JP2014234076A - Collision detection device - Google Patents

Collision detection device Download PDF

Info

Publication number
JP2014234076A
JP2014234076A JP2013116911A JP2013116911A JP2014234076A JP 2014234076 A JP2014234076 A JP 2014234076A JP 2013116911 A JP2013116911 A JP 2013116911A JP 2013116911 A JP2013116911 A JP 2013116911A JP 2014234076 A JP2014234076 A JP 2014234076A
Authority
JP
Japan
Prior art keywords
deceleration
threshold value
sensor
duration
floor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013116911A
Other languages
Japanese (ja)
Inventor
光昭 赤座
Mitsuaki Akaza
光昭 赤座
真一 原瀬
Shinichi Harase
真一 原瀬
山下 利幸
Toshiyuki Yamashita
利幸 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013116911A priority Critical patent/JP2014234076A/en
Publication of JP2014234076A publication Critical patent/JP2014234076A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a collision detection device performing a high-speed collision determination with high precision which is less susceptible to variations in floor deceleration due to a vehicle structure.SOLUTION: A floor deceleration continuation time calculation section 6 calculates continuation time that a deceleration speed detected by a floor sensor 1 exceeds a first threshold value. A threshold value determination section 7 has a threshold value pattern that determines a relationship between continuation time and a second threshold value, and determines the second threshold value according to the continuation time calculated by the floor deceleration continuation time calculation section 6. A threshold value comparison section 8 compares a detection value of a front sensor 2 with the second threshold value determined by the threshold value determination section 7 so as to determine whether to activate occupant protection devices 10a and 10b.

Description

この発明は、車両の衝突を検出して乗員保護装置の起動要否を判定する衝突検出装置に関するものである。   The present invention relates to a collision detection device that detects a collision of a vehicle and determines whether or not an occupant protection device needs to be activated.

従来、エアバッグ等の乗員保護装置の起動方法としては、車両に減速度センサ(加速度センサ)等の車両状態を検出するためのセンサを設置し、そのセンサ出力があらかじめ設定したしきい値よりも大きい場合に起動させる方法があった。   Conventionally, as a method of starting an occupant protection device such as an air bag, a sensor for detecting a vehicle state such as a deceleration sensor (acceleration sensor) is installed in the vehicle, and the sensor output exceeds a preset threshold value. There was a way to start when it was big.

さらに近年では、乗員に致命的となる高速衝突に対して、より早期の起動要否判定が要求されており、車両の2箇所に配置された複数のセンサ出力からマップを生成し、高速衝突の特徴を抽出して起動要否を判定する方法がある(例えば、特許文献1参照)。   Furthermore, in recent years, early start-up necessity determinations are required for high-speed collisions that are fatal to passengers. Maps are generated from the output of multiple sensors arranged at two locations on the vehicle, and There is a method of extracting features and determining the necessity of activation (see, for example, Patent Document 1).

上記特許文献1の方法では、まず、車両中央部に設置されたフロア減速度センサの出力の2回積分を演算し、演算されたフロア減速度の2回積分をもとに、しきい値決定手段により、あらかじめ設定されたしきい値パターンからフロントセンサしきい値を決定する。そして、車両前部に設置されたフロント減速度センサの出力が前記フロントセンサしきい値以上の場合に乗員保護の緊急度が高い高速衝突と判定し、前記フロントセンサしきい値未満の場合に乗員保護の緊急度が低い中速・低速衝突と判定する。その際、フロア減速度の2回積分値が小さい領域のフロントセンサしきい値を、大きい領域のフロントセンサしきい値と比べて低く設定することで、高速衝突の早期判定を実施していた。   In the method disclosed in Patent Document 1, first, a two-time integration of the output of a floor deceleration sensor installed at the center of the vehicle is calculated, and a threshold value is determined based on the two-time integration of the calculated floor deceleration. The means determines a front sensor threshold value from a preset threshold pattern. When the output of the front deceleration sensor installed at the front of the vehicle is equal to or greater than the front sensor threshold, it is determined that the occupant protection is a high-speed collision with a high degree of emergency, and when the output is less than the front sensor threshold, Judged as a medium / low-speed collision with a low level of protection urgency. At that time, the front sensor threshold value in the region where the twice integrated value of the floor deceleration is small is set lower than the front sensor threshold value in the large region, so that the early determination of the high-speed collision is performed.

特開2003−220926号公報JP 2003-220926 A

しかしながら、車両前部からフロア減速度センサまでの緩衝部が少ない構造の車両(例えば、フロア減速度センサとフロント減速度センサの設置距離が近い、車両前部の振動を車両中央部のフロア減速度センサに伝達する部材がある等)では、高速衝突時にフロア減速度の2回積分値が急激に増大し、中速・低速衝突との判別性が低下する可能性があるという課題があった。   However, a vehicle having a structure with a small amount of buffering from the front of the vehicle to the floor deceleration sensor (for example, the floor deceleration at the center of the vehicle where the installation distance between the floor deceleration sensor and the front deceleration sensor is short) For example, there is a member that transmits to the sensor), and the integral value of the floor deceleration twice increases rapidly at the time of a high-speed collision, and there is a possibility that the discriminability from the medium-speed / low-speed collision may be lowered.

この発明は、上記のような課題を解決するためになされたもので、車両の構造に起因したフロア減速度のばらつきに影響され難い、高精度な高速衝突判定を行う衝突検出装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides a collision detection device that performs high-speed, high-speed collision determination that is not easily affected by variations in floor deceleration caused by the structure of a vehicle. With the goal.

この発明に係る衝突検出装置は、車両の中央部に配置され当該車両の減速度を検出する第1のセンサと、車両の外郭部に配置され当該車両に加わる衝撃に応じた出力を行う第2のセンサと、第1のセンサで検出する減速度が第1のしきい値を超えた継続時間を算出する減速度継続時間算出部と、継続時間と第2のしきい値との関係を定めたしきい値パターンを有し、減速度継続時間算出部で算出した継続時間に応じて第2のしきい値を決定するしきい値決定部と、第2のセンサの検出値をしきい値決定部で決定した第2のしきい値と比較して、乗員保護装置の起動要否を判定するしきい値比較部とを備えるものである。   The collision detection device according to the present invention is a first sensor that is disposed in the center of the vehicle and detects the deceleration of the vehicle, and a second sensor that is disposed in the outer portion of the vehicle and performs an output corresponding to an impact applied to the vehicle. A relationship between the duration time and the second threshold value, and a deceleration duration calculation unit for calculating a duration time during which the deceleration detected by the first sensor exceeds the first threshold value. A threshold value determination unit for determining a second threshold value according to the duration calculated by the deceleration duration calculation unit, and a detection value of the second sensor as a threshold value. A threshold value comparison unit that determines whether or not the occupant protection device needs to be activated is compared with the second threshold value determined by the determination unit.

この発明によれば、第1のセンサで検出する減速度が第1のしきい値を超えた継続時間を算出し、当該継続時間に応じた第2のしきい値と第2のセンサの検出値とを比較して乗員保護装置の起動要否を判定するようにしたので、車両の構造に起因したフロア減速度のばらつきに影響され難い、高精度な高速衝突判定を行う衝突検出装置を提供することができる。   According to this invention, the duration when the deceleration detected by the first sensor exceeds the first threshold value is calculated, and the second threshold value and the second sensor detection corresponding to the duration time are calculated. Since it is determined whether or not the occupant protection device needs to be started by comparing the values, a collision detection device that makes high-precision high-speed collision determination that is not easily affected by variations in floor deceleration due to the vehicle structure is provided. can do.

この発明の実施の形態1に係る衝突検出装置の構成を示すブロック図である。It is a block diagram which shows the structure of the collision detection apparatus which concerns on Embodiment 1 of this invention. 実施の形態1に係る衝突検出装置を搭載した車両の構成例を示す図である。It is a figure which shows the structural example of the vehicle carrying the collision detection apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る衝突検出装置の動作を示すフローチャートである。3 is a flowchart showing an operation of the collision detection apparatus according to the first embodiment. 実施の形態1に係る衝突検出装置のフロア減速度とフロア減速度継続時間の経時変化を示すグラフである。6 is a graph showing temporal changes in floor deceleration and floor deceleration continuation time of the collision detection device according to the first embodiment. 実施の形態1に係る衝突検出装置のフロア減速度継続時間の経時変化、およびフロア減速度継続時間とフロント減速度とのマッピングを示すグラフである。6 is a graph showing a temporal change in floor deceleration continuation time of the collision detection apparatus according to Embodiment 1 and mapping between floor deceleration continuation time and front deceleration. 実施の形態1に係る衝突検出装置のフロント減速度の経時変化を示すグラフである。6 is a graph showing a change with time of front deceleration of the collision detection apparatus according to the first embodiment. 従来の衝突検出装置で演算するフロア減速度2回積分の経時変化、およびフロア減速度2回積分とフロント減速度とのマッピングを示すグラフである。It is a graph which shows the time-dependent change of floor deceleration 2 time integration calculated with the conventional collision detection apparatus, and mapping with floor deceleration 2 time integration and front deceleration. 図5(b)のしきい値パターンの変形例を示すグラフである。It is a graph which shows the modification of the threshold value pattern of FIG.5 (b). 実施の形態1に係る衝突検出装置の変形例を示すブロック図である。It is a block diagram which shows the modification of the collision detection apparatus which concerns on Embodiment 1. FIG.

実施の形態1.
図1に示すように、本実施の形態1に係る衝突検出装置は、車両の衝突を検出してエアバッグ等の乗員保護装置10a,10bの起動要否を判定するものであって、フロアセンサ(第1のセンサ)1、フロントセンサ(第2のセンサ)2、ECU(Electric Control Unit)3からなる。
Embodiment 1 FIG.
As shown in FIG. 1, the collision detection apparatus according to the first embodiment detects the collision of a vehicle and determines whether or not the occupant protection apparatuses 10a and 10b such as airbags need to be activated. (First sensor) 1, front sensor (second sensor) 2, and ECU (Electric Control Unit) 3.

この衝突検出装置を搭載した車両の構成例を、図2に示す。この例では、フロアセンサ1が車両のフロア(中央部)に設置されて車両の減速度Gfloorを検出し、フロントセンサ2は車両のフロント(前部)に設置されて車両の減速度Gfrontを検出する。なお、ECU3をフロアに設置する場合、フロアセンサ1をそのECU3の内部に配置してもよい。また、この例ではフロアセンサ1およびフロントセンサ2として、車両減速度を検知する減速度センサ(加速度センサ)を用いる。ただし、フロントセンサ2は、減速度センサに限定されるものではなく、フロントの変形量を検知する圧力センサなど車両に加わる衝撃に応じた出力を行うものであればよい。また、フロントセンサ2をフロント左右など複数配置してもよく、その場合に減速度センサと圧力センサを併用してもよい。   FIG. 2 shows a configuration example of a vehicle equipped with this collision detection device. In this example, the floor sensor 1 is installed on the vehicle floor (central part) to detect the vehicle deceleration Gfloor, and the front sensor 2 is installed on the vehicle front (front part) to detect the vehicle deceleration Gfront. To do. In addition, when installing ECU3 in a floor, you may arrange | position the floor sensor 1 inside the ECU3. In this example, a deceleration sensor (acceleration sensor) that detects vehicle deceleration is used as the floor sensor 1 and the front sensor 2. However, the front sensor 2 is not limited to the deceleration sensor, and any sensor that outputs in accordance with the impact applied to the vehicle, such as a pressure sensor that detects the deformation amount of the front, may be used. Further, a plurality of front sensors 2 such as front left and right may be arranged, and in that case, a deceleration sensor and a pressure sensor may be used in combination.

ECU3には、フロアセンサ1およびフロントセンサ2の出力を取得する通信インタフェース(以下、I/F)4、マイクロコンピュータ(以下、マイコン)5、乗員保護装置10a,10bを駆動する乗員保護装置駆動回路9等が搭載されている。マイコン5は、内蔵メモリに記録されたプログラムを逐次読み出して実行することによって、フロアセンサ1およびフロントセンサ2の出力に基づく衝突判定を行って乗員保護装置10a,10bの起動要否を判定するためのフロア減速度継続時間算出部6、しきい値決定部7およびしきい値比較部8としての機能を実行する。起動が必要な場合は、乗員保護装置駆動回路9へ起動信号を送って乗員保護装置10a,10bを起動させる。   The ECU 3 includes a communication interface (hereinafter referred to as I / F) 4 that acquires outputs of the floor sensor 1 and the front sensor 2, a microcomputer (hereinafter referred to as microcomputer) 5, and an occupant protection device drive circuit that drives the occupant protection devices 10a and 10b. 9 etc. are installed. The microcomputer 5 sequentially reads and executes the program recorded in the built-in memory, thereby performing a collision determination based on the outputs of the floor sensor 1 and the front sensor 2 to determine whether the occupant protection devices 10a and 10b are required to be activated. The functions of the floor deceleration duration calculation unit 6, threshold determination unit 7, and threshold comparison unit 8 are executed. When activation is required, an activation signal is sent to the occupant protection device drive circuit 9 to activate the occupant protection devices 10a and 10b.

次に、図3に示すフローチャートを参照しながら、衝突検出装置の動作を説明する。マイコン5はこのフローチャートを所定のサンプリング周期ごとに繰り返し行う。
先ず、所定のサンプリング周期で、フロア減速度継続時間算出部6が通信I/F4を介してフロアセンサ1の検出する減速度Gfloorを取得すると共に、しきい値比較部8が通信I/F4を介してフロントセンサ2の検出する減速度Gfrontを取得する(ステップST1)。
Next, the operation of the collision detection apparatus will be described with reference to the flowchart shown in FIG. The microcomputer 5 repeats this flowchart every predetermined sampling period.
First, at a predetermined sampling period, the floor deceleration duration calculation unit 6 acquires the deceleration Gfloor detected by the floor sensor 1 via the communication I / F4, and the threshold comparison unit 8 determines the communication I / F4. The deceleration Gfront detected by the front sensor 2 is acquired (step ST1).

続いてフロア減速度継続時間算出部6が、減速度Gfloorを所定のしきい値ThrGfloor(第1のしきい値)と比較し(ステップST2)、減速度Gfloorがしきい値ThrGfloorを超える場合に(ステップST2“YES”)、フロア減速度継続時間Tgcontに対して所定の加算値Taを加算する(ステップST3)。
しきい値ThrGfloorは、例えばノイズより大きい値であって、通常走行時には発生せず衝突時に発生する減速度のレベルに設定する。
Subsequently, the floor deceleration duration calculation unit 6 compares the deceleration Gfloor with a predetermined threshold value ThrGfloor (first threshold value) (step ST2), and when the deceleration Gfloor exceeds the threshold value ThrGfloor. (Step ST2 “YES”), a predetermined addition value Ta is added to the floor deceleration continuation time Tgcont (step ST3).
The threshold value ThrGfloor is a value greater than, for example, noise, and is set to a level of deceleration that does not occur during normal traveling but occurs during a collision.

一方、減速度Gfloorがしきい値ThrGfloor以下であって(ステップST2“NO”)、フロア減速度継続時間Tgcontが0より大きい場合(ステップST4“YES”)、フロア減速度継続時間算出部6はフロア減速度継続時間Tgcontに対して所定の減算値Tbを減算する(ステップST5)。フロア減速度継続時間Tgcontから減算値Tbを減算した結果、フロア減速度継続時間Tgcontがマイナスになった場合(ステップST6“YES”)、フロア減速度継続時間算出部6はフロア減速度継続時間Tgcontを0に設定する(ステップST7)。
ステップST4“NO”およびステップST6“NO”の場合は、ステップST8へ進む。
On the other hand, when the deceleration Gfloor is equal to or less than the threshold ThrGfloor (step ST2 “NO”) and the floor deceleration duration Tgcont is greater than 0 (step ST4 “YES”), the floor deceleration duration calculation unit 6 A predetermined subtraction value Tb is subtracted from the floor deceleration continuation time Tgcont (step ST5). When the floor deceleration continuation time Tgcont becomes negative as a result of subtracting the subtraction value Tb from the floor deceleration continuation time Tgcont (step ST6 “YES”), the floor deceleration continuation time calculator 6 calculates the floor deceleration continuation time Tgcont. Is set to 0 (step ST7).
In the case of step ST4 “NO” and step ST6 “NO”, the process proceeds to step ST8.

ここで、図4(a)に減速度Gfloorの経時変化のグラフを示し、図4(b)にフロア減速度継続時間Tgcontの経時変化のグラフを示す。図4の例ではTa=Tb=1に設定しており、減速度Gfloorがしきい値ThrGfloorを超えるとフロア減速度継続時間Tgcontに1を加算し、しきい値ThrGfloor以下になると1を減算する。   Here, FIG. 4A shows a graph of the change over time of the deceleration Gfloor, and FIG. 4B shows a graph of the change over time of the floor deceleration duration time Tgcont. In the example of FIG. 4, Ta = Tb = 1 is set. When the deceleration Gfloor exceeds the threshold value ThrGfloor, 1 is added to the floor deceleration duration time Tgcont, and when it becomes less than the threshold value ThrGfloor, 1 is subtracted. .

この方式を使用すれば、図5(a)のグラフに示すように、衝突の速度V,2V,4Vによらず減速度Gfloorがしきい値ThrGfloorを超えたタイミングから一定の傾きでフロア減速度継続時間Tgcontが増加する傾向になる。この図5(a)では、緩衝部の少ない車両(例えば、フロアセンサ1とフロントセンサ2の設置距離が近い、フロントの振動をフロアセンサ1に伝達する部材がある等)に物体が速度Vで衝突した場合(低速衝突)の減速度Gfrontを実線、速度2Vで衝突した場合(中速衝突)の減速度Gfrontを破線、速度4Vで衝突した場合(高速衝突)の減速度Gfrontを一点鎖線で表しているが、増加傾向が同じため3本の線が重なっている。   If this method is used, as shown in the graph of FIG. 5A, the floor deceleration is performed at a constant slope from the timing when the deceleration Gfloor exceeds the threshold ThrGfloor regardless of the collision speed V, 2V, 4V. The duration Tgcont tends to increase. In FIG. 5 (a), an object moves at a speed V on a vehicle with a small buffer (for example, the installation distance between the floor sensor 1 and the front sensor 2 is short, or there is a member that transmits front vibration to the floor sensor 1). The deceleration Gfront in the case of a collision (low speed collision) is indicated by a solid line, the deceleration Gfront in the case of a collision at a speed of 2V (medium speed collision) is indicated by a broken line, and the deceleration Gfront in the case of a collision at a speed of 4V (high speed collision) is indicated by a one-dot chain line. Although shown, since the increasing tendency is the same, the three lines overlap.

緩衝部が少ない構造の車両では、低速衝突と比べて高速衝突でフロアセンサ1の減速度Gfloorが急激に大きくなったり、減速度Gfloorにフロントの振動などが重畳したりするため、減速度Gfloorがばらつく。しかしながら、図5(a)に示したように、フロア減速度継続時間Tgcontは減速度Gfloorのばらつきに影響されにくい。   In a vehicle having a structure with a small number of shock absorbers, the deceleration Gfloor of the floor sensor 1 suddenly increases at a high-speed collision compared to a low-speed collision, or the front vibration or the like is superimposed on the deceleration Gfloor. It varies. However, as shown in FIG. 5A, the floor deceleration continuation time Tgcont is not easily affected by variations in the deceleration Gfloor.

なお、加算値Taと減算値Tbは同じ値であってもよいし、異なる値であってもよい。
加算値Taより減算値Tbを大きい値に設定した場合は、フロア減速度継続時間Tgcontが0に収束するまでの時間が短くなるが、衝突現象中(減速度Gfloorが変動している)のフロア減速度継続時間Tgcontの変動が大きくなる。逆に、加算値Taより減算値Tbを小さい値に設定した場合は、衝突現象中のフロア減速度継続時間Tgcontの変動は小さくなるが、衝突現象完了後のフロア減速度継続時間Tgcontの収束が遅くなる。この特性を踏まえてTaとTbを設定すればよい。
The addition value Ta and the subtraction value Tb may be the same value or different values.
When the subtraction value Tb is set larger than the addition value Ta, the time until the floor deceleration continuation time Tgcont converges to 0 is shortened, but the floor during the collision phenomenon (the deceleration Gfloor fluctuates). The fluctuation of the deceleration continuation time Tgcont increases. On the contrary, when the subtraction value Tb is set to a value smaller than the addition value Ta, the fluctuation of the floor deceleration continuation time Tgcont during the collision phenomenon becomes small, but the convergence of the floor deceleration continuation time Tgcont after the collision phenomenon is completed. Become slow. Based on this characteristic, Ta and Tb may be set.

図6は、フロントセンサ2の検出する減速度Gfrontの経時変化のグラフである。高速衝突時(速度4V)の減速度Gfrontは、低速衝突時(速度V)の減速度Gfrontに比べて大きく、かつ早期に発生する傾向にある。   FIG. 6 is a graph of the change over time in the deceleration Gfront detected by the front sensor 2. The deceleration Gfront at the time of high-speed collision (speed 4V) is larger than the deceleration Gfront at the time of low-speed collision (speed V) and tends to occur early.

図5(b)は、フロントセンサ2の検出する減速度Gfrontとフロア減速度継続時間算出部6の算出するフロア減速度継続時間Tgcontとの関係をマッピングしたグラフである。図5(a)で示したようにフロア減速度継続時間Tgcontと時間が概ね比例関係になるので、図5(b)と図6の減速度Gfrontの波形は略同一形状になる。
以下、図5(b)を参照しながら、図3のフローチャートを説明する。
FIG. 5B is a graph mapping the relationship between the deceleration Gfront detected by the front sensor 2 and the floor deceleration duration Tgcont calculated by the floor deceleration duration calculation unit 6. As shown in FIG. 5A, the floor deceleration duration time Tgcont and the time are approximately proportional to each other. Therefore, the waveforms of the deceleration Gfront in FIGS. 5B and 6 have substantially the same shape.
Hereinafter, the flowchart of FIG. 3 will be described with reference to FIG.

しきい値決定部7には、フロントセンサ2の減速度Gfrontから乗員保護装置10a,10bの起動要否を判定するためのしきい値ThrGfront(第2のしきい値)のパターンが設定されている。このしきい値パターンは、フロア減速度継続時間Tgcontとしきい値ThrGfrontとの関係を定めたものであり、フロア減速度継続時間Tgcontが所定時間より短い領域では、長い領域と比べてしきい値ThrGfrontが低い値に設定されている。   The threshold value determination unit 7 is set with a threshold ThrGfront (second threshold value) pattern for determining whether or not the occupant protection devices 10a and 10b need to be activated from the deceleration Gfront of the front sensor 2. Yes. This threshold value pattern defines the relationship between the floor deceleration duration time Tgcont and the threshold value ThrGfront. In the region where the floor deceleration duration time Tgcont is shorter than the predetermined time, the threshold value ThrGfront is greater than the longer region. Is set to a low value.

しきい値ThrGfrontのしきい値パターンの一例を、図5(b)に太実線で示す。フロントセンサ2の減速度Gfrontがしきい値ThrGfront以上になるON領域では乗員保護装置10a,10bを起動し、しきい値ThrGfront未満となるOFF領域では起動しない。
このしきい値パターン例では、フロア減速度継続時間Tgcont=20より長い領域に発生する減速度Gfrontを乗員保護装置10a,10bの起動が不要な衝突とみなし、一方、Tgcont=20より短い領域に発生する減速度Gfrontを乗員保護装置10a,10bの起動が必要な衝突とみなす。そして、フロア減速度継続時間Tgcont=20より長い領域では、しきい値ThrGfrontを、起動不要な衝突時(例えば、速度Vの衝突)に想定される減速度Gfrontのピーク値より低い値に設定している。さらに、フロア減速度継続時間Tgcont=20より短い領域のしきい値ThrGfrontを、Tgcont=20より長い領域の値ThrGfrontに比べて低く設定している。
An example of the threshold pattern of the threshold ThrGfront is shown by a thick solid line in FIG. The occupant protection devices 10a and 10b are activated in the ON region where the deceleration Gfront of the front sensor 2 is greater than or equal to the threshold value ThrGfront, and not activated in the OFF region where the deceleration is less than the threshold value ThrGfront.
In this threshold pattern example, the deceleration Gfront generated in the region longer than the floor deceleration continuation time Tgcont = 20 is regarded as a collision that does not require activation of the occupant protection devices 10a and 10b, while the region is shorter than Tgcont = 20. The generated deceleration Gfront is regarded as a collision that requires activation of the occupant protection devices 10a and 10b. In a region longer than the floor deceleration duration Tgcont = 20, the threshold ThrGfront is set to a value lower than the peak value of the deceleration Gfront assumed at the time of a collision that does not require activation (for example, a collision at a speed V). ing. Further, the threshold value ThrGfront in the region shorter than the floor deceleration continuation time Tgcont = 20 is set lower than the value ThrGfront in the region longer than Tgcont = 20.

しきい値決定部7は、しきい値パターンに基づいて、フロア減速度継続時間算出部6で算出したフロア減速度継続時間Tgcontに対応するしきい値ThrGfrontを決定する(ステップST8)。続いてしきい値比較部8がそのしきい値ThrGfrontと減速度Gfrontとを比較し(ステップST9)、減速度Gfrontがしきい値ThrGfront以上の場合(ステップST9“YES”)、乗員保護装置駆動回路9を介して乗員保護装置10a,10bへ起動信号を出力する(ステップST10)。一方、減速度Gfrontがしきい値ThrGfront未満の場合(ステップST9“NO”)、今回のサンプリング周期における一連の処理を終了する。   Based on the threshold pattern, threshold determination unit 7 determines threshold ThrGfront corresponding to floor deceleration duration Tgcont calculated by floor deceleration duration calculation unit 6 (step ST8). Subsequently, the threshold value comparison unit 8 compares the threshold value ThrGfront with the deceleration Gfront (step ST9). When the deceleration Gfront is equal to or greater than the threshold value ThrGfront (step ST9 “YES”), the occupant protection device is driven. An activation signal is output to the occupant protection devices 10a and 10b via the circuit 9 (step ST10). On the other hand, when the deceleration Gfront is less than the threshold ThrGfront (step ST9 “NO”), a series of processes in the current sampling cycle is terminated.

ここで、先立って説明した特許文献1に係る衝突判定方法と、本実施の形態1に係る衝突判定方法を比較する。
図7(a)は、特許文献1に係る衝突判定方法により求めた減速度Gfloorの2回積分の経時変化を示すグラフである。緩衝部の少ない車両では、衝突速度に応じて減速度Gfloorがばらつくため、高速衝突時(速度4V)に減速度Gfloorの2回積分値が急激に増大する傾向にある。そのため、減速度Gfloorの2回積分と減速度Gfrontとの関係をマッピングすると、図7(b)のように、低速衝突(速度V)の減速度Gfrontと高速衝突(速度4V)の減速度Gfrontが重なる場合があり、高速衝突の判別性が低下する。また、図7(b)の例では、時間T2において高速衝突(速度4V)が判定され、乗員保護装置10a,10bが起動されることになる。
Here, the collision determination method according to Patent Document 1 described above and the collision determination method according to the first embodiment will be compared.
FIG. 7A is a graph showing the change over time of the two-time integration of the deceleration Gfloor obtained by the collision determination method according to Patent Document 1. FIG. In a vehicle with a small number of buffer parts, the deceleration Gfloor varies depending on the collision speed, and therefore, the double integrated value of the deceleration Gfloor tends to increase rapidly during a high-speed collision (speed 4V). Therefore, when the relationship between the double integration of the deceleration Gfloor and the deceleration Gfront is mapped, as shown in FIG. 7B, the deceleration Gfront of the low-speed collision (speed V) and the deceleration Gfront of the high-speed collision (speed 4V) are obtained. May overlap, and the discriminability of high-speed collisions decreases. In the example of FIG. 7B, a high-speed collision (speed 4V) is determined at time T2, and the occupant protection devices 10a and 10b are activated.

これに対し、本実施の形態1では減速度Gfloorの継続時間に基づいて減速度Gfrontのしきい値ThrGfrontを決定することにより、高速衝突判定時、減速度Gfloorのばらつきの影響を受けにくい。また、2回積分値のように傾きを増しながら増大するのではなく、図5(a)に示したようにフロア減速度継続時間Tgcontが一定の傾きで増加するので、比較的短い時間でフロア減速度継続時間Tgcontが0に収束することができ、2次衝突などの短期間での衝突現象に対応しやすい。さらに、図5(b)に示したように、時間T1において早期に高速衝突(速度4V)を判定できる。   On the other hand, in the first embodiment, by determining the threshold ThrGfront of the deceleration Gfront based on the duration of the deceleration Gfloor, it is difficult to be affected by variations in the deceleration Gfloor at the time of high-speed collision determination. Further, instead of increasing while increasing the slope as in the case of the integral value twice, the floor deceleration continuation time Tgcont increases with a constant slope as shown in FIG. The deceleration continuation time Tgcont can converge to 0, and it is easy to cope with a collision phenomenon in a short period such as a secondary collision. Furthermore, as shown in FIG. 5B, a high-speed collision (speed 4V) can be determined early at time T1.

以上より、実施の形態1によれば、衝突検出装置は、車両の中央部に配置され当該車両の減速度を検出するフロアセンサ1と、車両の前部に配置され当該車両に加わる衝撃に応じた出力を行うフロントセンサ2と、フロアセンサ1で検出する減速度Gfloorがしきい値ThrGfloorを超えたフロア減速度継続時間Tgcontを算出するフロア減速度継続時間算出部6と、フロア減速度継続時間Tgcontとしきい値ThrGfrontとの関係を定めたしきい値パターンを有してフロア減速度継続時間算出部6で算出したフロア減速度継続時間Tgcontに応じたしきい値ThrGfrontを決定するしきい値決定部7と、フロントセンサ2の検出値をしきい値決定部7で決定したしきい値ThrGfrontと比較して乗員保護装置10a,10bの起動要否を判定するしきい値比較部8とを備える構成にした。このように、フロントセンサ2のしきい値ThrGfrontの決定にフロア減速度継続時間Tgcontを用いることで、車両の構造に起因したフロア減速度Gfloorのばらつきに影響され難い高精度な高速衝突判定を行うことができる。   As described above, according to the first embodiment, the collision detection device is arranged at the center of the vehicle to detect the deceleration of the vehicle, and according to the impact applied to the vehicle at the front of the vehicle. A front sensor 2 that performs output, a floor deceleration duration calculation unit 6 that calculates a floor deceleration duration Tgcont when the deceleration Gfloor detected by the floor sensor 1 exceeds a threshold ThrGfloor, and a floor deceleration duration Threshold determination for determining the threshold ThrGfront according to the floor deceleration duration Tgcont calculated by the floor deceleration duration calculation unit 6 having a threshold pattern that defines the relationship between Tgcont and the threshold ThrGfront. Part 7 and the detection value of front sensor 2 compared with threshold value ThrGfront determined by threshold value determination part 7 Membered protection device 10a, and the structure and a determining threshold value comparator 8 activation necessity of 10b. Thus, by using the floor deceleration continuation time Tgcont to determine the threshold value ThrGfront of the front sensor 2, a high-accuracy high-speed collision determination that is hardly affected by variations in the floor deceleration Gfloor caused by the structure of the vehicle is performed. be able to.

また、実施の形態1によれば、フロントセンサ2は車両の減速度を検出する減速度センサに限定されるものではなく、フロントの変形量を検出する圧力センサであってもよい。圧力センサは広範囲の変形を検出することができるため、センサ設置数が少なくてすむ。   Further, according to the first embodiment, the front sensor 2 is not limited to the deceleration sensor that detects the deceleration of the vehicle, and may be a pressure sensor that detects the deformation amount of the front. Since the pressure sensor can detect a wide range of deformation, the number of sensors installed can be reduced.

また、実施の形態1によれば、フロア減速度継続時間算出部6は、フロアセンサ1で検出する減速度Gfloorがしきい値ThrGfloorを超えた場合に、フロア減速度継続時間Tgcontに所定の加算値Taを加算する構成にした。これにより、ノイズおよび通常走行時におけるフロア減速度継続時間Tgcontの加算を防止でき、誤判定を防止可能となる。   Further, according to the first embodiment, the floor deceleration duration calculation unit 6 adds a predetermined amount to the floor deceleration duration Tgcont when the deceleration Gfloor detected by the floor sensor 1 exceeds the threshold ThrGfloor. The value Ta is added. Thereby, addition of noise and floor deceleration continuation time Tgcont during normal traveling can be prevented, and erroneous determination can be prevented.

また、実施の形態1によれば、フロア減速度継続時間算出部6は、フロアセンサ1で検出する減速度Gfloorがしきい値ThrGfloor以下の場合に、フロア減速度継続時間Tgcontが0になるまではこのフロア減速度継続時間Tgcontから所定の減算値Tbを減算する構成にした。これにより、衝突現象中のフロア減速度継続時間Tgcontの急激な変動を防止しつつ、非衝突に起因した減速度Gfloorの出力に対してフロア減速度継続時間Tgcontを短時間で0に収束させることができ、誤判定を防止可能となる。   Further, according to the first embodiment, the floor deceleration continuation time calculation unit 6 determines that the floor deceleration continuation time Tgcont becomes 0 when the deceleration Gfloor detected by the floor sensor 1 is equal to or less than the threshold ThrGfloor. Is configured to subtract a predetermined subtraction value Tb from the floor deceleration continuation time Tgcont. Thereby, the floor deceleration continuation time Tgcont is converged to 0 in a short time with respect to the output of the deceleration Gfloor caused by the non-collision while preventing a rapid fluctuation of the floor deceleration continuation time Tgcont during the collision phenomenon. It is possible to prevent erroneous determination.

また、実施の形態1によれば、所定時間より短いフロア減速度継続時間Tgcontのしきい値ThrGfrontが、当該所定時間より長いフロア減速度継続時間Tgcontのしきい値ThrGfrontに比べて低く設定されたしきい値パターンを用いることにより、高速衝突などで衝突初期にフロントセンサ2の出力が大きくなるような場合に、早期判定が可能となる。   Further, according to the first embodiment, the threshold value ThrGfront of the floor deceleration duration time Tgcont shorter than the predetermined time is set lower than the threshold value ThrGfront of the floor deceleration duration time Tgcont longer than the predetermined time. By using the threshold pattern, early determination is possible when the output of the front sensor 2 becomes large at the beginning of the collision due to a high-speed collision or the like.

なお、図5(b)の例では、しきい値決定部7に設定するしきい値パターンを、フロア減速度継続時間Tgcont=20を境にスロープ状に変化するパターンにしたが、これに限定されるものではなく、例えば図8に示すように階段状に変化するパターンにしてもよい。   In the example of FIG. 5B, the threshold value pattern set in the threshold value determination unit 7 is a pattern that changes in a slope shape with the floor deceleration duration time Tgcont = 20 as a boundary. For example, as shown in FIG. 8, a pattern that changes stepwise may be used.

また、図8に示すように、フロア減速度継続時間Tgcontが0を含む時間帯T3のしきい値ThrGfrontを、この時間帯T3以外のしきい値ThrGfrontに比べて高く設定してもよい。この場合、フロントのみの衝撃(ハンマリング、アニマルインパクトといった乗員保護装置10a,10bの起動が不要な衝撃)に対する誤判定を防止することができる。   Further, as shown in FIG. 8, the threshold value ThrGfront in the time zone T3 in which the floor deceleration continuation time Tgcont includes 0 may be set higher than the threshold value ThrGfront other than the time zone T3. In this case, it is possible to prevent an erroneous determination with respect to an impact only at the front (impact that does not require activation of the occupant protection devices 10a and 10b such as hammering and animal impact).

さらに、図9に示すブロック図のように、フロア減速度継続時間算出部6の前段にLPF(Low Pass Filter)処理部11を設けて、減速度Gfloorにローパスフィルタ処理を施し、処理後の減速度Gfloorとしきい値ThrGfloorを比較する構成にしてもよい。この構成の場合、ローパスフィルタ処理により衝突現象中の減速度Gfloorの振動成分を抑制できるので、衝突現象中のフロア減速度継続時間Tgcontの加算が途切れることを防止できる。これにより、より正確なフロア減速度継続時間Tgcontを算出でき、高精度な高速衝突判定につながる。   Furthermore, as shown in the block diagram of FIG. 9, an LPF (Low Pass Filter) processing unit 11 is provided in the preceding stage of the floor deceleration duration calculation unit 6 to perform low-pass filter processing on the deceleration Gfloor and reduce the post-processing reduction. The speed Gfloor may be compared with the threshold value ThrGfloor. In the case of this configuration, the vibration component of the deceleration Gfloor during the collision phenomenon can be suppressed by the low-pass filter processing, so that the addition of the floor deceleration continuation time Tgcont during the collision phenomenon can be prevented from being interrupted. As a result, a more accurate floor deceleration continuation time Tgcont can be calculated, which leads to high-accuracy high-speed collision determination.

同様に、しきい値比較部8の前段にLPF処理部12を設けて、減速度Gfrontにローパスフィルタ処理を施し、処理後の減速度Gfrontをしきい値ThrGfrontと比較する構成にしてもよい。この構成の場合、フロントセンサ2の検出する減速度Gfrontのノイズを除去できるので、高精度な高速衝突判定が可能になる。   Similarly, an LPF processing unit 12 may be provided in front of the threshold comparison unit 8 so that the deceleration Gfront is subjected to low-pass filter processing, and the processed deceleration Gfront is compared with the threshold ThrGfront. In the case of this configuration, since the noise of the deceleration Gfront detected by the front sensor 2 can be removed, high-precision high-speed collision determination becomes possible.

なお、本願発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。
例えば、上記説明ではフロントセンサとフロアセンサを用いてフロントの衝突を判定する構成にしたが、フロント以外の車両外郭部に配置されたセンサとフロアセンサを用いてフロント以外の車両外郭部の衝突を判定する構成にしてもよい(リアに配置されたセンサとフロアセンサを用いてリアの衝突を判定する等)。
In the present invention, any constituent element of the embodiment can be modified or any constituent element of the embodiment can be omitted within the scope of the invention.
For example, in the above description, a front collision is determined using a front sensor and a floor sensor, but a collision between a vehicle outer part other than the front is detected using a sensor and a floor sensor arranged in a vehicle outer part other than the front. You may make the structure to determine (it determines the collision of a rear using the sensor and floor sensor which are arrange | positioned at rear, etc.).

1 フロアセンサ(第1のセンサ)、2 フロントセンサ(第2のセンサ)、3 ECU、4 通信I/F、5 マイコン、6 フロア減速度継続時間算出部、7 しきい値決定部、8 しきい値比較部、9 乗員保護装置駆動回路、10a,10b 乗員保護装置、 11,12 LPF処理部。   DESCRIPTION OF SYMBOLS 1 Floor sensor (1st sensor), 2 Front sensor (2nd sensor), 3 ECU, 4 Communication I / F, 5 Microcomputer, 6 Floor deceleration continuation time calculation part, 7 Threshold determination part, 8 Threshold comparison unit, 9 occupant protection device drive circuit, 10a, 10b occupant protection device, 11, 12 LPF processing unit.

Claims (7)

車両に搭載された乗員保護装置の起動要否を判定する衝突検出装置において、
前記車両の中央部に配置され当該車両の減速度を検出する第1のセンサと、
前記車両の外郭部に配置され当該車両に加わる衝撃に応じた出力を行う第2のセンサと、
前記第1のセンサで検出する減速度が第1のしきい値を超えた継続時間を算出する減速度継続時間算出部と、
前記継続時間と第2のしきい値との関係を定めたしきい値パターンを有し、前記減速度継続時間算出部で算出した継続時間に応じて第2のしきい値を決定するしきい値決定部と、
前記第2のセンサの検出値を前記しきい値決定部で決定した第2のしきい値と比較して、前記乗員保護装置の起動要否を判定するしきい値比較部とを備えることを特徴とする衝突検出装置。
In a collision detection device that determines whether or not an occupant protection device mounted on a vehicle is required to be activated,
A first sensor disposed in a central portion of the vehicle for detecting deceleration of the vehicle;
A second sensor arranged at the outer portion of the vehicle and performing an output according to an impact applied to the vehicle;
A deceleration duration calculation unit that calculates a duration during which the deceleration detected by the first sensor exceeds a first threshold;
A threshold value pattern that defines a relationship between the duration and the second threshold, and the second threshold is determined according to the duration calculated by the deceleration duration calculation unit; A value determination unit;
A threshold value comparison unit that compares the detection value of the second sensor with the second threshold value determined by the threshold value determination unit and determines whether or not the occupant protection device needs to be activated. A collision detection device.
前記第2のセンサは、前記車両の減速度を検出する減速度センサ、または前記車両外郭部の変形量を検出する圧力センサであることを特徴とする請求項1記載の衝突検出装置。   The collision detection apparatus according to claim 1, wherein the second sensor is a deceleration sensor that detects a deceleration of the vehicle or a pressure sensor that detects a deformation amount of the outer portion of the vehicle. 前記減速度継続時間算出部は、前記第1のセンサで検出する減速度が前記第1のしきい値を超えた場合に、前記継続時間に所定の値を加算することを特徴とする請求項1または請求項2記載の衝突検出装置。   The deceleration duration calculation unit adds a predetermined value to the duration when a deceleration detected by the first sensor exceeds the first threshold value. The collision detection apparatus according to claim 1 or 2. 前記第1のセンサで検出する減速度に対してローパスフィルタ処理を行って前記減速度継続時間算出部へ出力するローパスフィルタ処理部を備えることを特徴とする請求項1から請求項3のうちのいずれか1項記載の衝突検出装置。   The low-pass filter process part which performs a low-pass filter process with respect to the deceleration detected by the said 1st sensor, and outputs to the said deceleration continuation time calculation part is provided, The Claim 1 to Claim 3 characterized by the above-mentioned. The collision detection apparatus of any one of Claims. 前記減速度継続時間算出部は、前記第1のセンサで検出する減速度が前記第1のしきい値以下の場合に、前記継続時間が0になるまでは前記継続時間から所定の値を減算することを特徴とする請求項1から請求項4のうちのいずれか1項記載の衝突検出装置。   The deceleration duration calculation unit subtracts a predetermined value from the duration until the duration reaches 0 when the deceleration detected by the first sensor is equal to or less than the first threshold value. The collision detection device according to any one of claims 1 to 4, wherein 前記しきい値決定部の有する前記しきい値パターンは、所定時間より短い継続時間の第2のしきい値が、当該所定時間より長い継続時間の第2のしきい値に比べて低く設定されていることを特徴とする請求項1から請求項5のうちのいずれか1項記載の衝突検出装置。   In the threshold value pattern of the threshold value determining unit, the second threshold value having a duration shorter than a predetermined time is set lower than the second threshold value having a duration longer than the predetermined time. The collision detection device according to claim 1, wherein the collision detection device is provided. 前記しきい値決定部の有する前記しきい値パターンは、0を含む所定時間帯の継続時間の第2のしきい値が、当該所定時間帯以外の継続時間の第2のしきい値に比べて高く設定されていることを特徴とする請求項1から請求項6のうちのいずれか1項記載の衝突検出装置。   The threshold value pattern of the threshold value determining unit is such that the second threshold value of the duration of a predetermined time zone including 0 is compared with the second threshold value of the duration time other than the predetermined time zone. The collision detection device according to claim 1, wherein the collision detection device is set to be high.
JP2013116911A 2013-06-03 2013-06-03 Collision detection device Pending JP2014234076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013116911A JP2014234076A (en) 2013-06-03 2013-06-03 Collision detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013116911A JP2014234076A (en) 2013-06-03 2013-06-03 Collision detection device

Publications (1)

Publication Number Publication Date
JP2014234076A true JP2014234076A (en) 2014-12-15

Family

ID=52137095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013116911A Pending JP2014234076A (en) 2013-06-03 2013-06-03 Collision detection device

Country Status (1)

Country Link
JP (1) JP2014234076A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016157734A1 (en) * 2015-04-02 2016-10-06 株式会社デンソー Vehicle collision detection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016157734A1 (en) * 2015-04-02 2016-10-06 株式会社デンソー Vehicle collision detection device
JP2016196206A (en) * 2015-04-02 2016-11-24 株式会社デンソー Vehicular collision detection device

Similar Documents

Publication Publication Date Title
JP5796751B2 (en) Vehicle information recording device
JP6171042B2 (en) Control device for occupant protection device
US20150314744A1 (en) Method and device for activating a pedestrian protection means for a vehicle, and restraint system for a vehicle
US8924088B2 (en) Collision detection apparatus, collision determination method, and activation control apparatus for occupant protection apparatus
JP7045476B2 (en) Vehicle sensor devices and how to monitor sensors
US8538634B2 (en) Body velocity estimating device, and collision safety protecting system
US8527150B2 (en) Method and control device for triggering passenger protection means for a vehicle
KR101332022B1 (en) ECU monitoring system and monitoring method
JP2014234076A (en) Collision detection device
JP2004536742A (en) Vehicle impact detection system and control method
JP4635948B2 (en) Sensor device and control system using the same
US8346439B2 (en) Safety method and device for vehicle rollover prediction using estimated lateral vehicle velocity
CN101678805A (en) Method and control device for controlling occupant safety devices for a vehicle
US11066029B2 (en) Method for activating at least one secondary function of an occupant protection system of a vehicle
US20100241318A1 (en) method and control device for triggering passenger protection means for a vehicle
JP5511528B2 (en) Collision signal processing device for vehicle front collision acceleration sensor
KR101360342B1 (en) Impect sensing system for vehicle and its operating method thereof
WO2021090598A1 (en) Instruction input device, control device, and non-transitory computer-readable medium
JP2019027833A (en) Collision detection device
US10661743B2 (en) Method for ascertaining a triggering event for an airbag
KR20150043886A (en) Air Bag control method of automobile
JP5236126B2 (en) Collision detection device
KR102331557B1 (en) Method for operating an event counter
JP2011168276A (en) Collision determining apparatus for vehicle
JP2014041032A (en) Acceleration detector