JP2014235258A - Visible light transmission filter - Google Patents

Visible light transmission filter Download PDF

Info

Publication number
JP2014235258A
JP2014235258A JP2013115738A JP2013115738A JP2014235258A JP 2014235258 A JP2014235258 A JP 2014235258A JP 2013115738 A JP2013115738 A JP 2013115738A JP 2013115738 A JP2013115738 A JP 2013115738A JP 2014235258 A JP2014235258 A JP 2014235258A
Authority
JP
Japan
Prior art keywords
infrared light
transmittance
light cut
wavelength
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013115738A
Other languages
Japanese (ja)
Other versions
JP6174379B2 (en
Inventor
若林 小太郎
Kotaro Wakabayashi
小太郎 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP2013115738A priority Critical patent/JP6174379B2/en
Publication of JP2014235258A publication Critical patent/JP2014235258A/en
Application granted granted Critical
Publication of JP6174379B2 publication Critical patent/JP6174379B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a manufacturing cost.SOLUTION: The visible light transmission filter includes: an infrared light cut glass substrate; and an ultraviolet light/infrared light cut film laminating a first material and a second material different in refraction factor on one surface of this infrared light cut glass substrate on any of a plurality of layers of 24 layers to 28 layers alternately in order from the first material high in refraction factor, and is configured to include an antireflection film on the other main surface. The relation between the transmissivity of the ultraviolet light/infrared light cut film only and a wavelength is 5% or more and 50% or less in transmissivity when a wavelength λ is 700 nm, and the transmissivity is 5% or less when the wave length λ is 700 nm to 1200 nm in a state in which the ultraviolet light/infrared light cut film, the infrared light cut glass substrate, and the antireflection film are combined.

Description

本発明は、可視光を透過させる可視光透過フィルタに関する。   The present invention relates to a visible light transmission filter that transmits visible light.

従来より、例えばデジタルカメラは固体撮像素子を備え、色調整の目的で紫外光と赤外光とを遮断し、可視光線を透過させる光学フィルタが用いられている。
例えば、デジタル一眼レフカメラの場合、モアレ低減用の水晶複屈折板と可視光を主に透過させる赤外光カットガラスを組み合わせた水晶光学ローパスフィルタ(OLPF)が用いられている(例えば、特許文献1参照)。このOLPFが紫外光と赤外光とを遮断し可視光を透過させる可視光透過フィルタの役割も果たしている。
近年、デジタルカメラの画像品質に対する要求は高まる傾向にあり、固体撮像素子が有する紫外域と赤外域の光に対する感度が問題視され、赤外光カットガラスに大きく依存する透過性だけでは不十分となってきた。その課題を解決するために、水晶複屈折板に低屈折率材料と高屈折率材料とを交互に38層から60層成膜して(例えば、特許文献2参照)、紫外光と赤外光とを遮断し可視光を透過させる光学薄膜フィルタが赤外光カットフィルタと共に用いられている(例えば、特許文献3参照)。
Conventionally, for example, a digital camera includes a solid-state imaging device, and an optical filter that blocks ultraviolet light and infrared light and transmits visible light is used for color adjustment.
For example, in the case of a digital single-lens reflex camera, a quartz optical low-pass filter (OLPF) in which a quartz birefringent plate for reducing moire and an infrared light cut glass that mainly transmits visible light is used (for example, Patent Documents). 1). This OLPF also serves as a visible light transmission filter that blocks ultraviolet light and infrared light and transmits visible light.
In recent years, the demand for image quality of digital cameras has been on the rise, and the sensitivity to light in the ultraviolet and infrared regions of solid-state imaging devices has been considered a problem, and transparency that largely depends on infrared light cut glass is not sufficient. It has become. In order to solve the problem, 38 to 60 layers of a low-refractive index material and a high-refractive index material are alternately formed on a quartz birefringent plate (see, for example, Patent Document 2), and ultraviolet light and infrared light. An optical thin film filter that blocks visible light and transmits visible light is used together with an infrared light cut filter (see, for example, Patent Document 3).

特開2006−276313号公報JP 2006-276313 A 特許第3679268号公報Japanese Patent No. 3679268 特開2005−242052号公報JP 2005-242052 A

しかしながら、従来のような水晶複屈折板に低屈折率材料と高屈折率材料とを交互に38層から60層成膜するような可視光線透過フィルタは、成膜する時間が多く必要であり、また、積層させる膜の数が多いため、異物の挟み込みなどが起きやすくなっている。そのため、多くの時間をかけつつ異物の挟み込みをさせないようにするために製造コストが増大することが懸念される。
そこで、本発明は、前記課題を解決し、製造コストを低減させる可視光透過フィルタを提供することを課題とする。
However, a visible light transmission filter in which a low-refractive index material and a high-refractive index material are alternately formed on a quartz crystal birefringent plate as in the past from 38 to 60 layers requires a lot of time for film formation, Further, since there are a large number of films to be stacked, foreign objects are easily caught. Therefore, there is a concern that the manufacturing cost increases in order to prevent foreign matter from being caught while taking a lot of time.
Then, this invention makes it a subject to provide the visible light transmission filter which solves the said subject and reduces manufacturing cost.

