JP2014234923A - Solenoid valve driving controller - Google Patents

Solenoid valve driving controller Download PDF

Info

Publication number
JP2014234923A
JP2014234923A JP2013118823A JP2013118823A JP2014234923A JP 2014234923 A JP2014234923 A JP 2014234923A JP 2013118823 A JP2013118823 A JP 2013118823A JP 2013118823 A JP2013118823 A JP 2013118823A JP 2014234923 A JP2014234923 A JP 2014234923A
Authority
JP
Japan
Prior art keywords
learning
valve opening
time
valve
opening request
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013118823A
Other languages
Japanese (ja)
Other versions
JP5707445B2 (en
Inventor
泰正 貝谷
Yasumasa Kaitani
泰正 貝谷
竜夫 山中
Tatsuo Yamanaka
竜夫 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2013118823A priority Critical patent/JP5707445B2/en
Publication of JP2014234923A publication Critical patent/JP2014234923A/en
Application granted granted Critical
Publication of JP5707445B2 publication Critical patent/JP5707445B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a solenoid valve drive controller capable of efficiently doing learning necessary for solenoid valve opening time control and achieving calculation load reduction and learning time reduction.SOLUTION: Valve opening command time Ti for a fuel injection valve 2 is calculated on the basis of valve opening request time Topen, and the fuel injection valve 2 is driven using the valve opening command time Ti. When the fuel injection valve 2 is driven, actual valve opening time TopenA is detected and the valve opening command time Ti is corrected such that the actual valve opening time TopenA is closer to the valve opening request time Topen. In addition, a Ti table is updated using the corrected valve opening command time Ti and the fuel injection valve 2 is driven using the updated Ti table. Within an interpolation learning region RINTLRN, a preceding learning is conducted at two preceding learning points, thereby performing an initial setting of a Ti table set value at each learning point other than the preceding learning points.

Description

本発明は、電磁弁の駆動制御装置に関し、特に内燃機関に装着される燃料噴射弁や排気還流制御弁などのように流体の流量を制御する電磁弁の開閉制御を行う装置に関する。   The present invention relates to a drive control device for a solenoid valve, and more particularly to a device that controls opening and closing of a solenoid valve that controls the flow rate of a fluid, such as a fuel injection valve and an exhaust gas recirculation control valve mounted on an internal combustion engine.

特許文献1には、内燃機関に設けられる燃料噴射弁を備える燃料噴射装置が示されている。この装置によれば、燃料噴射弁の実リフト期間がリフトセンサを用いて検出され、実リフト期間が目標リフト期間に一致するように、燃料噴射弁の駆動信号が補正される。さらに補正の結果を学習する機能を追加する点が記載されている。   Patent Document 1 discloses a fuel injection device including a fuel injection valve provided in an internal combustion engine. According to this device, the actual lift period of the fuel injection valve is detected using the lift sensor, and the drive signal of the fuel injection valve is corrected so that the actual lift period coincides with the target lift period. Further, it describes that a function for learning the correction result is added.

特開昭63−97869号公報JP 63-97869 A

例えば内燃機関の燃焼室内に直接燃料を噴射する燃料噴射弁では、燃料噴射弁の実開弁時間(実リフト期間)が開弁要求時間と一致するように設定される開弁指令時間と、開弁要求時間との関係は、量産時の特性ばらつきや燃料圧力などの環境条件に依存して変化するものであるため、この関係を学習しつつ制御に反映することが求められる。   For example, in a fuel injection valve that directly injects fuel into the combustion chamber of an internal combustion engine, a valve opening command time that is set so that the actual valve opening time (actual lift period) of the fuel injection valve matches the valve opening request time, Since the relationship with the required valve time changes depending on the environmental conditions such as characteristic variation and fuel pressure during mass production, it is required to reflect this in the control while learning this relationship.

上記特許文献1では学習機能については詳細な記述がなく、開弁指令時間と、開弁要求時間との最適な関係を学習する際における、制御装置の演算負荷や学習に要する時間の点で改善の余地があった。   In the above Patent Document 1, there is no detailed description of the learning function, and the calculation load of the control device and the time required for learning are improved when learning the optimum relationship between the valve opening command time and the valve opening request time. There was room for.

本発明はこの点に着目してなされたものであり、電磁弁の開弁時間制御に必要な学習を効率的に行って、演算負荷及び学習時間を低減することができる電磁弁の駆動制御装置を提供することを目的とする。   The present invention has been made paying attention to this point, and can efficiently perform learning necessary for valve opening time control of the solenoid valve, and reduce the calculation load and the learning time. The purpose is to provide.

上記目的を達成するため請求項1に記載の発明は、流体の流量を制御する電磁弁(2)の駆動制御装置において、前記電磁弁の開弁要求時間(Topen)を算出する開弁要求時間算出手段と、前記開弁要求時間(Topen)に基づいて前記電磁弁の開弁指令時間(Ti)を算出し、該開弁指令時間(Ti)を用いて前記電磁弁(2)の駆動信号を生成する駆動信号生成手段と、前記電磁弁の駆動時に前記電磁弁の実開弁時間(TopenA)を検出する実開弁時間検出手段と、前記実開弁時間(TopenA)が前記開弁要求時間(Topen)に近づくように前記開弁指令時間(Ti)を修正するとともに、修正した前記開弁指令時間を学習値として保持する学習値保持手段とを備え、前記駆動信号生成手段は、前記学習値を用いて前記駆動信号を生成し、前記学習値保持手段は、学習領域を区画する下側開弁要求時間及び上側開弁要求時間に対応する2つの学習点を含み、前記学習領域(RINTLRN)内に予め設定される全学習点の数より少ない数の先行学習点(PL,PH)においてそれぞれ先行学習を行うとともに、該先行学習によって得られる先行学習値の補間計算を行うことにより、前記先行学習点(PL,PH)以外の学習点における前記学習値の初期値設定を行うことを特徴とする。   In order to achieve the above object, according to the first aspect of the present invention, in the drive control device for the electromagnetic valve (2) for controlling the flow rate of the fluid, the valve opening request time for calculating the valve opening request time (Topen). The valve opening command time (Ti) of the solenoid valve is calculated based on the calculation means and the valve opening request time (Topen), and the drive signal of the solenoid valve (2) is calculated using the valve opening command time (Ti). Drive signal generation means for generating the actual valve opening time detection means (TopenA) for detecting the actual valve opening time (TopenA) when the solenoid valve is driven, and the actual valve opening time (TopenA) is the valve opening request. The valve opening command time (Ti) is corrected so as to approach the time (Topen), and learning value holding means for holding the corrected valve opening command time as a learning value is provided. Previous using learning value A drive signal is generated, and the learning value holding means includes two learning points corresponding to a lower valve opening request time and an upper valve opening request time that divide the learning region, and is set in advance in the learning region (RINTLRN) The preceding learning point (PL) is obtained by performing the preceding learning at each of the number of preceding learning points (PL, PH) smaller than the number of all learning points to be performed and performing interpolation calculation of the preceding learning value obtained by the preceding learning. , PH), initial values of the learning values are set at learning points.

