、シェル3aに固定される立ち上がり部4dが、シェル3aの軸心q周りに形成された平面視円弧状の部材となっている。先端部4bは、立ち上がり部4dの円弧方向中央からシェル3aの軸心q側へ突出して設けられる。立ち上がり部4dを、シェル3aの軸心q周りに形成された平面視円弧状の部材とすれば、排気側に対して火花を遮蔽する面積が大きくなるので、燃焼速度のさらなる均一化が可能となる。   FIG. 4C shows a modification of the spark plug 3. In this example, the side electrode 4a is a member having an arcuate shape in plan view in which a rising portion 4d fixed to the shell 3a is formed around the axis q of the shell 3a. The tip portion 4b is provided so as to protrude from the center of the rising portion 4d in the arc direction toward the axis q of the shell 3a. If the rising portion 4d is a member in the shape of a circular arc in plan view formed around the axis q of the shell 3a, the area that shields the spark from the exhaust side becomes large, so that the combustion speed can be made more uniform. Become.

側方電極4aの立ち上がり部4dを平面視円弧状の部材とする場合、平面視円弧状の部材の軸心q回りの中心角αは、45°から75°の範囲であることが望ましい。立ち上がり部4dを平面視円弧状にすることで、中心電極4cと側方電極4aとの距離が、立上がり部4dの幅方向に亘って一定となり、安定した着火が可能となる。   When the rising portion 4d of the side electrode 4a is a member having an arc shape in plan view, the central angle α around the axis q of the arc shape member in plan view is preferably in the range of 45 ° to 75 °. By making the rising portion 4d into an arc shape in plan view, the distance between the center electrode 4c and the side electrode 4a is constant over the width direction of the rising portion 4d, and stable ignition is possible.

なお、立ち上がり部4dは、排気側と吸気側とを結ぶ方向(図4(c)に示すr方向)に直交する方向(図4(c)に示すt方向)に対する中心電極4cの幅よりも前記直交する方向tへの幅が広い部材により形成されることが望ましく、また、先端部4bの前記直交する方向tへの幅よりも広い部材により形成されることが望ましい。このため、立ち上がり部4dは、平面視弧状の部材のみならず、例えば、直線、曲線を問わず、前記直交する方向tへ帯状に長い部材としてもよい。   The rising portion 4d is larger than the width of the center electrode 4c with respect to a direction (t direction shown in FIG. 4C) orthogonal to a direction connecting the exhaust side and the intake side (r direction shown in FIG. 4C). It is desirable to form a member having a wide width in the orthogonal direction t, and it is desirable to form it by a member wider than the width of the tip end portion 4b in the orthogonal direction t. For this reason, the rising portion 4d is not limited to a member having an arc shape in a plan view, but may be a member that is long in a band shape in the orthogonal direction t regardless of a straight line or a curved line, for example.

この実施形態では、弱乱れ部Aや中乱れ部Bが気筒の軸心pに対して吸気側に偏って分布し、且つ、強乱れ部Cが気筒の軸心pに対して排気側に偏って分布している場合について説明したが、燃焼室2内における乱れの偏り状態が異なる場合も想定される。
例えば、弱乱れ部Aや中乱れ部Bが気筒の軸心pに対して排気側に偏って分布し、強乱れ部Cが気筒の軸心pに対して吸気側に偏って分布するような内燃機関においては、点火プラグ3は、気筒の軸心pよりも排気バルブ6側にずれて配置されていることが望ましい。また、このとき、点火プラグ3の側方電極4aは、シェル3aの軸心qよりも吸気バルブ5側で立ち上がるように配置されていることが望ましい。
すなわち、点火プラグ3は、気筒の軸心pよりも燃焼室2内に生じる乱れが相対的に小さい側(弱い側)にずれて配置することが望ましく、また、点火プラグ3の側方電極4aは、シェル3aの軸心qよりも燃焼室2内に生じる乱れが相対的に大きい側(強い側)で立ち上がるように配置されていることが望ましい。
In this embodiment, the weakly turbulent portion A and the middle turbulent portion B are distributed to the intake side with respect to the cylinder axis p, and the strong turbulence portion C is biased to the exhaust side with respect to the cylinder axis p. However, it is assumed that the turbulence bias state in the combustion chamber 2 is different.
For example, the weakly disturbing part A and the middle disturbing part B are distributed in the exhaust side with respect to the cylinder axis p, and the strongly disturbed part C is distributed in the intake side with respect to the cylinder axis p. In the internal combustion engine, it is desirable that the spark plug 3 is disposed so as to be shifted to the exhaust valve 6 side from the cylinder axis p. At this time, it is desirable that the side electrode 4a of the spark plug 3 is arranged to rise on the intake valve 5 side with respect to the axis q of the shell 3a.
That is, it is desirable that the spark plug 3 is disposed so as to be shifted to a side (weak side) where the turbulence generated in the combustion chamber 2 is relatively smaller than the axial center p of the cylinder. Is preferably arranged so as to rise on the side (strong side) where the turbulence generated in the combustion chamber 2 is relatively larger than the axis q of the shell 3a.

なお、以上は、エンジンとして吸排気にそれぞれ2つのバルブを備えた4バルブガソリンエンジンを想定して説明したが、1つの気筒当たりに複数の吸気バルブを備えるものであれば、各気筒毎のバルブ数は自由に設定できる。例えば、バルブの数を、吸気側2および排気側2、吸気側2および排気側1、吸気側3および排気側2等とすることができる。また、気筒数は自由であり、単気筒、二気筒、四気筒などガソリンを燃料とする種々のレシプロエンジンに適用できる。   The above description has been made on the assumption that the engine is a four-valve gasoline engine having two valves for intake and exhaust. However, if a plurality of intake valves are provided per cylinder, a valve for each cylinder is provided. The number can be set freely. For example, the number of valves can be intake side 2 and exhaust side 2, intake side 2 and exhaust side 1, intake side 3 and exhaust side 2, and the like. Further, the number of cylinders is arbitrary, and it can be applied to various reciprocating engines using gasoline as fuel, such as single cylinder, two cylinders, and four cylinders.

1 吸気ポート
2 燃焼室
2a 内周面
3 点火プラグ
3a シェル
3b ネジ部
4 電極
4a 側方電極
4b 先端部
4c 中心電極
4d 立ち上がり部
5 吸気バルブ
5a 第一の吸気バルブ
5b 第二の吸気バルブ
6 排気バルブ
6a 第一の排気バルブ
6b 第二の排気バルブ
7 排気ポート
10 ピストン
S シリンダ
DESCRIPTION OF SYMBOLS 1 Intake port 2 Combustion chamber 2a Inner peripheral surface 3 Spark plug 3a Shell 3b Screw part 4 Electrode 4a Side electrode 4b Tip part 4c Center electrode 4d Rising part 5 Intake valve 5a First intake valve 5b Second intake valve 6 Exhaust Valve 6a First exhaust valve 6b Second exhaust valve 7 Exhaust port 10 Piston S Cylinder

Claims (5)

1つの気筒につき少なくとも1つ設けられた排気バルブと、
1つの気筒につき複数設けられた吸気バルブと、
前記吸気バルブと前記排気バルブの間に設けられた点火プラグを備え、
前記複数の吸気バルブは、前記吸気バルブ同士の開弁時期に位相差を設けて燃焼室内にスワール流を発生させるように制御され、
前記点火プラグは、前記気筒の軸心よりも吸気バルブ側或いは排気バルブ側のうち前記燃焼室内に生じる乱れが相対的に小さい側にずれて配置されていることを特徴とする内燃機関。
At least one exhaust valve provided per cylinder;
A plurality of intake valves provided per cylinder;
A spark plug provided between the intake valve and the exhaust valve;
The plurality of intake valves are controlled to generate a swirl flow in the combustion chamber by providing a phase difference between the opening timings of the intake valves;
The internal combustion engine, wherein the spark plug is arranged so as to be shifted to a side where the turbulence generated in the combustion chamber is relatively small on the intake valve side or the exhaust valve side from the axial center of the cylinder.
前記点火プラグは、前記気筒の軸心よりも前記吸気バルブ寄りに配置されていることを特徴とする請求項1に記載の内燃機関。   The internal combustion engine according to claim 1, wherein the spark plug is disposed closer to the intake valve than an axis of the cylinder. 前記点火プラグは、シェルの軸心に位置する中心電極と、前記中心電極から偏心した位置に立ち上がる側方電極とを備え、
前記側方電極は、前記シェルの軸心よりも前記燃焼室内に生じる乱れが相対的に大きい側で立ち上がるように配置されていることを特徴とする請求項1又は2に記載の内燃機関。
The spark plug includes a center electrode located at the axial center of the shell, and a side electrode that rises at a position eccentric from the center electrode,
3. The internal combustion engine according to claim 1, wherein the side electrode is disposed so as to rise on a side where the turbulence generated in the combustion chamber is relatively larger than the axial center of the shell.
前記側方電極は、前記シェルに固定される立ち上がり部と、前記立ち上がり部から前記シェルの軸心側へ突出する先端部とを備え、
前記立ち上がり部は、排気側と吸気側とを結ぶ方向に直交する方向に対する前記先端部の幅よりも前記直交する方向への幅が広いことを特徴とする請求項3に記載の内燃機関。
The side electrode includes a rising portion fixed to the shell, and a tip portion protruding from the rising portion toward the axial center of the shell,
4. The internal combustion engine according to claim 3, wherein the rising portion has a width in the orthogonal direction that is wider than a width of the tip portion in a direction orthogonal to the direction connecting the exhaust side and the intake side.
前記立ち上がり部は、前記燃焼室内に生じる乱れが相対的に大きい側に凸な円弧形状であることを特徴とする請求項3又は4に記載の内燃機関。   5. The internal combustion engine according to claim 3, wherein the rising portion has a circular arc shape that protrudes toward the side where the turbulence generated in the combustion chamber is relatively large.
JP2013123878A 2013-06-12 2013-06-12 Internal combustion engine Active JP6201441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013123878A JP6201441B2 (en) 2013-06-12 2013-06-12 Internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013123878A JP6201441B2 (en) 2013-06-12 2013-06-12 Internal combustion engine

Publications (2)

Publication Number Publication Date
JP2014240644A true JP2014240644A (en) 2014-12-25
JP6201441B2 JP6201441B2 (en) 2017-09-27

Family

ID=52140005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013123878A Active JP6201441B2 (en) 2013-06-12 2013-06-12 Internal combustion engine

Country Status (1)

Country Link
JP (1) JP6201441B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3461171A1 (en) 2014-03-20 2019-03-27 Kyocera Corporation Cellular base station for interworking with wlan access point

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535629U (en) * 1976-07-01 1978-01-19
JPS5625078U (en) * 1979-08-03 1981-03-07
JPS62190824U (en) * 1986-05-27 1987-12-04
JPH02149724A (en) * 1988-11-30 1990-06-08 Mazda Motor Corp Combustion chamber of engine
JPH02248616A (en) * 1989-03-20 1990-10-04 Nissan Motor Co Ltd Combustion chamber of internal combustion engine
JPH06101482A (en) * 1992-09-24 1994-04-12 Mazda Motor Corp Direct cylinder injection type engine
JP2001263108A (en) * 2000-03-21 2001-09-26 Nissan Motor Co Ltd Intake valve driving control device for internal combustion engine
JP2006037792A (en) * 2004-07-26 2006-02-09 Nissan Motor Co Ltd Cylinder direct injection type spark ignition internal combustion engine
JP2006046126A (en) * 2004-08-03 2006-02-16 Nissan Motor Co Ltd Cylinder direct injection type spark ignition internal combustion engine
JP2006258055A (en) * 2005-03-18 2006-09-28 Mitsubishi Electric Corp Internal combustion engine
JP2007170369A (en) * 2005-11-24 2007-07-05 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine
JP2007255267A (en) * 2006-03-22 2007-10-04 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine
JP2008286181A (en) * 2007-05-21 2008-11-27 Denso Corp Internal combustion engine
JP2010144624A (en) * 2008-12-18 2010-07-01 Mazda Motor Corp Spark ignition internal combustion engine
JP2010150939A (en) * 2008-12-24 2010-07-08 Mitsubishi Motors Corp Valve gear

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535629U (en) * 1976-07-01 1978-01-19
JPS5625078U (en) * 1979-08-03 1981-03-07
JPS62190824U (en) * 1986-05-27 1987-12-04
JPH02149724A (en) * 1988-11-30 1990-06-08 Mazda Motor Corp Combustion chamber of engine
JPH02248616A (en) * 1989-03-20 1990-10-04 Nissan Motor Co Ltd Combustion chamber of internal combustion engine
JPH06101482A (en) * 1992-09-24 1994-04-12 Mazda Motor Corp Direct cylinder injection type engine
JP2001263108A (en) * 2000-03-21 2001-09-26 Nissan Motor Co Ltd Intake valve driving control device for internal combustion engine
JP2006037792A (en) * 2004-07-26 2006-02-09 Nissan Motor Co Ltd Cylinder direct injection type spark ignition internal combustion engine
JP2006046126A (en) * 2004-08-03 2006-02-16 Nissan Motor Co Ltd Cylinder direct injection type spark ignition internal combustion engine
JP2006258055A (en) * 2005-03-18 2006-09-28 Mitsubishi Electric Corp Internal combustion engine
JP2007170369A (en) * 2005-11-24 2007-07-05 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine
JP2007255267A (en) * 2006-03-22 2007-10-04 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine
JP2008286181A (en) * 2007-05-21 2008-11-27 Denso Corp Internal combustion engine
JP2010144624A (en) * 2008-12-18 2010-07-01 Mazda Motor Corp Spark ignition internal combustion engine
JP2010150939A (en) * 2008-12-24 2010-07-08 Mitsubishi Motors Corp Valve gear

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3461171A1 (en) 2014-03-20 2019-03-27 Kyocera Corporation Cellular base station for interworking with wlan access point

Also Published As

Publication number Publication date
JP6201441B2 (en) 2017-09-27

Similar Documents

Publication Publication Date Title
US10156182B2 (en) Combustion chamber structure for direct injection engine
JP3835171B2 (en) Piston of internal combustion engine
US9038592B2 (en) Cylinder head comprising a shroud
JPS591329B2 (en) internal combustion engine
JP6337877B2 (en) Combustion chamber structure of internal combustion engine
JP6020856B2 (en) Engine combustion chamber structure
JP6201441B2 (en) Internal combustion engine
JP6747573B2 (en) Intake port structure of internal combustion engine
JP4290147B2 (en) Internal combustion engine
JP2010190166A (en) Internal combustion engine
EP3090158B1 (en) Combustion chamber structure of spark-ignition internal combustion engine
JP2015017509A (en) Internal combustion engine
JP2023010184A (en) Spark plug for internal combustion engine and internal combustion engine having the same
JP2016113990A (en) Internal combustion engine
JP5664349B2 (en) Internal combustion engine
JP2010249111A (en) Internal combustion engine
JP6060126B2 (en) Internal combustion engine
JP2007085220A (en) Combustion chamber structure for spark ignition engine
JP2011169170A (en) Piston device for internal combustion engine
JP4683024B2 (en) Internal combustion engine
EP3263879A1 (en) Two-valve engine
JP2018141391A (en) Internal combustion engine
JP2009150273A (en) Internal combustion engine
KR101543132B1 (en) Continuous variable valve timing 3-valve gasoline direct injection eingine system
JP2007198343A (en) Spark ignition internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170814

R151 Written notification of patent or utility model registration

Ref document number: 6201441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350