前記課題を解決するため、本発明は、赤外光カットガラス基板と、この赤外光カットガラス基板の一方の面に屈折率が異なる第1の材料と第2の材料とを屈折率が大きい前記第1の材料から順に交互に24層から28層のいずれかの層数に積層された紫外光赤外光カット膜とを備え、他方の主面に反射防止膜を備えて構成されていることを特徴とする。   In order to solve the above problems, the present invention provides an infrared light cut glass substrate, and a first material and a second material having different refractive indexes on one surface of the infrared light cut glass substrate, which have a large refractive index. And an ultraviolet light / infrared light cut film laminated alternately in any number of layers from 24 to 28 in order from the first material, and an antireflection film on the other main surface. It is characterized by that.

また、本発明は、前記紫外光赤外光カット膜のみの透過率と波長との関係が、波長λが700nmのときに透過率が5%以上、50%以下であって、前記紫外光赤外光カット膜と前記赤外光カットガラス基板と前記反射防止膜とが組み合わさった状態で、波長λが700nm〜1200nmのときに透過率が5%以下となることを特徴とする。   In the present invention, the relationship between the transmittance and the wavelength of only the ultraviolet and infrared light cut film is such that the transmittance is 5% or more and 50% or less when the wavelength λ is 700 nm, In a state where the external light cut film, the infrared light cut glass substrate, and the antireflection film are combined, the transmittance is 5% or less when the wavelength λ is 700 nm to 1200 nm.

このような可視光透過フィルタによれば、従来よりも少ない層数となる紫外光赤外光カット膜であっても、従来と同等な透過率と波長との関係とすることができる。
また、紫外光赤外光カット膜は、従来よりも成膜する層数が少ないために赤外光のカットにばらつきが生じるものの、赤外光カットガラスを前記紫外光赤外光カット膜に設けたことで、従来の紫外光赤外光カット膜を設けた場合と同等の透過率と波長との関係とすることができる。
また、紫外光赤外光カット膜の層の数が少ないため、異物の挟み込みの発生を低減させることができ、かつ、従来よりも短時間で製造できるため製造コストを低減させることができる。
According to such a visible light transmission filter, even with an ultraviolet / infrared light cut film having a smaller number of layers than the conventional one, the relationship between the transmittance and wavelength equivalent to the conventional one can be obtained.
In addition, although the ultraviolet light infrared light cut film has fewer layers to form than before, variations in the cut of infrared light occur, but an infrared light cut glass is provided on the ultraviolet light infrared light cut film. Thus, the relationship between the transmittance and the wavelength can be made the same as when the conventional ultraviolet and infrared light cut film is provided.
In addition, since the number of layers of the ultraviolet and infrared light cut films is small, the occurrence of foreign object pinching can be reduced, and the production cost can be reduced because the production can be performed in a shorter time than conventional.

本発明の実施形態に係る可視光透過フィルタの一例を示す斜視図である。It is a perspective view which shows an example of the visible light transmission filter which concerns on embodiment of this invention. 本発明の実施形態に係る可視光透過フィルタの紫外光赤外光カット膜の一例を示す概念図である。It is a conceptual diagram which shows an example of the ultraviolet-light infrared-light cut film of the visible light transmissive filter which concerns on embodiment of this invention. 本発明の実施形態に係る可視光透過フィルタに用いる赤外光カットガラスの透過率と波長の関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the transmittance | permeability of an infrared-light cut glass used for the visible light transmission filter which concerns on embodiment of this invention, and a wavelength. 24層の場合と38層の場合の紫外光赤外光カット膜の透過率と波長の関係の一例を示すグラフである。It is a graph which shows an example of the transmittance | permeability and wavelength of the ultraviolet light infrared cut film in the case of 24 layers and the case of 38 layers. 26層の場合と38層の場合の紫外光赤外光カット膜の透過率と波長の関係の一例を示すグラフである。It is a graph which shows an example of the relationship of the transmittance | permeability and wavelength of the ultraviolet light infrared-light cut film in the case of 26 layers and the case of 38 layers. 28層の場合と38層の場合の紫外光赤外光カット膜の透過率と波長の関係の一例を示すグラフである。It is a graph which shows an example of the relationship of the transmittance | permeability and wavelength of the ultraviolet light infrared cut film in the case of 28 layers and the case of 38 layers. 紫外光赤外光カット膜の層数が24層の場合と38層の場合とにおける可視光透過フィルタの透過率と波長の関係を示すグラフである。It is a graph which shows the relationship between the transmittance | permeability of a visible light transmission filter, and a wavelength in the case where the number of layers of an ultraviolet-light infrared-light cut film is 24 layers, and 38 layers. 紫外光赤外光カット膜の層数が26層の場合と38層の場合とにおける可視光透過フィルタの透過率と波長の関係を示すグラフである。It is a graph which shows the relationship between the transmittance | permeability of a visible light transmission filter, and a wavelength in the case where the number of layers of an ultraviolet light cut film is 26 layers, and 38 layers. 紫外光赤外光カット膜の層数が28層の場合と38層の場合とにおける可視光透過フィルタの透過率と波長の関係を示すグラフである。It is a graph which shows the relationship between the transmittance | permeability of a visible light transmission filter, and a wavelength in the case where the number of layers of an ultraviolet-ray infrared-light cut film is 28 layers, and 38 layers.

次に、本発明を実施するための最良の形態(以下、「実施形態」という。)について、適宜図面を参照しながら詳細に説明する。なお、各構成要素について、状態をわかりやすくするために、誇張して図示している。   Next, the best mode for carrying out the present invention (hereinafter referred to as “embodiment”) will be described in detail with reference to the drawings as appropriate. Note that each component is exaggerated for easy understanding of the state.

図1に示すように、本発明の実施形態に係る可視光透過フィルタ10は、赤外光カットガラス基板20と紫外光赤外光カット膜30と反射防止膜40とから主に構成されている。   As shown in FIG. 1, the visible light transmission filter 10 according to the embodiment of the present invention mainly includes an infrared light cut glass substrate 20, an ultraviolet light infrared light cut film 30, and an antireflection film 40. .

赤外光カットガラス基板20(以後、単に「基板」という場合がある。)は、従来周知の赤外光カットガラスが用いられ、例えば弗リン酸系のガラスが用いられる。
また、赤外光カットガラス基板20は、例えば、光の入射面と出射面を四角形状の平面とし所定の厚みで形成されている。
この赤外光カットガラス基板20は、可視領域の光を透過し赤外領域の光を吸収する役割を果たす。近赤外領域の光を赤外光とすると、赤外光は、750nm〜2500nmの波長範囲にある。したがって、赤外光カットガラス基板20は、この単色光成分が750nm〜2500nmの範囲にある波長λの透過率を低くすることができる。
As the infrared light cut glass substrate 20 (hereinafter, simply referred to as “substrate”), conventionally known infrared light cut glass is used, and for example, fluorophosphate glass is used.
In addition, the infrared light cut glass substrate 20 is formed with a predetermined thickness, for example, with the light incident surface and the light exit surface being a rectangular flat surface.
This infrared light cut glass substrate 20 plays a role of transmitting light in the visible region and absorbing light in the infrared region. When light in the near infrared region is infrared light, the infrared light is in the wavelength range of 750 nm to 2500 nm. Therefore, the infrared light cut glass substrate 20 can reduce the transmittance of the wavelength λ in which the monochromatic light component is in the range of 750 nm to 2500 nm.

例えば、この赤外光カットガラス基板20は、図3に示すように、波長λが約500nmのときに透過率が90%を超える最大値となり、約500nm〜約750nmの範囲で透過率が低くなり、700nmで約5%となり、約750nm〜1100nmの範囲で透過率が5%を下回る状態となっている。   For example, as shown in FIG. 3, the infrared light cut glass substrate 20 has a maximum transmittance exceeding 90% when the wavelength λ is about 500 nm, and the transmittance is low in the range of about 500 nm to about 750 nm. Thus, the transmittance is about 5% at 700 nm, and the transmittance is less than 5% in the range of about 750 nm to 1100 nm.

この赤外光カットガラス基板20には、一方の主面に紫外光赤外光カット膜30が設けられ、他方の主面に反射防止膜40が設けられている。
ここで、赤外光カットガラス基板20の一方の主面を光の入射面とし、他方の主面を光の出射面とする。
This infrared light cut glass substrate 20 is provided with an ultraviolet and infrared light cut film 30 on one main surface and an antireflection film 40 on the other main surface.
Here, one main surface of the infrared light cut glass substrate 20 is a light incident surface, and the other main surface is a light emission surface.

図1及び図2に示す紫外光赤外光カット膜30は、例えば、紫外光赤外光カット膜30のみの光学特性が、波長λが700nmで透過率が50%となり、700nmより高い値〜800nmのときに透過率が10%〜55%以下であり、波長λが1050nm〜1200nmのときに透過率が40%以下となっている(例えば、図4参照)。   1 and 2, for example, the optical characteristics of the ultraviolet light / infrared light cut film 30 alone are such that the wavelength λ is 700 nm and the transmittance is 50%, which is higher than 700 nm. When the wavelength is 800 nm, the transmittance is 10% to 55% or less, and when the wavelength λ is 1050 nm to 1200 nm, the transmittance is 40% or less (for example, see FIG. 4).

紫外光赤外光カット膜30は、例えば、赤外光カットガラス基板20の一方の主面に屈折率が異なる第1の材料31と第2の材料32とを屈折率が大きい第1の材料31から順に交互に20層から29層のいずれかの層数に積層されて構成されている。   The ultraviolet light / infrared light cut film 30 is, for example, a first material having a large refractive index, the first material 31 and the second material 32 having different refractive indexes on one main surface of the infrared light cut glass substrate 20. The layers are alternately stacked in order from 31 to any number from 20 to 29 layers.