この構成によれば、開弁要求時間に基づいて前記電磁弁の開弁指令時間が算出され、該開弁指令時間を用いて電磁弁の駆動信号が生成される。電磁弁の駆動時に電磁弁の実開弁時間が検出され、実開弁時間が開弁要求時間に近づくように開弁指令時間が修正されるとともに、修正された開弁指令時間が学習値として保持される。保持された学習値を用いて駆動信号が生成される。学習領域内に予め設定される全学習点の数より少ない先行学習点においてそれぞれ先行学習が行われるとともに、該先行学習によって得られる先行学習値の補間計算を行うことにより、先行学習点以外の学習点における学習値の初期値設定が行われる。したがって、例えば先行学習点を下側開弁要求時間及び上側開弁要求時間に対応する2点とすれば、学習領域内の全学習点において初期値設定のための先行学習を行う場合に比べて、初期値設定に要する学習時間及び演算負荷を大幅に低減することができる。   According to this configuration, the valve opening command time of the solenoid valve is calculated based on the valve opening request time, and a drive signal for the solenoid valve is generated using the valve opening command time. When the solenoid valve is driven, the actual valve opening time is detected, and the valve opening command time is corrected so that the actual valve opening time approaches the valve opening request time. Retained. A drive signal is generated using the stored learning value. Pre-learning is performed at each of the pre-learning points less than the total number of learning points set in advance in the learning area, and learning other than the pre-learning points is performed by performing interpolation calculation of the pre-learning value obtained by the pre-learning The initial value of the learning value at the point is set. Therefore, for example, if the preceding learning points are two points corresponding to the lower valve opening request time and the upper valve opening request time, compared to the case where the preceding learning for initial value setting is performed at all the learning points in the learning region. The learning time and calculation load required for initial value setting can be greatly reduced.

請求項2に記載の発明は、請求項1に記載の電磁弁の駆動制御装置において、前記学習値保持手段は、前記初期値の設定後に前記学習領域(RINTLRN)内における学習を開始することを特徴とする。   According to a second aspect of the present invention, in the electromagnetic valve drive control device according to the first aspect, the learning value holding means starts learning in the learning region (RINTLRN) after setting the initial value. Features.

この構成によれば、初期値の設定後に学習領域内における学習が開始されるため、学習点における学習値を最適値に迅速に収束させることができる。   According to this configuration, since learning in the learning area is started after setting the initial value, the learning value at the learning point can be quickly converged to the optimum value.

請求項3に記載の発明は、請求項1または2に記載の電磁弁の駆動制御装置において、前記学習領域(RINTLRN)は、前記開弁要求時間(Topen)と前記開弁指令時間(Ti)の関係が環境条件の影響を受ける環境条件影響領域であることを特徴とする。   According to a third aspect of the present invention, in the electromagnetic valve drive control device according to the first or second aspect, the learning region (RINTLRN) includes the valve opening request time (Topen) and the valve opening command time (Ti). The relationship is a region affected by environmental conditions affected by environmental conditions.

この構成によれば、学習領域は、開弁要求時間と開弁指令時間の関係が環境条件の影響を受ける環境条件影響領域とされる。環境条件影響領域では、開弁要求時間と開弁指令時間との最適な関係は線形関係に近いため、補間演算による初期値設定によって十分な設定精度が得られ、制御開始当初から比較的高い制御精度が得られる。   According to this configuration, the learning area is an environmental condition influence area in which the relationship between the valve opening request time and the valve opening command time is affected by the environmental conditions. In the area affected by environmental conditions, the optimal relationship between the valve opening request time and the valve opening command time is close to a linear relationship. Accuracy is obtained.

請求項4に記載の発明は、請求項1から3の何れか1項に記載の電磁弁の駆動制御装置において、前記電磁弁(2)は、電磁力が作用するコア(35)と、弁体(32)が固定された弁軸(31)とが別体に構成されたハンマリングコア構造を有し、前記環境条件影響領域より前記開弁要求時間(Topen)が短い側に、前記開弁要求時間(Topen)と前記開弁指令時間(Ti)との関係が非線形となる非線形領域(RALPLRN)を有し、前記学習値保持手段は、該非線形領域(RALPLRN)では予め設定されるすべての学習点において前記先行学習を実行して前記初期値設定を行うことを特徴とする。   According to a fourth aspect of the present invention, in the electromagnetic valve drive control device according to any one of the first to third aspects, the electromagnetic valve (2) includes a core (35) on which an electromagnetic force acts, a valve The valve shaft (31) to which the body (32) is fixed has a hammering core structure configured separately, and the valve opening required time (Topen) is shorter than the environmental condition influence region. The relationship between the required time (Topen) and the valve opening command time (Ti) has a non-linear region (RALPLRN) in which the relationship is non-linear, and the learning value holding means has all the preset values in the non-linear region (RALPLRN). The initial value setting is performed by executing the preceding learning at a learning point.

この構成によれば、電磁弁はハンマリングコア構造を有し、環境条件影響領域より開弁要求時間が短い側に、開弁要求時間と開弁指令時間との関係が非線形となる非線形領域を有し、該非線形領域では予め設定されるすべての学習点において先行学習を実行して初期値設定が行われる。非線形領域では、補間演算による初期値設定を行うと十分な設定精度が得られないため、すべての学習点において先行学習を行うことによって、制御開始当初から比較的高い制御精度を確保することができる。   According to this configuration, the solenoid valve has a hammering core structure, and has a non-linear region where the relationship between the valve opening request time and the valve opening command time is non-linear on the side where the valve opening request time is shorter than the environmental condition influence region. In the non-linear region, the initial value is set by executing pre-learning at all learning points set in advance. In the non-linear region, if initial value setting is performed by interpolation calculation, sufficient setting accuracy cannot be obtained. Therefore, by performing prior learning at all learning points, relatively high control accuracy can be ensured from the beginning of control. .

本発明の一実施形態にかかる内燃機関及びその制御装置を示す図である。1 is a diagram illustrating an internal combustion engine and a control device thereof according to an embodiment of the present invention. 燃料噴射弁の要部の構成を説明するための断面図である。It is sectional drawing for demonstrating the structure of the principal part of a fuel injection valve. 開弁要求時間(Topen)に応じて開弁指令時間(Ti)を算出するために適用されるテーブルを示す図である。It is a figure which shows the table applied in order to calculate valve opening command time (Ti) according to valve opening request | requirement time (Topen). 初期学習によって開弁指令時間(Ti)のテーブル設定値が収束する状態を示すタイムチャートである。It is a time chart which shows the state where the table setting value of valve opening command time (Ti) converges by initial learning. 実開弁時間(TopenA)の算出手法を説明するためのタイムチャートである。It is a time chart for demonstrating the calculation method of actual valve opening time (TopenA). 初期学習を行う処理のフローチャートである。It is a flowchart of the process which performs initial learning. 図6の処理で実行される補間演算処理のフローチャートである。It is a flowchart of the interpolation calculation process performed by the process of FIG. 燃料噴射弁による燃料噴射の制御を行う燃料噴射制御処理のフローチャートである。It is a flowchart of the fuel-injection control process which controls fuel-injection by a fuel-injection valve. 学習によって修正されたテーブルの一例を示す図である。It is a figure which shows an example of the table corrected by learning. 補間学習領域(RINTLRN)の設定に関する変形例を示す図である。It is a figure which shows the modification regarding the setting of an interpolation learning area | region (RINTLRN).

以下本発明の実施の形態を図面を参照して説明する。
図1は本発明の一実施形態にかかる内燃機関(以下「エンジン」という)及びその制御装置を示す図であり、本実施形態では、ソレノイドを有する電磁弁で構成される燃料噴射弁の開弁時間を変更することによって、エンジンに供給する燃料量の制御が行われる。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a view showing an internal combustion engine (hereinafter referred to as an “engine”) and a control device thereof according to an embodiment of the present invention. In this embodiment, a fuel injection valve opened by a solenoid valve having a solenoid is opened. The amount of fuel supplied to the engine is controlled by changing the time.

4気筒のエンジン1は各気筒に対応して4つの燃料噴射弁2を備えており、燃料噴射弁2は、エンジン1の燃焼室内に直接燃料を噴射する。4つの燃料噴射弁2はそれぞれECU5に接続されており、ECU5によって、その作動が制御される。   The four-cylinder engine 1 includes four fuel injection valves 2 corresponding to the cylinders, and the fuel injection valves 2 directly inject fuel into the combustion chamber of the engine 1. Each of the four fuel injection valves 2 is connected to the ECU 5, and its operation is controlled by the ECU 5.

燃料噴射弁2は、燃料通路3を介してデリバリパイプ4に接続されており、デリバリパイプ4には図示しない高圧燃料ポンプによって加圧された燃料が供給される。デリバリパイプ4には、燃料圧PFを検出する燃料圧センサ12が取り付けられており、その検出信号はECU5に供給される。   The fuel injection valve 2 is connected to a delivery pipe 4 through a fuel passage 3, and fuel pressurized by a high-pressure fuel pump (not shown) is supplied to the delivery pipe 4. A fuel pressure sensor 12 for detecting the fuel pressure PF is attached to the delivery pipe 4, and the detection signal is supplied to the ECU 5.

ECU5には、燃料噴射弁2のソレノイドの両端の電圧VSL及びソレノイドに供給される駆動電流IDを検出する電圧電流検出センサ11、エンジン1の回転数NEを検出するエンジン回転数センサ13、エンジン1の吸入空気流量GAIRを検出する吸入空気流量センサ14、吸気温TAを検出する吸気温センサ15、エンジン冷却水温TWを検出する冷却水温センサ16などのエンジン運転状態を検出する各種センサが接続されており、それらのセンサの検出信号はECU5に供給される。ECU5は、これらのセンサの検出信号を用いてエンジン運転状態に応じた燃料噴射弁2の開弁要求時間Topenを算出し、開弁要求時間Topenに応じて開弁指令時間Tiを算出し、開弁指令時間Tiを用いて燃料噴射弁2の駆動制御を行う。   The ECU 5 includes a voltage / current detection sensor 11 for detecting the voltage VSL across the solenoid of the fuel injection valve 2 and the drive current ID supplied to the solenoid, an engine speed sensor 13 for detecting the engine speed NE, and the engine 1. Various sensors for detecting the engine operating state are connected, such as an intake air flow rate sensor 14 for detecting the intake air flow rate GAIR, an intake air temperature sensor 15 for detecting the intake air temperature TA, and a cooling water temperature sensor 16 for detecting the engine cooling water temperature TW. The detection signals of these sensors are supplied to the ECU 5. The ECU 5 calculates the valve opening request time Topen of the fuel injection valve 2 according to the engine operating state using the detection signals of these sensors, calculates the valve opening command time Ti according to the valve opening request time Topen, and opens the valve. Drive control of the fuel injection valve 2 is performed using the valve command time Ti.

図2は燃料噴射弁2の要部の構成を説明するための断面図であり、燃料噴射弁2は、弁軸31と、弁軸31の先端に固定された弁体32と、弁軸31に固定されたフランジ33,34と、電磁力が作用するコア35と、コア35とフランジ34との間に設けられた第1スプリング36と、弁座37と、スリーブ38と、ソレノイド39と、フランジ34を閉弁方向(図の下方向)に付勢する第2スプリング40と、燃料通路として機能する中空部を有するインナカラー41とを備えている。燃料噴射弁2は、コア35と、弁体32が固定された弁軸31とが別体に構成された、いわゆるハンマリングコア構造を有する。   FIG. 2 is a cross-sectional view for explaining a configuration of a main part of the fuel injection valve 2. The fuel injection valve 2 includes a valve shaft 31, a valve body 32 fixed to the tip of the valve shaft 31, and a valve shaft 31. Flanges 33, 34 fixed to the core, a core 35 on which electromagnetic force acts, a first spring 36 provided between the core 35 and the flange 34, a valve seat 37, a sleeve 38, a solenoid 39, A second spring 40 that urges the flange 34 in the valve closing direction (downward in the figure) and an inner collar 41 having a hollow portion that functions as a fuel passage are provided. The fuel injection valve 2 has a so-called hammering core structure in which a core 35 and a valve shaft 31 to which a valve body 32 is fixed are configured separately.

図3は、開弁要求時間Topenに応じて開弁指令時間Tiを算出するために適用される開弁要求時間Topenと開弁指令時間Tiとの関係(Tiテーブル)を示す図である。この図に示す実線L1は、開弁要求時間Topenに対応する開弁指令時間Tiの先行学習を行う際にその開始値を設定するための関係を示し、実線L2は、実際の開弁時間TopenAが開弁要求時間Topenと一致するように設定した開弁指令時間Tiと、開弁要求時間Topenとの関係を示す。   FIG. 3 is a diagram showing a relationship (Ti table) between the valve opening request time Topen and the valve opening command time Ti applied to calculate the valve opening command time Ti according to the valve opening request time Topen. The solid line L1 shown in this figure indicates the relationship for setting the start value when performing prior learning of the valve opening command time Ti corresponding to the valve opening request time Topen, and the solid line L2 indicates the actual valve opening time TopenA. Shows the relationship between the valve opening command time Ti set so as to coincide with the valve opening request time Topen and the valve opening request time Topen.

本実施形態では、開弁要求時間Topenに応じて以下のようにTiテーブルの初期学習による初期値設定を行う。初期学習は、工場出荷時あるいは燃料噴射弁2の新品交換時などに行い、その後はエンジン1の実際の作動時における学習によってテーブル設定値の更新を行う。   In this embodiment, initial values are set by initial learning of the Ti table as follows according to the valve opening request time Topen. Initial learning is performed at the time of factory shipment or when the fuel injection valve 2 is replaced with a new one, and thereafter, the table setting values are updated by learning during actual operation of the engine 1.

1)開弁要求時間Topenが上側開弁要求時間TOLH(例えば1.0msec)より大きい領域では、予め求められた直線で示される関係(図示せず)を用いて、開弁指令時間Tiを算出する。すなわち、テーブル設定値の学習は行わないので初期値設定(初期学習)は不要である。   1) In a region where the valve opening request time Topen is larger than the upper valve opening request time TOLH (for example, 1.0 msec), the valve opening command time Ti is calculated using a relationship (not shown) indicated by a straight line obtained in advance. To do. That is, since the table setting value is not learned, the initial value setting (initial learning) is unnecessary.

2)開弁要求時間Topenが上側開弁要求時間TOLH以下で下側開弁要求時間TOLL(例えば0.5msec)以上の領域(以下「補間学習領域RINTLRN」という)では、実線L2が比較的直線に近い関係であることに着目して、簡略化された初期学習(補間学習)による初期値設定を行う。補間学習領域RINTLRNにおいては、上側開弁要求時間TOLH及び下側開弁要求時間TOLLに対応する、実線L1上の学習開始点PHI,PLIに対応する開弁指令時間Tiを開始値として実際に燃料噴射を行って実開弁時間TopenAを検出することによる先行学習を開始し、開弁指令時間Tiを徐々に更新することによって、先行学習点PH,PLが求められ、補間学習領域RINTLRN内の他の設定格子点(学習点)については、図3に示すように先行学習点PH,PLを結ぶ直線(破線L3)を用いた補間演算によって初期値設定を行う。   2) In a region where the valve opening request time Topen is equal to or shorter than the upper valve opening request time TOLH and is longer than the lower valve opening request time TOLL (for example, 0.5 msec) (hereinafter referred to as “interpolation learning region RINTLRN”), the solid line L2 is relatively straight. Focusing on the fact that the relationship is close to, the initial value is set by simplified initial learning (interpolation learning). In the interpolation learning region RINTLRN, fuel is actually used with the valve opening command time Ti corresponding to the learning start points PHI and PLI on the solid line L1 corresponding to the upper valve opening request time TOLH and the lower valve opening request time TOLL as a start value. Pre-learning is started by detecting the actual valve opening time TopenA by performing injection, and by gradually updating the valve opening command time Ti, the pre-learning points PH and PL are obtained, and other values in the interpolation learning region RINTLRN are obtained. As for the set grid points (learning points), initial values are set by interpolation using a straight line (broken line L3) connecting the preceding learning points PH and PL as shown in FIG.

3)開弁要求時間Topenが下側開弁要求時間TOLLより小さい領域(以下「全点学習領域RALPLRN」という)では、テーブル上の設定格子点の全点において先行学習を実行して初期値設定を行う。設定された先行学習によるテーブル設定値は、例えば破線L4で示される。   3) In a region where the valve opening request time Topen is smaller than the lower valve opening request time TOLL (hereinafter referred to as “all-point learning region RALPLRN”), the preceding learning is executed at all points of the set grid points on the table to set initial values. I do. The set table setting value by the preceding learning is indicated by a broken line L4, for example.

なお、図3において白丸で示す学習点は代表的なもののみを図示しており、実際にはより小さい間隔(例えば20μsec間隔)で設定される。   Note that only the representative learning points indicated by white circles in FIG. 3 are illustrated, and are actually set at smaller intervals (for example, 20 μsec intervals).

図4は、学習によって開弁指令時間Ti(テーブル設定値)が収束する状態を示すタイムチャートであり、図4(a)がフィードバック制御ゲインGPを比較的小さい値「0.1」に設定した場合に対応し、図4(b)がフィードバック制御ゲインGPを比較的大きな値「0.4」に設定した場合に対応する。図4(a)及び(b)を対比すると、ゲインGPが大きい方が収束するまでに要する時間は短くなるが、収束後の変動が大きくなることが確認できる。したがって、ゲインGPを比較的小さい値に設定し、かつ初期学習に要する総学習時間を短縮することが望ましい。   FIG. 4 is a time chart showing a state in which the valve opening command time Ti (table setting value) converges by learning, and FIG. 4A sets the feedback control gain GP to a relatively small value “0.1”. FIG. 4B corresponds to the case where the feedback control gain GP is set to a relatively large value “0.4”. 4 (a) and 4 (b), it can be confirmed that the larger the gain GP, the shorter the time required for convergence, but the greater the fluctuation after convergence. Therefore, it is desirable to set the gain GP to a relatively small value and shorten the total learning time required for the initial learning.

例えば学習点が100点あり、各学習点おける収束に要する学習時間が2秒であるとすると、総学習時間は200秒となるが、図3に示す補間学習領域RINTLRNにおいて、先行学習を行うのは2点(PH、PL)のみとし、他の学習点における初期値設定は補間演算によって行うことにより、総学習時間は2秒+α(補間演算に要する僅かな時間)となり、ゲインGPを小さな値に設定しつつ、総学習時間を大幅に短縮することができる。   For example, if there are 100 learning points and the learning time required for convergence at each learning point is 2 seconds, the total learning time is 200 seconds. In the interpolation learning area RINTLRN shown in FIG. Is only 2 points (PH, PL), and initial values are set at other learning points by interpolation, so that the total learning time is 2 seconds + α (a little time required for interpolation), and the gain GP is a small value. The total learning time can be greatly shortened while setting to.

図5は、実開弁時間TopenAの算出手法を説明するためのタイムチャートであり、、図5(a)は燃料噴射弁2の弁体リフト量LFTの推移を示し、図5(b)は開弁指令信号を示す。本実施形態では、実開弁時期tOPは、電圧電流センサ11により検出される電流波形の変曲点から求められ、実閉弁時期tCLは電圧電流センサ11により検出される電圧波形の変曲点が求められる。この検出手法は、例えば特開平6−174139号公報に示されている。   FIG. 5 is a time chart for explaining the calculation method of the actual valve opening time TopenA. FIG. 5A shows the transition of the valve body lift amount LFT of the fuel injection valve 2, and FIG. Indicates a valve opening command signal. In the present embodiment, the actual valve opening timing tOP is obtained from the inflection point of the current waveform detected by the voltage / current sensor 11, and the actual valve closing timing tCL is the inflection point of the voltage waveform detected by the voltage / current sensor 11. Is required. This detection method is disclosed in, for example, Japanese Patent Laid-Open No. 6-174139.

より具体的には開弁指令時期tISから実開弁時期tOPまでの開弁遅れ時間Ton、及び閉弁指令時期tIEから実閉弁時期tCLまでの閉弁作動時間Toffを算出し、開弁指令時間Tiとともに下記式(1)に適用して、実開弁時期TopenAを算出する。
TopenA=Ti−Ton+Toff (1)
More specifically, the valve opening delay time Ton from the valve opening command timing tIS to the actual valve opening timing tOP and the valve closing operation time Toff from the valve closing command timing tIE to the actual valve closing timing tCL are calculated, and the valve opening command The actual valve opening timing TopenA is calculated by applying to the following formula (1) together with the time Ti.
TopenA = Ti-Ton + Toff (1)

図6は上述した先行学習を含む初期設定処理のフローチャートである。この処理は、ECU5において実行される。なお、以下に説明する開弁指令時間Tiの算出にかかる演算は、すべて制御対象の気筒毎に行われる。   FIG. 6 is a flowchart of the initial setting process including the preceding learning described above. This process is executed in the ECU 5. It should be noted that all the calculations related to the calculation of the valve opening command time Ti described below are performed for each cylinder to be controlled.

ステップS11では、先行学習点に対応する開弁要求時間Topen[1]及びTopen[2]を、それぞれ下側開弁要求時間TOLL及び上側開弁要求時間TOLHに設定し、インデクスパラメータiを「0」に初期化する。   In step S11, the valve opening request times Topen [1] and Topen [2] corresponding to the preceding learning point are set to the lower valve opening request time TOLL and the upper valve opening request time TOLH, respectively, and the index parameter i is set to “0”. To "".

ステップS12では、インデクスパラメータiを「1」だけ増加させ、開弁要求時間Topen[i]に対応する開弁指令時間Ti[i]を算出する(ステップS13)。ステップS13の演算には、例えば図2に示す実線L1の関係を適用して開弁指令時間Ti[i]を算出する。   In step S12, the index parameter i is increased by “1”, and the valve opening command time Ti [i] corresponding to the valve opening request time Topen [i] is calculated (step S13). For the calculation in step S13, for example, the valve opening command time Ti [i] is calculated by applying the relationship of the solid line L1 shown in FIG.

ステップS14で燃料噴射を実行し、上述した開弁遅れ時間Ton及び閉弁作動時間Toffを検出する(ステップS15)。ステップS16では上記式(1)を用いて実開弁時間TopenAを算出し、ステップS17では開弁要求時間Topenから実開弁時期TopenAを減算することにより、開弁時間偏差DTopenを算出する。   In step S14, fuel injection is performed, and the above-described valve opening delay time Ton and valve closing operation time Toff are detected (step S15). In step S16, the actual valve opening time TopenA is calculated using the above equation (1). In step S17, the valve opening time deviation DTopen is calculated by subtracting the actual valve opening timing TopenA from the valve opening request time Topen.

ステップS18では、開弁時間偏差DTopenの絶対値が収束判定閾値DLL以下であるか否かを判別する。最初はこの答が否定(NO)となり、ステップS19に進んで、下記式(2)を用いて開弁指令時間Ti[i]を更新する。式(2)のGPは制御ゲインである。
Ti[i]=Ti[i]+GP×DTopen (2)
In step S18, it is determined whether or not the absolute value of the valve opening time deviation DTopen is equal to or less than the convergence determination threshold DLL. Initially, the answer is negative (NO), the process proceeds to step S19, and the valve opening command time Ti [i] is updated using the following equation (2). GP in Equation (2) is a control gain.
Ti [i] = Ti [i] + GP × DTOpen (2)

ステップS19実行後はステップS14に戻り、ステップS18の答が肯定(YES)となったとき、すなわち開弁指令時間Ti[i]が収束したときは、インデクスパラメータiが「2」であるか否かを判別する(ステップS20)。最初はこの答は否定(NO)であるため、ステップS12に戻り、i=2である場合、すなわち開弁要求時間Topen[2]について、同様の処理を実行する。ステップS18の答が肯定(YES)となると、今回はステップS20の答も肯定(YES)となるので、ステップS21に進んで、図7に示す補間演算処理を実行する。   After execution of step S19, the process returns to step S14. When the answer to step S18 is affirmative (YES), that is, when the valve opening command time Ti [i] has converged, whether or not the index parameter i is “2”. Is determined (step S20). Since this answer is negative (NO) at first, the process returns to step S12, and the same processing is executed when i = 2, that is, for the valve opening request time Topen [2]. If the answer to step S18 is affirmative (YES), the answer to step S20 is also affirmed (YES) this time, so the process proceeds to step S21 to execute the interpolation calculation process shown in FIG.

図7のステップS31では、開弁要求時間Topenを示すパラメータxを、下側開弁要求時間TOLLに設定し、ステップS32では、パラメータxをTiテーブルの格子点間隔DX(例えば20μsec)だけ増加させる。   In step S31 of FIG. 7, the parameter x indicating the valve opening request time Topen is set to the lower valve opening request time TOLL, and in step S32, the parameter x is increased by the lattice point interval DX (for example, 20 μsec) of the Ti table. .

ステップS33では、下記式(3)の補間演算により開弁指令時間の初期学習値Ti(x)を算出する。

Figure 2014234923
In step S33, an initial learning value Ti (x) of the valve opening command time is calculated by an interpolation calculation of the following equation (3).
Figure 2014234923

ステップS34では、Tiテーブルの対応する格子点の値を初期学習値Ti(x)に設定することにより、Tiテーブルの更新を行う。ステップS35では、パラメータxが上側開弁要求時間TOLH以上であるか否かを判別する。最初はこの答は否定(NO)であり、ステップS32に戻ってステップS32〜S34の処理を繰り返す。ステップS35の答が肯定(YES)となると、処理を終了する。
図7の処理により、図3の破線L3に示す白丸に対応する格子点(学習点)の初期値設定が完了する。
In step S34, the Ti table is updated by setting the value of the corresponding lattice point in the Ti table to the initial learning value Ti (x). In step S35, it is determined whether or not the parameter x is equal to or longer than the upper valve opening request time TOLH. Initially, this answer is negative (NO), and the process returns to step S32 to repeat the processes of steps S32 to S34. If the answer to step S35 is affirmative (YES), the process ends.
With the processing in FIG. 7, the initial value setting of the lattice points (learning points) corresponding to the white circles indicated by the broken line L3 in FIG. 3 is completed.

図6に戻り、ステップS22では、全点学習領域RALPLRNの全学習点(DX間隔)において、ステップS14〜S19と同様の手法によって先行学習の開始値(図3の実線L1上に白丸で示す)から先行学習を実行して、初期値設定を行う。設定された初期値は、図3の破線L4上に白丸で示されている。   Returning to FIG. 6, in step S <b> 22, the start value of the preceding learning (indicated by a white circle on the solid line L <b> 1 in FIG. 3) at all learning points (DX intervals) in the all-point learning region RALPLRN by the same method as steps S <b> 14 to S <b> 19. Execute pre-learning and set initial values. The set initial value is indicated by a white circle on the broken line L4 in FIG.

図8は燃料噴射弁2による燃料噴射の制御を行う燃料噴射制御処理のフローチャートである。   FIG. 8 is a flowchart of the fuel injection control process for controlling the fuel injection by the fuel injection valve 2.

ステップS41では、エンジン運転状態に応じて開弁要求時間Topenを算出し、ステップS42では、算出した開弁要求時間Topenに応じて、最初は図3に示す初期値設定されたTiテーブル(補間学習領域RINTLRNでは破線L3で示され、全点学習領域RALPLRNでは破線L4で示される)を検索して、開弁指令時間Tiを算出する。   In step S41, the valve opening request time Topen is calculated according to the engine operating state, and in step S42, the initial value set Ti table (interpolation learning) shown in FIG. 3 is initially set in accordance with the calculated valve opening request time Topen. The area RINTLRN is indicated by a broken line L3, and the all-point learning area RALPLRN is indicated by a broken line L4) to calculate a valve opening command time Ti.

ステップS43〜S47の処理は、図6のステップS14〜S19の処理と同一であり、燃料噴射を実行したときに実開弁時間TopenAを算出し、実開弁時間TopenAが要求時間Topenに収束するように、開弁指令時間Tiの修正が行われる。   The processing in steps S43 to S47 is the same as the processing in steps S14 to S19 in FIG. 6, and the actual valve opening time TopenA is calculated when fuel injection is executed, and the actual valve opening time TopenA converges to the required time Topen. As described above, the valve opening command time Ti is corrected.

ステップS48では、修正した開弁指令時間Tiを下記式(4)に適用して、Tiテーブルの更新(学習)を行う。右辺のTiがステップS47で修正された開弁指令時間であり、TiPは更新前のテーブル設定値であり、CLは例えば0.1程度に設定されるなまし係数である。
Ti=CL×Ti+(1−CL)×TiP (4)
In step S48, the corrected valve opening command time Ti is applied to the following equation (4) to update (learn) the Ti table. Ti on the right side is the valve opening command time corrected in step S47, TiP is a table setting value before update, and CL is an annealing coefficient set to about 0.1, for example.
Ti = CL * Ti + (1-CL) * TiP (4)

図8の処理により、実際に燃料噴射を実行しつつTiテーブルの学習(設定値更新)が行われ、Tiテーブルの設定値は、使用している燃料噴射弁2に最適の値に徐々に収束する。すなわち、ステップS42では最初は初期学習処理によって設定された初期値を用いて、開弁指令時間Tiが算出されるが、エンジン1の運転を行うことによって、Tiテーブル設定値が徐々に更新され、その更新された設定値を用いて開弁指令時間Tiが算出される。図9は学習によって修正されたTiテーブルの一例を示す。   By the process of FIG. 8, learning of the Ti table (setting value update) is performed while actually performing fuel injection, and the setting value of the Ti table gradually converges to an optimum value for the fuel injection valve 2 being used. To do. That is, in step S42, the valve opening command time Ti is initially calculated using the initial value set by the initial learning process, but the Ti table set value is gradually updated by operating the engine 1, The valve opening command time Ti is calculated using the updated set value. FIG. 9 shows an example of a Ti table corrected by learning.

以上のように本実施形態では、Tiテーブルを用いて開弁要求時間Topenに対応する燃料噴射弁2の開弁指令時間Tiが算出され、開弁指令時間Tiを用いて燃料噴射弁2が駆動される。燃料噴射弁2の駆動時に実開弁時間TopenAが検出され、実開弁時間TopenAが開弁要求時間Topenに近づくように開弁指令時間Tiが修正されるとともに、修正された開弁指令時間TiによってTiテーブルが更新(学習)され、テーブル設定値として保持され、保持されたテーブル設定値を用いて燃料噴射弁2が駆動される。補間学習領域RINTLRN内では、予め設定される全学習点の数より少ない2つの先行学習点、すなわち下側開弁要求時間TOLL及び上側開弁要求時間TOLHに対応する2点において、それぞれ先行学習が行われるとともに、該先行学習によって得られる先行学習値(PL,PHに対応する値)の補間計算を行うことにより、先行学習点以外の学習点におけるTiテーブル設定値の初期値設定が行われる。したがって、補間学習領域RINTLRN内の全学習点において初期値設定のための先行学習を行う場合に比べて、初期値設定に要する学習時間及び演算負荷を大幅に低減することができる。   As described above, in the present embodiment, the valve opening command time Ti of the fuel injection valve 2 corresponding to the valve opening request time Topen is calculated using the Ti table, and the fuel injection valve 2 is driven using the valve opening command time Ti. Is done. The actual valve opening time TopenA is detected when the fuel injection valve 2 is driven, the valve opening command time Ti is corrected so that the actual valve opening time TopenA approaches the valve opening request time Topen, and the corrected valve opening command time Ti Thus, the Ti table is updated (learned) and held as a table set value, and the fuel injection valve 2 is driven using the held table set value. In the interpolation learning area RINTLRN, the preceding learning is performed at two preceding learning points smaller than the total number of learning points set in advance, that is, at two points corresponding to the lower valve opening request time TOLL and the upper valve opening request time TOLH. At the same time, by performing interpolation calculation of the preceding learning values (values corresponding to PL and PH) obtained by the preceding learning, the initial value setting of the Ti table setting values at the learning points other than the preceding learning points is performed. Therefore, the learning time and calculation load required for the initial value setting can be greatly reduced as compared with the case where the preceding learning for the initial value setting is performed at all the learning points in the interpolation learning region RINTLRN.

また初期値の設定後に補間学習領域RINTLRN内における設定値の学習が開始されるため、学習点における学習値を最適値に迅速に収束させることができる。
また補間学習領域RINTLRNは、開弁要求時間Topenと開弁指令時間Tiの関係が環境条件、すなわち量産時の特性ばらつきや燃料圧力などの影響を受ける環境条件影響領域とされる。環境条件影響領域では、開弁要求時間Topenと開弁指令時間Tiとの最適な関係は線形関係に近いため、補間演算による初期値設定によって十分な設定精度が得られ、制御開始当初から比較的高い制御精度が得られる。
Moreover, since learning of the set value in the interpolation learning area RINTLRN is started after the initial value is set, the learned value at the learning point can be quickly converged to the optimum value.
The interpolation learning area RINTLRN is an environmental condition influence area in which the relationship between the valve opening request time Topen and the valve opening command time Ti is affected by environmental conditions, that is, the influence of variation in characteristics and fuel pressure during mass production. In the environmental condition influence region, since the optimum relationship between the valve opening request time Topen and the valve opening command time Ti is close to a linear relationship, sufficient setting accuracy can be obtained by the initial value setting by the interpolation operation, High control accuracy can be obtained.

また燃料噴射弁2は電磁力が作用するコア35と、弁体32が固定された弁軸31とが別体に構成されたハンマリングコア構造を有し、環境条件影響領域より開弁要求時間Topenが短い側に、開弁要求時間Topenと開弁指令時間Tiとの関係が非線形となる非線形領域を有する。本実施形態では、この非線形領域を全点学習領域RALPLRNとし、予め設定されるすべての学習点において先行学習を実行して初期値設定が行われる。全点学習領域RALPLRNでは、補間演算による初期値設定を行うと十分な設定精度が得られないため、すべての学習点において先行学習を行うことによって、制御開始当初から比較的高い制御精度を確保することができる。   Further, the fuel injection valve 2 has a hammering core structure in which a core 35 on which electromagnetic force acts and a valve shaft 31 to which a valve body 32 is fixed are configured separately, and the valve opening request time Topen from the environmental condition influence region. Has a nonlinear region where the relationship between the valve opening request time Topen and the valve opening command time Ti is nonlinear. In the present embodiment, this non-linear area is set as an all-point learning area RALPLRN, and the initial value is set by executing pre-learning at all preset learning points. In the all-point learning region RALPLRN, since sufficient setting accuracy cannot be obtained when initial value setting is performed by interpolation calculation, relatively high control accuracy is secured from the beginning of control by performing advance learning at all learning points. be able to.

なお本発明は上述した実施形態に限るものではなく、種々の変形が可能である。例えば、補間学習領域RINTLRNと全点学習領域RALPLRNは、図3に示すような設定に限定されるものではなく、例えば図10に示すように、補間学習領域RINTLRNを開弁要求時間Topenがより小さい側に拡張するようにしてもよい。図10に示す補間学習領域RINTLRNにおいても、開弁要求時間Topenと開弁指令時間Tiとの関係においては、ある程度の線形性が確保されているからである。   The present invention is not limited to the embodiment described above, and various modifications can be made. For example, the interpolation learning area RINTLRN and the all-point learning area RALPLRN are not limited to the settings shown in FIG. 3. For example, as shown in FIG. 10, the interpolation learning area RINTLRN has a smaller valve opening request time Topen. You may make it expand to the side. This is because even in the interpolation learning region RINTLRN shown in FIG. 10, a certain degree of linearity is ensured in the relationship between the valve opening request time Topen and the valve opening command time Ti.

また上述した実施形態では、補間学習領域RINTLRNにおける先行学習点を、補間学習領域RINTLRNを区画する下限値(TOLL)及び上限値(TOLH)に対応する2点としたが、これに限るものではなく、全学習点の数より少ない先行学習点において先行学習による初期設定を行い、先行学習点以外の学習点における初期値設定を補間演算によって行うようにしてもよい。   In the above-described embodiment, the preceding learning points in the interpolation learning area RINTLRN are two points corresponding to the lower limit value (TOLL) and the upper limit value (TOLH) that divide the interpolation learning area RINTLRN. However, the present invention is not limited to this. Alternatively, initial setting by preceding learning may be performed at preceding learning points smaller than the total number of learning points, and initial value setting at learning points other than the preceding learning points may be performed by interpolation calculation.

また上述した実施形態では、内燃機関の燃料噴射弁に本発明を適用した例を示したが、本発明は流体の流量を制御するための一般的な電磁弁にも適用可能である。
また実開弁時期tOP及び実閉弁時期tCLは、特許文献1に示されるようにリフトセンサを用いて検出するようにしてもよい。
In the embodiment described above, an example in which the present invention is applied to a fuel injection valve of an internal combustion engine has been described. However, the present invention can also be applied to a general electromagnetic valve for controlling the flow rate of a fluid.
Further, the actual valve opening timing tOP and the actual valve closing timing tCL may be detected using a lift sensor as disclosed in Patent Document 1.

2 燃料噴射弁(電磁弁)
5 電子制御ユニット(開弁要求時間算出手段、実開弁時間検出手段、駆動信号生成手段、学習値保持手段)
11 電圧電流センサ(実開弁時間検出手段)
31 弁軸
32 弁体
2 Fuel injection valve (solenoid valve)
5 Electronic control unit (valve opening request time calculating means, actual valve opening time detecting means, drive signal generating means, learning value holding means)
11 Voltage current sensor (actual valve opening time detection means)
31 Valve shaft 32 Valve body

Claims (4)

流体の流量を制御する電磁弁の駆動制御装置において、
前記電磁弁の開弁要求時間を算出する開弁要求時間算出手段と、
前記開弁要求時間に基づいて前記電磁弁の開弁指令時間を算出し、該開弁指令時間を用いて前記電磁弁の駆動信号を生成する駆動信号生成手段と、
前記電磁弁の駆動時に前記電磁弁の実開弁時間を検出する実開弁時間検出手段と、
前記実開弁時間が前記開弁要求時間に近づくように前記開弁指令時間を修正するとともに、修正した前記開弁指令時間を学習値として保持する学習値保持手段とを備え、
前記駆動信号生成手段は、前記学習値を用いて前記駆動信号を生成し、
前記学習値保持手段は、学習領域を区画する下側開弁要求時間及び上側開弁要求時間に対応する2つの学習点を含み、前記学習領域内に予め設定される全学習点の数より少ない数の先行学習点においてそれぞれ先行学習を行うとともに、該先行学習によって得られる先行学習値の補間計算を行うことにより、前記先行学習点以外の学習点における前記学習値の初期値設定を行うことを特徴とする電磁弁の駆動制御装置。
In a drive control device for a solenoid valve that controls the flow rate of fluid,
Valve opening request time calculating means for calculating the valve opening request time of the solenoid valve;
Drive signal generating means for calculating a valve opening command time of the solenoid valve based on the valve opening request time, and generating a drive signal of the solenoid valve using the valve opening command time;
An actual valve opening time detecting means for detecting an actual valve opening time of the electromagnetic valve when the electromagnetic valve is driven;
Learning value holding means for correcting the valve opening command time so that the actual valve opening time approaches the valve opening request time, and holding the corrected valve opening command time as a learning value;
The drive signal generation means generates the drive signal using the learning value,
The learning value holding means includes two learning points corresponding to the lower valve opening request time and the upper valve opening request time that divide the learning region, and is smaller than the total number of learning points set in advance in the learning region. Performing preceding learning at each of a number of preceding learning points and performing initial calculation of the learning values at learning points other than the preceding learning points by performing interpolation calculation of the preceding learning values obtained by the preceding learning. A drive control device for a solenoid valve.
前記学習値保持手段は、前記初期値の設定後に前記学習領域内における学習を開始することを特徴とする請求項1に記載の電磁弁の駆動制御装置。   The electromagnetic valve drive control device according to claim 1, wherein the learning value holding means starts learning in the learning region after the initial value is set. 前記学習領域は、前記開弁要求時間と前記開弁指令時間の関係が環境条件の影響を受ける環境条件影響領域であることを特徴とする請求項1または2に記載の電磁弁の駆動制御装置。   The electromagnetic valve drive control device according to claim 1, wherein the learning region is an environmental condition influence region in which a relationship between the valve opening request time and the valve opening command time is affected by an environmental condition. . 前記電磁弁は、電磁力が作用するコアと、弁体が固定された弁軸とが別体に構成されたハンマリングコア構造を有し、
前記環境条件影響領域より前記開弁要求時間が短い側に、前記開弁要求時間と前記開弁指令時間との関係が非線形となる非線形領域を有し、
前記学習値保持手段は、該非線形領域では予め設定されるすべての学習点において前記先行学習を実行して前記初期値設定を行うことを特徴とする請求項3に記載の電磁弁の駆動制御装置。
The solenoid valve has a hammering core structure in which a core on which an electromagnetic force acts and a valve shaft to which the valve body is fixed are configured separately,
On the side where the valve opening request time is shorter than the environmental condition influence region, there is a non-linear region where the relationship between the valve opening request time and the valve opening command time is non-linear,
4. The drive control device for an electromagnetic valve according to claim 3, wherein the learning value holding unit performs the preceding learning at all learning points set in advance in the non-linear region to set the initial value. 5. .
JP2013118823A 2013-06-05 2013-06-05 Solenoid valve drive control device Expired - Fee Related JP5707445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013118823A JP5707445B2 (en) 2013-06-05 2013-06-05 Solenoid valve drive control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013118823A JP5707445B2 (en) 2013-06-05 2013-06-05 Solenoid valve drive control device

Publications (2)

Publication Number Publication Date
JP2014234923A true JP2014234923A (en) 2014-12-15
JP5707445B2 JP5707445B2 (en) 2015-04-30

Family

ID=52137771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013118823A Expired - Fee Related JP5707445B2 (en) 2013-06-05 2013-06-05 Solenoid valve drive control device

Country Status (1)

Country Link
JP (1) JP5707445B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101780365B1 (en) * 2015-12-01 2017-10-10 현대오트론 주식회사 Injector Control Method Considering Minimum Injection Quantity
CN108223172A (en) * 2016-12-12 2018-06-29 奥特润株式会社 The determining method and its control method of the learning region of injector opening time
CN108223177A (en) * 2016-12-15 2018-06-29 现代自动车株式会社 For controlling the method for the injector of vehicle
WO2020017335A1 (en) * 2018-07-20 2020-01-23 日立オートモティブシステムズ株式会社 Fuel injection control device
KR102214575B1 (en) * 2019-12-10 2021-02-10 주식회사 현대케피코 Injector control method for 48v mild hybrid vehicle and control apparatus thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6397869A (en) * 1986-10-11 1988-04-28 Nissan Motor Co Ltd Fuel injection device for internal combustion engine
JPH06174139A (en) * 1992-12-02 1994-06-24 Jatco Corp Solenoid valve controller
JP2002231528A (en) * 2001-02-06 2002-08-16 Honda Motor Co Ltd Electromagnetic actuator control device
JP2002270425A (en) * 2001-03-13 2002-09-20 Toyota Motor Corp Device and method for controlling electromagnetic valve
JP2006170054A (en) * 2004-12-15 2006-06-29 Toyota Motor Corp Internal combustion engine control device and method of hybrid vehicle
JP2007154749A (en) * 2005-12-05 2007-06-21 Toyota Motor Corp Air fuel ratio control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6397869A (en) * 1986-10-11 1988-04-28 Nissan Motor Co Ltd Fuel injection device for internal combustion engine
JPH06174139A (en) * 1992-12-02 1994-06-24 Jatco Corp Solenoid valve controller
JP2002231528A (en) * 2001-02-06 2002-08-16 Honda Motor Co Ltd Electromagnetic actuator control device
JP2002270425A (en) * 2001-03-13 2002-09-20 Toyota Motor Corp Device and method for controlling electromagnetic valve
JP2006170054A (en) * 2004-12-15 2006-06-29 Toyota Motor Corp Internal combustion engine control device and method of hybrid vehicle
JP2007154749A (en) * 2005-12-05 2007-06-21 Toyota Motor Corp Air fuel ratio control device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101780365B1 (en) * 2015-12-01 2017-10-10 현대오트론 주식회사 Injector Control Method Considering Minimum Injection Quantity
CN108223172A (en) * 2016-12-12 2018-06-29 奥特润株式会社 The determining method and its control method of the learning region of injector opening time
US10495018B2 (en) 2016-12-12 2019-12-03 Hyundai Autron Co., Ltd. Method for defining learning area of injector opening duration control
DE102017222152B4 (en) 2016-12-12 2022-04-07 Hyundai Kefico Corporation Method for determining a learning range of an opening duration of an injection valve
CN108223177A (en) * 2016-12-15 2018-06-29 现代自动车株式会社 For controlling the method for the injector of vehicle
US10253715B2 (en) 2016-12-15 2019-04-09 Hyundai Motor Company Method for controlling injector of vehicle
WO2020017335A1 (en) * 2018-07-20 2020-01-23 日立オートモティブシステムズ株式会社 Fuel injection control device
JPWO2020017335A1 (en) * 2018-07-20 2021-05-13 日立Astemo株式会社 Fuel injection control device
US11293371B2 (en) 2018-07-20 2022-04-05 Hitachi Astemo, Ltd. Fuel injection control device
KR102214575B1 (en) * 2019-12-10 2021-02-10 주식회사 현대케피코 Injector control method for 48v mild hybrid vehicle and control apparatus thereof

Also Published As

Publication number Publication date
JP5707445B2 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
JP5707445B2 (en) Solenoid valve drive control device
JP5792227B2 (en) Solenoid valve drive control device
JP6292070B2 (en) Fuel injection control device
US20120239278A1 (en) Method and control unit for operating a valve
JP4475205B2 (en) Control device for common rail fuel injection system
JP2010539371A (en) Method for evaluating the functional operation of an injection valve when a drive voltage is applied, and a corresponding evaluation device
JP2011094586A (en) Engine control apparatus
JP5723244B2 (en) Fuel injection control device
US10260448B2 (en) Fuel injection control device for internal combustion engine
JP2004251272A (en) Fuel injection device
WO2018221527A1 (en) Fuel injection control device of internal combustion engine
JP5659256B2 (en) Solenoid valve drive control device
JP6010480B2 (en) Solenoid valve drive control device
JP6092740B2 (en) Solenoid valve drive control device
CN106988914B (en) Method for controlling a magnetic valve injector
JP2014231863A (en) Drive control device of electromagnetic valve
JP4941498B2 (en) Control device for fuel injection system
JP2015055277A (en) Drive control device of electromagnetic valve
JP2015040535A (en) Responsiveness learning device of pressure sensor
JP6022427B2 (en) Solenoid valve drive control device
JP5382006B2 (en) Fuel injection control device
JP5565435B2 (en) Fuel injection control device
JP5392277B2 (en) Fuel injection control device
US9976505B2 (en) Method for operating an injector of an injection system of an internal combustion engine
JP5170168B2 (en) Injector replacement determination device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150302

R150 Certificate of patent or registration of utility model

Ref document number: 5707445

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees