JP2014235089A - High temperature strength estimation method and high temperature strength estimation device - Google Patents

High temperature strength estimation method and high temperature strength estimation device Download PDF

Info

Publication number
JP2014235089A
JP2014235089A JP2013117131A JP2013117131A JP2014235089A JP 2014235089 A JP2014235089 A JP 2014235089A JP 2013117131 A JP2013117131 A JP 2013117131A JP 2013117131 A JP2013117131 A JP 2013117131A JP 2014235089 A JP2014235089 A JP 2014235089A
Authority
JP
Japan
Prior art keywords
high temperature
temperature strength
strength estimation
content
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013117131A
Other languages
Japanese (ja)
Other versions
JP5907120B2 (en
Inventor
智裕 木下
Tomohiro Kinoshita
智裕 木下
行夫 村上
Yukio Murakami
行夫 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013117131A priority Critical patent/JP5907120B2/en
Publication of JP2014235089A publication Critical patent/JP2014235089A/en
Application granted granted Critical
Publication of JP5907120B2 publication Critical patent/JP5907120B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Building Environments (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily estimate high temperature strength based on information readily obtained by component composition analysis and a product inspection table without depending on a high temperature tensile test.SOLUTION: A data reading part 11 reads a test value of high temperature strength and a content of specific component element on a test piece on which a high temperature tensile test and component composition analysis have been performed in the past, and the content of the specific component element on an object product. A high temperature estimation part 12 calculates an estimated value of high temperature strength of the object product by performing a multiple regression analysis based on the information read by the data reading part 11. Thereby, the high temperature strength can be easily estimated based on the information readily obtained by the component composition analysis and the product inspection table not depending on the high temperature tensile test.

Description

本発明は、建築構造躯体に使用される鋼材の耐火性能の指標である高温状態での鋼材の強度を推定する高温強度推定方法および高温強度推定装置に関する。   The present invention relates to a high temperature strength estimation method and a high temperature strength estimation apparatus for estimating the strength of a steel material in a high temperature state, which is an index of the fire resistance performance of the steel material used for a building structure.

建築構造物に対しては、建築地域の防火区分や建設規模により、火災時には一定時間倒壊しないよう、構造躯体の耐火性能の確保が求められる。鉄骨構造物においては、その耐火性能を確保するために、例えば、柱や梁の表面にロックウールなどの耐火被覆材が施工される。また、立体駐車場などのように開口部が多い鉄骨構造物である場合には、特許文献1に記載されているように、雰囲気温度600℃における1%歪時耐力(1%有効耐力)が常温降伏点の規格下限値の3分の2以上である強度が保障された耐火鋼が適用される。   For building structures, it is required to ensure the fire resistance of the structural frame so that it does not collapse for a certain time in the event of a fire, depending on the fire prevention classification and construction scale of the building area. In a steel structure, in order to ensure the fire resistance performance, for example, a fireproof covering material such as rock wool is applied to the surfaces of columns and beams. In addition, in the case of a steel structure having many openings such as a multi-story parking lot, as described in Patent Document 1, the 1% strain proof stress (1% effective proof stress) at an ambient temperature of 600 ° C. A refractory steel with a strength that is at least two-thirds of the standard lower limit of the room temperature yield point is applied.

鋼材が所定の耐火性能を確保できるかを検証する場合に重要な指標の一つとして、鋼材の高温状態での強度(高温強度)がある。この高温強度は、通常、JISに規格されている高温引張試験により求められる。なお、非特許文献1では、引張強さ490N/mm級以下の建築構造用鋼材について、試験温度と1%歪時耐力との相関関係が統計的に検討されている。また、非特許文献2には、鋼材の設計基準強度F(N/mm)を用いて、雰囲気温度T℃における1%歪時耐力(以下、YS@Tと表記する)を次式(1)により設計用強度を算出することができると記載されている。 One of the important indicators for verifying whether a steel material can ensure a predetermined fire resistance is the strength (high temperature strength) of the steel material at a high temperature. This high temperature strength is usually determined by a high temperature tensile test standardized by JIS. In Non-Patent Document 1, the correlation between the test temperature and the yield strength at 1% strain is statistically examined for building structural steels having a tensile strength of 490 N / mm grade 2 or less. In Non-Patent Document 2, a 1% strain strength at an ambient temperature T ° C. (hereinafter referred to as YS @ T) is expressed by the following formula (1) using a design reference strength F (N / mm 2 ) of a steel material. ) That the design strength can be calculated.

Figure 2014235089
Figure 2014235089

特開平2−85336号公報JP-A-2-85336

日本建築学会 「構造材料の耐火性ガイドブック」125〜130頁、2009年3月Architectural Institute of Japan "Fireproof Guidebook for Structural Materials" pages 125-130, March 2009 日本建築センター 「耐火性能検証法の解説及び計算例とその解説」188〜189頁、2001年3月Japan Architectural Center “Explanation of Fireproof Performance Verification Methods and Calculation Examples and Their Explanations”, pages 188-189, March 2001

しかしながら、非特許文献1,2に記載の技術の適用範囲は引張強さ490N/mm級以下の鋼材に限定され、熱加工制御が施されたTMCP鋼については検討されていない。また、非特許文献2に記載された式(1)は、設計上の観点からより安全な評価を与えられるように配慮して規定されたものであって、実験結果との差異が大きい。 However, the scope of application of the techniques described in Non-Patent Documents 1 and 2 is limited to steel materials with a tensile strength of 490 N / mm grade 2 or less, and TMCP steel subjected to thermal processing control has not been studied. Further, Equation (1) described in Non-Patent Document 2 is defined in consideration of giving a safer evaluation from the viewpoint of design, and has a large difference from the experimental result.

一方、鉄骨構造物の耐火設計を合理的かつ正確に行うためには、使用する鋼材の高温強度特性を正確に把握する必要がある。しかし、耐火鋼以外の建築構造用鋼材については、高温強度は保障されておらず製品検査証への記載もないため、使用者が個別に高温引張試験を行う必要がある。この高温引張試験を実施するには、専用の加熱炉付きの試験装置が必要であるため、この高温引張試験を実施できる試験機関は限られ、コストがかさむ。そのうえ、指定の温度での試験片の均熱に時間がかかるため、高温引張試験には長時間を要する。   On the other hand, in order to reasonably and accurately perform fireproof design of steel structures, it is necessary to accurately grasp the high-temperature strength characteristics of the steel materials used. However, for steels for building structures other than refractory steel, the high temperature strength is not guaranteed and there is no description on the product inspection certificate, so the user needs to perform a high temperature tensile test individually. In order to perform this high-temperature tensile test, a test apparatus with a dedicated heating furnace is required, so that the number of test institutions that can perform this high-temperature tensile test is limited and the cost is increased. In addition, since it takes time to soak the specimen at the specified temperature, the high temperature tensile test takes a long time.

また、冶金学的に鋼材の各成分元素が高温強度に及ぼす影響について検討されており、Mo,Nb,V,Ti,Wなどの成分元素が鋼材の高温強度の向上に有効であることが知られている。しかしながら、とくにTiなどは、もし含有されていたとしても製品検査証に記載されない場合が多く、使用者が容易に入手できる情報とはいい難い。さらに、鋼材の製造時の仕上げ温度も高温強度に影響を及ぼすことが知られている。しかし、鋼材の製造時仕上げ温度も、製造者以外が把握することは困難な情報である。   Also, metallurgical studies have been conducted on the effects of each component element of steel on high temperature strength, and it is known that component elements such as Mo, Nb, V, Ti, and W are effective in improving the high temperature strength of steel. It has been. However, especially Ti, if contained, is often not described in the product inspection certificate, and it is difficult to say that the information can be easily obtained by the user. Furthermore, it is known that the finishing temperature at the time of manufacturing the steel material also affects the high temperature strength. However, it is difficult for anyone other than the manufacturer to grasp the finishing temperature at the time of manufacturing the steel material.

本発明は、上記に鑑みてなされたものであって、高温引張試験によらず、成分組成分析や製品検査表により容易に得られる情報に基づいて簡易に高温強度を推定できる高温強度推定方法および高温強度推定装置を提供することを目的とする。   The present invention has been made in view of the above, and is not based on a high-temperature tensile test, and a high-temperature strength estimation method capable of easily estimating a high-temperature strength based on information easily obtained by component composition analysis or a product inspection table, and An object is to provide a high-temperature strength estimation apparatus.

上述した課題を解決し、目的を達成するために、本発明に係る高温強度推定方法は、建築構造用鋼材の高温強度を推定する高温強度推定方法であって、過去に高温引張試験および成分組成分析が実施された試験片についての高温強度の試験値と所定の成分元素の含有量と、対象製品についての所定の成分元素の含有量とを読み込む読込ステップと、前記読込ステップで読み込まれた情報に基づいて重回帰分析を行うことにより、該対象製品の高温強度の推定値を算出する高温強度推定ステップと、を含むことを特徴とする。   In order to solve the above-described problems and achieve the object, the high-temperature strength estimation method according to the present invention is a high-temperature strength estimation method for estimating the high-temperature strength of a steel material for building structures. A reading step for reading the test value of the high-temperature strength, the content of the predetermined component element for the test piece subjected to the analysis, and the content of the predetermined component element for the target product, and the information read in the reading step A high-temperature strength estimation step of calculating an estimated value of the high-temperature strength of the target product by performing multiple regression analysis based on

また、本発明に係る高温強度推定方法は、上記発明において、前記読込ステップで読み込まれる試験片と対象製品との成分元素の含有量には、Si,Mn,Nb,Mo,V,Crの含有量を含み、前記高温強度推定ステップで推定される高温強度は、雰囲気温度600℃における1%歪時耐力であることを特徴とする。   In the high temperature strength estimation method according to the present invention, in the above invention, the content of the component elements of the test piece and the target product read in the reading step includes Si, Mn, Nb, Mo, V, and Cr. The high temperature strength estimated in the high temperature strength estimation step is 1% proof stress at an atmospheric temperature of 600 ° C.

また、本発明に係る高温強度推定方法は、上記発明において、前記高温強度推定ステップは、前記NbおよびMoの含有量に代えて次式(2)により算出される[Nb]と[Mo]とのうちの少なくとも1つに基づいて重回帰分析を行うことを特徴とする。

Figure 2014235089
Further, in the high temperature strength estimation method according to the present invention, in the above invention, the high temperature strength estimation step calculates [Nb] * and [Mo] calculated by the following equation (2) instead of the contents of Nb and Mo: * Multiple regression analysis is performed based on at least one of * .
Figure 2014235089

ここで、u=min(x,y)とは、xとyのうちの小さい方の値をuとすることを意味し、w=max(x,y)とは、xとyのうちの大きい方の値をwとすることを意味する。従って、上記式(2)の上段は、Nbの含有量[Nb]と0.025のうちの小さい値を[Nb]とする、ということを示している。また、上記式(2)の下段は、Cの含有量[C]からNbの含有量[Nb]を引いた値と0(ゼロ)のうちの大きい値を選択し、その選択した値を2倍した値とMoの含有量[Mo]とを比較し、小さい値を[Mo]とする、ということを示している。さらに、各成分元素の含有量は、鋼材の全組成の合計を100質量%とした場合に質量%で示される値である。 Here, u = min (x, y) means that the smaller value of x and y is u, and w = max (x, y) means that of x and y This means that the larger value is w. Therefore, the upper part of the above formula (2) indicates that the smaller value of the Nb content [Nb] and 0.025 is [Nb] * . In the lower part of the above formula (2), the value obtained by subtracting the content [Nb] of Nb from the content [C] of C and the larger value of 0 (zero) is selected, and the selected value is 2 The doubled value is compared with the Mo content [Mo], and the smaller value is indicated as [Mo] * . Furthermore, content of each component element is a value shown by mass% when the total of all the composition of steel materials is 100 mass%.

また、本発明に係る高温強度推定方法は、上記発明において、前記高温強度推定ステップは、次式(3)により高温強度を推定することを特徴とする。

Figure 2014235089
The high temperature strength estimation method according to the present invention is characterized in that, in the above invention, the high temperature strength estimation step estimates the high temperature strength by the following equation (3).
Figure 2014235089

また、本発明に係る高温強度推定装置は、建築構造用鋼材の高温強度を推定する高温強度推定装置であって、過去に高温引張試験および成分組成分析が実施された試験片についての高温強度の試験値と所定の成分元素の含有量と、対象製品についての所定の成分元素の含有量とを読み込む読込手段と、前記読込手段により読み込まれた情報に基づいて重回帰分析を行うことにより、該対象製品の高温強度の推定値を算出する高温強度推定手段と、を備えることを特徴とする。   The high-temperature strength estimation apparatus according to the present invention is a high-temperature strength estimation apparatus that estimates the high-temperature strength of steel for building structures, and the high-temperature strength of a test piece that has been subjected to a high-temperature tensile test and component composition analysis in the past. Reading means for reading the test value, the content of the predetermined component element, and the content of the predetermined component element for the target product, and performing multiple regression analysis based on the information read by the reading means, And high temperature strength estimating means for calculating an estimated value of the high temperature strength of the target product.

本発明によれば、高温引張試験によらず、成分組成分析や製品検査表により容易に得られる情報に基づいて簡易に高温強度を推定することができる。   According to the present invention, high temperature strength can be easily estimated based on information easily obtained by component composition analysis or product inspection table, regardless of the high temperature tensile test.

図1は、本発明の一実施形態に係る高温強度推定装置の概略構成を示す模式図である。FIG. 1 is a schematic diagram showing a schematic configuration of a high-temperature strength estimating apparatus according to an embodiment of the present invention. 図2は、本実施の形態の高温強度推定処理手順を示すフローチャートである。FIG. 2 is a flowchart showing the high-temperature strength estimation processing procedure of the present embodiment. 図3は、本実施の形態の高温強度推定処理により推定された高温強度の推定値と高温引張試験結果の試験値との関係を例示した図である。FIG. 3 is a diagram illustrating the relationship between the estimated value of the high temperature strength estimated by the high temperature strength estimation process of the present embodiment and the test value of the high temperature tensile test result. 図4は、本実施の形態の高温強度推定処理により推定された高温強度の推定値と高温引張試験結果の試験値との関係を例示した図である。FIG. 4 is a diagram illustrating the relationship between the estimated value of the high temperature strength estimated by the high temperature strength estimation processing of the present embodiment and the test value of the high temperature tensile test result. 図5は、本実施の形態の高温強度推定処理により推定された高温強度の推定値と高温引張試験結果の試験値との関係を例示した図である。FIG. 5 is a diagram exemplifying the relationship between the estimated value of the high temperature strength estimated by the high temperature strength estimation process of the present embodiment and the test value of the high temperature tensile test result. 図6は、本実施の形態の高温強度推定処理により推定された高温強度の推定値と高温引張試験結果の試験値との関係を例示した図である。FIG. 6 is a diagram illustrating the relationship between the estimated value of the high temperature strength estimated by the high temperature strength estimation process of the present embodiment and the test value of the high temperature tensile test result.

以下、図面を参照して、本発明の一実施形態である高温強度推定装置および高温強度推定処理を詳細に説明する。なお、この実施の形態により本発明が限定されるものではない。また、図面の記載において、同一部分には同一の符号を付して示している。   Hereinafter, a high temperature strength estimation apparatus and a high temperature strength estimation process according to an embodiment of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by this embodiment. Moreover, in description of drawing, the same code | symbol is attached | subjected and shown to the same part.

まず、図1を参照して、本発明の一実施形態である高温強度推定装置の概略構成について説明する。図1に示すように、本発明の一実施形態である高温強度推定装置1は、ワークステーションやパーソナルコンピュータなどの情報処理装置によって構成され、電源スイッチおよび入力キーなどの入力デバイスである入力装置2と、表示装置や印刷装置などの出力装置3と、ROMやRAMなどの各種メモリ、ハードディスク、CD−ROMなどの記録媒体である記憶装置4とを備える。   First, a schematic configuration of a high-temperature strength estimating apparatus according to an embodiment of the present invention will be described with reference to FIG. As shown in FIG. 1, a high-temperature strength estimation apparatus 1 according to an embodiment of the present invention includes an information processing apparatus such as a workstation or a personal computer, and an input apparatus 2 that is an input device such as a power switch and an input key. And an output device 3 such as a display device and a printing device, and a storage device 4 which is a recording medium such as various memories such as a ROM and a RAM, a hard disk, and a CD-ROM.

記憶装置4には、過去に試験片に対して実施された高温引張試験と成分組成分析との結果のデータが格納されている。なお、高温引張試験は、JIS G 0567「鉄鋼材料及び耐熱合金の高温引張試験方法」に従って実施された。高温引張試験の際、試験片にはこのJIS規格に規定されるII−10形試験片を適用した。   The storage device 4 stores data on the results of a high-temperature tensile test and component composition analysis performed on the test piece in the past. The high temperature tensile test was performed according to JIS G 0567 “High temperature tensile test method for steel materials and heat-resistant alloys”. In the high temperature tensile test, a II-10 type test piece defined in the JIS standard was applied to the test piece.

高温強度推定装置1は、情報処理装置内部のCPUなどの演算処理装置がメモリに記憶された制御プログラムを実行することによって、データ読込部11、高温強度推定部12として機能する。これら各部の機能については後述する。   The high-temperature strength estimation apparatus 1 functions as the data reading unit 11 and the high-temperature strength estimation unit 12 when an arithmetic processing device such as a CPU inside the information processing apparatus executes a control program stored in a memory. The functions of these units will be described later.

次に、図2のフローチャートを参照して、高温強度推定装置1による高温強度推定処理手順について説明する。図2のフローチャートは、例えば、操作者により高温強度推定処理開始の指示入力があったタイミングで開始となり、高温強度推定処理はステップS1の処理に進む。   Next, a high temperature strength estimation processing procedure by the high temperature strength estimation apparatus 1 will be described with reference to the flowchart of FIG. The flowchart of FIG. 2 starts, for example, at the timing when the operator inputs an instruction to start the high-temperature strength estimation process, and the high-temperature strength estimation process proceeds to step S1.

ステップS1の処理では、データ読込部11が、各種データを読み込む。具体的には、データ読込部11は、まず、記憶装置4から、試験片に対して実施された高温引張試験の結果の高温強度の試験値と成分組成分析の結果のデータとを抽出する。また、データ読込部11は、高温強度推定処理の対象とする製品について、製品検査証(ミルシート)により把握される所定の成分元素の含有量のデータを読み込む。たとえば、操作者が対象製品について製品検査証から製品に含有される所定の成分元素の含有量のデータを読み取って、入力装置2を介してデータ読込部11に入力する。ここでは、データ読込部11は、試験片と対象製品との成分組成のうち、C,Si,Mn,Nb,Mo,V,Crの含有量(以下、それぞれ、[C],[Si],[Mn],[Nb],[Mo],[V],[Cr]と記載する。)のデータを読み込む。これにより、ステップS1の処理は完了し、高温強度推定処理は、ステップS2の処理に進む。   In the process of step S1, the data reading unit 11 reads various data. Specifically, the data reading unit 11 first extracts from the storage device 4 the test value of the high temperature strength as a result of the high temperature tensile test performed on the test piece and the data of the result of the component composition analysis. Further, the data reading unit 11 reads data on the content of a predetermined component element grasped by a product inspection certificate (mill sheet) for a product to be subjected to high temperature strength estimation processing. For example, the operator reads the content data of a predetermined component element contained in the product from the product inspection certificate for the target product, and inputs the data into the data reading unit 11 via the input device 2. Here, the data reading unit 11 includes the contents of C, Si, Mn, Nb, Mo, V, and Cr (hereinafter referred to as [C], [Si], [Mn], [Nb], [Mo], [V], and [Cr] are described). Thereby, the process of step S1 is completed and a high temperature intensity estimation process progresses to the process of step S2.

ステップS2の処理では、高温強度推定部12が、ステップS1で読み込まれた情報に基づいて重回帰分析を行うことにより、高温強度としての雰囲気温度600℃における1%歪時耐力(YS@600℃)を推定する。具体的には、高温強度推定部12は、上記の情報を用いた重回帰分析により、高温強度(YS@600℃)と上記各成分元素の含有量との関係を示す重回帰モデルを作成し、作成された重回帰モデルに基づいて対象製品の高温強度(YS@600℃)の推定値を求める。   In the process of step S2, the high-temperature strength estimation unit 12 performs a multiple regression analysis based on the information read in step S1, thereby yielding a 1% strain strength (YS @ 600 ° C.) at an ambient temperature of 600 ° C. as the high-temperature strength. ). Specifically, the high temperature strength estimation unit 12 creates a multiple regression model indicating the relationship between the high temperature strength (YS @ 600 ° C.) and the content of each component element by multiple regression analysis using the above information. Based on the created multiple regression model, an estimated value of the high-temperature strength (YS @ 600 ° C.) of the target product is obtained.

なお、上述の重回帰分析の際には、Nbの含有量[Nb]に代えて次式(4)により算出される[Nb]を適用し、および/または、Moの含有量[Mo]に代えて次式(5)により算出される[Mo]を適用してもよい。その場合、このステップS2の処理として、ステップS1にて読み込んだNbの含有量[Nb]、Moの含有量[Mo]およびCの含有量[C]を用いて[Nb]および/または[Mo]を算出した後、重回帰分析を行う。 In the above-described multiple regression analysis, [Nb] * calculated by the following equation (4) is applied instead of the Nb content [Nb] and / or the Mo content [Mo] [Mo] * calculated by the following equation (5) may be applied instead. In this case, as the process of step S2, the Nb content [Nb], the Mo content [Mo], and the C content [C] read in step S1 are used to obtain [Nb] * and / or [ Mo] * is calculated, and then multiple regression analysis is performed.

ここで、Nbは、0.025質量%以上含有されていてもYS@600℃に及ぼす影響が小さいことが新たな知見として得られたため、式(4)において、0.025を上限とした。一方、Moは、単独で存在するMoよりも,Cと結合してMoCとして存在するMoがYS@600℃に及ぼす影響が大きいことが新たな知見として得られている。このMoCとなり得るC量は、Cの含有量[C]からNbCとなり得るC量を除いた残量であると仮定できるので、式(5)において、C含有量[C]からNbの含有量[Nb]を引いた値を用いた。以上により、ステップS2の処理は完了し、高温強度推定処理は、ステップS3の処理に進む。 Here, since it was obtained as a new finding that Nb has a small effect on YS @ 600 ° C. even if 0.025% by mass or more is contained, 0.025 was made the upper limit in equation (4). On the other hand, it has been obtained as a new finding that Mo has a greater influence on YS @ 600 ° C. when Mo is combined with C and present as Mo 2 C than Mo which exists alone. Since it can be assumed that the amount of C that can be Mo 2 C is the remaining amount obtained by removing the amount of C that can be NbC from the content of C [C], in equation (5), The value obtained by subtracting the content [Nb] was used. Thus, the process of step S2 is completed, and the high temperature strength estimation process proceeds to the process of step S3.

Figure 2014235089
Figure 2014235089

なお、u=min(x,y)とは、xとyのうちの小さい方の値をuとすることを意味し、w=max(x,y)とは、xとyのうちの大きい方の値をwとすることを意味する。従って、上記式(4)は、Nbの含有量[Nb]と0.025のうちの小さい値を[Nb]とする、ということを示している。また、上記式(5)は、Cの含有量[C]からNbの含有量[Nb]を引いた値と0(ゼロ)のうちの大きい値を選択し、その選択した値を2倍した値とMoの含有量[Mo]とを比較し、小さい値を[Mo]とする、ということを示している。さらに、各成分元素の含有量は、鋼材の全組成の合計を100質量%とした場合に質量%で示される値である。 Note that u = min (x, y) means that the smaller value of x and y is u, and w = max (x, y) is the larger of x and y. This means that the value of w is w. Therefore, the above formula (4) indicates that the smaller value of the Nb content [Nb] and 0.025 is [Nb] * . Further, in the above formula (5), the value obtained by subtracting the Nb content [Nb] from the C content [C] and the larger value of 0 (zero) are selected, and the selected value is doubled. The value and the Mo content [Mo] are compared, and the smaller value is indicated as [Mo] * . Furthermore, content of each component element is a value shown by mass% when the total of all the composition of steel materials is 100 mass%.

ステップS3の処理では、高温強度推定部12は、算出した高温強度の推定値を出力装置3としてのディスプレイなどに出力する。これにより、ステップS3の処理は完了し、一連の推定処理は終了する。   In the process of step S <b> 3, the high temperature strength estimation unit 12 outputs the calculated estimated value of the high temperature strength to a display or the like as the output device 3. Thereby, the process of step S3 is completed and a series of estimation processes are complete | finished.

以上のように、本実施の形態によれば、成分組成分析や製品検査表により製造者以外にも容易に得られる情報を用いることによって、時間とコストとを要する高温引張試験によらずに、簡易に鋼材の高温強度を推定することができる。   As described above, according to the present embodiment, by using information that can be easily obtained other than the manufacturer by component composition analysis or product inspection table, regardless of the high temperature tensile test that requires time and cost, The high temperature strength of the steel material can be easily estimated.

なお、上記実施の形態では、600℃における鋼材の強度を推定しているが、建築構造用鋼材の高温強度は、一般におよそ400℃付近を基点として温度にほぼ反比例することが知られている(非特許文献1参照)。したがって、600℃以外の高温での鋼材の強度についても、本発明により推定することができる。   In the above embodiment, the strength of the steel material at 600 ° C. is estimated, but it is known that the high temperature strength of the steel for building structure is generally inversely proportional to the temperature around 400 ° C. ( Non-patent document 1). Therefore, the strength of the steel material at a high temperature other than 600 ° C. can be estimated by the present invention.

上記実施の形態は本発明を実施するための例にすぎず、本発明はこれらに限定されるものではなく、仕様などに応じて種々変形することは本発明の範囲内であり、更に本発明の範囲内において、他の様々な実施の形態が可能であることは上記記載から自明である。   The above-described embodiments are merely examples for carrying out the present invention, and the present invention is not limited to these embodiments. Various modifications according to specifications and the like are within the scope of the present invention. It is obvious from the above description that various other embodiments are possible within the scope of the above.

[実施例]
過去に実施した63本の引張強さ490N/mm級〜780N/mm級の建築構造用鋼材についての高温引張試験結果と、各鋼材の製品検査証に記載されたSi,Mn,Nb,Mo,V,Cr,Cの含有量のデータとに基づいて重回帰分析を行って、次式(6)に示す重回帰モデルを作成した。また、作成された重回帰モデルに基づいて各鋼材の高温強度(YS@600℃)の推定値を算出した。
[Example]
And high-temperature tensile test results for the past tensile 63 pieces of which were carried out on the strength 490 N / mm 2 class ~780N / mm 2 class architectural structural steel, which is described in product inspection certificate of the steel Si, Mn, Nb, Multiple regression analysis was performed based on the content data of Mo, V, Cr, and C, and a multiple regression model represented by the following equation (6) was created. Moreover, the estimated value of the high temperature strength (YS @ 600 degreeC) of each steel material was computed based on the created multiple regression model.

Figure 2014235089
Figure 2014235089

解析に使用した63本の建築構造用鋼材について、Si,Mn,Nb,Mo,V,Cr,C,P,Sの含有量の範囲を表1に示す。解析対象の鋼材は、これら成分元素の他に、各種性能を発揮する為の選択元素、不可避的不純物および残部Feからなる。そのため、これら成分元素の含有量は、全組成の合計を100質量%とした場合に各鋼材に含まれる各成分元素の量を質量%にて示したものである。   Table 63 shows the range of the contents of Si, Mn, Nb, Mo, V, Cr, C, P, and S for the 63 building structural steel materials used in the analysis. In addition to these component elements, the steel material to be analyzed is composed of selected elements, inevitable impurities, and the balance Fe for exhibiting various performances. Therefore, the content of these component elements indicates the amount of each component element contained in each steel material in terms of mass% when the total of the total composition is 100 mass%.

Figure 2014235089
Figure 2014235089

図3は、上記式(6)について、上記式(4)により求められる[Nb]の代わりに、製品検査証に記載されたNbの含有量[Nb]を適用して推定された高温強度(YS@600℃)の推定値と、高温引張試験結果の試験値との関係を例示した図である。図中の点線は、試験値/推定値=1の一次直線であり、試験値と推定値が一致した場合を示している。図3に示すように、点線近傍にデータが集まっており推定値と試験値とはよく一致していることがわかる。 FIG. 3 shows the high temperature strength estimated by applying the Nb content [Nb] described in the product inspection certificate instead of [Nb] * obtained by the above formula (4) for the above formula (6). It is the figure which illustrated the relationship between the estimated value of (YS @ 600 degreeC), and the test value of a high temperature tensile test result. The dotted line in the figure is a primary line of test value / estimated value = 1, and shows a case where the test value and the estimated value match. As shown in FIG. 3, data is collected near the dotted line, and it can be seen that the estimated value and the test value are in good agreement.

また、図4は、上記式(6)について、上記式(5)により求められる[Mo]の代わりに、製品検査証に記載されたMoの含有量[Mo]を適用して推定された高温強度(YS@600℃)の推定値と、高温引張試験結果の試験値との関係を例示した図である。図中の点線は、試験値/推定値=1の一次直線であり、試験値と推定値が一致した場合を示している。図4に示すように、点線付近にデータが集まっており推定値と試験値とはよく一致していることがわかる。 Moreover, FIG. 4 estimated about the said Formula (6) by applying Mo content [Mo] described in the product inspection certificate instead of [Mo] * calculated | required by the said Formula (5). It is the figure which illustrated the relationship between the estimated value of high temperature strength (YS @ 600 degreeC), and the test value of a high temperature tensile test result. The dotted line in the figure is a primary line of test value / estimated value = 1, and shows a case where the test value and the estimated value match. As shown in FIG. 4, data is collected near the dotted line, and it can be seen that the estimated value and the test value are in good agreement.

図5は、上記式(6)の重回帰モデルにより推定された高温強度(YS@600℃)の推定値と、高温引張試験結果の試験値との関係を例示した図である。図中の点線は、試験値/推定値=1の一次直線であり、試験値と推定値が一致した場合を示している。図5に示すように、高温強度の推定値と試験値とは精度高く一致した。また、図3と図4の場合に比べると、点線からのばらつきが少ないことがわかった。すなわち、上記式(6)によれば、より精度高くYS@600℃を推定できることがわかる。   FIG. 5 is a diagram illustrating the relationship between the estimated value of the high temperature strength (YS @ 600 ° C.) estimated by the multiple regression model of the above formula (6) and the test value of the high temperature tensile test result. The dotted line in the figure is a primary line of test value / estimated value = 1, and shows a case where the test value and the estimated value match. As shown in FIG. 5, the estimated value of the high temperature strength and the test value agreed with high accuracy. Further, it was found that there was less variation from the dotted line than in the cases of FIGS. That is, according to the above formula (6), it can be seen that YS @ 600 ° C. can be estimated with higher accuracy.

なお、上記式(6)は、次式(7)の係数k1〜k6をすべて1.0としたものと言い換えることができる。   In addition, the said Formula (6) can be paraphrased as what carried out all the coefficients k1-k6 of following Formula (7) to 1.0.

Figure 2014235089
Figure 2014235089

図6は、上記式(7)の係数k1〜k6をすべて0.9とした重回帰モデルにより推定された高温強度(YS@600℃)の推定値と高温引張試験結果の試験値との関係を例示した図である。図6に示すように、図5と同様に、高温強度の推定値と試験値とは精度高く一致した。すなわち、上記式(7)の係数k1〜k6をすべて0.9として、安全率を確保した設計を行った場合にも、上記式(7)の係数k1〜k6をすべて1.0とした上記式(6)によるYS@600℃の推定と同様に、YS@600℃を精度高く推定できることがわかる。   FIG. 6 shows the relationship between the estimated value of the high temperature strength (YS @ 600 ° C.) estimated by the multiple regression model in which the coefficients k1 to k6 of the above equation (7) are all 0.9 and the test value of the high temperature tensile test result. FIG. As shown in FIG. 6, similarly to FIG. 5, the estimated value of the high temperature strength and the test value coincided with high accuracy. That is, when all of the coefficients k1 to k6 in the above formula (7) are set to 0.9 and a design that secures the safety factor is performed, the above coefficients in which all the coefficients k1 to k6 in the above formula (7) are set to 1.0. It can be seen that YS @ 600 ° C. can be estimated with high accuracy, similarly to the estimation of YS @ 600 ° C. by equation (6).

Claims (5)

建築構造用鋼材の高温強度を推定する高温強度推定方法であって、
過去に高温引張試験および成分組成分析が実施された試験片についての高温強度の試験値と所定の成分元素の含有量と、対象製品についての所定の成分元素の含有量とを読み込む読込ステップと、
前記読込ステップで読み込まれた情報に基づいて重回帰分析を行うことにより、該対象製品の高温強度の推定値を算出する高温強度推定ステップと、
を含むことを特徴とする高温強度推定方法。
A high temperature strength estimation method for estimating the high temperature strength of steel for building structures,
A reading step of reading the test value of the high-temperature strength and the content of the predetermined component element for the test piece subjected to the high-temperature tensile test and the component composition analysis in the past, and the content of the predetermined component element for the target product;
A high temperature strength estimation step for calculating an estimated value of the high temperature strength of the target product by performing multiple regression analysis based on the information read in the reading step;
The high temperature strength estimation method characterized by including.
前記読込ステップで読み込まれる試験片と対象製品との成分元素の含有量には、C,Si,Mn,Nb,Mo,V,Crの含有量を含み、
前記高温強度推定ステップで推定される高温強度は、雰囲気温度600℃における1%歪時耐力であることを特徴とする請求項1に記載の高温強度推定方法。
The contents of the component elements of the test piece and the target product read in the reading step include the contents of C, Si, Mn, Nb, Mo, V, and Cr,
The high temperature strength estimation method according to claim 1, wherein the high temperature strength estimated in the high temperature strength estimation step is a 1% strain proof stress at an ambient temperature of 600 ° C.
前記高温強度推定ステップは、前記NbおよびMoの含有量に代えて、次式(1)により算出される[Nb]と[Mo]とのうちの少なくとも1つに基づいて重回帰分析を行うことを特徴とする請求項2に記載の高温強度推定方法。
Figure 2014235089
In the high temperature strength estimation step, a multiple regression analysis is performed based on at least one of [Nb] * and [Mo] * calculated by the following equation (1) instead of the contents of Nb and Mo. The high temperature strength estimation method according to claim 2, wherein the high temperature strength estimation method is performed.
Figure 2014235089
前記高温強度推定ステップは、次式(2)により高温強度を推定することを特徴とする請求項3に記載の高温強度推定方法。
Figure 2014235089
The high temperature strength estimation method according to claim 3, wherein the high temperature strength estimation step estimates a high temperature strength by the following equation (2).
Figure 2014235089
建築構造用鋼材の高温強度を推定する高温強度推定装置であって、
過去に高温引張試験および成分組成分析が実施された試験片についての高温強度の試験値と所定の成分元素の含有量と、対象製品についての所定の成分元素の含有量とを読み込む読込手段と、
前記読込手段により読み込まれた情報に基づいて重回帰分析を行うことにより、該対象製品の高温強度の推定値を算出する高温強度推定手段と、
を備えることを特徴とする高温強度推定装置。
A high temperature strength estimation device for estimating the high temperature strength of steel for building structures,
Reading means for reading the test value of the high-temperature strength and the content of the predetermined component element for the test piece subjected to the high-temperature tensile test and the component composition analysis in the past, and the content of the predetermined component element for the target product,
High temperature strength estimation means for calculating an estimated value of the high temperature strength of the target product by performing multiple regression analysis based on the information read by the reading means;
A high-temperature strength estimation apparatus comprising:
JP2013117131A 2013-06-03 2013-06-03 High temperature strength estimation method and high temperature strength estimation device Active JP5907120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013117131A JP5907120B2 (en) 2013-06-03 2013-06-03 High temperature strength estimation method and high temperature strength estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013117131A JP5907120B2 (en) 2013-06-03 2013-06-03 High temperature strength estimation method and high temperature strength estimation device

Publications (2)

Publication Number Publication Date
JP2014235089A true JP2014235089A (en) 2014-12-15
JP5907120B2 JP5907120B2 (en) 2016-04-20

Family

ID=52137910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013117131A Active JP5907120B2 (en) 2013-06-03 2013-06-03 High temperature strength estimation method and high temperature strength estimation device

Country Status (1)

Country Link
JP (1) JP5907120B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179742A (en) * 1984-09-26 1986-04-23 Mitsubishi Heavy Ind Ltd Heat resistant alloy
JPH06287679A (en) * 1993-04-05 1994-10-11 Nippon Steel Corp Production of non-refining steel for hot forging and non-refining hot forged product and non-refining hot forged product

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179742A (en) * 1984-09-26 1986-04-23 Mitsubishi Heavy Ind Ltd Heat resistant alloy
JPH06287679A (en) * 1993-04-05 1994-10-11 Nippon Steel Corp Production of non-refining steel for hot forging and non-refining hot forged product and non-refining hot forged product

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6015047870; 西田 一郎 他: '"耐火炉(水平炉・柱炉)の性能を測るラウンドロビン試験報告 その4 高温引張試験と載荷条件の違いが耐' 日本建築学会大会学術講演梗概集(北陸)2010年9月 , 2010, pp.139-140 *

Also Published As

Publication number Publication date
JP5907120B2 (en) 2016-04-20

Similar Documents

Publication Publication Date Title
Dong et al. Analysis of residual stress relief mechanisms in post-weld heat treatment
Wagoner et al. Advanced issues in springback
Knezevic et al. Modeling mechanical response and texture evolution of α-uranium as a function of strain rate and temperature using polycrystal plasticity
Soare et al. Solute strengthening of both mobile and forest dislocations: The origin of dynamic strain aging in fcc metals
Tabei et al. Constitutive modeling of Ti-6Al-4V at a wide range of temperatures and strain rates
Velay et al. Behavior modeling and microstructural evolutions of Ti–6Al–4V alloy under hot forming conditions
Shamsolhodaei et al. The high temperature flow behavior modeling of NiTi shape memory alloy employing phenomenological and physical based constitutive models: A comparative study
Moy et al. Identification of the material properties of Al 2024 alloy by means of inverse analysis and indentation tests
Longère Respective/combined roles of thermal softening and dynamic recrystallization in adiabatic shear banding initiation
Lin et al. New constitutive model for hot deformation behaviors of Ni-based superalloy considering the effects of initial δ phase
JP5742755B2 (en) Method for predicting fracture strain of welded portion, prediction system, and method for manufacturing member having welded portion
Wei et al. Modeling of mixed-mode crack growth in ductile thin sheets under combined in-plane and out-of-plane loading
Moharrami et al. Numerical stress analysis in resistance spot-welded nugget due to post-weld shear loading
Peng et al. Effects of strain rate and plastic work on martensitic transformation kinetics of austenitic stainless steel 304
JP2012104042A (en) Prediction method of uniform extension and prediction program for uniform extension
JP2015087349A (en) Prediction method of fracture strain of weld, prediction system, and manufacturing method of member with weld
Proso et al. Vibration-fatigue damage accumulation for structural dynamics with non-linearities
Yue et al. Formability prediction of AL7020 with experimental and numerical failure criteria
KR101851075B1 (en) Reliability improvement method of finite element analysis of the stress relaxation prediction through the metal material heat treatment
Pessard et al. Microstructural heterogeneities and fatigue anisotropy of forged steels
JP5907120B2 (en) High temperature strength estimation method and high temperature strength estimation device
Ayed et al. Thermo-mechanical characterization of the Ti17 titanium alloy under extreme loading conditions
Wang et al. Effect of constraint on cyclic plastic behaviours of cracked bodies and the establishment of unified constraint correlation
JP2008232654A (en) Control unit for analyzing device and control program
Xue et al. Crack tip opening displacement in a linear strain hardening material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160307

R150 Certificate of patent or registration of utility model

Ref document number: 5907120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250