例えば、第1の材料31は、TiOが用いられ、赤外光カットガラス基板20の表面に第1層目として用いられる。以後、第1の材料31は、奇数番目にTiOが用いられる。
次に、第2の材料32は、SiOが用いられ、以後、第2層目より偶数番目に用いられる。
また、TiOは、SiOよりも屈折率が高い材質であり、SiOは、TiOよりも屈折率が低い材質である。
For example, TiO 2 is used as the first material 31 and is used as the first layer on the surface of the infrared light cut glass substrate 20. Thereafter, as the first material 31, TiO 2 is used in odd numbers.
Next, the second material 32 is made of SiO 2 and is used evenly from the second layer thereafter.
TiO 2 is a material having a higher refractive index than SiO 2 , and SiO 2 is a material having a lower refractive index than TiO 2 .

例えば、紫外光赤外光カット膜30は、24層から構成される場合、波長が約440nm〜650nmにおいて、透過率が95%以上となっており、可視光を透過した状態となっている。また、紫外光赤外光カット膜30は、波長が約900nm〜1000nmにおいて、透過率が10%以下となり、赤外光をカットした状態となっている。   For example, when the ultraviolet light / infrared light cut film 30 is composed of 24 layers, the transmittance is 95% or more at a wavelength of about 440 nm to 650 nm, and the visible light is transmitted. Further, the ultraviolet / infrared light cut film 30 has a transmittance of 10% or less at a wavelength of about 900 nm to 1000 nm, and is in a state of cutting infrared light.

このような第1の材料31と第2の材料32とは、従来周知の蒸着技術やスパッタ技術を用いて赤外光カットガラス基板20の一方の主面に設けることができる。   The first material 31 and the second material 32 can be provided on one main surface of the infrared light cut glass substrate 20 by using a conventionally known vapor deposition technique or sputtering technique.

図1に示すように、反射防止膜40は、特に限定されず、従来周知の反射防止膜を用いることができる。
例えば、赤外光カットガラス基板20の他方の主面に下地層を設ける場合、反射防止膜40は、下地層の表面から順に、TiO層と、SiOを交互に成膜して作製できる。
As shown in FIG. 1, the antireflection film 40 is not particularly limited, and a conventionally known antireflection film can be used.
For example, when a base layer is provided on the other main surface of the infrared light cut glass substrate 20, the antireflection film 40 can be formed by alternately forming a TiO 2 layer and SiO 2 in order from the surface of the base layer. .

また、下地層の表面から順に、Al、ZrO、MgFを成膜しても作製できる。なお、反射防止膜は前記した蒸着材料、構成以外で作製してもよい。 Alternatively, Al 2 O 3 , ZrO 2 , and MgF 2 can be formed in order from the surface of the underlayer. In addition, you may produce an antireflection film other than an above-described vapor deposition material and structure.

このような本発明の実施形態に係る可視光透過フィルタ10は、紫外光赤外光カット膜30のみの透過率では、十分な赤外光のカットができていないが、このような紫外光赤外光カット膜30であっても、赤外光カットガラス基板20の透過率の影響を受けるため、波長が750nm〜1200nmの範囲において透過率を5%以下にすることができる。つまり、可視光を透過させ紫外光及び赤外光をカットすることができる。   The visible light transmission filter 10 according to the embodiment of the present invention cannot cut infrared light sufficiently with the transmittance of the ultraviolet light / infrared light cut film 30 alone. Even the external light cut film 30 is affected by the transmittance of the infrared light cut glass substrate 20, and therefore the transmittance can be 5% or less in the wavelength range of 750 nm to 1200 nm. That is, visible light can be transmitted and ultraviolet light and infrared light can be cut.

また、このように、本発明の実施形態に係る可視光透過フィルタを構成したので、従来よりも少ない層数となる紫外光赤外光カット膜であっても、従来と同等な可視光の透過率と赤外光の透過率とすることができる。
また、紫外光赤外光カット膜は、従来よりも成膜する層数が少ないために光学特性が劣るものの、赤外光カットガラスに前記紫外光赤外光カット膜を設けたことで、従来の紫外光赤外光カット膜を設けた場合と同等の光学特性を得ることができる。
また、従来よりも成膜する層数が少ないために、製造コストを低くすることができる。
In addition, since the visible light transmission filter according to the embodiment of the present invention is configured as described above, even if it is an ultraviolet ray infrared light cut film having a smaller number of layers than the conventional one, visible light transmission equivalent to the conventional one is possible. Rate and infrared light transmittance.
In addition, although the ultraviolet light infrared light cut film has inferior optical characteristics because the number of layers to be formed is smaller than that of the conventional film, the ultraviolet light infrared light cut film is provided on the infrared light cut glass. Optical characteristics equivalent to the case of providing an ultraviolet light / infrared light cut film can be obtained.
In addition, since the number of layers to be formed is smaller than the conventional number, the manufacturing cost can be reduced.

次に、本発明の実施例について説明する。
表1に示すように、設計波長を1000nmとして、紫外光赤外光カット膜の層数が24層の場合を実施例1とし、26層の場合を実施例2とし、28層の場合を実施例3とし、38層の場合を比較例1とする。
このとき、いずれも、基板側の第1層目が第1の材料31としてTiO(表中「TIO2」)が用いられ、第2層目が第2の材料32としてSiO(表中「SIO2」)が用いられている。

Figure 2014235258
Next, examples of the present invention will be described.
As shown in Table 1, the case where the design wavelength is 1000 nm and the number of layers of the ultraviolet light cut film is 24 is referred to as Example 1, the case of 26 layers is referred to as Example 2, and the case of 28 layers is performed. Example 3 is used, and the case of 38 layers is referred to as Comparative Example 1.
In this case, both, the first layer of the substrate side TiO 2 (in the table "TIO2") is used as the first material 31, a second layer is SiO 2 (in Table as the second material 32 ' SIO2 ") is used.
Figure 2014235258

(比較例1)
まず、比較例について説明する。
比較例1は、図3に示すような赤外光カットガラスの一方の主面に38層からなる紫外光赤外光カット膜が設けられ、他方の主面に反射防止膜が設けられて構成されている可視光透過フィルタであり、通常の光デバイスとして使用することができる。
この比較例1は、表1に示すように、紫外光赤外光カット膜が各層について所定の物理厚さ(nm)及び光学厚さ(nm)の膜厚となっている。
このようにして紫外光赤外光カット膜が構成された可視光透過フィルタは、図4に示すように、波長が400nm〜450nmの範囲で透過率が急勾配で100%に近づき、650nm〜700nm未満の範囲で透過率が0%に近づく急勾配となる透過率の変化となる。このような波長と透過率の関係を示すグラフ(図4参照)から、比較例1の38層の紫外光赤外光カット膜は、波長が440nm〜650nm未満の範囲で可視光を95%以上透過させ、700nmで透過率が5%以下となり、700nmより高い値〜1150nmの範囲で透過率が10%以下となって赤外光をカットした状態となっているのが確認できる。
(Comparative Example 1)
First, a comparative example will be described.
Comparative Example 1 has a configuration in which an ultraviolet light infrared cut film comprising 38 layers is provided on one main surface of an infrared light cut glass as shown in FIG. 3, and an antireflection film is provided on the other main surface. Visible light transmission filter, which can be used as a normal optical device.
In Comparative Example 1, as shown in Table 1, the ultraviolet light / infrared light cut film has a predetermined physical thickness (nm) and optical thickness (nm) for each layer.
As shown in FIG. 4, the visible light transmission filter having the ultraviolet light / infrared light cut film thus formed has a steep slope with a transmittance close to 100% within a wavelength range of 400 nm to 450 nm, and 650 nm to 700 nm. Within a range below, the transmittance changes steeply toward 0%. From the graph showing the relationship between the wavelength and the transmittance (see FIG. 4), the 38-layer ultraviolet / infrared light cut film of Comparative Example 1 has a visible light of 95% or more in the wavelength range of 440 nm to less than 650 nm. It is confirmed that the transmittance is 5% or less at 700 nm and the infrared light is cut in a range from a value higher than 700 nm to 1150 nm with a transmittance of 10% or less.

このような比較例1は、図7に示すように、赤外光カットガラスに38層の紫外光赤外光カット膜と反射防止膜とを設けた状態で、波長が440nm〜550nmの範囲において透過率が90%以上となっており、可視光を透過させているのが確認できる。また、波長が700nm〜1200nmの範囲において、透過率が5%以下となっており、赤外光をカットした状態となっていることも確認できる。   In Comparative Example 1, as shown in FIG. 7, the wavelength is in the range of 440 nm to 550 nm with 38 layers of the ultraviolet light infrared light cut film and the antireflection film provided on the infrared light cut glass. The transmittance is 90% or more, and it can be confirmed that visible light is transmitted. In addition, in the wavelength range of 700 nm to 1200 nm, the transmittance is 5% or less, and it can be confirmed that the infrared light is cut off.

(実施例1)
実施例1は、表1に示すような赤外光カットガラスの一方の主面に24層からなる紫外光赤外光カット膜が設けられ、他方の主面に反射防止膜が設けられて構成されている可視光透過フィルタである。
この実施例1は、表1に示すように、紫外光赤外光カット膜が各層について所定の物理厚さ(nm)及び光学厚さ(nm)の膜厚となっている。
このようにして紫外光赤外光カット膜が構成された可視光透過フィルタは、図4に示すように、波長が400nm〜450nmの範囲で透過率が急勾配で100%に近づき、約600nm〜850nmの範囲で透過率が0%に近づく勾配となる透過率の変化となる。このような波長と透過率の関係を示すグラフ(図4参照)から、実施例1の24層の紫外光赤外光カット膜は、波長が440nm〜約600nmの範囲で可視光を95%以上透過させ、波長が700nmで透過率が50%となり、850〜1000nmの範囲で透過率が10%以下となって赤外光をカットした状態となっているのが確認できる。
Example 1
Example 1 is configured such that an infrared light cut film comprising 24 layers is provided on one main surface of an infrared light cut glass as shown in Table 1, and an antireflection film is provided on the other main surface. It is a visible light transmission filter.
In Example 1, as shown in Table 1, the ultraviolet light / infrared light cut film has a predetermined physical thickness (nm) and optical thickness (nm) for each layer.
As shown in FIG. 4, the visible light transmission filter having the ultraviolet light / infrared light cut film thus formed has a steep slope with a transmittance close to 100% in a wavelength range of 400 nm to 450 nm, and is about 600 nm to In the range of 850 nm, the transmittance changes with a gradient that approaches 0%. From the graph showing the relationship between the wavelength and the transmittance (see FIG. 4), the 24-layer ultraviolet / infrared light cut film of Example 1 has a visible light of 95% or more in the wavelength range of 440 nm to about 600 nm. It can be confirmed that the transmittance is 50% at a wavelength of 700 nm, the transmittance is 10% or less in the range of 850 to 1000 nm, and infrared light is cut off.

このような実施例1は、図7に示すように、赤外光カットガラスに24層の紫外光赤外光カット膜と反射防止膜とを設けた状態で、波長が440nm〜550nmの範囲において透過率が90%以上となっており、可視光を透過させているのが確認できる。また、波長が700nm〜1200nmの範囲において、透過率が5%以下となっており、赤外光をカットした状態となっていることも確認できる。
つまり、700nm前後での透過率の値が高くなっているものの、比較例1と同等の透過率となっている。これにより、実施例1の可視光透過フィルタは、通常の光デバイスとして使用することができる。
In Example 1, as shown in FIG. 7, in a state where the wavelength is in the range of 440 nm to 550 nm with the infrared light cut glass provided with 24 layers of the ultraviolet light infrared light cut film and the antireflection film. The transmittance is 90% or more, and it can be confirmed that visible light is transmitted. In addition, in the wavelength range of 700 nm to 1200 nm, the transmittance is 5% or less, and it can be confirmed that the infrared light is cut off.
That is, although the transmittance value at around 700 nm is high, the transmittance is the same as that of Comparative Example 1. Thereby, the visible light transmission filter of Example 1 can be used as a normal optical device.

(実施例2)
実施例2は、表1に示すような赤外光カットガラスの一方の主面に26層からなる紫外光赤外光カット膜が設けられ、他方の主面に反射防止膜が設けられて構成されている可視光透過フィルタである。
この実施例2は、表1に示すように、紫外光赤外光カット膜が各層について所定の物理厚さ(nm)及び光学厚さ(nm)の膜厚となっている。
このようにして紫外光赤外光カット膜が構成された可視光透過フィルタは、図5に示すように、波長が400nm〜450nmの範囲で透過率が急勾配で100%に近づき、約650nm〜750nmの範囲で透過率が0%に近づく急勾配となる透過率の変化となる。このような波長と透過率の関係を示すグラフ(図5参照)から、実施例2の26層の紫外光赤外光カット膜は、波長が440nm〜約650nmの範囲で可視光を95%以上透過させ、波長が700nmで透過率が15%以下となり、750nm以降の透過率が不規則な状態のグラフとなることが確認できる。
(Example 2)
Example 2 is configured such that an infrared light cut film composed of 26 layers is provided on one main surface of an infrared light cut glass as shown in Table 1, and an antireflection film is provided on the other main surface. It is a visible light transmission filter.
In Example 2, as shown in Table 1, the ultraviolet and infrared light cut film has a predetermined physical thickness (nm) and optical thickness (nm) for each layer.
As shown in FIG. 5, the visible light transmission filter in which the ultraviolet light and infrared light cut film is configured in this manner has a steep slope with a transmittance close to 100% in a wavelength range of 400 nm to 450 nm, and is about 650 nm to In the range of 750 nm, the transmittance changes steeply approaching 0%. From the graph showing the relationship between the wavelength and the transmittance (see FIG. 5), the 26-layer ultraviolet / infrared light cut film of Example 2 has a visible light of 95% or more in the wavelength range of 440 nm to about 650 nm. It can be confirmed that the transmittance is 15% or less at a wavelength of 700 nm and the transmittance after 750 nm is irregular.

このような実施例2は、図8に示すように、赤外光カットガラスに26層の紫外光赤外光カット膜と反射防止膜とを設けた状態で、波長が440nm〜550nmの範囲において透過率が90%以上となっており、可視光を透過させているのが確認できる。また、波長が700nm〜1200nmの範囲において、透過率が5%以下となっており、赤外光をカットした状態となっていることも確認できる。
つまり、700nm前後での透過率の値が高くなっているものの、比較例1と同等の透過率となっている。これにより、実施例2の可視光透過フィルタは、通常の光デバイスとして使用することができる。
As shown in FIG. 8, Example 2 has a wavelength in the range of 440 nm to 550 nm with 26 layers of ultraviolet light infrared light cut film and antireflection film provided on the infrared light cut glass. The transmittance is 90% or more, and it can be confirmed that visible light is transmitted. In addition, in the wavelength range of 700 nm to 1200 nm, the transmittance is 5% or less, and it can be confirmed that the infrared light is cut off.
That is, although the transmittance value at around 700 nm is high, the transmittance is the same as that of Comparative Example 1. Thereby, the visible light transmission filter of Example 2 can be used as a normal optical device.

(実施例3)
実施例3は、表1に示すような赤外光カットガラスの一方の主面に28層からなる紫外光赤外光カット膜が設けられ、他方の主面に反射防止膜が設けられて構成されている可視光透過フィルタである。
この実施例3は、表1に示すように、紫外光赤外光カット膜が各層について所定の物理厚さ(nm)及び光学厚さ(nm)の膜厚となっている。
このようにして紫外光赤外光カット膜が構成された可視光透過フィルタは、図6に示すように、波長が400nm〜450nmの範囲で透過率が急勾配で100%に近づき、約650nm〜750nmの範囲で透過率が0%に近づく急勾配となる透過率の変化となる。このような波長と透過率の関係を示すグラフ(図6参照)から、実施例3の28層の紫外光赤外光カット膜は、波長が440nm〜約650nmの範囲で可視光を95%以上透過させ、波長が700nmで透過率が10%以下となり、750nm以降の透過率が不規則な状態のグラフとなることが確認できる。
Example 3
Example 3 has a configuration in which an ultraviolet light infrared light cut film composed of 28 layers is provided on one main surface of an infrared light cut glass as shown in Table 1, and an antireflection film is provided on the other main surface. It is a visible light transmission filter.
In Example 3, as shown in Table 1, the ultraviolet light / infrared light cut film has a predetermined physical thickness (nm) and optical thickness (nm) for each layer.
As shown in FIG. 6, the visible light transmission filter in which the ultraviolet light and infrared light cut film is configured as described above has a steep slope with a transmittance close to 100% in a wavelength range of 400 nm to 450 nm. In the range of 750 nm, the transmittance changes steeply approaching 0%. From the graph showing the relationship between the wavelength and the transmittance (see FIG. 6), the 28-layer ultraviolet / infrared light cut film of Example 3 has 95% or more visible light in the wavelength range of 440 nm to about 650 nm. It can be confirmed that the transmittance is 10% or less at a wavelength of 700 nm and the transmittance after 750 nm is irregular.

このような実施例3は、図9に示すように、赤外光カットガラスに28層の紫外光赤外光カット膜と反射防止膜とを設けた状態で、波長が440nm〜550nmの範囲において透過率が90%以上となっており、可視光を透過させているのが確認できる。また、波長が700nm〜1200nmの範囲において、透過率が5%以下となっており、赤外光をカットした状態となっていることも確認できる。
つまり、比較例1と同等の透過率となっている。これにより、実施例3の可視光透過フィルタは、通常の光デバイスとして使用することができる。
As shown in FIG. 9, Example 3 has a wavelength in the range of 440 nm to 550 nm with 28 layers of ultraviolet light infrared light cut film and antireflection film provided on the infrared light cut glass. The transmittance is 90% or more, and it can be confirmed that visible light is transmitted. In addition, in the wavelength range of 700 nm to 1200 nm, the transmittance is 5% or less, and it can be confirmed that the infrared light is cut off.
That is, the transmittance is the same as that of Comparative Example 1. Thereby, the visible light transmission filter of Example 3 can be used as a normal optical device.

10 紫外光赤外光カットフィルタ
20 赤外光カットガラス基板
30 紫外光赤外光カット膜
31 第一の材料
32 第二の材料
40 反射防止膜
10 UV light infrared light cut filter 20 Infrared light cut glass substrate 30 UV light infrared light cut film 31 First material 32 Second material 40 Antireflection film

Claims (2)

赤外光カットガラス基板と、
この赤外光カットガラス基板の一方の面に屈折率が異なる第1の材料と第2の材料とを屈折率が大きい前記第1の材料から順に交互に24層から28層のいずれかの層数に積層された紫外光赤外光カット膜とを備え、
他方の主面に反射防止膜を備えて構成されていることを特徴とする可視光透過フィルタ。
An infrared light cut glass substrate;
The first material and the second material having different refractive indexes on one surface of the infrared light cut glass substrate are alternately arranged in any order from the first material having the higher refractive index to the 24th layer to the 28th layer. With ultraviolet and infrared light cut films stacked in number,
A visible light transmission filter comprising an antireflection film on the other main surface.
前記紫外光赤外光カット膜のみの透過率と波長との関係が、波長λが700nmのときに透過率が5%以上、50%以下であって、
前記紫外光赤外光カット膜と前記赤外光カットガラス基板と前記反射防止膜とが組み合わさった状態で、
波長λが700nm〜1200nmのときに透過率が5%以下となることを特徴とする請求項1に記載の可視光透過フィルタ。
When the wavelength λ is 700 nm, the transmittance is 5% or more and 50% or less when the wavelength λ is 700 nm.
In a state where the ultraviolet light infrared light cut film, the infrared light cut glass substrate and the antireflection film are combined,
The visible light transmission filter according to claim 1, wherein the transmittance is 5% or less when the wavelength λ is 700 nm to 1200 nm.
JP2013115738A 2013-05-31 2013-05-31 Visible light transmission filter Expired - Fee Related JP6174379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013115738A JP6174379B2 (en) 2013-05-31 2013-05-31 Visible light transmission filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013115738A JP6174379B2 (en) 2013-05-31 2013-05-31 Visible light transmission filter

Publications (2)

Publication Number Publication Date
JP2014235258A true JP2014235258A (en) 2014-12-15
JP6174379B2 JP6174379B2 (en) 2017-08-02

Family

ID=52138026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013115738A Expired - Fee Related JP6174379B2 (en) 2013-05-31 2013-05-31 Visible light transmission filter

Country Status (1)

Country Link
JP (1) JP6174379B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016171219A1 (en) * 2015-04-23 2016-10-27 旭硝子株式会社 Optical filter and imaging device
CN108490585A (en) * 2018-05-22 2018-09-04 江西联创电子有限公司 Glass moulds hybrid lens
WO2019189072A1 (en) * 2018-03-26 2019-10-03 Jsr株式会社 Optical filter and use thereof
CN114114495A (en) * 2021-01-28 2022-03-01 广州市佳禾光电科技有限公司 Three-way optical filter and biological identification system thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02213803A (en) * 1989-02-15 1990-08-24 Toshiba Glass Co Ltd Near infrared ray cutting filter
JP2004309934A (en) * 2003-04-10 2004-11-04 Elmo Co Ltd Infrared cut filter and its manufacturing method
JP2006220873A (en) * 2005-02-09 2006-08-24 Olympus Corp Optical filter and imaging device
JP2013068688A (en) * 2011-09-21 2013-04-18 Asahi Glass Co Ltd Optical filter, and imaging device using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02213803A (en) * 1989-02-15 1990-08-24 Toshiba Glass Co Ltd Near infrared ray cutting filter
JP2004309934A (en) * 2003-04-10 2004-11-04 Elmo Co Ltd Infrared cut filter and its manufacturing method
JP2006220873A (en) * 2005-02-09 2006-08-24 Olympus Corp Optical filter and imaging device
JP2013068688A (en) * 2011-09-21 2013-04-18 Asahi Glass Co Ltd Optical filter, and imaging device using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016171219A1 (en) * 2015-04-23 2016-10-27 旭硝子株式会社 Optical filter and imaging device
JPWO2016171219A1 (en) * 2015-04-23 2017-06-15 旭硝子株式会社 Optical filter and imaging device
US10228500B2 (en) 2015-04-23 2019-03-12 AGC Inc. Optical filter and imaging device
WO2019189072A1 (en) * 2018-03-26 2019-10-03 Jsr株式会社 Optical filter and use thereof
JPWO2019189072A1 (en) * 2018-03-26 2021-04-01 Jsr株式会社 Optical filters and their uses
JP7143881B2 (en) 2018-03-26 2022-09-29 Jsr株式会社 Optical filter and its use
CN108490585A (en) * 2018-05-22 2018-09-04 江西联创电子有限公司 Glass moulds hybrid lens
CN114114495A (en) * 2021-01-28 2022-03-01 广州市佳禾光电科技有限公司 Three-way optical filter and biological identification system thereof
CN114114495B (en) * 2021-01-28 2023-10-24 广州市佳禾光电科技有限公司 Tee bend light filter and biological identification system thereof

Also Published As

Publication number Publication date
JP6174379B2 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
JP6979730B2 (en) Optical filter and infrared image sensing system including the optical filter
JP6034785B2 (en) Optical member
JP6051710B2 (en) Antireflection film, optical member using the same, and optical instrument
JPWO2014104370A1 (en) Near-infrared cut filter
TW201510581A (en) Infrared filter
WO2018054140A1 (en) Display device
JP6383980B2 (en) Near-infrared cut filter
JP6174379B2 (en) Visible light transmission filter
JP2014122961A (en) Optical element having antireflection film, optical system and optical equipment
JP2017040909A (en) Optical filter and optical system having the same, imaging apparatus, and lens unit
JP2008070828A (en) Infrared ray shielding filter
JP2015227963A (en) Optical filter and manufacturing method therefor
JP2010032867A (en) Infrared ray cutoff filter
JP2015022187A (en) Antireflection film, optical member using the same, and optical equipment
JP6269236B2 (en) Bandpass filter
US11422295B2 (en) Image capture device, optical filter film, and method for manufacturing optical filter film
TWI585471B (en) Filter and lens module having same
JP5287362B2 (en) Optical filter and imaging system
JP2015011319A (en) Near-infrared cut filter
JP5126089B2 (en) Ray cut filter
US20120212809A1 (en) Infrared Cut Filter
JP2009037180A (en) Vacuum deposition method of multi-layer thin film for plastic optical component and photographing element having the plastic optical component
JP6458797B2 (en) Infrared cut filter
JP6247033B2 (en) IR cut filter
JP2015184628A (en) edge filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170327

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170706

R150 Certificate of patent or registration of utility model

Ref document number: 6174379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees